文档库 最新最全的文档下载
当前位置:文档库 › 无铅压电陶瓷的研究进展

无铅压电陶瓷的研究进展

无铅压电陶瓷的研究进展
无铅压电陶瓷的研究进展

无铅压电陶瓷材料的研究进展

摘要:无铅压电陶瓷的开发与应用是当今压电陶瓷发展的必然趋势,本文综合分析了无铅压电陶瓷的研究背景,给出了目前无铅压电陶瓷的主要体系,包括基无铅压电陶瓷、BNT 基无铅压电陶瓷、铋层状结构无铅压电陶瓷、碱金属钙钛矿结构和钨青铜结构铌酸盐无铅压电陶瓷,系统分析并比较了各个压电陶瓷体系的的性能、制备方法及研究现状,最后对无铅压电陶瓷的发展做出展望。

关键词:无铅压电陶瓷;BaTiO3;BNT;铋层状结构;碱金属铌酸盐;钨青铜结构

1 引言

压电陶瓷是一种能够实现机械能和电能相互转换的功能陶瓷材料。与压电单晶材料相比,具有机电耦合系数高,压电性能可调节性好,化学性质稳定,易于制备且能制得各种形状、尺寸和任意极化方向的产品,价格低廉等优点,被广泛应用于卫星广播、电子设备、生物以及航空航天等高新技术领域。

然而,目前所使用的压电陶瓷体系主要是铅基压电陶瓷,这些陶瓷材料中PbO(或Pb3O4)的含量约占原料总质量的70%左右。由于PbO、Pb3O4等含铅化合物在高温时的挥发性,这些陶瓷在生产、使用及废弃过程中都会对人类健康和生态环境造成很大的危害。如果对含铅陶瓷器件回收实施无公害处理,所需成本也会很高。另一方面,PbO的挥发也会造成陶瓷的化学计量比偏离配方中的化学计量比,造成产品的一致性和重复性降低。因此,研制和开发对环境友好的无铅压电陶瓷成为一项紧迫且具有重大实用意义的课题。

无铅压电陶瓷,又被称为环境友好压电陶瓷,其直接表层含义指不含铅、又具有满意的高的压电性能的压电陶瓷材料。目前国内外研究的无铅压电陶瓷体系主要包括:BaTiO3基无铅压电陶瓷,(Bi0.5Na0.5)TiO3(BNT)基无铅压电陶瓷,铋层状结构无铅压电陶瓷及铌酸盐基无铅压电陶瓷(包括钙钛矿结构的碱金属铌酸盐和钨青铜结构铌酸盐)。

2 BaTiO3基无铅压电陶瓷

压电陶瓷的发展是从BaTiO3陶瓷开始的。钛酸钡基陶瓷是研究与发展相当成熟的无铅压电陶瓷,具有高介电常数,较大的机电耦合系数,中等的机械品质因数和较小的介电损耗,是目前制备无铅压电陶瓷的重要候选材料。然而BaTiO3居里温度较低(Tc=120℃),工作温区狭窄,且在室温附近存在相变,压电性能的温度和时间稳定性欠佳,烧结困难(烧结温度一般在1350℃左右,且存在一定难度),压电性能属于中等,难以通过掺杂改性大幅度提高其性能来满足不同需要。因此,单纯的BT陶瓷难以直接取代铅基陶瓷满足现代社会对压电陶瓷的要求。

现阶段对BaTiO3基压电陶瓷的研究主要集中在以BT为基的二元或多元陶瓷体系。在这些体系的研究中也取得一定的成果。如Ba(Ti1-xZrx)O3压电陶瓷的烧结温度低,晶粒小而致密(相对密度达95%),工作温度范围拓宽(-30~+80℃),压电性能也有极大提高(d33

