文档库 最新最全的文档下载
当前位置:文档库 › 等比数列及其前n项和专题练习(含参考答案)

等比数列及其前n项和专题练习(含参考答案)

等比数列及其前n项和专题练习(含参考答案)
等比数列及其前n项和专题练习(含参考答案)

数学 等比数列及其前n 项和

一、选择题

1.在等比数列{a n }中,a 1=12,q =12,a n =1

32,则项数n 为( )

A .3

B .4

C .5

D .6

2.在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( ) A .3

2

B .23

C .-2

3

D .23或-23

3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯塔的2倍,则塔的顶层共有灯( )

A .1盏

B .3盏

C .5盏

D .9盏

4.已知各项均为正数的等比数列{a n }的前n 项和为S n ,且S 3=14,a 3=8,则a 6=( ) A .16 B .32 C .64

D .128

5.已知等比数列{a n }的前n 项和为S n =a ·2n -

1+16,则实数a 的值为( )

A .-1

3

B .1

3

C .-1

2

D .12

6.设等比数列{a n }的公比为q >0,且q ≠1,S n 为数列{a n }前n 项和,记T n =a n

S n ,则( )

A .T 3≤T 6

B .T 3

C .T 3≥T 6

D .T 3>T 6

7.已知{a n }是首项为1的等比数列,若S n 是数列{a n }的前n 项和,且28S 3=S 6,则数列{1

a n

}的前4项和为( ) A .15

8或4

B .4027或4

C .40

27

D .158

8.已知数列{a n }是递减的等比数列,S n 是{a n }的前n 项和,若a 2+a 5=18,a 3a 4=32,则

S 5的值是( )

A .62

B .48

C .36

D .31

二、填空题

9.数列{a n }满足:log 2a n +1=1+log 2a n ,若a 3=10,则a 8=_____.

10.已知数列{a n }是等比数列,a 2=2,a 5=1

4,则a 1a 2a 3+a 2a 3a 4+…+a n a n +1a n +2= .

11.等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=63

4,则a 8=_____.

12. 已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是_____. 三、解答题

13.等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;

(2)记S n 为{a n }的前n 项和.若S m =63,求m .

14. (2018·安徽联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4. (1)证明:{S n -n +2}为等比数列. (2)求数列{S n }的前n 项和T n .

1.已知1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1+a 2

b 2的值是( )

A .52或-5

2

B .-52

C .5

2

D .12

2.等比数列{a n }共有奇数项,所有奇数项的和S 奇=255,所有偶数项的和S 偶=-126,末项是192,则首项a 1等于( )

A .1

B .2

C .3

D .4

3.各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n =( ) A .80 B .30 C .26

D .16

4.在等比数列{a n }中,a 1+a n =82,a 3·a n -2=81,且前n 项和S n =121,则此数列的项数n 等于( )

A .4

B .5

C .6

D .7

5. 已知等比数列{a n }满足条件a 2+a 4=3(a 1+a 3),a 2n =3a 2n ,n ∈N *

,数列{b n }满足b 1=

1,b n -b n -1=2n -1(n ≥2,n ∈N *).

(1)求数列{a n },{b n }的通项公式;

(2)若数列{c n }满足c 1a 1+c 2a 2+c 3a 3+…+c n

a n

=b n ,n ∈N *,求{c n }的前n 项和T n .

【参考答案】

一、选择题

1.在等比数列{a n }中,a 1=12,q =12,a n =1

32,则项数n 为( C )

A .3

B .4

C .5

D .6

2.在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( C ) A .3

2

B .23

C .-2

3

D .23或-23

[解析] 由?????a 1q =18,

a 1q 3

=8解得?????a 1=27,q =23或?????a 1=-27,q =-23,

又a 1<0,因此q =-2

3

.故选C .

3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯塔的2倍,则塔的顶层共有灯( B )

A .1盏

B .3盏

C .5盏

D .9盏

[解析] 设塔的顶层共有灯x 盏,则各层的灯数构成一个公比为2的等比数列,由x (1-27)1-2

=381可得x =3.

4.已知各项均为正数的等比数列{a n }的前n 项和为S n ,且S 3=14,a 3=8,则a 6=( C ) A .16 B .32 C .64

D .128

[解析] 由题意得,等比数列的公比为q ,由S 3=14,a 3=8,则?????a 1(1+q +q 2)=14,

a 3=a 1q 2

=8,

,解

得a 1=2,q =2,所以a 6=a 1q 5=2×25=64,故选C .

5.已知等比数列{a n }的前n 项和为S n =a ·2n -

1+16,则实数a 的值为( A )

A .-1

3

B .1

3

C .-1

2

D .12

[解析] 当n ≥2时,a n =S n -S n -1=a ·2n -1-a ·2n -2=a ·2n -2,当n =1时,a 1=S 1=a +1

6,

又因为{a n }是等比数列,所以a +16=a 2,所以a =-1

3

6.设等比数列{a n }的公比为q >0,且q ≠1,S n 为数列{a n }前n 项和,记T n =a n

S n ,则( D )

A .T 3≤T 6

B .T 3

C .T 3≥T 6

D .T 3>T 6

[解析] T 6-T 3=a 6(1-q )

a 1(1-q 6)-a 3(1-q )

a 1(1-q 3)=q 5(1-q )1-q 6-q 2(1-q )1-q 3=-q 2(1-q )

1-q 6

,由于q >0且q ≠1,所以1-q 与1-q 6同号,所以T 6-T 3<0,∴T 6

7.已知{a n }是首项为1的等比数列,若S n 是数列{a n }的前n 项和,且28S 3=S 6,则数列{1

a n

}的前4项和为( C ) A .15

8或4

B .40

27或4

C .40

27

D .158

[解析] 设数列{a n }的公比为q .

当q =1时,由a 1=1,得28S 3=28×3=84.S 6=6,两者不相等,因此不合题意. 当q ≠1时,由28S 3=S 6及首项为1,得28(1-q 3)1-q =1-q 6

1-q ,解得q =3.所以数列{a n }的通

项公式为a n =3n -1.

