文档库 最新最全的文档下载
当前位置:文档库 › 计算机辅助药物设计重点

计算机辅助药物设计重点

计算机辅助药物设计重点
计算机辅助药物设计重点

第一章

1、药物研发二期有双盲实验,三期之后药物可以上市

2、新药研发特点: 费用大,投入高,时间长

3、计算机辅助药物设计的优势

(1)指导有目的地开发新药,减少盲目性和偶然性。

(2)加快研制新药速度,节省人力、物力和财力。

(3)为研究者提供理论思维形象化的表达,直观设计,理解和解释实验结果。

(4)只是辅助性工具,仍需研究者的经验判断和指导。

4、什么是先导化合物?

在创新药研究过程中,大量合成的有机化合物和分离得到的天然产物有效成分,经过有效的药理模型进行随机筛选,从而发现具有进一步开发价值的化合物,称之为先导化合物。

5、药物的研发流程包括哪些步骤?(I,II,III,IV期都干了什么)

第二章

1.键长:分子中两个成键原子核之间的距离。

2.键角:在多原子分子中,两个或者两个以上的原子与其他原子在成键以后,键与键之间的夹角。

3.键的极性:

(1)非极性共价键:两个相同原子组成的共价键。

(2)极性共价键:两个不相同原子组成的共价键,

4.药物成盐的主要作用

(1)产生较理想的药理作用

(2)调节适当的PH值

(3)使药物有良好的溶解性

(4)降低药物对机体的刺激性

5.手性一词指一个物体与其镜像不重合

6.会画手性

7.R / S 命名法(会判断RS)

(1)按次序规则将手性碳原子上的四个基团排序。

(2)把排序最小的基团放在离观察者眼睛最远的位置,观察其余三个基团由大→中→小的顺序,若是顺时针方向,则其构型为R,若是反时针方向,则构型为S。

次序规则:

(1)原子序数大者优先,同位素者以质量大为优先;

(2)第一原子相同,则比较第二个原子,余类推;

(3)不饱和键视为两个或三个单键;

CH3

C

2CH3CH3

C

2CH3

C

CH2CH3

3

S R R

8.药物代谢是指在酶的作用下将药物(通常是非极性分子)转变成极性分子,再通过人体的正常系统排出体外

9.毒性避免策略

(1)避免警戒结构出现

(2)提供较警戒结构更易代谢的基因

(3)减小药物剂量

(4)堵塞活性位点,利用卤代素取代

10.药物代谢的意义

当药物进入机体后,一方面药物对机体产生诸多生理作用,即药效和毒性;另一方面,

机体也对药物产生作用,即对药物的处置,包括吸收、分布、排泄和代谢。

11.药物代谢反应对药物活性的影响:

由活性药物转化成无活性代谢物

由无活性药物转化成活性代谢物

由活性药物转化成仍有活性的代谢物

由无毒性或毒性小的药物转化成毒性代谢物

经生物转化改变药物的药理作用

12.官能团化反应类型

氧化反应、还原反应、水解反应

13.结合反应

药物在体内通过氧化、还原、水解等转化后,与内源性物质如葡糖醛酸、硫酸盐、氨基酸或谷胱甘肽等结合,生成水溶性的、无药理作用的产物,从尿液(分子量<300)或胆汁排出体外,这一过程称为结合反应

14.结合反应类型

与葡糖醛酸的结合、与硫酸基结合、与氨基酸的结合、与谷胱甘肽的结合、乙酰化反应、甲基化反应

第三章

1.生物大分子结构方面的特征与共性

(1)具有多种单体的共聚物

(2)具有多层次结构

(3)生物大分子结构的可变性

2.生物大分子功能方面的特征与共性

(1)作用的专一性

(2)作用的配合与协调

3.药物靶点分类

受体(G蛋白偶连受体)、酶、离子通道、核酸、其他

4.氨基酸有无数种,天然氨基酸有200-300种,在生物体内的氨基酸有20多种

5.药物进行糖基化的主要作用:

(1)增加药物的溶解性

(2)调节药物的血浆半衰期

(3)提高药物的结合特异性

(4)改变母体药物的药理活性

6.为什么蛋白质是有手性的?

组成蛋白的基本结构单元有手性

第五章

1.化学信息学

化学信息学是近几年发展起来的一个新的化学分支,它利用计算机技术和计算机网络技术,对化学信息进行表示、管理、分析、模拟和传播,以实现化学信息的提取、转化与共享,揭示化学信息的实质与内在联系,促进化学学科的知识创新

2.mol2文件写出二维化学结构式

3.SMILES文件存储的优点

(1)高度浓缩和简洁地表达化学结构信息

(2)快速数据转换格式,支持立体结构和反应编码

(3)灵活易学,不依赖于软件和硬件

(4)在全球得到广泛应用

4.SMILES的基本规则

①原子由各自的原子符号表示;有歧义的双字母符号必须写在方括弧内;

如:[Fe+2]或[Fe++] 表示Fe2+

②氢原子自动地添加直至自由价饱和而被省略(简单的氢连接);

如:C 表示CH4

③相邻的原子表示彼此相连;用“.”表示原子间或分子各部分之间没有联结,各部分的排列是随意的;

如:CO 表示H3COH ;[Na+].[OH-] 表示NaOH

④双键和三键分别用“=”和“#”表示;单键和芳香键可以省略;

如:C=C 表示H2C=CH2;C#C 表示HC≡CH;O=CO 表示HCOOH

⑤分支用小括弧表示;

如:CC(=O)O 表示

⑥环通过在两个原子之间的断环来描述,用分配的同一数字来表示“断开”环的“闭合”,不同的数字代表不同的环。

C1CCCCC1 表示

(7)用小写字母表示芳香结构中的原子

(8)在芳香结构中的N原子上连接有一个H原子,需要用[nH]表示

(9)用“/”和“\”表示双键两端的顺反结构

(10)用@和@@表示手性结构(@是逆时针,@@是顺时针)

5.会写结构的SMILES格式如

C1CNCCC1 O=C1OCCCC1

6.本章重点介绍的化学结构信息检索数据库有哪些?

7.mol2文件存储格式的规则是怎样的?(我随便写的)

分为@MOLECULE:包含分子名字、分子量、分子类型

@ATOM:包含原子顺序、原子名称、原子对应坐标

@BOND:包含4列,里面有原子的连接顺序,第一列为序号,第二列为第一个原子,第三列为第二个原子,第四列为原子间键的类型,1为单键,2为双键。

8.深度优先搜索和广度优先搜索

第四章

1.同源模建的概念

同源模建也称为比较模建法或基于知识的预测方法,其基本假设是序列的同源性决定了三维结构的同源性,一个未知结构的蛋白质分子(目标蛋白)的结构是可以通过与之序列同源且结构已知的蛋白质(参考蛋白)来进行预测的。

2.同源模建的步骤

(1)同源蛋白的搜索

(2)参考蛋白结构保守区(SCRs)的确定

(3)序列比对

(4)模型构建

(5)模型的优化和修正

(6)模型的合理性评价

3.同源模建方法的局限性

(1)蛋白质结构数据库中可供作参考的蛋白质结构很有限。

(2)序列相似性很低的时候,就无法预测目标蛋白质的三维结构或是预测的结构可信度很低。

(3)不能预测蛋白质可能产生的新折叠

(4)所得到的蛋白质结构模型,通常含有一些不合理的原子间接触,需要对模型进行分子力学和分子动力学的处理,消除模型中不合理的接触

(5)模型中有些键长、键角和二面角也有可能不合理,也需要检查评估。

4.可能会计算两条序列的相似性(BLOSUM62)