达340pc/N,k33高达65%),然而与现有的铅基压电陶瓷材料特性相比仍存在较大差距,总体性能仍急需不断提高。

3 BNT基无铅压电陶瓷

BNT是1960年由Smolenskii等人发现的一种由A位离子复合取代的钙钛矿型弛豫铁电体。BNT具有较复杂的相变序列,在室温下为三方铁电相,230℃时经历弥散相变转变为反铁电相,在320℃转变为顺电相,520℃以上为立方相。具有铁电相强(室温剩余极化Pr=38μC/cm2)压电系数大,机电耦合系数大,介电常数小及声学性能好等优良特性,且烧结温度低,烧成属于中温烧结(约为1050℃~1100℃),比较容易获得好的陶瓷烧结体。

因而得到广泛关注,被认为是最具有吸引力的无铅压电陶瓷材料体系之一。然而该陶瓷在室温下的矫顽电场较高,在铁电相区的电导率较高,极化困难,压电活性难以充分利用。此外,陶瓷烧成温度范围窄,工作温区窄,且陶瓷中Na2O易吸水,致使BNT陶瓷的化学物理稳定性和致密性差,其总体性能上不能与PZT陶瓷相媲美。

对于BNT基无铅压电陶瓷的制备,大多采用传统的固相烧结法,该方法的优点是原料价格便宜,工艺过程简单易行,但相对于铅系压电陶瓷,BNT基无铅压电陶瓷烧结范围过窄,不容易烧结致密化,且以机械方式将原料粉碎与混合,在混合度、均匀性及粉体粒度上都存在一些技术问题,这些对BNT陶瓷的性能都有一定的影响。近年来研究人员尝试用溶胶一凝胶法、水热法等液相法来制备BNT基无铅压电陶瓷。溶胶-凝胶法是以金属醇盐或者无机盐为原料经水解,缩合,使溶液形成溶胶,然后再使溶胶凝胶化,再经热处理形成纳米级的粉体,然后再制备成无铅压电陶瓷。其优点是凝胶热处理温度和烧结温度低,能较好的抑制高温下易挥发组分的挥发,确保各组分的化学计量比,烧结出的无铅压电陶瓷比较致密。水热法是指在特制的密闭的高压釜中,采用水溶液作为反应体系,通过将反应体系加热至临界温度或接近临界温度,在反应体系中产生高压环境而进行无机合成与材料制备的一种有效方法。其优点是粉体可真正实现低温合成,减少了一些挥发性物质的挥发,保证反应生成物的化学计量比;避免杂质和结构缺陷的出现;粉体粒径发育良好,团聚程度较轻。但采用溶胶凝胶法使用的原料价格较高,而且颗粒仍容易发生团聚;水热法晶化时间过长,不利于连续生产,工业生产实用性有待加强。

目前对BNT基压电陶瓷的研究主要集中在添加一种或多种钙钛矿结构物质,寻求二元或多元体系的准同相界(MPB),从而提高陶瓷的压电性能。现阶段BNT基压电陶瓷研究体系主要有6类。

4 铋层状无铅压电陶瓷

含Bi层状结构通式用(Bi2O2)2+(An-1BnO3n-1)2-来表示,它由二维钙钛矿层(An-1BnO3n-1)2-和(Bi2O2)2+层按一定规则共生排列而成。其中A是适合于12配位的1、2、3、4价离子或它们的复合,如K+、Na+、Ba2+、Sr2+、Ca2+、Bi2+及稀土类元素等;B为适合于八面体配位的离子或它们的复合,如Cr3+、Fe3+、Ti4+、Zr4+、Nb5+、Ta5+、Mo6+等;n为整数,称为层数,即钙钛矿层的层数,一般为1~5之间的整数。

铋层状陶瓷具有低介电常数,低介电损耗,高居里温度(Tc>500℃),机电耦合系数各向异性明显,低老化率,高电阻率,介电击穿强度高,烧结温度低,应力性能稳定等特征,适合于高温高频领域的应用。但这类材料存在两个缺点:一是由于晶体结构特性决定其自发极化转向受二维控制,导致压电活性低,压电系数一般不超过20pc/N;二是矫顽电场强度太

