文档库 最新最全的文档下载
当前位置:文档库 › 遗传算法优化程序

遗传算法优化程序

遗传算法优化程序
遗传算法优化程序

function [Y,X]=Objfunction(x,lenchrom)

%% 目标函数

% 输入 x:二进制编码

% lenchrom:各变量的二进制位数

% 输出 Y:目标值

% X:十进制数

bound=[-3.0 12.1;4.1 5.8]; % 函数自变量的范围%% 将binary数组转化成十进制数组

X=bin2decFun(x,lenchrom,bound);

%% 计算适应度-函数值

Y=sin(4*pi*X(1))*X(1)+sin(20*pi*X(2))*X(2);

function X=bin2decFun(x,lenchrom,bound)

%% 二进制转化成十进制

% 输入 x:二进制编码

% lenchrom:各变量的二进制位数

% bound:各变量的范围

% 输出 X:十进制数

M=length(lenchrom);

n=1;

X=zeros(1,M);

for i=1:M

for j=lenchrom(i)-1:-1:0

X(i)=X(i)+x(n).*2.^j;

n=n+1;

end

end

X=bound(:,1)'+X./(2.^lenchrom-1).*(bound(:,2)-bound(:,1))';

clear all;

close all;

%----------------参数设置-----------------------

MAXGEN=200; % 最大遗传代数

sizepop=40; % 种群大小

lenchrom=[20 20]; % 每个变量的二进制长度

trace=zeros(1,MAXGEN);

%--------------------------------------------------------------------------

best=struct('fitness',0,'X',[],'binary',[],'chrom',[]); % 最佳个体记录其适应度值、十进制值、二进制编码、量子比特编码

%% 初始化种群

chrom=InitPop(sizepop*2,sum(lenchrom));

%% 对种群实施一次测量得到二进制编码

binary=collapse(chrom);

%% 求种群个体的适应度值,和对应的十进制值

[fitness,X]=FitnessFunction(binary,lenchrom); % 使用目标函数计算适应度

%% 记录最佳个体到best

[best.fitness bestindex]=max(fitness); % 找出最大值

best.binary=binary(bestindex,:);

best.chrom=chrom([2*bestindex-1:2*bestindex],:);

best.X=X(bestindex,:);

trace(1)=best.fitness;

fprintf('%d\n',1)

%% 进化

for gen=2:MAXGEN

fprintf('%d\n',gen) %提示进化代数

%% 对种群实施一次测量

binary=collapse(chrom);

%% 计算适应度

[fitness,X]=FitnessFunction(binary,lenchrom);

%% 量子旋转门

chrom=Qgate(chrom,fitness,best,binary);

[newbestfitness,newbestindex]=max(fitness); % 找到最佳值% 记录最佳个体到best

if newbestfitness>best.fitness

best.fitness=newbestfitness;

best.binary=binary(newbestindex,:);

best.chrom=chrom([2*newbestindex-1:2*newbestindex],:);

best.X=X(newbestindex,:);

end

trace(gen)=best.fitness;

%% 画进化曲线

plot(1:MAXGEN,trace);

title('进化过程');

xlabel('进化代数');

ylabel('每代的最佳适应度');

%% 显示优化结果

disp(['最优解X:',num2str(best.X)])

disp(['最大值Y:',num2str(best.fitness)]);

function chrom=Qgate(chrom,fitness,best,binary)

%% 量子旋转门调整策略

% 输入 chrom:更新前的量子比特编码

% fitness:适应度值

% best:当前种群中最优个体

% binary:二进制编码

% 输出 chrom:更新后的量子比特编码

sizepop=size(chrom,1)/2;

lenchrom=size(binary,2);

for i=1:sizepop

for j=1:lenchrom

A=chrom(2*i-1,j); % α

B=chrom(2*i,j); % β

x=binary(i,j);

b=best.binary(j);

if ((x==0)&(b==0))||((x==1)&(b==1))

delta=0; % delta为旋转角的大小

s=0; % s为旋转角的符号,即旋转方向elseif (x==0)&(b==1)&(fitness(i)

delta=0.01*pi;

if A*B>0

s=1;

elseif A*B<0

s=-1;

elseif A==0

s=0;

elseif B==0

s=sign(randn);

end

elseif (x==0)&(b==1)&(fitness(i)>=best.fitness)

delta=0.01*pi;

if A*B>0

s=-1;

elseif A*B<0

s=1;

elseif A==0

s=sign(randn);

elseif B==0

s=0;

end

elseif (x==1)&(b==0)&(fitness(i)

delta=0.01*pi;

if A*B>0

s=-1;

elseif A*B<0

s=1;

elseif A==0

s=sign(randn);

elseif B==0

s=0;

end

elseif (x==1)&(b==0)&(fitness(i)>=best.fitness)

delta=0.01*pi;

if A*B>0

s=1;

elseif A*B<0

s=-1;

elseif A==0

s=0;

elseif B==0

s=sign(randn);

end

end

e=s*delta; % e为旋转角

U=[cos(e) -sin(e);sin(e) cos(e)]; % 量子旋转门 y=U*[A B]'; % y为更新后的量子位

chrom(2*i-1,j)=y(1);

chrom(2*i,j)=y(2);

end

end

function chrom=InitPop(M,N)