所以数列{1a n }的前4项和为1+13+19+127=40

27

8.已知数列{a n }是递减的等比数列,S n 是{a n }的前n 项和,若a 2+a 5=18,a 3a 4=32,则S 5的值是( A )

A .62

B .48

C .36

D .31

[解析] 由a 2+a 5=18,a 3a 4=32,得a 2=16,a 5=2或a 2=2,a 5=16(不符合题意,舍去),设数列{a n }的公比为q ,则a 1=32,q =1

2,所以S 5=32[1-(1

2)5]

1-1

2

=62,选A .

二、填空题

9.数列{a n }满足:log 2a n +1=1+log 2a n ,若a 3=10,则a 8=__320___.

[解析] 由题意知log 2a n +1=log 22a n ,∴a n +1=2a n ,∴{a n }是公比为2的等比数列,又a 3

=10,∴a 8=a 3·25=320.

10.已知数列{a n }是等比数列,a 2=2,a 5=14,则a 1a 2a 3+a 2a 3a 4+…+a n a n +1a n +2=

64

7(1-2

-3n

) .

[解析] 设数列{a n }的公比为q ,则q 3=a 5a 2=18,解得q =12,a 1=a 2

q

=4.易知数列{a n a n +1a n

+2}是首项为

a 1a 2a 3=4×2×1=8,公比为q 3=1

8

的等比数列,所以a 1a 2a 3+a 2a 3a 4+…+a n a n

+1a n +2=8(1-18n )

1-

18

=64

7(1-2-3n ). 11.等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=63

4,则a 8=__32___.

[解析] 由题意知S 3=a 1+a 2+a 3=7

4

a 4+a 5+a 6=S 6-S 3=634-74=14=7

4·q 3,∴q =2.

又a 1+2a 1+4a 1=74,∴a 1=14,∴a 8=1

4

×27=32.

12. 已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是__(-∞,-1]∪[3,+∞)___.

[解析] 设等比数列的公比为q ,则S 3=1

q +q +1

∵|1q +q |=1

|q |+|q |≥2(当且仅当|q |=1时取等号) ∴1q +q ≥2或1

q

+q ≤-2

∴S 3≥3或S 3≤-1,∴S 3的取值范围是(-∞,-1]∪[3,+∞). 三、解答题

13.等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;

(2)记S n 为{a n }的前n 项和.若S m =63,求m .

[分析] 本题考查等比数列的通项公式、前n 项和公式. (1)

根据已知,建立含有q 的方程→求得q 并加以检验→代入等比数列

的通项公式

(2)利用等比数列前n 项和公式与已知建立等量关系即可求解. [解析] (1)设{a n }的公比为q ,由题设得a n =q n -1.

由已知得q 4=4q 2,解得q =0(舍去)或q =-2或q =2.故a n =(-2)n -1或a n =2n -1. (2)若a n =(-2)n -1,则S n =1-(-2)n 3.由S m =63得(-2)m =-188,此方程没有正整数解.

若a n =2n -1,则S n =2n -1.由S m =63得2m =64,解得m =6.综上,m =6. [解后反思] 等比数列基本量运算问题的常见类型及解题策略: (1)求通项.求出等比数列的两个基本量a 1和q 后,通项便可求出. (2)求特定项.利用通项公式或者等比数列的性质求解. (3)求公比.利用等比数列的定义和性质建立方程(组)求解.

(4)求前n 项和.直接将基本量代入等比数列的前n 项和公式求解或利用等比数列的性质求解.

[易错警示] 解方程时,注意对根的检验.求解等比数列的公比时,要结合题意进行讨论、取值,避免错解.

14. (2018·安徽联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4. (1)证明:{S n -n +2}为等比数列. (2)求数列{S n }的前n 项和T n .

[解析] (1)证明:由题意知S n -2(S n -S n -1)=n -4(n ≥2), 即S n =2S n -1-n +4,

所以S n -n +2=2[S n -1-(n -1)+2], 又易知a 1=3,所以S 1-1+2=4,

所以{S n -n +2}是首项为4,公比为2的等比数列. (2)由(1)知S n -n +2=2n +1, 所以S n =2n +1+n -2,

于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n =4(1-2n )1-2

n (n +1)

2

-2n =2n +3+n 2-3n -8

2

1.已知1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1+a 2

b 2的值是( C )

A .52或-5

2

B .-5

2

C .5

2

D .12

[解析] 由题意得a 1+a 2=5,b 22=4,又

b 2与第一项的符号相同,所以b 2=2.所以

a 1+a 2

b 2

=5

2

.故选C . [技巧点拨] (1)在等差(比)数列的基本运算中要注意数列性质的运用,利用性质解题可简化运算,提高运算的速度.

(2)根据等比中项的定义可得,在等比数列中,下标为奇数的项的符号相同,下标为偶数的项的符号相同,在求等比数列的项时要注意这一性质的运用,避免出现符号上的错误.

2.等比数列{a n }共有奇数项,所有奇数项的和S 奇=255,所有偶数项的和S 偶=-126,末项是192,则首项a 1等于( C )

A .1

B .2

C .3

D .4

[解析] ∵a n =192, ∴q =S 偶S 奇-a n =-12663=-2.

又S n =a 1-a n q

1-q

=S 奇+S 偶,

∴a 1-192×(-2)1-(-2)=255+(-126),

解得a 1=3,故选C .

3.各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n =( B ) A .80 B .30 C .26

D .16

[解析] 由等比数列的性质知S n 、S 2n -S n 、S 3n -S 2n 成等比数列,∴(S 2n -2)2=2(14-S 2n ),∴S 2n =6或-4(舍去),又S 2n -S n 、S 3n -S 2n 、S 4n -S 3n 成等比数列,∴82=4(S 4n -14),∴S 4n =30.故选B .

另解:(特殊化)不妨令n =1,则a 1=S 1=2,

S 3=2(1-q 3)1-q =14,∴q 2+q -6=0,∴q =2或-3(舍去)

∴S 4=2(1-q 4)1-q

=30.故选B .

4.在等比数列{a n }中,a 1+a n =82,a 3·a n -2=81,且前n 项和S n =121,则此数列的项数n 等于( B )

A .4

B .5

C .6

D .7

[解析] 在等比数列{a n }中,a 3·a n -2=a 1·a n =81,又a 1+a n =82,所以?????a 1=1,a n =81或?????a 1=81,

a n =1.