查表,加和,比较

5.折叠识别原理

折叠识别的原理为,把目标序列和已知的结构进行匹配,找出一种或几种匹配最好的结构作为未知蛋白质的预测结构。这种计算序列与结构之间的排序过程也称为Threading算法或穿线法。

6.Threading方法的局限性

这种方法的局限性在于它假设蛋白质折叠类型是有限的,所以只有未知蛋白质和已知蛋白质结构相似的时候,才有可能预测出未知的蛋白质结构。如未知蛋白质结构是现在还没有出现的结构类型时,这种方法将不再适用。

7.从头预测思想

这种方法的基本思想是将蛋白质的残基作为最基本单元,进行蒙特卡罗模拟、模拟退火或遗传算法优化,建立最佳的三维结构模型。由于模型简化为以残基作为基本单位,而不是以原子为基本单位,使得对大分子进行分子折叠的模拟成为可能。

8.蛋白三维结构预测的方法有哪些

同源模建(序列一致性大于30%)、折叠识别5.(序列一致性小于30%)、从头预测(前两种方式不可以时用)

9.蛋白结构改造的方法

虚拟氨基酸突变

二硫键的预测

蛋白的糖基化修饰

蛋白聚集效应预测

10.为什么用丙氨酸扫描而不是用甘氨酸扫面

甘氨酸是没有手性的。

11.抗体人源化

人源化抗体主要指鼠源单克隆抗体以基因克隆及DNA重组技术改造,重新表达的抗体,其大部分氨基酸序列为人源序列取代,基本保留亲本鼠单克隆抗体的亲和力和特异性,又降低了其异源性,有利应用于人体。

12.抗体药物改造的必要性和改造的方向(不确定)

必要性:为了设计出形状(活性、抗原的选择性、ADCC/CDC性质、热稳定性、药代特性、半衰期......)更好的抗体,满足医药、诊断等,提高抗体与抗原的结合能力。

改造方向:多克隆抗体、单克隆抗体、基因工程抗体、人源化抗体

第六章

1.药效团的概念

药效团泛指在生物活性分子(一般指药物小分子)中对活性起重要作用的“药效特征元素”的空间排列形式。

2.药效特征元素(会判断氢的供受体及是否疏水)

不仅指某种特定的原子或原子团,还包括一般化的化学功能结构

氢键供体、氢键受体、正电荷中心、负电荷中心、疏水中心、方环中心

3.药效团构建的基本步骤

(1)活性化合物的选择以及药效特征元素的定义

(2)构象分析,对每个化合物都要进行构象分析,得到在某一能量范围内的构象。

(3)分子叠合和药效团映射

(4)药效团模型的修正

4.常用软件

有RECEPTOR、DISCO(已较少使用)、Apex-3D、Galahad (Sybyl软件模块)、CATALYST(已

经整合到Discovery Studio)和GASP (已较少使用)

第七章

1.定量构效关系的概念

定量构效关系(Quantitative structure-activity relationships,QSAR):是研究系列化合物的化学结构(或其物化性质)与生物活性之间的量变规律,采用回归分析方法或模式识别技术,以定量的方式构建化合物的化学结构与其生物活性的数学关系。

2.Hansch模型的基本表达方式

+

+

=

c

1

+

log(2

/

)

C+

d

Es

K

π

σ

a

π

b

其中C为化合物产生某种生物活性的浓度,π是疏水参数(logP),Es是立体参数,σ是电性参数。a, b, c, d, K是常数项。

3.Hansch方法基本操作步骤

(1)从先导化合物出发,设计和合成首批化合物;

(2)用可靠的定量方法测试活性

(3)用可靠的定量方法测试活性

(4)求出一个或几个显著相关的方程

(5)阐明影响生物活性的主要结构因素

(6)设计新的化合物,并预测活性

4.定量构效关系和药效团的异同点

联系:作为间接药物设计的两种方法,定量构效关系和药效团模型一般都是以配体小分子作为研究的出发点。

区别:

(1)定量构效关系方法一般是基于母体相似的同系列化合物,它得到的是化合物结构和活性之间的定量关系,这个定量关系只需用于指导先导化合物的改造;

(2)药效团可以基于不同类的先导化合物,得到的是与生物活性有关的药效团特征,这组药效团特征是对配体小分子活性特征的抽象与简化。只要分子拥有药效团特征,就可能具有某种生物活性。

(3)为得到统计学意义显著的模型,定量构效关系法往往需要采用较多的化合物样本,而药效团模型法更注重配体分子的多样性,化合物样本数目往往较少。

第八章

1.全新药物设计概念

全新药物设计(de novo drug design)又叫从头药物设计,它是以“锁钥学说”作为理论来源,根据靶标分子结合位点的几何特征和化学性质,设计出与其相匹配的具有全新结构的化合物。

2.全新药物设计的一般过程

(1)确定活性位点

(2)产生合适的配体分子

(3)配体分子活性的评估

(4)配体分子的合成和活性测试

3.全新药物设计方法的分类

模板定位法、原子生长法(优先成环)和分子碎片法

4.分子碎片法分类

活性位点分析法、位点连接法、碎片连接法、逐步生长法和随机连接法

第九章

1.分子对接的概念

分子对接(Molecular Docking)就是配体和受体通过几何匹配和能量匹配而相互识别的过程。

2.分子对接的常用方法

(1)整体对接法

(2)片段对接法

(3)刚性对接

(4)半柔性对接

(5)柔性对接

3.分子对接的常用软件

分子对接软件有DOCK,FlexX,Affinity,Gold,Glide和AutoDock等

4.Linpinski预测化合物口服生物利用度的“五规则”

相对分子量≤ 500

氢键供体数≤ 5

氢键受体数≤ 10

ClogP ≤ 5

化合物中可旋转键的数量不超过10个

5.虚拟筛选和全新药物设计的异同点

联系:都属于基于受体的药物设计方法,都需在已知靶点结构的前提下进行。

区别:

虚拟筛选是基于分子对接原理对小分子数据库进行筛选,数据库中的每个分子依次和靶点进行匹配并评分。发现的化合物大多可以直接购买得到,即使部分化合物不能直接购买,其合成路线也较为成熟,可以从专利或文献中查得。数据库搜寻得到的化合物通常都是已知化合物,而非新颖结构

全新药物设计则是根据靶点活性部位的形状和性质要求,让计算机自动构建出形状、性质互补的新分子。它通常能提出一些新的思想和结构类型,但对所设计的化合物需要进行合成,有时甚至是全合成。

第十章

1.先导化合物的优化

需要对先导化合物结构改造和修饰,以改善药效学和药动学性质,获得疗效好、毒副作用小的新药结构,这一过程称为先导化合物的优化。

2.先导物优化的方法

(1)局部修饰

(2)改变溶解度

(3)剖裂和拼合

3.电子等排是指具有原子数目相同、电子排列相同、电子数目相同的分子或原子团,它们的性质极为相似

4.生物电子等排体

符合最广义的电子等排定义,具有相似的物理和化学性质,又能产生相似的生物活性(或拮抗作用)的基团或分子都称为生物电子等排体。

5.前药(Prodrug):

是用化学方法将具有活性的原药与某种基团相连接,转变成无活性的新化合物。前药待吸收和到达受体作用部位后,经体内水解或酶解释放出原药而产生药效。

6.软药(Soft Drug)

是本身具有生物活性的药物,在体内产生特定的药理作用后,经预计的控速率进一步代谢转变成无活性的和无毒性的化合物。软药可使药物更安全温和,缩短了药物在体内的过程,而且避免了有毒中间体和产物的形成,使毒性降低,治疗指数提高