%% 初始化种群-量子比特编码

% M:为种群大小×2,(α和β)

% N:为量子比特编码长度

for i=1:M

for j=1:N

chrom(i,j)=1/sqrt(2);

end

end

function binary=collapse(chrom)

%% 对种群实施一次测量得到二进制编码

% 输入chrom :为量子比特编码

% 输出binary:二进制编码

[M,N]=size(chrom); %得到种群大小和编码长度

M=M/2; % 种群大小

binary=zeros(M,N); %二进制编码大小初始化

for i=1:M

for j=1:N

pick=rand; %产生【0,1】随机数

if pick>(chrom(2.*i-1,j)^2) % 随机数大于α的平方 binary(i,j)=1;

else

binary(i,j)=0;

end

end

end

function [fitness,X]=FitnessFunction(binary,lenchrom)

%% 适应度函数

% 输入 binary:二进制编码

% lenchrom:各变量的二进制位数

% 输出 fitness:适应度

% X:十进制数(待优化参数)

sizepop=size(binary,1);

fitness=zeros(1,sizepop);

num=size(lenchrom,2);

X=zeros(sizepop,num);

for i=1:sizepop

[fitness(i),X(i,:)]=Objfunction(binary(i,:),lenchrom); % 使用目标函数计算适应度

end

MATLAB实验遗传算法和优化设计

实验六 遗传算法与优化设计 一、实验目的 1. 了解遗传算法的基本原理和基本操作(选择、交叉、变异); 2. 学习使用Matlab 中的遗传算法工具箱(gatool)来解决优化设计问题; 二、实验原理及遗传算法工具箱介绍 1. 一个优化设计例子 图1所示是用于传输微波信号的微带线(电极)的横截面结构示意图,上下两根黑条分别代表上电极和下电极,一般下电极接地,上电极接输入信号,电极之间是介质(如空气,陶瓷等)。微带电极的结构参数如图所示,W 、t 分别是上电极的宽度和厚度,D 是上下电极间距。当微波信号在微带线中传输时,由于趋肤效应,微带线中的电流集中在电极的表面,会产生较大的欧姆损耗。根据微带传输线理论,高频工作状态下(假定信号频率1GHz ),电极的欧姆损耗可以写成(简单起见,不考虑电极厚度造成电极宽度的增加): 图1 微带线横截面结构以及场分布示意图 {} 28.6821ln 5020.942ln 20.942S W R W D D D t D W D D W W t D W W D e D D παπππ=+++-+++?????? ? ??? ??????????? ??????? (1) 其中πρμ0=S R 为金属的表面电阻率, ρ为电阻率。可见电极的结构参数影响着电极损耗,通过合理设计这些参数可以使电极的欧姆损耗做到最小,这就是所谓的最优化问题或者称为规划设计问题。此处设计变量有3个:W 、D 、t ,它们组成决策向量[W, D ,t ] T ,待优化函数(,,)W D t α称为目标函数。 上述优化设计问题可以抽象为数学描述: ()()min .. 0,1,2,...,j f X s t g X j p ????≤=? (2)

遗传算法优化相关MATLAB算法实现

遗传算法 1、案例背景 遗传算法(Genetic Algorithm,GA)是一种进化算法,其基本原理是仿效生物界中的“物竞天择、适者生存”的演化法则。遗传算法的做法是把问题参数编码为染色体,再利用迭代的方式进行选择、交叉以及变异等运算来交换种群中染色体的信息,最终生成符合优化目标的染色体。 在遗传算法中,染色体对应的是数据或数组,通常是由一维的串结构数据来表示,串上各个位置对应基因的取值。基因组成的串就是染色体,或者叫基因型个体( Individuals) 。一定数量的个体组成了群体(Population)。群体中个体的数目称为群体大小(Population Size),也叫群体规模。而各个个体对环境的适应程度叫做适应度( Fitness) 。 2、遗传算法中常用函数 1)创建种群函数—crtbp 2)适应度计算函数—ranking 3)选择函数—select 4)交叉算子函数—recombin 5)变异算子函数—mut 6)选择函数—reins 7)实用函数—bs2rv 8)实用函数—rep 3、主程序: 1. 简单一元函数优化: clc clear all close all %% 画出函数图 figure(1); hold on; lb=1;ub=2; %函数自变量范围【1,2】 ezplot('sin(10*pi*X)/X',[lb,ub]); %画出函数曲线 xlabel('自变量/X') ylabel('函数值/Y') %% 定义遗传算法参数 NIND=40; %个体数目 MAXGEN=20; %最大遗传代数 PRECI=20; %变量的二进制位数 GGAP=0.95; %代沟 px=0.7; %交叉概率 pm=0.01; %变异概率

遗传算法与优化问题(重要,有代码)