当a 1=1,a n =81时,S n =1-81q

1-q =121,解得q =3.

由a n =a 1q n -1得81=3n -1,解得n =5. 同理可得当a 1=81,a n =1时,n =5.故选B .

5. 已知等比数列{a n }满足条件a 2+a 4=3(a 1+a 3),a 2n =3a 2n ,n ∈N *,数列{b n }满足b 1=

1,b n -b n -1=2n -1(n ≥2,n ∈N *).

(1)求数列{a n },{b n }的通项公式;

(2)若数列{c n }满足c 1a 1+c 2a 2+c 3a 3+…+c n

a n =

b n ,n ∈N *,求{

c n }的前n 项和T n .

[解析] (1)设{a n }的通项公式为a n =a 1q n -1,n ∈N *,

由已知a 2+a 4=3(a 1+a 3),a 1q +a 1q 3=3(a 1+a 1q 2),得q =3,

由已知a 2n =3a 2n ,即a 1q 2n -1=3a 21

q 2n -2, 解得q =3a 1,a 1=1,

所以{a n }的通项公式为a n =3n -1.

因为b 1=1,b n -b n -1=2n -1(n ≥2,n ∈N *), 可得b 2-b 1=3,b 3-b 2=5,…,b n -b n -1=2n -1, 累加可得b n =n 2.

(2)当n =1时,c 1

a 1

=1,c 1=1,

当n ≥2时,c 1a 1+c 2a 2+c 3a 3+…+c n

a n =n 2①

c 1a 1+c 2a 2+c 3

a 3+…+c n -1a n -1

=(n -1)2② 由①-②得到c n

a n =2n -1,c n =(2n -1)·3n -1,n ≥2,

综上,c n =(2n -1)·3n -1,n ∈N *.

T n =1×30+3×31+…+(2n -3)×3n -2+(2n -1)×3n -1③ 3T n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ④ 由③-④得到

-2T n =1×30+2×(31+32+…+3n -1)-(2n -1)×3n =1×30+2×3(3n -1-1)3-1

-(2n -

1)×3n .

所以T n =1+(n -1)×3n .

等比数列及其前n项和

等比数列及其前n 项和 [考纲传真] 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系. 【知识通关】 1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用 字母q 表示,定义的数学表达式为a n +1a n =q (n ∈N *,q 为非零常数). (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项?a ,G ,b 成等比数列?G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1=a m q n -m . (2)前n 项和公式: S n =??? na 1(q = 1),a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1). [常用结论] 1.在等比数列{a n }中,若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k . 2.若数列{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),???? ??1a n ,{a 2n },{a n ·b n },???? ??a n b n 仍然是等比数列. 3.等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ,其中当公比为-1时,n 为偶数时除外. 【基础自测】 1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (2)G 为a ,b 的等比中项?G 2=ab .( ) (3)若{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( )

等比数列的前n项和 优秀教学设计

等比数列的前n 项和 【教学目标】 知识与技能:掌握等比数列的前n 项和公式及公式证明思路;会用等比数列的前n 项和公式解决有关等比数列的一些简单问题。 过程与方法:经历等比数列前n 项和的推导与灵活应用,总结数列的求和方法,并能在具体的问题情境中发现等比关系建立数学模型、解决求和问题。 情感态度与价值观:在应用数列知识解决问题的过程中,要勇于探索,积极进取,激发学习数学的热情和刻苦求是的精神。 【教学重点】 等比数列的前n 项和公式推导 【教学难点】 灵活应用公式解决有关问题 【学情分析】 针对学生学习等差数列前n 项和时的情况,一定在本节课的教学中加大思想方法的教学力度,突破错位相减思想理解困难。引导学生完成基本技能的训练。 【教学过程】 一、课题导入 创设情境 提出问题 :“国王对国际象棋的发明者的奖励” 二、讲授新课 分析问题:如果把各格所放的麦粒数看成是一个数列,我们可以得到一个等比数列,它的首项是1,公比是2,求第一个格子到第64个格子各格所放的麦粒数总合就是求这个等比数列的前64项的和。下面我们先来推导等比数列的前n 项和公式。 等比数列的前n 项和公式: 当1≠q 时, q q a S n n --=1)1(1 ① 或q q a a S n n --=11 ②当q=1时,1 na S n =当已知1a , q , n 时用公式①;当已知1a , q , n a 时,用公式②。 公式的推导方法一:

一般地,设等比数列 n a a a a ,,321+它的前n 项和是 =n S n a a a a +++321由 ???=+++=-11321n n n n q a a a a a a S 得 ?????++++=++++=---n n n n n n q a q a q a q a q a qS q a q a q a q a a S 1113121111212111 n n q a a S q 11)1(-=-∴ 论同上)∴当1≠q 时, q q a S n n --=1)1(1 ① 或q q a a S n n --=11 ②当q=1时,1 na S n =公式的推导方法二:有等比数列的定义,q a a a a a a n n ====-12 312 根据等比的性质,有q a S a S a a a a a a n n n n n =--=++++++-112132 即 q a S a S n n n =--1?q a a S q n n -=-1)1((结围绕基本概念,从等比数列的定义出发,运用等比定理,导出了公式。 公式的推导方法三: =n S n a a a a +++321=) (13211-++++n a a a a q a =11-+n qS a =) (1n n a S q a -+?q a a S q n n -=-1)1((结论同上) 解决问题; 有了等比数列的前n 项和公式,就可以解决刚才的问题。 由11,2,64a q n ===可得 1(1)1n n a q S q -=-=641(12)12?--=6421-。 6421-这个数很大,超过了19 1.8410?。国王不能实现他的诺言。三、 例题讲解 例1.求下列等比数列的各项的和:

高中数学《等比数列的前n项和(第一课时)》教学设计

高中数学《等比数列的前n项和(第一课时)》教学设计 一.教材分析。 (1教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学(5,是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。 (2从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫。 二.学情分析。 (1学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。 (2教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强, 逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思 维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。 (3从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。 三.教学目标。