7.骨架跃迁(Scaffold Hopping)

是应用计算手段根据已有活性分子的化学结构,设计与其拓扑骨架结构不同,但活性相似或更好的新分子的一种方法。

8.骨架跃迁的目的

计算机辅助设计与制造(CADCAM)

一、CAD/CAM概论 CAD/CAM技术是一门多学科综合性应用技术,是20世纪制造领域最杰出的技术之一。1.1 CAD/CAM的基本概念 CAD(Computer Aided Design):是指工程技术人员以计算机为工具完成产品设计过程中的各项任务,如草图绘制、零件设计、装配设计、工装设计、工程分析等; CAPP(Computer Aided Process Planning):是指工艺人员利用计算机,根据产品制造工艺要求,交互或自动地确定产品加工方法和方案,如加工方法的选择、工艺路线和工序的设计等; CAM(Computer Aided Manufacturing):制造人员借助于计算机完成从生产准备到产品制造出来的过程中各个环节与活动,如数控加工编程、制造过程控制、质量检测等。 1.1.1 从产品制造的过程理解CAD/CAM 传统制造概念与过程如图1。1 现代制造概念与过程

利用计算机完成各个环节的工作成为CAD/CAM 几点说明:1、计算机技术只能解决信息的查询与统计,信息的管理、重复而繁琐的工作等,而并不能代替人的工作,特别是创造性的工作。 2、现代制造概念很大,本书CAD/CAM的概念只涉及到产品的设计、工艺设计、加工、车间控制与质量控制等内容。 3、上述制造环中有三个流:物流、资金流与信息流。 4、企业制造资源有人、财、物、技术与信息。 1.1.2 CAD/CAM的基本功能 在CAD/CAM系统中,人们利用计算机完成产品结构描述、工程信息表达、工程信息的传输与转化、信息管理等工作。因此,CAD/CAM系统应具备以下基本功能: 1、产品与过程的建模 如何用计算机能够识别的数据(信息)来表达描述产品。如产品形状结构的描述、产品加工特性的描述、如何将有限元分析所需要的网格及边界条件描述出来等等。 2、图形与图象处理 在CAD/CAM系统中,图形图象仍然是产品形状与结构的主要表达形式,因此,如何在计算机中表达图形、对图形进行各种变换、编辑、消隐、光照等处理是CAD/CAM的基本功能。 3、信息存储与管理 设计与制造过程会产生大量、种类繁多的数据,如设计分析数据、工艺数据、制造数据、管理数据等。数据类型有图形图象、文字数字、声音、视频等;有结构化和非结构化的数据;有动态和静态数据等。怎样将CAD/CAM系统产生这些大量的电子信息存储与管理好,是CAD/CAM的必备功能。采用工程数据库。 4、工程分析与优化 计算体积、重心、转动惯量等,机构运动计算、动力学计算、数值计算,优化设计等。CAE 5、工程信息传输与交换 信息交换有CAD/CAM系统与其他系统的信息交换和同一CAD/CAM系统中不同功能模块的信息交换。

虚拟药物筛选与药物分子设计教程与实战

药物分子设计前沿 摘要:近些年来,各种各样的新型疾病依次出现。因此,寻找可以治愈这些疾病的药物对人们来说至关重要。随着计算机技术的高速发展,运用计算机进行新药的模拟实验已经成为一种新的方法。本文就对这些方法做一个总的综述来介绍这些方法在新药设计过程中的应用过程。计算机辅助药物设计方法(CADD)是药物分子设计的基础。从2O世纪6O年代构效关系方法(QSAR)提出以后.经过40多年的努力和探索,CADD方法已经发展成为一门完善和新兴的研究领域。计算机辅助药物设计是应用量子力学、分子动力学、构效关系等基础理论数据研究药物对酶、受体等作用的药效模型,从而达到药物设计之目的。计算机辅助药物设计方法(CADD)大体可以分为三类:基于小分子的药物分子设计方法、基于受体结构的药物分子设计方法、计算组合方法。计算机辅助药物设计是研究与开发新药的一种崭新技术,它大大加快了新药设计的速度,节省了创创新药工作的人力和物力,使药物学家能够以理论作指导,有目的地开发新药。 关键词:药物分子设计计算机模拟分子模拟活性位点分析法 ABSTRACT:In those past years, a variety of new diseases were appeared. So, it’s vary essential for us to find the drugs that can cure these diseases. And with the fast development of computer technology, the applying of computer in the simulations of these new drugs has become a new method. In this paper, I will draw a general overview of those methods to introduce the applications in the design process of the new drugs. The method of Computer Aided Drug Design(℃ADD)was the basis 0f drugs molecule design which was proposed in 1960.During the last 40 years,the CADD method has been widely applied as a burgeoning and potential research area.The aim of CADD is to design drug according to the pharmacodynamic model between the drugs and the enzyme or receptor which is applied the quantum mechanics.molecular dynamics,and quantitative structure—activity relationship.The CADD includes three methods:method basing on the ligand,method basing on the receptor,and combinatorial chemistry method.The CADD is a new technology to research drug which can accelerate the speed of drug design,economize the manpower and material resources. KEY WORDS:Drug molecular design;computer simulation; molecular simulation;active site analysis 引言 传统药物设计从总体上来讲,缺乏成熟完善的发现途径,具有很大的盲目性,一般平均要筛选10000种以上的化合物才能得到一种新药,因此开发效率很低。随着计算机技术及计算化学、分子生物学和药物化学的发展,药物设计进入了理性阶段,其中药物分子设计是目前新药发现的主要方向。它是依据生物化学、酶学、分子生物学以及遗传学等生命科学的研究成果,针对这些基础研究中所揭示的包括酶、受体、离子通道及核酸等潜在的药物设计靶点,并参考其它类源性配体或天然产物的化学结构特征,设计出合理的药物分子。运用计算机模拟来进行新药的分子结构设计主要有三种方法:分子对接设计、遗传算法以及计算机辅助

计算机辅助设计与制造

精心整理 计算机辅助设计与制造 闭卷考试; 考试题型:名词解释 单选 填空 综合 判断 第1章 1.4 广义 狭义 设计;NC自动编程;计算机辅助测试技术;动态仿真;工程数据管理; 4.CAD/CAM系统大致分为两类:通用集成化(CADAM,UG-II,Pro/ENGINEER, I-DEAS,CV);单功能系统(GDS,GNC,PLOYSURE,GEMS); 5.CAD技术与CAM技术结合起来,实现设计、制造一体化具有的明显优越性: (1)有利于发挥设计人员的创造性,将他们从大量繁琐的重复劳动中解放出来。 (2)减少设计、计算、制图、制表所需时间,缩短设计周期。

(3)由于采用了计算机辅助分析技术,可以从多方案中进行分析、比较,选出最佳方案,有利于实现设计方案的优化。 (4)有利于实现产品的标准化、通用化和系列化。 (5)减少零件早车间的流通时间和在机床上装卸、调整、测量、等待切削的时间,提高了加工效率。 (6)先进的生产设备既有较高的生产过程自动化水平,又能在较大范围内适应加工对象的变化,有利于企业提高应变能力和市场竞争力。 (7 (8) 第2章 1. 2.根据以大型 3.根据 立的) 4.根据 5. (1 (2 磁带类、光盘类(光盘存储器); (3)显示器、键盘、鼠标。 6.输入设备(填空、选择、判断):键盘;鼠标和操纵杆;数字化仪;图形版(图形输入板);光笔;触摸屏;扫描输入设备;语音输入设备;数据手套;位置传感器; 7.输出设备(填空、选择、判断):显示器;打印机;绘图机;立体显示器;3D听觉环境系统;生产系统设备[加工设备(各类数控机床、加工中心);物流搬运设备(有轨小车、无轨小车、机器