高、电导率较高、极化较困难。这些缺点限制了该陶瓷的应用。目前主要通过工艺改性和掺杂改性来改善其压电性能。

传统的陶瓷制备工艺制得的铋层状压电陶瓷压电性能低,因而为提高压电性能,采用新的烧结及极化技术等制备工艺方法是目前研究工作的重要方面之一。如通过热压、热煅、热轧等热处理技术,使晶粒内位错运动和晶界滑移,使晶粒定向排列,使某一方向压电性能优化。采用化学共沉淀法制备此类陶瓷,可提高陶瓷密度,便于极化。此外,还可以采用模板反应晶粒生长法和多层晶粒生长法制备定向排列的铋层状结构铁电体。模板晶粒生长技术是通过在预先合成好的精细粉体中添加模板晶粒,利用剪力或磁力使模板在基体中定向排列。

热处理时,在界面曲率驱动力和粉体表面自由能的推动下,基体在模板上沿模板方向生长,从而使陶瓷晶粒实现定向排列的技术。包括流延、挤塑,流延法适用于片状模板晶粒的定向排列。多层晶粒生长法以采用纳米尺度的原料粉体,添加适量有机物配置成浆料,采用丝网印刷的方法制备出厚膜,然后将厚膜叠压成型,经过排塑烧结制得高度取向的秘层状压电陶瓷。

除工艺改性外,掺杂改性也是改善陶瓷性能最为有效的途径之一。有的研究采用对铋层状陶瓷的A、B位同时进行掺杂改性,制得了高压电活性和较高Tc的压电陶瓷材料。如以比例为2﹕1的Ti4+和W6+取代B位的Nb5+,以K+取代1/6的Bi2+,制得的Bi2K1/6Bi5/6Ti4/3W1/3O9,其Tc=745℃,d33=24pc/N。目前研究的铋层状陶瓷体系主要有:

⑴Bi4Ti3O12基无铅压电陶瓷;

⑵MBi4Ti4O15基无铅压电陶瓷;

⑶MBi2N2O9基无铅压电陶瓷(M=Sr、Ca、Ba、Na0.5Bi0.5、K0.5Bi0.5;N=Nb、Ta);

⑷Bi3TiNO9基无铅压电陶瓷(N=Nb、Ta);⑸复合铋层状无铅压电陶瓷。

5 铌酸盐系无铅压电陶瓷

铌酸盐系无铅压电陶瓷主要是指碱金属铌酸盐和钨青铜结构铌酸盐两类压电陶瓷。

5.1 钙钛矿结构的碱金属

铌酸盐压电陶瓷1959年美国学者研究了陶瓷的压电性,这是碱金属铌酸盐陶瓷研究的开端。但用传统工艺制备的铌酸钾钠陶瓷的致密性差,压电常数d33仅为80pc/N,机电耦合系数Kp为36%。

在随后的研究中,研究人员从工艺和组成都加以改进,从而提高碱金属铌酸盐陶瓷的压电性。

采用热压法制得的铌酸钾钠陶瓷,相对密度可达99%,压电常数d33可达160pc/N,机电耦合系数Kp为45%。用模板反应晶粒生长技术(RTGG)制备的NaNbO3基压电陶瓷,d33已达416pc/N。采用掺杂改性或加入多组元的方法也可以有效地提高NaNbO3的压电性能。三元系0.94(Na0.5K0.5)NbO3-0.06LiNbO3压电陶瓷的压电常数d33可达到235pc/N。掺杂少量Sb所制得的(Na0.5K0.5)1-x(LiSb)0.052Nb0.948O3压电常数d33可达286pc/N,机电耦合系数Kp≥0.51,显示了较好的压电性能。