根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为: (1知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。 (2过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力. (3情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。 四.重点,难点分析。 教学重点:公式的推导、公式的特点和公式的运用。 教学难点:公式的推导方法及公式应用中q与1的关系。 五.教法与学法分析. 培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。 六.课堂设计

等比数列前n项和公式-教案

课时教案

一、复习提问 回顾等比数列定义,通项公式 (1)等比数列定义:(, (2)等比数列通项公式: (3)等差数列前n项和公式的推导方法:倒序相加法。二、问题引入: 阅读:课本“国王赏麦的故事”。 问题:如何计算 引出课题:等比数列的前n项和。 三、问题探讨: 问题:如何求等比数列的前n项和公式 回顾:等差数列的前n项和公式的推导方法。 倒序相加法。 等差数列它的前n项和是 根据等差数列的定义 (1) (2) (1)+(2)得:

探究:等比数列的前n项和公式是否能用倒序相加法推导? 学生讨论分析,得出等比数列的前n项和公式不能用倒序相加法推导。 回顾:等差数列前n项和公式的推导方法本质。 构造相同项,化繁为简。 探究:等比数列前n项和公式是否能用这种思想推导? 根据等比数列的定义: 变形: 具体: …… 学生分组讨论推导等比数列的前n项和公式,学生不难发现:由于等比数列中的每一项乘以公比都等于其后一项。 所以将这一特点应用在前n项和上。 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。 (1) (2) 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。

当q=1时, 当时, 学生经过讨论还发现了其他的推导方法,让学生课后整合自己的思路,将各自的推导过程展示在班级学习园地,同学们共享探究。 由等比数列的通项公式推出求和公式的第二种形 式: 当时, 四.知识整合: 1.等比数列的前n项和公式: 当q=1时, 当时, 2.公式特征: ⑴等比数列求和时,应考虑与两种情况。 ⑵当时,等比数列前n项和公式有两种形式,分别都 涉及四个量,四个量中“知三求一”。 ⑶等比数列通项公式结合前n项和公式涉及五个量, , 五个量中“知三求二”(方程思想)。 3.等比数列前n项和公式推导方法:错位相减法。

2.5 等比数列的前n项和(一)(优秀经典公开课比赛教案)

澜沧拉祜族自治县第一中学教案 2.5 等比数列的前n项和(一) 学科:数学年级:高二 备课教师:刘德清、龙新荣、郭晓芳、王焕刚、沈良宏 一、教材分析:等比数列的前n项和是“等差数列的前n项和”与“等比数列”内容的延续、是进一步学习数列知识和解决一类求和问题的重要基础和有力工具。它不仅在现实生活中有着广泛的实际应用,如储蓄、 分期付款的有关计算等等,而且公式推导过程中所蕴涵的类比、分类讨论、方程等思想方法,都是学生今后学习和工作中必备的数学素养。等比数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神, 是培养学生应用意识和数学能力的良好载体. 二、教学目标: 1、(1)了解现实生活中存在着大量的等比数列求和的计算问题; (2)探索并掌握等比数列前n项和公式; (3)用方程的思想认识等比数列前n项和公式,利用公式知三求一; (4)体会公式推导过程中的分类讨论和转化化归的思想. 2、(1)采用观察、思考、类比、归纳、探究得出结论的方法进行教学; (2)发挥学生的主体作用,作好探究性活动. 3、(1)通过生活中有趣的实例,鼓励学生积极思考,激发学生对知识 的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力; (2)在探究活动中学会思考,学会解决问题的方法; (3)通过对有关实际问题的解决,体现数学与实际生活的密切联系,激发学生学习的兴趣. 三、教学重点:等比数列前n项和公式的推导及其应用。 四、教学难点:等比数列前n项和公式的推导,灵活应用公式解决有关问题。 五、教学准备 1、课时安排:1课时 2、学情分析:等差、等比数列的定义和通项公式,等差数列的前n项 和的公式是学生在学习之前已经具备的知识基础。学生具体研究学习了等差数列前n项和公式的推导方法,具备了一定的探究能力。由此,学生会产生思考,等比数列前n项和公式应该如何推导,公式是从什么新的角度建构?

等比数列及其前n项和(作业)

等比数列及其前n 项和(作业) 例1: 已知等比数列{}n a 中,各项都是正数,且1a ,31 2 a ,22a 成等差数列,则 910 78 a a a a +=+( ) A .1 B .1 C .3+D .3- 【思路分析】 设公比为q ,则0q >,21a a q =,231a a q =, ∵1a ,31 2 a ,22a 成等差数列, ∴3122a a a =+,即21112a q a a q =+, 解得1q =+ 1, ∴22910787878()3a a a a q q a a a a ++===+++. 故选C . 例2: 若等比数列 {} n a 中,25112a a a ++=,58146a a a ++=,那么 2581114a a a a a ++++的值为( ) A .8 B .9 C .242 31 D . 240 41 【思路分析】 设公比为q ,则335814251125112511() a a a q a a a q a a a a a a ++++==++++,即33q =, ∴38553a a q a ==,9145527a a q a ==, 由58146a a a ++=,得5553276a a a ++=,解得56 31 a = , ∴2581114251158145242 ()()31 a a a a a a a a a a a a ++++=+++++-=. 故选C . 例3: 设{}n a 为等比数列,{}n b 为等差数列,且10b =,n n n c a b =+,若数列{} n c

的前三项为1,1,2,则{}n a 的前10项之和是 ( ) A .978 B .557 C .467 D .1 023 【思路分析】 设数列{}n a 的公比为q ,设数列{}n b 的公差为d , ∵10b =,11c =, ∴11a =, 则2a q =,23a q =,2b d =,32b d =, ∵21c =,32c =, ∴2122q d q d +=??+=? ,解得21q d =??=-?, ∴数列{}n a 的前10项之和10110(1) 1 0231a q S q -= =-.故选D . 1. 在等比数列{}n a 中,已知332a = ,前三项和39 2 S =,则公比q =( )