计算机三维建模

CAD三维建模技术的发展和应用 摘要 三维建模技术的崛起以及虚拟现实技术的出现,为生产设计和创新提供了一种非常好的工作平台。设计人员可以直接从三维概念和构思入手,通过模型仿真来分析和评价设计方案的可行性和可靠性。随着三维建模理论的日趋成熟,出现了许多优秀的建模技术与软件,其应用领域也越来越广泛。 关键词:CAD 三维建模

1、CAD的基本概念 计算机辅助设计(CAD)技术是在产品开发过程中使用计算机系统辅助产品创建、修改、分析和优化的有关技术。这样,任何嵌入了计算机程序和在设计过程中使工程变得容易进行的应用程序,都归类人CAD软件。换言之,CAD工具包括了从创建形体的几何建模工具到诸如分析、优化应用程序的所有工具。目前,可以使用的典型工具包括公差分析、质量属性计算、有限元建模和分析结果的可视化。CAD 最基本的功能是定义设计的几何形状,这里所说的设计可以是机械零件、建筑结构、电子电路和建筑平面布局等的设计,这是因为设计的几何形状是产品周期中后续各项工作的基础。计算机辅助绘图系统和几何建模系统典型地应用于这一目的,这也是这些系统被称为CAD软件的原因。此外,这些系统所建立的几何模型是执行后续CAE和CAM 中其他功能的基础,这是CAD最大的优点之一,因为它可以节省重新定义几何形状所需要的大量时间,也可以减小因此而造成的出错概率。因此,我们说计算机辅助绘图系统和几何建模系统是CAD中最重要的组成部分。 2、CAD技术的产生和发展 CAD是指使用计算机系统进行设计的全过程,包括资料检索、方案构思。零件造型、工程分析、工程制图、文档编制等。在设计的各个阶段,计算机都能发挥其辅助作用,因此CAD概念一产生,就成为一门新兴的学科,引起了工程界的关注和支持,并迅速得到发展和日益完善起来。

计算机辅助设计与制造考试习题大集合

总复习(考试题总结) 绝对给力 一、填空题 1.产品数据管理系统的一般体系结构包含四个层次:____、____、____和_____。2.CAPP系统中常用的方法有_______________和_______________。 3.CAD/CAM集成系统主要是指___________、___________、_____________的集成。4.CAPP专家系统主要由_______________、____________和___________构成。 5.零件分类成组方法主要有_______________、_______________和_______________。 6.三维实体建模中,常用的建模方法有_______________和_______________。 7.机械设计一般要经历__________、_________、_________和___________四个阶段。8.特征建模通常由三部分构成:_______________、______________和___________。9.几何建模系统的三种模式是:____________、______________和____________。 10.一元函数的插值方法有_______________、_______________。 11.CAD/CAM集成系统主要是指___________、___________、____________的集成。 12.产品的制造过程一般要经过_______________、________________和_______________等环节,最终形成用户所需的产品。 13、CAD系统的软件包括:___________、_____________和___________。 14、将平面图形沿X方向平移3个单位,然后放大一倍,其变换矩阵为_____________。 15、PDM的功能包括文档管理、__________、________________、_______________、 ________________、和PDM系统与应用软件的集成。 16、一个完整的CAD/CAM系统必须具备_________系统和__________系统。 17、实体模型(Solid Model)储存物体的完整几何信息。它的数据结构不仅记录了全部 ____________,而且记录了全部点、线、面、体的_____________,这是实体模型与线框模型的根本区别。 18、创成式CAPP系统主要解决两方面的问题,即____________________与工序设计。 19、柔性编码系统的编码由固定码和_______________两部分组成。 20、CAD系统的软件一般分为三个层次:___________、_____________和___________。

(完整版)计算机辅助药物设计成功案例及行业发展方向

计算机辅助药物设计成功案例及行业发展方向 ? 关键词: CADD , 点击: 369 次 药物分子设计应用于创新药物先导结构的发现和优化,并取得突破性进展是始于20世纪80年代中期。取得突破性进展的主要原因是,分子生物学和结构生物学的 发展,使得一些靶标生物大分子的功能被阐明,三维结构被测定;计算机科学的发展,出现了功能先进的图形工作站,极大地提高了计算和数据分析的速度和精度; 发展了许多药物分子设计方法,如基于生物大分子三维结构的分子对接(Molecular Docking)方法和基于药物小分子的三维定量构效关系分析方法和数据库搜寻方法等。进入上一世纪90年代,药物分子设计(包括分子模拟和计算机辅助药物分子设计)已作为一种实用化的工具介入到了药物研究的各种环节。目前,美、英、日、德、法等许多发达国家都有一批著名科学家领导的研究组从事这方面的理论和应用研究。许多制药公司也纷纷投资建立运用计算机进行理论研究以带动新药开发的部门。目前已有许多应用理论方法设计而获得成功的药物发表和上市(表1)。这标志着该领域的研究已开始向实用化方向迈进,并已成为创新药物研究的核心技术之一。目前,国内外利用CADD 辅助药物设计工具取得了非常了不起的成绩: 表1 国外计算机辅助药物设计成功例子 药物 靶标 公司 Dorzolamid 碳酸酐酶 Merck Sharp and Dohme(Harlow, UK) Saquinavir HIV 蛋白水解酶 Roche(Welwyn, UK) Relenza 神经氨酸苷酶 Biota (Melbourne, Australia) AG85, AG337, AG331 胸腺核酸合成酶 Agouron (La Jolla, CA, USA) Ro466240 凝血酶 Roche (Basel, Switzerland) Gleveca Abl-酪氨酸激酶 Novartis (Basel) Dorzolamid 表2 国内药物设计成功的例子