碱金属铌酸盐陶瓷粉体的一般制备工艺方法主要包括普通球磨法、溶胶-凝胶法、水热法和熔盐法等。熔盐法是一种在较低的反应温度下和较短的时间内制备纯净粉体的简便方法。所谓熔盐法,即将盐与反应物按照一定的比例配制反应混合物,混合均匀后,加热使盐熔化,反应物在盐的熔体中进行反应,生成产物,冷却至室温后,以去离子水清冼数次以除去其中

的盐得到产物粉体。Zeng等用不同的盐(NaCl,KCl,NaCl-KCl)成功合成了KxNa1-xNbO3陶瓷粉体,发现在低温750℃下形成了单一的钙钛矿相结构,用这种方法制备的粉体基本上没有产生团聚现象。近些年来研究人员也开始采用一些新技术如放电等离子烧结技术来制备陶瓷粉体。放电等离子烧结主要是利用外加脉冲强电流直接通过石墨模具形成的电场,清洁粉末颗粒表面氧化物和吸附的气体,净化材料,活化粉末表面,提高粉末表面的扩散能力,然后在较低机械压力下利用强电流短时加热粉体进行烧结致密。采用放电等离子烧结技术制备得到了密度为4.47g/cm3(大约为理论密度的99%)的Na0.5K0.5NbO3无铅压电陶瓷,其压电常数d33达到了148pC/N,平面机电耦合系数kp为0.389,在1kHz下的相对介电常数εr=606,介电损耗tanδ=0.036,居里温度Tc=395℃。但是放电等离子烧结法的基础理论尚需进一步研究,技术还不成熟,需要进行大量的实验与研究来完善。

碱金属铌酸盐系压电陶瓷是目前国内外研究的热点,也是最有可能取代铅基压电陶瓷的材料体系之一,它具有密度小,介电常数低,压电性能高,频率常数大等优点。但碱金属高温下易挥发,采用传统烧结工艺获得的陶瓷与传统的PZT材料相比致密性差,温度稳定性低,而室温损耗较高,矫顽场高,难以极化;而热压工艺生产成本较高,材料尺寸大小受到限制,实际应用较为困难。就现阶段研究而言,碱金属铌酸盐系压电陶瓷仍难以取代PZT 陶瓷。

5.2 钨青铜结构铌酸盐压电陶

瓷钨青铜化合物是仅次于(类)钙钛矿型化合物的第二大类压电体,以晶体结构类似于四角钨青铜而得名。其结构特征是存在氧八面体,其中B为Nb5+、Ta5+等。这些氧八面体以顶角相连构成骨架,从而堆积成钨青铜结构。钨青铜结构铌酸盐化合物陶瓷在成分和构造上的差别对它的铁电性能有重要影响。近年来,钨青铜结构铌酸盐陶瓷由于具有自发极化较大,居里温度较高,介电常数低,光学非线性较大等的特点而倍受关注。钨青铜结构铌酸盐陶瓷由于各向异性明显,制备方法主要有热处理技术、模板生长技术、放电等离子烧结技术及直流恒强磁场法等。直流恒强磁场法中强磁场在材料制备过程中起着显著的取向作用,并且对材料相变、凝固等过程中具有确定的影响。施加直流恒强磁场的研究范围主要是针对各向异性显著的铋层结构和钨青铜结构的陶瓷。2006年,Weiwu Chen在10T强磁场下成功制备出钨青铜结构的Sr0.5Ba0.5Nb2O6陶瓷,陶瓷的压电性能得到近一步的改善。钨青铜结构铌酸盐无铅压电陶瓷体系有:①(SrxBa1-x)Nb2O6基无铅压电陶瓷;②Ba2AgNb5O15基无铅压电陶瓷;③(AxSr1-x)NaNb5O15基无铅压电陶瓷(A=Ba、Ca、Mg等),其中又以铌酸锶钡单晶的研究最多。