等比数列的前n项和例题详细解法

等比数列的前n项和例题详细解法?例题解析 【例1】设等比数列的首项为a(a>0),公比为q(q>0),前n项和为80,其中 最大的一项为54,又它的前2n项和为6560,求a和q. 解:由S n=80,S2n=6560,故q≠1 ∵a>0,q>1,等比数列为递增数列,故前n项中最大项为an. ∴a n=aq n-1=54 ④ 将③代入①化简得a=q-1 ⑤ 由⑤,⑥联立方程组解得a=2,q=3 证∵Sn=a1+a1q+a1q2+...+a1q n-1 S2n=S n+(a1q n+a1q n+1+...+a1q2n-1)

=S n+q n(a1+a1q+...+a1q n-1)=S n+q n S n=S n(1+q n) 类似地,可得S3n=S n(1+q n+q2n) 说明本题直接运用前n项和公式去解,也很容易.上边的解法,灵活地处理了S2n、S3n与S n的关系.介绍它的用意在于让读者体会利用结合律、提取公因式等方法将某些解析式变形经常是解决数学问题的关键,并且变得好,则解法巧. 【例2】一个有穷的等比数列的首项为1,项数为偶数,其奇数项的和为85,偶数项的和为170,求这个数列的公比和项数. 分析设等比数列为{a n},公比为q,取其奇数项或偶数项所成的数列仍然是等比数列,公比为q2,首项分别为a1,a1q. 解设项数为2n(n∈N*),因为a1=1,由已知可得q≠1. 即公比为2,项数为8. 说明运用等比数列前n项和公式进行运算、推理时,对公比q要分情况讨论.有关等比数列的问题所列出的方程(组)往往有高次与指数方程,可采用两式相除的方法达到降次的目的.

等比数列前n项和优秀教案

《等比数列前n项和》教学设计 一、教学目标: 1.知识目标:理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题。 2.能力目标:通过启发、引导、分析、类比、归纳,并通过严谨科学的解题思想和解题方法的训练,提高学生的数学素养。 3.情感目标:通过解决生产实际和社会生活中的实际问题了解社会、认识社会,形成科学的世界观和价值观。 二、教学重点与难点: 教学重点:公式的推导、公式的特点和公式的应用。 教学难点:公式的推导方法和公式的灵活运用。公式推导所使用的“错位相减法”是高中数学的数列求和方法中最常用的方法之一,它蕴涵了重要的数学思想,所以既是重点也是难点。 三、教学方法:以多媒体辅助教学,引导学生分析求解,师生合作,师生互动。 四、教学过程: 1.复习回顾: (1)等比数列定义及等比数列通项公式。 2.情境导入: 话说猪八戒看见自己的师兄弟都是亿万富豪了,自己也做起了发财梦,于是想成立高老庄集团,但是苦于没有资金,于是想到了他的大师兄,猪八戒:猴哥,能不能帮帮我…… 孙悟空:No problem!我每天给你投资100万元,连续一个月(30天),但有一个条件:第一天返还1元,第二天返还2元,第三天返还4元…… 后一天返还数为前一天的2倍.30天之后互不相欠。 猪八戒:第一天出1元入100万;第二天出2元入100万;第三天出4元入100万元;……哇,发了……(想:这猴子是不是又在耍我) 让我们帮猪八戒算一算:八戒吸纳的资金为100×30=3000万元。 需返还悟空的钱数为S30=1+2+22+23+……+229=?事实上,这是等比数列的求和问题,那么怎样求等比数列的前n项和呢?使学生带着浓厚的兴趣引。

(经典)讲义:等比数列及其前n项和

(经典)讲义:等比数列及其前n 项和 1.等比数列的定义 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示. 2.等比数列的通项公式 设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1. 3.等比中项 若G 2 =a ·b (ab ≠0),那么G 叫做a 与b 的等比中项. 4.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n -m ,(n ,m ∈N +). (2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N +),则a k ·a l =a m ·a n . (3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ ≠0),? ???????? ?1a n ,{a 2n }, {a n ·b n },? ???????? ?a n b n 仍是等比数列. (4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n . 5.等比数列的前n 项和公式 等比数列{a n }的公比为q (q ≠0),其前n 项和为S n , 当q =1时,S n =na 1; 当q ≠1时,S n =a 11-q n 1-q =a 1-a n q 1-q . 【注意】 6.利用错位相减法推导等比数列的前n 项和: S n =a 1+a 1q +a 1q 2+…+a 1q n -1, 同乘q 得:qS n =a 1q +a 1q 2+a 1q 3+…+a 1q n , 两式相减得(1-q )S n =a 1-a 1q n ,∴S n =a 11-q n 1-q (q ≠1). 7.1由a n +1=qa n ,q ≠0并不能立即断言{a n }为等比数列,还要验证a 1≠0. 7.2在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,

教案-《等比数列的前n项和公式》

高二数学组集体备课教案(第七周10月17日) 课题:2.5等比数列的前n 项和(两个课时) 教学目标:(1)知识目标:理解等比数列的前n 项和公式的推导方法;掌握等比数列 的前n 项和公式并能运用公式解决一些简单问题; (2)能力目标:提高学生的建模意识,体会公式探求过程中从特殊到一 般的思维方法,渗透方程思想、分类讨论思想; (3)情感目标:培养学生将数学学习放眼生活,用生活眼光看数学的思 维品质; 教学重点:(1)等比数列的前n 项和公式; (2)等比数列的前n 项和公式的应用; 教学难点:等比数列的前n 项和公式的推导; 教学方法:问题探索法及启发式讲授法 教 具:多媒体 教学过程: 一、复习提问 回顾等比数列定义,通项公式 (1)等比数列定义:q a a n n =-1(2n ≥,)0≠q (2)等比数列通项公式: ) 0,(111≠=-q a q a a n n (3)等差数列前n 项和公式的推导方法:倒序相加法。 二、问题引入: 阅读:课本第55页“国王赏麦的故事”。 问题:如何计算 引出课题:等比数列的前n 项和。 三、问题探讨: 问题:如何求等比数列{}n a 的前n 项和公式 =n S 123n a a a a ++++ 22111111--=+++++ n n a a q a q a q a q 2363 6412222S =+++++