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: 序号遗传学概念遗传算法概念数学概念 1 个体要处理的基本对象、结构也就是可行解 2 群体个体的集合被选定的一组可行解 3 染色体个体的表现形式可行解的编码 4 基因染色体中的元素编码中的元素 5 基因位某一基因在染色体中的位置元素在编码中的位置 6 适应值个体对于环境的适应程度, 或在环境压力下的生存能力可行解所对应的适应函数值 7 种群被选定的一组染色体或个体根据入选概率定出的一组 可行解 8 选择从群体中选择优胜的个体, 淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解 9 交叉一组染色体上对应基因段的 交换根据交叉原则产生的一组新解 10 交叉概率染色体对应基因段交换的概 率(可能性大小)闭区间[0,1]上的一个值,一般为0.65~0.90 11 变异染色体水平上基因变化编码的某些元素被改变

4遗传算法与函数优化

第四章遗传算法与函数优化 4.1 研究函数优化的必要性: 首先,对很多实际问题进行数学建模后,可将其抽象为一个数值函数的优化问题。由于问题种类的繁多,影响因素的复杂,这些数学函数会呈现出不同的数学特征。除了在函数是连续、可求导、低阶的简单情况下可解析地求出其最优解外,大部分情况下需要通过数值计算的方法来进行近似优化计算。 其次,如何评价一个遗传算法的性能优劣程度一直是一个比较难的问题。这主要是因为现实问题种类繁多,影响因素复杂,若对各种情况都加以考虑进行试算,其计算工作量势必太大。由于纯数值函数优化问题不包含有某一具体应用领域中的专门知识,它们便于不同应用领域中的研究人员能够进行相互理解和相互交流,并且能够较好地反映算法本身所具有的本质特征和实际应用能力。所以人们专门设计了一些具有复杂数学特征的纯数学函数,通过遗传算法对这些函数的优化计算情况来测试各种遗传算法的性能。 4.2 评价遗传算法性能的常用测试函数 在设计用于评价遗传算法性能的测试函数时,必须考虑实际应用问题的数学模型中所可能呈现出的各种数学特性,以及可能遇到的各种情况和影响因素。这里所说的数学特性主要包括: ●连续函数或离散函数; ●凹函数或凸函数; ●二次函数或非二次函数; ●低维函数或高维函数; ●确定性函数或随机性函数; ●单峰值函数或多峰值函数,等等。 下面是一些在评价遗传算法性能时经常用到的测试函数: (1)De Jong函数F1: 这是一个简单的平方和函数,只有一个极小点f1(0, 0, 0)=0。

(2)De Jong 函数F2: 这是一个二维函数,它具有一个全局极小点f 2(1,1) = 0。该函数虽然是单峰值的函数,但它却是病态的,难以进行全局极小化。 (3)De Jong 函数F3: 这是一个不连续函数,对于]0.5,12.5[--∈i x 区域内的每一个点,它都取全局极小值 30),,,,(543213-=x x x x x f 。

遗传算法与组合优化.

第四章 遗传算法与组合优化 4.1 背包问题(knapsack problem ) 4.1.1 问题描述 0/1背包问题:给出几个尺寸为S 1,S 2,…,S n 的物体和容量为C 的背包,此处S 1,S 2,…,S n 和C 都是正整数;要求找出n 个物件的一个子集使其尽可能多地填满容量为C 的背包。 数学形式: 最大化 ∑=n i i i X S 1 满足 ,1C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 广义背包问题:输入由C 和两个向量C =(S 1,S 2,…,S n )和P =(P 1,P 2,…,P n )组成。设X 为一整数集合,即X =1,2,3,…,n ,T 为X 的子集,则问题就是找出满足约束条件∑∈≤T i i C X ,而使∑∈T i i P 获得最大的子集T ,即求S i 和P i 的下标子集。 在应用问题中,设S 的元素是n 项经营活动各自所需的资源消耗,C 是所能提供的资源总量,P 的元素是人们从每项经营活动中得到的利润或收益,则背包问题就是在资源有限的条件下,追求总的最大收益的资源有效分配问题。 广义背包问题可以数学形式更精确地描述如下: 最大化 ∑=n i i i X P 1 满足 ,1C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 背包问题在计算理论中属于NP —完全问题,其计算复杂度为O (2n ),若允许物件可以部分地装入背包,即允许X ,可取从0.00到1.00闭区间上的实数,则背包问题就简化为极简单的P 类问题,此时计算复杂度为O (n )。