计算机辅助设计论文

计算机辅助设计论文:计算机三维辅助软件在机械设计中的应用 摘要:介绍了三维CAD在机械设计中的显著优势,并对目前国内企业机械产品开发过程三维CAD系统应用现状和存在问题进行了分析。从产品开发的实际需求和产品特点与软件功能出发,对企业应用三维CAD过程提出了改进方案,最后介绍了三维CAD技术发展的趋势。 关键词:三维CAD;机械设计;应用 1三维设计软件现状及其应用 产品设计是决定产品外形和产品功能,同时也是决定产品质量最重要的环节,产品的设计工作对产品的成本也起到至关重要的作用。随着计算机的不断发展,CAD技术即计算机辅助设计已成为设计人员不可缺少的工具。CAD技术正从二维CAD向三维CAD过渡。三维设计软件具有工程及产品的分析计算、几何建模、仿真与试验、绘制图形,工程数据库的管理,生成设计文件等功能。三维CAD技术诞生以来,已广泛地应用于机械、电子、建筑、化工、航空航天以及能源交通等领域,产品的设计效率得以迅速提高。我国CAD技术的研究、开发和推广已取得较大进展,产品设计已全面完成二维CAD技术的普及,结束了手工绘图的历史,对减轻人工劳动强度、提高经济效益起到了明显的作用。有相当一部分CAD 应用较早的企业已完成了从二维CAD向三维CAD转换,并取得了巨大的经济效益和社会效益。随着市场经济的逐步深入,市场竞争日趋激烈,加强自身的设计能力是提高企业对市场变化和小批量、多品种要求的迅速响应能力的关键。 2三维设计软件的优势 2.1 CAD技术应用在机械设计的多个方面 2.1.1零件的实体建模 设计软件为三维建模提供了多种工具,包括最基本的几何造型如球体、圆柱等,对简单的零件,可通过对其结构进行分析,将其分解成若干基本体,对基本体进行三维实体造型,之后再对其进行交、并、差等布尔运算,便可得出零件的三维实体模型。对于较复杂的图形,软件提供了草图工具,设计人员可以通过它先勾勒出截面,再拉伸出较复杂的几何形体。为了满足人们不断提高的审美要求,目前主要流行的几款三维设计软件基本上都提供面片模块,该模块为设计人员提供了非常方便的曲面设计工具。对于具有大块曲面的零件,设计师可以方便地对单个面或片体进行变形处理,以达到需要的曲面。 2.1.2产品造型修改简便 企业生产的产品往往是按系列区分,各系列中每一代产品与上一代产品之间的区别较小,也许只是增加了一个功能部件或是产品造型尺寸上有所改动。三维CAD可以方便地修改一些参数就能达到设计师更改造型的目的。三维CAD在建模中一般使用参数化建模,整个建模的步骤和产品的外型尺寸被参数化,这些参数是与产品的造型直接关联的。若要对尺寸或造型进行局部的更改,只需要更改相关参数,整个造型将被自动更新。这样不仅大大减少了设计人员的工作量,还保证了产品外造型的延续性。 2.1.3生成实体装配图 实体装配不仅能让设计人员直观地看到各零件装配后的状态,还可以测量各零件之间的空间大小,方便零件的布置。在装配完成后,零件可以被隐藏或设置成半透明的状态,方便设计人员观察内部结构。此外,在装配状态下,软件提供的标准件库,也方便了设计人员对标准件型号的选择。装配状态下的干涉分析也是常用的功能,计算机通过计算各装配零件的体积的大小和位置来确定是否有相交的部分,并确定各零件是否干涉,自动生成分析报告,明确指出互相干涉零件的名称和干涉的尺寸。方便设计师修改产品设计尺寸。 2.2模具CAD/CAM的集成制造 随着科学技术的不断发展,为了减轻人工劳动强度,提高产品的精度,制造行业装备从

计算机辅助设计制造习题解答

1、计算机辅助设计(CAD)概念:利用计算机强有力的计算功能和高效率的图形处理能力,辅助设计人员完成工程或产品的设计、分析计算及图样绘制等工作,从而获得理想的设计目标并获得预期成果的一种技术。 2、CAD/CAM技术的发展过程 3、CAD技术的发展趋势:目前CAD技术正在向集成化、智能化、网络化的方向发展。 4、CAD系统结构硬件:中央处理器、输入设备、输出设备、存储器、网络通信设备。CAD系统结构软件:系统软件、支撑软件、应用软件。 二维图形的变换形式:图形不变坐标系改变、图形改变坐标系不变。 5、设计资料的类型:数表和线图。 设计资料的处理方法:公式化、数据文件、数据库。 6、设计数据的差值方法:线性插值法、抛物线插值法、拉格朗日插值法。 7、设计曲线的拟合方法和原理 设计曲线的拟合方法:最小二乘法。 最小二乘法原理:将由实验得到或绘图经离散后得到的m个点在坐标系中画出来,假设这些点得到的拟合公式为y=f(x),每个节点处的偏差为=f()-,i=1,2,2...m,如果将每个点的偏差值直接代数相加,则有可能因为正负偏差的抵消而掩盖整个误差程度,不能正确反映拟合公式的精确度,为此,将所有节点的偏差取平方值并求和,得到=,让偏差平方和达到最小,即最小二乘法的曲线拟合。 8、几种坐标系的概念:用户坐标系、设备坐标系、假想设备坐标系。 用户坐标系(世界坐标系):坐标轴上的单位由用户自己确定,用来定义二维或三维世界中的物体。 设备坐标系(物理坐标系):图形显示器或绘图机自身的一个坐标系。 假想设备坐标系(标准设备坐标系):从世界坐标系到设备坐标系的变换中插入的一个坐标系,使所编制的软件方便地应用于不同的设备上。 二维图形的变换方法:比例变换、平移变换、旋转变换、对称变换、错切变换。 1、几何建模的概念:将物体的几何信息以及相关的属性输入计算机,计算机以数据的形式将物体的信息储存起来。 2、几何建模的三种方式:线框建模、表面建模、实体建模。 线框建模:采用点、直线、圆弧及自由曲线来构造三维模型的方法。 表面建模:通过对物体表面进行描述的建模方法。 实体建模:利用一些体素通过布尔运算构成所需的简单或复杂的实体的方法。 实体建模的表示方法和定义 a边界表示法B-REP:采用“点-边-面-体”的方式来表示物体,他以物体的边界为基础,通过描绘实体的表面边界来描述实体。 b实体结构几何法CSG:利用已有的基本体素,根据实体的结构将实体视为由不同的基本体素通过布尔运算而得到。 c混合模式B-REP+CSG表示法 4、特征建模的定义:它是几何建模技术发展的最新阶段,用符合设计思想的特征来定义零件,是实现CAD/CAPP/CAM集成的重要手段,也是网络化制造研究中进行产品图形设计的基础。 5、a特征的定义:一个对象上所具有的全部信息,不仅仅局限于实体的形状、结构,而且包含了对象从设计到制造全过程的所有信息,包括该对象的几何形状、功能和属性。

计算机辅助药物设计(完整版)

计算机辅助药物设计完整版 第1章概论 一、药物发现一般过程 新药的研究有三个决定阶段:先导化合物的发现,新药物的优化研究,临床与开发研究。计算机辅助药物设计的主要任务就是先导化合物的发现与优化。 二、合理药物设计 1、合理药物设计(rational drug design)是依据与药物作用的靶点,即广义上的受体,如酶、受体、离子通道、病毒、核酸、多糖等,寻找和设计合理的药物分子。通过对药物和受体的结构在分子水平甚至电子水平的全面准确了解进行基于结构的药物设计和通过对靶点的结构、功能、与药物作用方式及产生生理活性的机理的认识基于机理的药物设计。CADD通过内源性物质或外源性小分子作为效应子作用于机体的靶点,考察其形状互补,性质互补(包括氢键、疏水性、静电等),溶剂效应及运动协调性等进行分子设计。 2、方法分类 (1)合理药物设计有基于靶点结构的三维结构搜索和全新药物设计等方法。后者分为模板定位法、原子生长法、分子碎片法。 (2)根据受体是否已知分为直接药物设计和间接药物设计。前者即通过结构测定已知受体或受体-配体复合物的三维结构,根据受体的三维结构要求设计新药的结构。受体结构测定方法:同源模建(知道氨基酸序列不知道空间结构时),X射线衍射(可结晶并得到晶体时),多维核磁共振技术(在体液即在水溶液环境中)。后者通过一些配体的结构知识(SAR,计算机图形显示等)推测受体的图像,提出假想受体,采用建立药效团模型或3D-QSAR和基于药效团模型的三维结构搜索等方法,间接进行药物设计。 三、计算化学 计算化学包括分子模型、计算方法、计算机辅助分子设计(CAMD)、化学数据库及有机合成设计。 计算方法基本上可分为两大类:分子力学(采用经典的物理学定律只考虑分子的核而忽略外围的电子)和量子力学(采用薛定谔方程考虑外围电子的影响,分为从头计算方法和半经验方法)。 常用的计算应用有:(1)单点能计算:根据模型中原子的空间位置给出相应原子坐标的势能;(2)几何优化:系统的修改原子坐标使原子的三维构象能量最小化;(3)性质计算:预测某些物理化学性质,如电荷、偶极矩、生成热等;(4)构象搜索:寻找能量最低的构象;(5)分子动力学模拟:模拟分子的构象变化。 方法选择主要有三个标准:(1)模型大小;(2)可用的参数;(3)计算机资源 四、计算化学中的基本概念 1、坐标系统 分为笛卡尔坐标(三维空间坐标)和内坐标(Z矩阵表示,参数为键长、键角、二面角数据)。前者适合于描述一系列的不同分子,多用于分子力学程序,有3N个坐标;后者常用于描述单分子系统内各原子的相互关系,多用于量子力学程序,有3N-6个坐标。 2、原子类型:用来标记原子属性。 3、势能面 体系能量的变化被认为能量在一个多维的面上运动,这个面被称为势能面。坐标上能量的一阶导数为零的点为定点(原子力为零,局部或全局最稳定)。 4、面积 Van der Waals面积:原子以van der Waals为半径的球的简单堆积。