倒序相加法。 等差数列 n a a a a ,,321+它的前n 项和是=n S n a a a a +++321 根据等差数列的定义1+-=n n a a d []1111()(2)(n-1)=+++++++ n S a a d a d a d (1) []()(2)-(n-1)=+-+-++ n n n n n S a a d a d a d (2) (1)+(2)得:12()=+n n S n a a 1()2 += n n n a a S 探究:等比数列的前n 项和公式是否能用倒序相加法推导? =n S 123n a a a a ++++ 22111111--=+++++ n n a a q a q a q a q 221 --=+++++ n n n n n n n n a a a a S a q q q q 学生讨论分析,得出等比数列的前n 项和公式不能用倒序相加法推导。 回顾:等差数列前n 项和公式的推导方法本质。 构造相同项,化繁为简。 探究:等比数列前n 项和公式是否能用这种思想推导? 根据等比数列的定义: 1 )(++=∈n n a q n N a 变形:1+=n n a q a 具体:12=a q a 23=a q a 34=a q a …… 学生分组讨论推导等比数列的前n 项和公式,学生不难发现: 由于等比数列中的每一项乘以公比q 都等于其后一项。 所以将这一特点应用在前n 项和上。 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。 22111111n n n S a a q a q a q a q --=+++++ (1) 23111111-= +++++ n n n qS a q a q a q a q a q (2) 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。

等比数列前n项和优秀教案

等比数列的前n项和 一、教学目标 1、掌握等比数列的前n项和公式,能用等比数列的前n项和公式解决相关问题。 2、通过等比数列的前n项和公式的推导过程,体会错位相减法以及分类讨论的思想方法。 3、通过对等比数列的学习,发展数学应用意识,逐步认识数学的科学价值、应用价值,发展数学的理性思维。 二、教学重点与难点 重点:掌握等比数列的前n项和公式,能用等比数列的前n项和公式解决相关问题。 难点:错位相减法以及分类讨论的思想方法的掌握。 三、教学设想 本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以四周世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的深入探讨。让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。设计思路如下: 四、教学过程 (一)创设问题情景 课前给出复习:等比数列的定义及性质 课首给出引例:“一个穷人到富人那里去借钱,原以为富人不愿意,哪知富人一口答应了下来,但提出了如下条件:在30天中,富人第一天借给穷人1万元,第二天借给穷人2万元,以后每天所借的钱数都比上一天多1万;但借钱第一天,穷人还1分钱,第二天还2分钱,以后每天所还的钱数都是上一天的两倍,30天后互不相欠.穷人听后觉得挺划算,本想定下来,但又想到此富人是吝啬出了名的,怕上当受骗,所以很为难。”请在座的同

学思考讨论一下,穷人能否向富人借钱? [设计一个学生比较感爱好的实际问题,吸引学生注重力,使其马上进入到研究者的角色中来!] (二)启发引导学生数学地观察问题,构建数学模型。 学生直觉认为穷人可以向富人借钱,教师引导学生自主探求,得出: 穷人30天借到的钱:4652 30)301(3021'30=?+=+++= S (万元) 穷人需要还的钱:=++++=292302221 S ? [直觉先行,思辨引路,在矛盾冲突中引发学生积极的思维!] 教师紧接着把如何求=++++=292302221 S ?的问题让学生探 究, 292302221++++= S ①若用公比2乘以上面等式的两边,得到 302923022222++++= S ② 若②式减去①式,可以消去相同的项,得到: 1073741823 123030=-=S (分) ≈1073(万元) > 465(万元) 答案:穷人不能向富人借钱 (三)引导学生用“特例到一般”的研究方法,猜想数学规律。 提出问题:如何推导等比数列前n 项和公式?(学生很自然地模仿 以上方法推导) )1(11212111--+++++=n n n q a q a q a q a a S )2(111211n n n q a q a q a q a qS ++++=- (1)-(2)有n n q a a S q 11)1(-=- 推导等比数列前n 项和n S 的公式,教师引导讲完课本上的推导方法 后, 教师:还有没有其他推导方法?(经过几分钟的思考,有学生举手发 言) ?? ???≠--=--==1,11)1(1,111q q q a a q q a q na S n n n

等比数列及其前n项和(讲义)

等比数列及其前n 项和(讲义) 知识点睛 一、等比数列 1. 等比数列的概念 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (0)q ≠表示. (1)等比中项 (2)等比数列的通项公式:11n n a a q -=. 2. 等比数列的性质 (1)通项公式的推广:*(),n m n m a a q m n N -=∈. (2)若{}n a 是等比数列,且*(),,,k l m n k l m n N +=+∈, 则k l m n a a a a =??. (3)若{}n a 是等比数列,则k a ,k m a +,2k m a +,…*(),k m N ∈组成公比为m q 的等比数列. (4)若{}n a 是等比数列,则{}n a λ,{}||n a ,1{}n a ,{}2 n a 也是等比数列. (5)若{}n a ,{}n b 是等比数列,则{}n n a b ?,{ }n n a b 也是等比数列. (6)当数列{}n a 是各项均为正数的等比数列时, 数列{}lg n a 是公差为lg q 的等差数列. 二、 等比数列的前n 项和公式 1. 对于等比数列 1a ,2a ,3a ,…,n a ,…

当1q ≠时, 它的前n 项和的公式为1(1) 1n n a q S q -=-或11n n a a q S q -=-. 当1q =时, 它的前n 项和的公式为1n S na =. 推导过程:错位相减法 2. 等比数列各项和的性质 (1)若m S ,2m S ,3m S 分别是等比数列{}n a 的前m 项,前2m 项,前3m 项的和,则m S ,2m m S S -,32m m S S -成等比数列,其公比为m q . (2)等比数列的单调性 ①当101a q >??>?或10 01a q ??<?时,{}n a 是递减数列; ③当101a q ≠??=?时,{}n a 是常数列; ④当0q <时,{}n a 是摆动数列. 精讲精练 1. 设{}n a 为等比数列,且4652a a a =-,则公比是( ) A .0 B .1或-2 C .-1或2 D .-1或-2