4.1.2 遗传编码 采用下标子集T 的二进制编码方案是常用的遗传编码方法。串T 的长度等于n(问题规模),T i (1≤i ≤n )=1表示该物件装入背包,T i =0表示不装入背包。基于背包问题有近似求解知识,以及考虑到遗传算法的特点(适合短定义距的、低阶的、高适应度的模式构成的积木块结构类问题),通常将P i ,S i 按P i /S i 值的大小依次排列,即P 1/S 1≥P 2/S 2≥…≥P n /S n 。 4.1.3 适应度函数 在上述编码情况下,背包问题的目标函数和约束条件可表示如下。 目标函数:∑==n i i i P T T J 1 )( 约束条件:C S T n i i i ≤∑=1 按照利用惩罚函数处理约束条件的方法,我们可构造背包问题的适应度函数f (T )如下式: f (T ) = J (T ) + g (T ) 式中g (T )为对T 超越约束条件的惩罚函数,惩罚函数可构造如下: 式中E m 为P i /S (1≤i ≤n )i 的最大值,β为合适的惩罚系数。 4.2 货郎担问题(Traveling Salesman Problem ——TSP ) 在遗传其法研究中,TSP 问题已被广泛地用于评价不同的遗传操作及选择机制的性能。之所以如此,主要有以下几个方面的原因: (1) TSP 问题是一个典型的、易于描述却难以处理的NP 完全(NP-complete )问题。有效地 解决TSP 问题在可计算理论上有着重要的理论价值。 (2) TSP 问题是诸多领域内出现的多种复杂问题的集中概括和简化形式。因此,快速、有效 地解决TSP 问题有着极高的实际应用价值。 (3) TSP 问题因其典型性已成为各种启发式的搜索、优化算法的间接比较标准,而遗传算法 就其本质来说,主要是处理复杂问题的一种鲁棒性强的启发式随机搜索算法。因此遗传算法在TSP 问题求解方面的应用研究,对于构造合适的遗传算法框架、建立有效的遗传操作以及有效地解决TSP 问题等有着多方面的重要意义。

基于遗传算法的库位优化问题

Logistics Sci-Tech 2010.5 收稿日期:2010-02-07 作者简介:周兴建(1979-),男,湖北黄冈人,武汉科技学院经济管理学院,讲师,武汉理工大学交通学院博士研究生,研究方向:物流价值链、物流系统规划;刘元奇(1988-),男,甘肃天水人,武汉科技学院经济管理学院;李泉(1989-),男,湖北 武汉人,武汉科技学院经济管理学院。 文章编号:1002-3100(2010)05-0038-03 物流科技2010年第5期Logistics Sci-Tech No.5,2010 摘 要:应用遗传算法对邯运集团仓库库位进行优化。在充分考虑邯运集团仓库所存放的货物种类、货物数量、出入库频 率等因素的基础上进行库位预分区规划,建立了二次指派问题的数学模型。利用遗传算法对其求解,结合MATLAB 进行编程计算并得出最优划分方案。 关键词:遗传算法;预分区规划;库位优化中图分类号:F253.4 文献标识码:A Abstract:The paper optimize the storage position in warehouse of Hanyun Group based on genetic algorithm.With thinking of the factors such as goods categories,quantities and frequencies of I/O,etc,firstly,the storage district is planned.Then the model of quadratic assignment problems is build,and genetic algorithm is utilized to resolve the problem.The software MATLAB is used to program and figure out the best alternatives. Key words:genetic algorithm;district planning;storage position optimization 1 库位优化的提出 邯郸交通运输集团有限公司(简称“邯运集团”)是一家集多种业务为一体的大型综合性物流企业。邯运集团的主要业务板块有原料采购(天信运业及天昊、天诚、天恒等)、快递服务(飞马快运)、汽贸业务(天诚汽贸)及仓储配送(河北快运)等。其中,邯运集团的仓储配送业务由河北快运经营,现有仓库面积总共40000㎡,主要的业务范围为医药、日用百货、卷烟、陶瓷、化工产品的配送,其中以医药为主。邯运集团库存货物主要涉及两个方面:一个是大宗的供应商货物,如医药,化工产品等;另一方面主要是大规模的小件快递货物,如日用百货等[1]。经分析,邯运集团在仓储运作方面存在如下问题: (1)存储货物繁多而分拣速度低下。仓库每天到货近400箱,有近200多种规格,缺乏一套行之有效的仓储管理系统。(2)货架高度不当而货位分配混乱。现在采用的货架高度在2米以上,而且将整箱货物直接码垛在货架上,不严格按货位摆放。当需要往货架最上层码放货物需要借助梯子,增加操作难度且操作效率较低。货物在拣货区货架摆放是以件为单位的,分拣和搬运速度较慢。 (3)拣货货架设计不当而仓储效率低下。发货前装箱工作主要由人工协同完成,出库效率低,出错率难以控制。 (4)存储能力和分拣能力不能满足需求。根据邯运集团的业务发展现状及趋势,现有的仓库储存和分拣能力远远达不到集团公司对配送业务量的需求。 当前邯运集团的货位分配主要采用物理地址编码的方式,很少考虑货位分配对仓储管理员工作效率的影响。对其进行库位优化设计不仅直接影响到其库存量的大小、出入库的效率,还间接影响到邯运集团的整体经营效益。本文对邯运集团的仓库货位进行优化时,结合考虑仓库所存放的货物种类、货物数量、出入库频率等因素,对仓库货位进行规划,以提高仓储效率。 2库位预分区规划 在进行仓库货位规划时,作如下假设: (1)货物的存放种类已知; (2)货物每种类的单位时间内存放的数量己知; (3) 每一种货物的存取频率已知。 在仓库货位优化中一个重要的环节即预分区。所谓预分区,是指没有存放货物时的分区,分区时只考虑仓储作业人员的速基于遗传算法的库位优化问题 Optimization of Storage Position in Warehouse Based on Genetic Algorithm 周兴建1,2,刘元奇1,李泉1 ZHOU Xing-jian 1,2,LIU Yuan-qi 1,LI Quan 1 (1.武汉科技学院经济管理学院,湖北武汉430073;2.武汉理工大学交通学院,湖北武汉430063) (1.College of Economics &Management,Wuhan University of Science &Engineering,Wuhan 430073,China; 2.School of Transportation,Wuhan University of Technology,Wuhan 430063,China) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 38