变电架构的三维分析及计算机辅助设计

变电架构的三维分析及计算机辅助设计 发表时间:2018-09-12T15:46:09.763Z 来源:《基层建设》2018年第22期作者:张雪莉1 李骞2 屈曼3 高雄飞4 王英5 [导读] 摘要:本文所介绍的是对变电架构的三维分析及计算机辅助设计方法,包括三维有限元分析方法及其程序设计,它改变了传统的简化方法,提高了设计精度和速度;同时包括有限元分析中的自动排序功能,该功能的实现减轻了设计者应用本软件的数据准备工作量;还包括本软件所能实现的自动绘图功能,这些功能满足了初步设计和施工设计的要求。 1/3/4/5中国能源建设集团陕西省电力设计院有限公司陕西西安 710054;2国网陕西省电力公司西安供电局陕西西安 710054 摘要:本文所介绍的是对变电架构的三维分析及计算机辅助设计方法,包括三维有限元分析方法及其程序设计,它改变了传统的简化方法,提高了设计精度和速度;同时包括有限元分析中的自动排序功能,该功能的实现减轻了设计者应用本软件的数据准备工作量;还包括本软件所能实现的自动绘图功能,这些功能满足了初步设计和施工设计的要求。 关键词:变电架构;三维分析;辅助设计 一、变电架构的三维有限元分析方法 变电架构的三维分析方法,是将变电架构作为空间杆系按照有限元法进行分析,它的力学原理是位移法。空间杆系的位移法是根据平衡条件求出结构上的基本位移(节点位移),再利用杆端力和杆端位移之间的角变位移方程式求出杆端力,从而计算其它截面的内力。 对于空间杆系结构,每个节点六个位移,其中三个线位移,另三个是转角位移。将杆件的局部坐标系转换到结构的总体坐标以后,可按照“对号入座”的方式叠加形成整个结构的位移法方程: [K][X]=[P] 式中:[K]一系数矩阵,即总刚度矩阵; [X]一所有的位移。 等式右面的[P]由两部分组成:一部分为作用在节点上的外力,另一部分为原来在等式左面的固端内力分移到等式右面去的。上式中,每个方程式的意义都表示与某一位移对应的节点内外力的平衡。应用线性代数知识求解上述位移法方程组就可以求得各组荷载作用下的节点位移,进而可以求得杆件内力。 关于大型线性代数方程组的求解、对称稀疏矩阵的存贮以及特征值问题,早有比较成熟先进的算法,本文不再引述。下面简要叙述变电架构作为空间杆系的程序设计方法,将通用的位移法原理在具体问题的程序中实现,要做好数据文件的组织,选择好计算方法,并根据规范要求完成内力组合及构件的强度及稳定校核。 在程序设计中,考虑的数据文件如下:(1)总的引导信息;(2)杆件两端节点编号数组;(3)杆件截面积数组;(4)节点坐标数组;(5)杆件截面力学特性数组;(6)关于坐标转换矩阵的指示信息;(7)关于节点荷载和杆上荷载的信息;(8)关于共面节点的指示信息;(9)关于质量矩阵的信息;(10)关于地震力方面的信息。以上数组,对于通用结构可以按照本软件所定的格式填写。这种方法适应范围广,但数据量大、繁杂,并要求力学概念清楚,空间思维明确。 本软件对于变电架构的常用形式,提供了自动排序自动生成上述数组的功能,只要提供少量的控制参数,就可以完成所需的内力分析与组合、构件的强度与稳定校核,并提供与绘图程序所需的接口。在程序实现中,对于总刚度矩阵采用了一维变带冤存贮方式,求解大型线性代数方程组采用改进的平方根法,求解动力计算的特征值方程采用同时迭代法。 二、变电架构计算机辅助设计 1变电架构的绘图功能 变电架构计算机辅助设计软件包是面向屋外变电站架构初步设计及施工图设计的专用软件,除可以完成变电架构的分析计算外,还可以用参数式设计或交互式设计的方法绘制以下各设计阶段的主要图纸。 1)绘制架构透视图并对构件进行分类统计; 2)绘制架构基础平面布置图并对基础进行分类统计; 3)绘制架构梁的加工详图并自动统计材料用量; 4)绘制架构柱身的加工详图并自动统计材料用量; 5)根据用户给定的参数,绘制架构基础的施工详图并自动统计材料用量; 6)应用本构件提供的菜单,绘制土建结构的其它图纸; 7)应用本软件提供的图形汉字库方便地输入图形的汉字说明。 2输电线路三维可视化辅助设计系统 输电线路三维可视化辅助设计系统推荐采用自下而上的4层次型软件体系结构。这种体系结构综合考虑了现有的软硬件技术水平和系统需求的因素,充分体现了软件体系结构设计的系统性和可扩充性,是一套面向可视化输电线路设计的、具有高重用度的软件体系结构。系统各层功能和设计考虑如下: (1)专业应用层。专业应用层构成了辅助设计系统与用户交互的界面,包括各种可视化的输电线路显示、查询、设计、数据管理、图表输出等功能。 (2)模型对象层。主要功能是把多数据源的地理数据转化为单一的、综合的、基于数据模型的对象,从而有效地解决了GIS中多数据源多数据类型的问题。在模型对象层中,设置了代表三维场景中的地形、覆盖在地形上的矢量对象(如公路、地区边界、河流等)、立体建模的地物对象(如主要的居民地、重要的河流、输电线路上主要的跨越和标注等)和输电线路上的电力器件对象(如输电线、避雷线、杆塔和绝缘子等)。 (3)数据层。在数据层中,采用文件系统加关系数据库来构成系统的基础数据库,由关系数据库来管理系统的属性数据,由文件系统来管理系统的空间数据。考虑到三维GIS中对空间数据查询、显示以及分析的特殊要求,需要对管理空间数据的文件系统采用多种形式的优化。 (4)转换通信层。转换通信层包含数据转换和连接通信两个子层,通信子层的设立屏蔽了各种物理通信介质和网络通信协议的差别,为数据转换子层提供统一格式的数据;数据转换子层负责将不同分系统间的数据分类、转换、融合后上传到数据层;通信层实现了与