等比数列前n项和公式

数列 等比数列前n项和公式 ■(2015甘肃省白银市会宁二中高考数学模拟,等比数列前n项和公式,选择题,理3)公比不为1等比数列{a n}的前n项和为S n,且-3a1,-a2,a3成等差数列,若a1=1,则S4=() A.-20 B.0 C.7 D.40 解析:设数列的公比为q(q≠1),则∵-3a1,-a2,a3成等差数列, ∴-3a1+a3=-2a2,∵a1=1,∴-3+q2+2q=0, ∵q≠1,∴q=-3.∴S4=1-3+9-27=-20.故选A. 答案:A ■(2015甘肃省兰州市七里河区一中数学模拟,等比数列前n项和公式,选择题,理11)已知函数y=x3在x=a k时的切线和x轴交于a k+1,若a1=1,则数列{a n}的前n项和为() A.n B. - C.3- D.3- - 解析:∵函数y=x3,∴y'=3x2,∴- - =3, 即 - =3, 化简,得3a k+1=2a k,即, 又∵a1=1,∴S n=- - =3- - ,故选D. 答案:D ■(2015甘肃省白银市会宁二中高考数学模拟,数列与不等式相结合问题,填空题,理16)已知数列{a n}的前n项和为S n,且S n+1=2a n,则使不等式+…+<5×2n+1成立的n的最大值为.解析:当n=1时,a1+1=2a1,解得a1=1. 当n≥2时,∵S n+1=2a n,S n-1+1=2a n-1, ∴a n=2(a n-a n-1),∴ - =2. ∴数列{a n}是以1为首项,2为公比的等比数列. ∴a n=2n-1,∴=4n-1. ∴+…+ =1+4+42+…+4n-1=- - (4n-1). ∴(4n-1)<5×2n+1. ∴2n(2n-30)<1,可知使得此不等式成立的n的最大值为4. 答案:4 专题2数列与函数相结合 问题 1

等比数列及其前n项和考点与题型归纳

等比数列及其前n 项和考点与题型归纳 一、基础知识 1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1 a n =q . (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项?a ,G ,b 成等比数列?G 2=ab . 只有当两个数同号且不为0时,才有等比中项,且等比中项有两个. 2.等比数列的有关公式 (1)通项公式:a n =a 1q n - 1. (2)前n 项和公式:S n =???? ? na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1. 3.等比数列与指数型函数的关系 当q >0且q ≠1时,a n =a 1 q ·q n 可以看成函数y =cq x ,其是一个不为0的常数与指数函数 的乘积,因此数列{a n }各项所对应的点都在函数y =cq x 的图象上; 对于非常数列的等比数列{a n }的前n 项和S n =a 1(1-q n )1-q =-a 11-q q n +a 11-q ,若设a =a 1 1-q , 则S n =-aq n +a (a ≠0,q ≠0,q ≠1).由此可知,数列{S n }的图象是函数y =-aq x +a 图象上一系列孤立的点. 对于常数列的等比数列,即q =1时,因为a 1≠0,所以S n =na 1.由此可知,数列{S n }的图象是函数y =a 1x 图象上一系列孤立的点. 二、常用结论汇总——规律多一点 设数列{a n }是等比数列,S n 是其前n 项和. (1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *). (2)若m +n =p +q ,则a m a n =a p a q ;若2s =p +r ,则a p a r =a 2s ,其中m ,n ,p ,q ,s ,r ∈N *. (3)a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m (k ,m ∈N *).

《等比数列前n项和》优秀教案(公开课)

《等比数列前n 项和》教学设计(教案) 一、教学目标: 1.知识与技能目标 理解并掌握等比数列前n 项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题。 2.过程与方法目标 通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。 3.情感、态度与价值观 通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点。 二、教学重难点 1.教学重点:公式的推导、公式的特点和公式的运用; 2.教学难点:公式的推导方法及公式应用中q 与1的关系。 三、教学工具:ppt 、多媒体 四、过程分析: 故事情景,引出问题→类比联想,解决问题→例题讲解,加深印象→故事结束,首尾呼应→归纳总结,加深理解 (一)故事导入:(同时播放ppt 漫画) 传说国际象棋的发明人是印度的大臣西萨 班 达依尔,舍罕王为了表彰大臣功绩,准备对宰相进行奖赏。国王问宰相:“我要重重赏赐你,你想得到什么样的奖赏尽管提?”,这位聪明的宰相说:“陛下,请您在这张棋盘的第一个格子内放上1颗麦粒,在第二个格子内放上2颗麦粒,在第三个格子内放上4颗麦粒,在第四个格子内放上8颗麦粒,…,依照后一格子内的麦粒数是前一格子内的麦粒数基础上加一倍,放满棋盘的64个格子.并把这些麦粒赏给您的我吧”。国王认为这样的奖赏很轻,于是爽快地答应了,命令如数付给宰相麦粒 一位大臣帮忙,自找麻烦 大臣计数麦粒的工作开始了,在第一个格内放1粒,第二个格内放2粒,第三个格内放4粒,第四个格内放8粒,……,1+2+4+8+16+32+……宰相所要求的麦粒数究竟是多少呢?大臣算了好久也没有算清楚! 宰相来提示,帮助这位大臣计算 各个格的麦粒数组成首项为1,公比为2的等比数列,宰相所要的奖赏就是这 23631+2+2+2++2=

等比数列及其前n项和 练习题

等比数列及其前n 项和 [A 级 基础题——基稳才能楼高] 1.(2019·榆林名校联考)在等比数列{a n }中,a 1=1,a 3=2,则a 7=( ) A .-8 B .8 C .8或-8 D .16或-16 解析:选B 设等比数列{a n }的公比为q ,∵a 1=1,a 3=2,∴q 2=2,∴a 7=a 3q 4=2×22 =8.故选B. 2.(2019·六安一中调研)已知1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则 a 1+a 2 b 2 的值是( ) A.52或-52 B .-52 C.52 D .12 解析:选C 由题意得a 1+a 2=5,b 2 2=4,又b 2与第一项的符号相同,所以b 2=2.所以 a 1+a 2 b 2=5 2 .故选C. 3.(2019·湖北稳派教育联考)在各项均为正数的等比数列{a n }中,若a 5a 11=4,a 6a 12 =8,则a 8a 9=( ) A .12 B .4 2 C .6 2 D .32 解析:选B 由等比数列的性质得a 28=a 5a 11=4,a 29=a 6a 12=8,∵a n >0,∴a 8=2,a 9 =22,∴a 8a 9=4 2.故选B. 4.(2019·成都模拟)设{a n }是公比为负数的等比数列,a 1=2,a 3-4=a 2,则a 3=( ) A .2 B .-2 C .8 D .-8 解析:选A 法一:设等比数列{a n }的公比为q ,因为a 1=2,a 3-a 2=a 1(q 2-q )=4,所以q 2-q =2,解得q =2(舍去)或q =-1,所以a 3=a 1q 2=2,故选A. 法二:若a 3=2,则a 2=2-4=-2,此时q =-1,符合题意,故选A. 5.(2019·益阳、湘潭高三调研)已知等比数列{a n }中,a 5=3,a 4a 7=45,则a 7-a 9 a 5-a 7 的值为( )