遗传算法在多目标优化的应用:公式,讨论,概述总括

遗传算法在多目标优化的应用:公式,讨论,概述/总括 概述 本文主要以适合度函数为基础的分配方法来阐述多目标遗传算法。传统的群落形成方法(niche formation method)在此也有适当的延伸,并提供了群落大小界定的理论根据。适合度分配方法可将外部决策者直接纳入问题研究范围,最终通过多目标遗传算法进行进一步总结:遗传算法在多目标优化圈中为是最优的解决方法,而且它还将决策者纳入在问题讨论范围内。适合度分配方法通过遗传算法和外部决策者的相互作用以找到问题最优的解决方案,并且详细解释遗传算法和外部决策者如何通过相互作用以得出最终结果。 1.简介 求非劣解集是多目标决策的基本手段。已有成熟的非劣解生成技术本质上都是以标量优化的手段通过多次计算得到非劣解集。目前遗传算法在多目标问题中的应用方法多数是根据决策偏好信息,先将多目标问题标量化处理为单目标问题后再以遗传算法求解,仍然没有脱离传统的多目标问题分步解决的方式。在没有偏好信息条件下直接使用遗传算法推求多目标非劣解的解集的研究尚不多见。 本文根据遗传算法每代均产生大量可行解和隐含的并行性这一特点,设计了一种基于排序的表现矩阵测度可行解对所有目标总体表现好坏的向量比较方法,并通过在个体适应度定标中引入该方法,控制优解替换和保持种群多样性,采用自适应变化的方式确定交叉和变异概率,设计了多目标遗传算法(Multi Objective Genetic Algorithm, MOGA)。该算法通过一次计算就可以得到问题的非劣解集, 简化了多目标问题的优化求解步骤。 多目标问题中在没有给出决策偏好信息的前提下,难以直接衡量解的优劣,这是遗传算法应用到多目标问题中的最大困难。根据遗传算法中每一代都有大量的可行解产生这一特点,我们考虑通过可行解之间相互比较淘汰劣解的办法来达到最 后对非劣解集的逼近。 考虑一个n维的多目标规划问题,且均为目标函数最大化, 其劣解可以定义为: f i (x * )≤f i (x t ) i=1,2,??,n (1) 且式(1)至少对一个i取“<”。即至少劣于一个可行解的x必为劣解。 对于遗传算法中产生大量的可行解,我们考虑对同一代中的个体基于目标函数相互比较,淘汰掉确定的劣解,并以生成的新解予以替换。经过数量足够大的种群一定次数的进化计算,可以得到一个接近非劣解集前沿面的解集,在一定精度要求下,可以近似的将其作为非劣解集。 个体的适应度计算方法确定后,为保证能得到非劣解集,算法设计中必须处理好以下问题:(1)保持种群的多样性及进化方向的控制。算法需要求出的是一组不同的非劣解,所以计算中要防止种群收敛到某一个解。与一般遗传算法进化到

遗传算法多目标函数优化

多目标遗传算法优化 铣削正交试验结果 说明: 1.建立切削力和表面粗糙度模型 如: 3.190.08360.8250.5640.45410c e p z F v f a a -=(1) a R =此模型你们来拟合(上面有实验数据,剩下的两个方程已经是我帮你们拟合好的了)(2) R a =10?0.92146v c 0.14365f z 0.16065a e 0.047691a p 0.38457 10002/c z p e Q v f a a D π=-????(3) 变量约束范围:401000.020.080.25 1.0210c z e p v f a a ≤≤??≤≤??≤≤? ?≤≤? 公式(1)和(2)值越小越好,公式(3)值越大越好。π=3.14 D=8 2.请将多目标优化操作过程录像(同时考虑三个方程,优化出最优的自变量数值),方便我后续进行修改;将能保存的所有图片及源文件发给我;将最优解多组发给我,类似于下图(黄色部分为达到的要求)

遗传算法的结果:

程序如下: clear; clc; % 遗传算法直接求解多目标优化 D=8; % Function handle to the fitness function F=@(X)[10^(3.19)*(X(1).^(-0.0836)).*(X(2).^0.825).*(X(3).^0.564).*(X(4).^0. 454)]; Ra=@(X)[10^(-0.92146)*(X(1).^0.14365).*(X(2).^0.16065).*(X(3).^0.047691).*( X(4).^0.38457)]; Q=@(X)[-1000*2*X(1).*X(2).*X(3).*X(4)/(pi*D)];