计算机辅助设计制造习题解答

1、计算机辅助设计(CAD )概念:利用计算机强有力的计算功能和高效率的图形处理能力,辅助设计人员完成工程或产品的设计、分析计算及图样绘制等工作,从而获得理想的设计目标并获得预期成果的一种技术。 2、CAD/CAM 技术的发展过程 3、CAD 技术的发展趋势:目前CAD 技术正在向集成化、智能化、网络化的方向发展。 4、CAD 系统结构硬件:中央处理器、输入设备、输出设备、存储器、网络通信设备。 CAD 系统结构软件:系统软件、支撑软件、应用软件。 二维图形的变换形式:图形不变坐标系改变、图形改变坐标系不变。 5、设计资料的类型:数表和线图。 设计资料的处理方法:公式化、数据文件、数据库。 6、设计数据的差值方法:线性插值法、抛物线插值法、拉格朗日插值法。 7、设计曲线的拟合方法和原理 设计曲线的拟合方法:最小二乘法。 最小二乘法原理:将由实验得到或绘图经离散后得到的m 个点在坐标系中画出来,假设这些点得到的拟合公式为y=f (x ),每个节点处的偏差为i e =f (i x )-i y ,i=1,2,2...m ,如果将每个点的偏差值直接代数相加,则有可能因为正负偏差的抵消而掩盖整个误差程度,不能正确反映拟合公式的精确度,为此,将所有节点的偏差取平方值并求和,得到 ∑=m 1i 2 i e =()2m 1 i i i y x f ∑=-)(,让偏差平方和达到最小,即最小二乘法的曲线拟合。 8、几种坐标系的概念:用户坐标系、设备坐标系、假想设备坐标系。 用户坐标系(世界坐标系):坐标轴上的单位由用户自己确定,用来定义二维或三维世界中的物体。 设备坐标系(物理坐标系):图形显示器或绘图机自身的一个坐标系。 假想设备坐标系(标准设备坐标系):从世界坐标系到设备坐标系的变换中插入的一个坐标系,使所编制的软件方便地应用于不同的设备上。 9、二维图形的变换方法:比例变换、平移变换、旋转变换、对称变换、错切变换。 1、 几何建模的概念:将物体的几何信息以及相关的属性输入计算机,计算机以数据的形式将物体的信息储存起来。 2、几何建模的三种方式:线框建模、表面建模、实体建模。 线框建模:采用点、直线、圆弧及自由曲线来构造三维模型的方法。 表面建模:通过对物体表面进行描述的建模方法。 实体建模:利用一些体素通过布尔运算构成所需的简单或复杂的实体的方法。 3、实体建模的表示方法和定义 a 边界表示法B-REP :采用“点-边-面-体”的方式来表示物体,他以物体的边界为基础,通过描绘实体的表面边界来描述实体。 b 实体结构几何法CSG :利用已有的基本体素,根据实体的结构将实体视为由不同的基本体素通过布尔运算而得到。 c 混合模式B-REP+CSG 表示法 4、特征建模的定义:它是几何建模技术发展的最新阶段,用符合设计思想的特征来定义零件,是实现CAD/CAPP/CAM 集成的重要手段,也是网络化制造研究中进行产品图形设计的基础。 5、a 特征的定义:一个对象上所具有的全部信息,不仅仅局限于实体的形状、结构,而且

CADD 计算机辅助药物设计

1、药物设计:是指基于对疾病靶标或已知活性化合物的结构、性质、及其相互作用等先验 知识的理解和归纳总结,然后像设计飞机和导弹一样,有目的的设计出具有特殊疗效的药物分子。 2、有经验的药物化学家在合成药物分子之前,通常采用构效关系的定性分析以及一些经验 规则,来设计要合成的分子结构,此为传统药物设计,或者叫经验型或常规药物设计。 3、由于药物设计研究的对象时看不见,摸不着的分子,以及大量与分子有关的化学和生物 信息学,并与人体生命健康息息相关,因此药物设计的过程非常复杂,非人工可独立胜任,通常借助计算机等现代高科技辅助手段,此即计算机药物辅助设计。 4、靶标:是指导致疾病或与疾病产生密切相关的生物大分子,包括蛋白质(酶、受体、离 子通道),核酸(DNA,RNA) 5、相应地药物一般指能与靶标专一结合的,加强或阻止靶标进行正常生理活动的有机小分 子,可分为酶活化剂和抑制剂,受体激动剂和拮抗剂,通道开启剂和阻断剂等等。 6、先导化合物:是指具有一定药理活性的,可通过结构改造来优化其药理特性而可能导致 药物发现的特殊化合物。 7、先导化合物的来源主要由天然产物(植物、动物、微生物、海洋生物)提取,偶然发现, 随机筛选,老药新用等,如治疗疟疾的青蒿素是我国科学家从青蒿中提取出来的,著名抗生素青霉素是在细菌培养实验中偶然发现的等等。 8、传统先导化合物的发现主要靠运气,而现代先导化合物的发现则趋向于采用理性方法, 即以疾病和靶标知识为基础而进行的。 9、药物与靶标之间的相互识别和结合主要通过非共价键进行,如静电相互作用、氢键相互 作用、疏水相互作用等。两者之间不但需要化学性质互补,而且需要几何形状互补,才能产生这些相互作用。刚性结合:镜匙模式柔性结合:诱导契合 10、计算机辅助药物设计的策略视对药物作用的生物大分子靶标的结构知识掌握多少 而定。一、如已有实验测定的靶标结构,最好是靶标—配体复合物结构,则可基于大分子结构进行直接药物设计。二、如靶标实验结构未知,但一级氨基酸序列已知,并且同源蛋白实验结构已知,则首先采用同源蛋白模建方法预测靶标的三维结构,然后基于预测的结构进行直接的药物设计。三、如对靶标结构所知甚少,但有一系列活性类似物可以利用,则可采用基于配体结构和活性数据进行间接药物设计。 11、如既有受体结构知识又有配体结构活性知识,则可将直接药物设计和间接药物设计 结合起来应用。 12、药物设计方法包括基于配体药物设计和基于受体药物设计两种。其中基于配体药物 设计有QSAR和药物团模型。基于受体药物设计有分子对接和从头设计。药物团模型和分子对接又组成了虚拟筛选。 13、新药:是指新研制的,临床上具有治疗作用的,目前尚没有的药物品种,已生产的 药品改变剂型,改变给药途径,增加新的适应症或研制新的复方制剂,也按新药管理。 14、完全创新药物(NCE)临床上尚没有的新药。具有新的作用靶点、全新化学结构, 和独特的作用机制。 15、再创药物(Me-too药物)根据已有的药物信息,研制出具有显著特点的新型药物。 特点:药理优势(药效和毒副作用)和药代特点(适合临床)。药物新颖性(能获得知识产权保护) 16、改变药物应用形式的创新药物:剂型、适应症、多化合物的复方制剂。 17、后基因组时代药物发现流程:功能基团研究——靶标发现——靶标确证——先导化 合物的发现——先导化合物优化——临床前研究——临床研究 18、分子模拟与药物设计软件:量子化学计算:Gaussian系列、Gamess,Jaguar,MOPAC

计算机辅助设计应用

计算机辅助设计应用 西南交通大学材料学院授课教师:黄兴民

第一章绪论教学容安排细化方案

开场白 大家好,上课之前简单的介绍下自己…… 在学习的课程中,我个人希望大家记住两点:

1.教与学是一个互动的过程。老师在讲授和演示的时候,大家应有积极反馈。 2.师生之间应该彼此尊重。讲台下是朋友,课堂上是师生,希望大家不要迟到,早退,遵守好课堂纪律。有什么good idea 可以一起分享。 一、容铺垫 进入二十一世纪,随着科学技术的发展,计算机的软硬件技术的不断得到发展,其计算功能越来越强大,性能也越来越稳定。与此同时,计算机及软件使用渗透到人类生活每个方面。比如:普遍使用的office 软件,杀毒软件,瑞星,卡巴斯基,游戏软件魔兽世界,极品飞车等,图形处理软件photoshop,文献阅读软件,Adobe Reader ,CAJviewer,网络资源下载软件:Bt,迅雷,网际快车,网络聊天工具:QQ,MSN,skype等。 另外一方面,这是个知识爆炸的时代,新知识和新理论层出不穷专业划分愈来愈细,大脑的物理容量相对有限。因此,在工业生产和科学研究上,计算机软件发挥着越来越重要的辅助作用。不同领域,不同行业,不同公司,都在不同程度上使用和依赖着一种以上的专业计算机软件。 提问?同学们已经接触到或者了解过的计算机辅助软件有哪些? AUTOCAD ,Pro/Engineer,Solidworks,Solidedge,UniGraphics(全拼),CATIA等专业绘图软件,AUTOCAD, Pro/E,UG CATIA,SOLIDWORKS,SOLIDEGDE,等等。 在科研领域,也常常使用到一些辅助分析软件。 比如:Jad 5.0 有助于处理X射线衍射数据, originPro 8.0用于实验数据的处理和绘制

中国药科大学计算机辅助药物设计CADD整理

第1章概论 一、药物发现一般过程 新药的研究有三个决定阶段:先导化合物的发现,新药物的优化研究,临床与开发研究。计算机辅助药物设计的主要任务就是先导化合物的发现与优化。 二、合理药物设计 1、合理药物设计(rational drug design)是依据与药物作用的靶点,即广义上的受体,如酶、受体、离子通道、病毒、核酸、多糖等,寻找和设计合理的药物分子。通过对药物和受体的结构在分子水平甚至电子水平的全面准确了解进行基于结构的药物设计和通过对靶点的结构、功能、与药物作用方式及产生生理活性的机理的认识基于机理的药物设计。CADD通过内源性物质或外源性小分子作为效应子作用于机体的靶点,考察其形状互补,性质互补(包括氢键、疏水性、静电等),溶剂效应及运动协调性等进行分子设计。 2、方法分类 (1)合理药物设计有基于靶点结构的三维结构搜索和全新药物设计等方法。后者分为模板定位法、原子生长法、分子碎片法(碎片连接法和碎片生长法)。 (2)根据受体是否已知分为直接药物设计和间接药物设计。前者即通过结构测定已知受体或受体-配体复合物的三维结构,根据受体的三维结构要求设计新药的结构。受体结构测定方法:同源模建(知道氨基酸序列不知道空间结构时),X射线衍射(可结晶并得到晶体时),多维核磁共振技术(溶液状态)。后者通过一些配体的结构知识(SAR,计算机图形显示等)推测受体的图像,提出家乡受体,采用建立Pharmacophore模型或3D-QSAR和基于药效团模型的三维结构搜索等方法,间接进行药物设计。 三、计算化学 计算化学包括分子模型、计算方法、计算机辅助分子设计(CAMD)、化学数据库及有机合成设计。 计算方法包括很多种,但基本上可以分为两大类:分子力学和量子力学(分为从头计算方法和半经验方法)。常用的计算应用有:(1)单点能计算:根据模型中原子的空间位置给出相应原子坐标的势能;(2)几何优化:系统的修改原子坐标使原子的三维构象能量最小化;(3)性质计算:预测某些物理化学性质,如电荷、偶极矩、生成热等;(4)构象搜索:寻找能量最低的构象;(5)分子动力学模拟:模拟分子的构象变化。 四、计算化学中的基本概念 1、坐标系统 分为笛卡尔坐标(三维空间坐标)和内坐标(Z矩阵表示,参数为键长、键角、二面角数据)。前者适合于描述一系列的不同分子,多用于分子力学程序;后者常用于描述单分子系统内各原子的相互关系,多用于量子力学程序。 2、原子类型:标记原子属性(程序中一般用于分配参数)。 3、势能面 体系能量的变化被认为能量在一个多维的面上运动,这个面被称为势能面。坐标上能量的一阶导数为零的点为定点(原子力为零,局部或全局最稳定)。 4、面积 Van der Waals面积:空间填充模型或CPK模型。 分子面积:试探分子(常为半径1.4?的水分子)在Van der Waals面积上滚动的面积(接触面积+悬空面积)。 可接近面积:试探分子原点产生的面积。 5、单位:键长多用?(埃,angstroms),键能多用kcal/mol表示。

计算机辅助设计与制造

河南机电高等专科学校 课程设计报告书课题名称:电机电器及其CAD 系部名称:电气工程系 专业:电机与电器 班级:电器091班 姓名: 学号: 2011年12 月20日 设计任务书 一、设计目的: 1、熟悉变压器优化设计软件。 2、掌握变压器设计各性能参数及材料、结构的设置。 3、掌握优化设计的方法、步骤。 4、掌握优化方案的选择及细调。 5、熟悉铁心截面的优化。 二、设计内容要求: (一)S9系列变压器电磁优化设计 1、性能参数输入; 2、材料、铁心、线圈、绝缘参数的设置;

3、油箱、温升、重量计算; 4、优化计算; 5、调整计算单;计算单保存生成; 6、铁心截面优化。 (二)S9系列变压器结构CAD设计 1、总装配图 2、铁心、铁心装配 3、线圈 4、器身装配及绝缘 5、夹件及引线装配 目录 一、课程设计任务书 (1) 二、设计方案的优化及选择 (2) 1、设计方案A的优化及选择 (1)性能参数设置 (2)铁心材料、导体材料及结构的选取 (3)变压器主纵绝缘尺寸的确定 (4)方案的优化及调整 (5)方案的比较及选择 2、设计方案B的优化及选择 (1)性能参数设置 (2)铁心材料、导体材料及结构的选取 (3)变压器主纵绝缘尺寸的确定 (4)方案的优化及调整

(5)方案的比较及选择 3、问题及讨论 三、变压器结构CAD绘制 (12) 1、图层、线型、文字等基本绘图环境的设置及绘图模板的绘制 2、主要结构尺寸及尺寸配合的确定。 3、问题及讨论。 四、心得体会…………………………………………………………… 五、附录一:计算单附录二:结构图 六、参考文献…………………………………………………………… 设计方案的优化及选择 1、设计方案A的优化及选择 (1)性能参数设置 额定值:SN=100KV A,,高压侧无励磁调压,调压范围±5%。 S9-500/10 联结组别:Yyn0 ,U1N=10000V,U2N=400V,PK=1485W,P0=280W,阻抗电压:4% (2)性能参数计算 变压器的性能参数,主要有空载损耗、空载电流、负载损耗、短路阻抗等。设计变压器时,在遵循基本物理概念的基础上,还必须考虑材料、结构、工艺等具体要求,各计算公式也必须尽量精确些,方可减少误差。 短路阻抗 3.91 [4.0%] 短路损耗 1531 [1485W] 空载损耗 281 [280W] 空载电流 1.06 [1.6%] (3)铁心材料、导体材料及结构的选取 铁芯是变压器磁路的主体部分,由表面涂有绝缘漆膜、厚度为0.35mm或0.5mm的硅钢片冲压成一定形状后叠装而成,担负着变压器原、副边的电磁耦合任务。变压器使用的铁心材料主要是硅钢片,在钢片中加入硅能降低钢片的导电性,增加电阻率,它可减少涡流,使其损耗减少,我们通常称加了硅的钢片为硅钢片,硅钢片有热轧和冷轧两种.热轧硅钢片的工作磁通密度B一般取9000-12000高斯,冷轧硅钢片的导磁性能比热轧好, 它的工作磁通密度B取值范围为12000-18000高斯。

相关文档
相关文档 最新文档