§2.5等比数列前n项和公式教学设计

§2.5等比数列前n项和公式教学设计 一、教材分析 1、教学内容:《等比数列的前n项和》是高中数学人教版《必修5》第二章《数列》第5节的内容,教学大纲安排本节内容授课时间为两课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导过程并充分揭示公式的结构特征、内在联系及公式的简单应用. 2、教材分析:《等比数列的前n项和》是数列这一章中的一个重要内容,就知识的应用价值上看,它是从大量数学问题和现实问题中抽象出来的一个模型,在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等,另外公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.就内容的人文价值来看,等比数列的前n项和公式的探究与推导需要学生观察、归纳、证明,这有助于培养学生的创新思维和探索精神,同时也是培养学生应用意识和数学能力的良好载体. 二、学情分析 1、知识基础:前几节课学生已学习了等差数列求和,等比数列的定义及通项公式等内容,这为过渡到本节的学习起着铺垫作用. 2、认知水平与能力:高一学生初步具有自主探究的能力,能在教师的引导下独立、合作地解决一些问题,但从学生的思维特点看,很容易把本节内容与等差数列前n项和公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有所不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生也往往容易忽略,尤其是在后面使用的过程中容易出错. 3、任教班级学生特点:我班学生基础知识还行、思维较活跃,应该能在教师的引导下独立、合作地解决一些问题. 三、目标分析 教学目标 依据教学大纲的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标: 1.知识与技能 理解用错位相减法推导等比数列前n项和公式的过程,掌握公式的特点,并在此基础上能简单的应用公式. 2.过程与方法 在推导公式的过程中渗透类比,方程,特殊到一般的数学思想、方法,优化学生思维品质.

等比数列的前n项求和公式

自选课题:等比数列的前n项和 教学设计 1.教学内容解析 本节内容为现行人教A版《必修5》的第二章的核心内容,它在《普通高中数学课程标准(2017年版)》中,被纳入“选择性必修课程”的函数主题之中. 数列作为一类特殊的函数,既是高中函数知识体系中的重要内容,又是用来刻画现实世界中一类具有递推规律的数学模型.在现行教材的编排中,等比数列的前n项和处于等比数列的单元内容之中,是等比数列的概念与通项公式的后继学习内容,它在完善数列单元的知识结构体系,感受数列与函数的共性与差异,体会数学的整体性等方面都是不可或缺,在提升学生探究、应用和实践能力等方面,有着不可替代的作用和价值. 课标要求:学生经历等比数列前n项和公式的探索过程,掌握等比数列前n项和公式及推导方法,并能进行简单应用. 等比数列前n项和公式的知识内容之所以被列为掌握层次,主要是因为它与函数、等差数列的内在联系,尤其是它在数学史上的历史印迹,以及探索过程中所蕴含的丰富的数学思想(如特殊到一般、类比、基本量、分类讨论、函数与方程、转化与化归等),所需要的数学抽象、逻辑推理、数学建模和数学运算素养,都能充分发挥数学的育人功能。 基于以上分析,本节课的教学重点为:等比数列前n项和公式的导出及其应用。 2.学生学情分析 本节课的授课对象为宜昌市夷陵中学高一年级实验班,夷陵中学是湖北省重点中学、省级示范高中,学生有较好的数学学科基础.从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的发现、特点等方面进行类比,这是积极因素,可因势利导.然而,本节公式的推导与等差数列前n项和公式的推导有着本质的不同,对学生的思维能力提出很高的要求.另外,对于q = 1这一特殊情况,运用公式计算时学生往往容易忽视.教学对象刚进入高一不久,虽然逻辑思维能也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,缺乏深刻的理性思考。 基于以上分析,本节课的教学难点为:等比数列前n项和公式的探究及其推导。 3. 教学目标设置 (1)学生通过课前自主查阅数学史料,课堂演绎历史短剧,了解等比数列前n项和公式的来龙去脉,感受前人严谨的治学精神,体验数学的魅力和数学文化的熏陶。 (2)学生通过研究性学习和小组合作探究的方式,掌握等比数列前n项和公式的不同推导方法,领悟公式的本质,并能运用公式解决简单问题。 (3)学生在经历等比数列前n项和公式的发生、发展、推导和证明的过程中,感悟特

等比数列及其前n项和(含答案)

等比数列及其前n项和 一、单选题(共10道,每道10分) 1.公差不为0的等差数列第二、三、六项构成等比数列,则公比为( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:等比数列的通项公式 2.等比数列中,,,则的值为( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:等比数列的性质 3.在等比数列中,已知,,则( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:等比数列的性质 4.公比为4的等比数列的各项都是正数,且,则( ) A. B.1 C.4 D.16

解题思路: 试题难度:三颗星知识点:等比数列的性质 5.在正项等比数列中,,是方程的两个根,则的值为( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:等比数列的性质 6.一个蜂巢里有1只蜜蜂,第1天,它飞出去找回了5个伙伴;第2天,6只蜜蜂飞出去,各自找回了5个伙伴……如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中一共有( )只蜜蜂. A. B. C. D.

解题思路: 试题难度:三颗星知识点:等比数列的通项公式 7.在等比数列中,表示前n项的和,若,,则公比q=( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:等比数列的性质 8.等比数列的前n项,前2n项,前3n项的和分别为A,B,C,则( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:等比数列的性质 9.设等比数列的前n项的和为,已知,,则( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:等比数列的性质 10.已知是首项为1的等比数列,是其前n项和,且,则数列的前5项和为( ) A. B. C. D.

相关文档
相关文档 最新文档