TSP问题的遗传算法求解 优化设计小论文

TSP问题的遗传算法求解 摘要:遗传算法是模拟生物进化过程的一种新的全局优化搜索算法,本文简单介绍了遗传算法,并应用标准遗传算法对旅行包问题进行求解。 关键词:遗传算法、旅行包问题 一、旅行包问题描述: 旅行商问题,即TSP问题(Traveling Saleman Problem)是数学领域的一个著名问题,也称作货郎担问题,简单描述为:一个旅行商需要拜访n个城市(1,2,…,n),他必须选择所走的路径,每个城市只能拜访一次,最后回到原来出发的城市,使得所走的路径最短。其最早的描述是1759年欧拉研究的骑士周游问题,对于国际象棋棋盘中的64个方格,走访64个方格一次且最终返回起始点。 用图论解释为有一个图G=(V,E),其中V是顶点集,E是边集,设D=(d ij)是有顶点i和顶点j之间的距离所组成的距离矩阵,旅行商问题就是求出一条通过所有顶点且每个顶点只能通过一次的具有最短距离的回路。若对于城市V={v1,v2,v3,...,vn}的一个访问顺序为T=(t1,t2,t3,…,ti,…,tn),其中ti∈V(i=1,2,3,…,n),且记tn+1= t1,则旅行商问题的数学模型为:min L=Σd(t(i),t(i+1)) (i=1,…,n) 旅行商问题是一个典型组合优化的问题,是一个NP难问题,其可能的路径数为(n-1)!,随着城市数目的增加,路径数急剧增加,对与小规模的旅行商问题,可以采取穷举法得到最优路径,但对于大型旅行商问题,则很难采用穷举法进行计算。 在生活中TSP有着广泛的应用,在交通方面,如何规划合理高效的道路交通,以减少拥堵;在物流方面,更好的规划物流,减少运营成本;在互联网中,如何设置节点,更好的让信息流动。许多实际工程问题属于大规模TSP,Korte于1988年提出的VLSI芯片加工问题可以对应于1.2e6的城市TSP,Bland于1989年提出X-ray衍射问题对应于14000城市TSP,Litke于1984年提出电路板设计中钻孔问题对应于17000城市TSP,以及Grotschel1991年提出的对应于442城市TSP的PCB442问题。

遗传算法的优化计算

function Val=de_code(x) % 全局变量声明 global S P_train T_train P_test T_test mint maxt global p t r s s1 s2 % 数据提取 x=x(:,1:S); [m,n]=find(x==1); p_train=zeros(size(n,2),size(T_train,2)); p_test=zeros(size(n,2),size(T_test,2)); for i=1:length(n) p_train(i,:)=P_train(n(i),:); p_test(i,:)=P_test(n(i),:); end t_train=T_train; p=p_train; t=t_train; % 遗传算法优化BP网络权值和阈值 r=size(p,1); s2=size(t,1); s=r*s1+s1*s2+s1+s2; aa=ones(s,1)*[-1,1]; popu=20; % 种群规模 initPpp=initializega(popu,aa,'gabpEval'); % 初始化种群 gen=100; % 遗传代数 % 调用GAOT工具箱,其中目标函数定义为gabpEval x=ga(aa,'gabpEval',[],initPpp,[1e-6 1 0],'maxGenTerm',gen,... 'normGeomSelect',0.09,'arithXover',2,'nonUnifMutation',[2 gen 3]); % 创建BP网络 net=newff(minmax(p_train),[s1,1],{'tansig','purelin'},'trainlm'); % 将优化得到的权值和阈值赋值给BP网络 [W1,B1,W2,B2]=gadecod(x); net.IW{1,1}=W1; net.LW{2,1}=W2; net.b{1}=B1; net.b{2}=B2; % 设置训练参数 net.trainParam.epochs=1000; net.trainParam.show=10; net.trainParam.goal=0.1; net.trainParam.lr=0.1; net.trainParam.showwindow=0;

遗传算法与优化问题

遗传算法与优化问题 (摘自:华东师范大学数学系;https://www.wendangku.net/doc/a75526831.html,/) 一、问题背景与实验目的 二、相关函数(命令)及简介 三、实验内容 四、自己动手 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算. 1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议).

(1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: (2)遗传算法的步骤 遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation). 遗传算法基本步骤主要是:先把问题的解表示成“染色体”,在算法中也就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就是假设的可行解.然后,把这些假设的可行解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉、变异过

遗传算法的优化计算-建模自变量降维

%% 清空环境变量 clear all clc warning off %% 声明全局变量 global P_train T_train P_test T_test mint maxt S s1 S=30; s1=50; %% 导入数据 load data.mat a=randperm(569); Train=data(a(1:500),:); Test=data(a(501:end),:); % 训练数据 P_train=Train(:,3:end)'; T_train=Train(:,2)'; % 测试数据 P_test=Test(:,3:end)'; T_test=Test(:,2)'; % 显示实验条件 total_B=length(find(data(:,2)==1)); total_M=length(find(data(:,2)==2)); count_B=length(find(T_train==1)); count_M=length(find(T_train==2)); number_B=length(find(T_test==1)); number_M=length(find(T_test==2)); disp('实验条件为:'); disp(['病例总数:' num2str(569)... ' 良性:' num2str(total_B)... ' 恶性:' num2str(total_M)]); disp(['训练集病例总数:' num2str(500)... ' 良性:' num2str(count_B)... ' 恶性:' num2str(count_M)]); disp(['测试集病例总数:' num2str(69)... ' 良性:' num2str(number_B)... ' 恶性:' num2str(number_M)]); %% 数据归一化 [P_train,minp,maxp,T_train,mint,maxt]=premnmx(P_train,T_train); P_test=tramnmx(P_test,minp,maxp); %% 创建单BP网络 t=cputime; net_bp=newff(minmax(P_train),[s1,1],{'tansig','purelin'},'trainlm'); % 设置训练参数 net_bp.trainParam.epochs=1000;

Matlab环境下的遗传算法程序设计及优化问题求解

本栏目责任编辑:谢媛媛 开发研究与设计技术 遗传算法(GA)是借鉴生物界自然选择和群体进化机制而形成的一种全局寻优算法,其本质上是一种基于概率的随机搜索算法。与其它的优化算法相比较,遗传算法具有以下优点:(1)通用性;(2)并行性;(3)简单性和可操作性;(4)稳定性和全局性。 1遗传算法概述 在遗传算法中,首先将空间问题中的决策变量通过一定的编码表示成遗传空间的一个个体,它是一个基因型串结构数据;然后将目标函数转换成适应度值,用来评价每个个体的优劣,并将其作为遗传操作的依据。遗传操作包括三个算子:选择、重组和变异。选择是从当前群体中选择适应值高的个体以生成交配池的过程,交配池是当前代与下一代之间的中间群体。选择算子的作用是用来提高群体的平均适应度值。重组算子的作用是将原有的优良基因遗传给下一代个体,并生成包含更复杂基因的新个体,它先从交配池中的个体随机配对,然后将两两配对的个体按一定方式相互交换部分基因。变异算子是对个体的某一个或几位按某一较小的概率进行反转其二进制字符,模拟自然界的基因突变现象。 遗传算法的基本程序实现流程如下: (1)先确定待优化的参数大致范围,然后对搜索空间进行编码;(2)随机产生包含各个个体的初始种群; (3)将种群中各个个体解码成对应的参数值,用解码后的参数求代价函数和适应度函数,运用适应度函数评估检测各个个体适应度; (4)对收敛条件进行判断,如果已经找到最佳个体,则停止,否则继续进行遗传操作; (5)进行选择操作,让适应度大的个体在种群中占有较大的比例,一些适应度较小的个体将会被淘汰; (6)随机交叉,两个个体按一定的交叉概率进行交叉操作,并产生两个新的子个体; (7)按照一定的变异概率变异,使个体的某个或某些位的性质发生改变; (8)重复步骤(3)至(7),直至参数收敛达到预定的指标。使用遗传算法需要确定的运行参数有:编码串长度、交叉和变异概率、种群规模。编码串长度由问题的所要求的精度来决定。交叉概率控制着交叉操作的频率,交叉操作是遗传算法中产生新 个体的主要方法,所以交叉概率通常应取较大值,但如果交叉概率太大的话又可能反过来会破坏群体的优良模式,一般取0.4- 0.99。变异概率也是影响新个体产生的一个因素,如果变异概率 太小,则产生新个体较少;如果变异概率太大,则又会使遗传算法变成随机搜索,为保证个体变异后与其父体不会产生太大的差异,通常取变异概率为0.0001-0.1以保证种群发展的稳定性。种群规模太大时,计算量会很大,使遗传算法的运行效率降低,种群规模太小时,可以提高遗传算法的运行速度,但却种群的多样性却降低了,有可能找不出最优解,通常取种群数目20-100。从理论上讲,不存在一组适用于所有问题的最佳参数值,随着问题参数的变化,有效问参数的差异往往是十分显著的。 2用Matlab语言来实现遗传算法 Matlab是一个高性能的计算软件,配备有功能强大的数学函 数支持库,适用范围大,编程效率高,语句简单,功能齐备,是世界上顶级的计算与仿真程序软件。利用Matlab来编写遗传算法程序简单而且易于操作。 2.1编码 编码就是把一个问题的可行解从其解空间转换到遗传算法能够处理的搜索空间的转化方法,编码形式决定了重组算子的操作。遗传算法是对编码后的个体作选择与交叉运算,然后通过这些反复运算达到优化目标。遗传算法首要的问题是通过编码将决策变量表示成串结构数据。我们常用的是二进制编码,即用二进制数构成的符号串来表示每个个体。通常根据搜索精度(sca_var)、决策变量上界(range(2))的和下界(range(1))来确定各个二进制字符串的长度(bit_n), 搜索精度为sca_var=(range(2)-range(1))./ (2^bit_n—1),然后再随机产生一个的初始种群(be_gen),其规模为popusize。下面用encoding函数来实现编码和产生初始的种群: function[be_gen,bit_n]=encoding(sca_var,range(1),range(2),popusize) bit_n=ceil(log2((range(2)-range(1))./sca_var));be_gen=randint(popusize,sum(bit_n));2.2译码 决策变量经过编码之后,各个个体构成的种群be_gen要通过解码才能转换成原问题空间的决策变量构成的种群vgen,这样才 收稿日期:2006-01-05 作者简介:梁科(1981-),硕士研究生,研究方向:智能计算与优化方法;夏定纯(1963-),教授,研究方向:人工智能,计算机在线检测。 Matlab 环境下的遗传算法程序设计及优化问题求解 梁科,夏定纯 (武汉科技学院计算机科学学院,湖北武汉430073) 摘要:本文介绍了遗传算法的流程及几个算子,给出了在matlab语言环境下实现编码、译码、选择、重组和变异各算子的编程方法,最后用一个实例来说明遗传算法在寻找全局最优解中的应用。 关键词:遗传算法;matlab;程序设计中图分类号:TP312 文献标识码:A 文章编号:1009-3044(2007)04-11049-03 GeneticAlgorithmProgrammingByMatlabAndOptimizingProblemSolving LIANGKe,XIADing-chun (DepartmentofComputerscience,WuhanUniversityofScience&Engineering,Wuhan430073,China) Abstract:Theseveralfactorsofgeneticalgorithmhavebeenpresentedinthispaper,andtheprogrammingofencoding、decoding、choice、crossoverandmutationofmatlabhavebeengiven,finally,afunctionoptimizingproblemhasbeenpresentedtodemonstratedtheapplicationaboutglobaloptimizingofgeneticalgorithm. Keywords:GA;matlab;programming 1049

matlab作业—遗传算法与优化问题

遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的。遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位。 1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程。它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体。这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代。后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程。群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解。值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议)。 (1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念。 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系。这些概念如下: 1个体——要处理的基本对象、结构,也就是可行解。 2群体——个体的集合,被选定的一组可行解。 3染色体——个体的表现形式,可行解的编码。 4基因——染色体中的元素编码中的元素。 5基因位——某一基因在染色体中的位置元素在编码中的位置。 6适应值——个体对于环境的适应程度,或在环境压力下的生存能力,可行解所对应的适应函数值。 7种群——被选定的一组染色体或个体根据入选概率定出的一组可行解。 8选择——从群体中选择优胜的个体,淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解。 9交叉——一组染色体上对应基因段的交换,根据交叉原则产生的一组新解。 10交叉概率——染色体对应基因段交换的概率(可能性大小),闭区间[0,1]上的一个值,一般为0.65~0.90。 11变异——染色体水平上基因变化编码的某些元素被改变。 12变异概率——染色体上基因变化的概率(可能性大小),开区间(0,1)内的一个值, 一般为0.001~0.01。 13进化——适者生存个体进行优胜劣汰的进化,一代又一代地优化目标函数取到最大值,最优的可行解。 (2)遗传算法的步骤 遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation)。 遗传算法基本步骤主要是:先把问题的解表示成“染色体”,在算法中也就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就是假设的可行解。然后,把这些假

粒子群算法与遗传算法的比较

粒子群算法介绍 优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题. 为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度. 爬山法精度较高,但是易于陷入局部极小. 遗传算法属于进化算法( Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异. 但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重 影响解的品质,而目前这些参数的选择大部分是依靠经验.1995 年Eberhart博士和kennedy博士提出了一种新的算法;粒子群优化(Particle Swarm Optimization -PSO) 算法. 这种算法以 其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。 粒子群优化(Particle Swarm Optimization - PSO) 算法是近年来发展起来的一种新的进化算法( Evolutionary Algorithm - EA) .PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质. 但是它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作. 它通过追随 当前搜索到的最优值来寻找全局最优。 1. 引言 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),由Eberhart博士和kennedy博士提出。源于对鸟群捕食的行为研究。 PSO同遗传算法类似,是一种基于迭代的优化算法。系统初始化为一组随机解,通过迭代搜寻最优值。但是它没有遗传算法用的交叉(crossover)以及变异(mutation),而是粒子在解空间追随最优的粒子进行搜索。同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域 2. 背景: 人工生命 "人工生命"是来研究具有某些生命基本特征的人工系统。人工生命包括两方面的内容: 1. 研究如何利用计算技术研究生物现象 2. 研究如何利用生物技术研究计算问题 我们现在关注的是第二部分的内容. 现在已经有很多源于生物现象的计算技巧. 例如, 人工神经网络是简化的大脑模型. 遗传算法是模拟基因进化过程的. 现在我们讨论另一种生物系统- 社会系统. 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为. 也可称做"群智能"(swarm intelligence). 这些模拟系统利用局 部信息从而可能产生不可预测的群体行为 例如floys和boids, 他们都用来模拟鱼群和鸟群的运动规律, 主要用于计算机视觉和计算机辅助设计. 在计算智能(computational intelligence)领域有两种基于群智能的算法. 蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization). 前者是对蚂蚁群落食物采集过程的模拟. 已经成功运用在很多离散优化问题上. 粒子群优化算法(PSO) 也是起源对简单社会系统的模拟. 最初设想是模拟鸟群觅食的 过程. 但后来发现PSO是一种很好的优化工具.

相关文档
相关文档 最新文档