6 无铅压电陶瓷的发展

自上世纪60年代初期,人们开始意识到研发无铅压电陶瓷的重要性以来,无铅压电陶瓷的发展已经历近半个世纪。然而虽然出现了众多具有使用前景的陶瓷体系,但与铅基压电陶瓷相比,无铅压电陶瓷的性能还存在很大差距,总体性能仍有待进一步提高。当前所研究的无铅压电陶瓷还不能完全取代铅基压电陶瓷,还需要进行很多实验和基础理论的研究,以探索和寻找新的、性能全面可达到铅基压电陶瓷的无铅陶瓷材料。世界各国高度重视这方面的研究,大量的研究结果表明,无铅压电陶瓷的发展趋势主要有三个方面:

⑴开发新的无铅压电陶瓷体系;

⑵对现有的无铅压电陶瓷体系作进一步的掺杂改性和A、B位取代的基础理论研究,

选择合适的改性剂,优化材料的压电性能;

⑶开发新型无铅压电陶瓷制备技术,使陶瓷的微观结构呈现一定的单晶体特征也是提高现有无铅压电陶瓷体系性能的一条重要途径之一。

参考文献

[1]王红丽,刘艳改.无铅压电陶瓷研究进展[J].山东陶瓷,2007,30(5):30-33.

[2]肖定全.关于无铅压电陶瓷及其应用的几个问题[J].电子元件与材料,2004,23(11):62-65.

[3]朱华,江毅.无铅压电陶瓷的研究与展望[J].中国陶瓷,2006,42(12):31-34.

[4]张卫珂,尹衍升,张敏,等.无铅压电陶瓷的开发及目前研究现状[J].中国陶瓷工业,2005,12(5):

[5]肖定全.压电、热释电与铁电材料[M].天津:天津大学出版社,2000.

[6]李坷,张德,周飞.钛酸钡系无铅压电陶瓷的研究进展[J].中国陶瓷,2007,43(12):17-20.

[7]蒲永平,王瑾菲,杨文虎,等.无机非金属材料中的无铅化研究进展[J].材料导报,2007,21(12):

[8]曲远方.环境陶瓷材料[J].硅酸盐通报,2003,(6):3-6.

[9]彭丽霞,洪樟连,陶烽烨,等.(Na0.5Bi0.5)TiO3无铅压电陶瓷研究进展[J].材料导报,2005,19(1):36-38.

[10]苏鑫明,张梅,王习东等.Bi0.5Na0.5TiO3(BNT)基无铅压电陶瓷研究进展[J].材料导报2006,20(5):37-42.

[11]王海圣,江向平,黄敏,等.Bi1/2Na1/2TiO3无铅压电陶瓷的研究进展[J].山东陶瓷,2005,28(2):

[12]姚永红,高峰,成丽红,等.(NaBi)0.5TiO3基无铅压电陶瓷研究进展[J].材料科学与工程学报,2007,25(2):304-306.

[13]李月明,程亮,顾幸勇,等.高居里温度压电材料的研究进展[J].陶瓷学报,2006,27(3):309-314.

[14]郑夏莲,许华.铋层状结构无铅压电陶瓷的研究进展[J].宜春学院学报,2007,29(4):15-18.

[15]段星.无铅压电陶瓷制备方法的研究进展[J].江苏陶瓷,2009,42(4):9-11.

[16]张雷,沈建兴,李传山,等.无铅压电陶瓷制备方法的研究进展[J].硅酸盐通报,2007,26(5).

[17]吴思华,王平,付鹏.无铅压电陶瓷材料的研究现状[J].佛山陶瓷,2008,18(2):35-38.

[18]彭春娥,李敬锋.无铅压电陶瓷材料的应用及研究进展[J].新材料产业,2005,(3):45-51

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

(最新整理)BNT无铅压电陶瓷的制备己进展研究

(完整)BNT无铅压电陶瓷的制备己进展研究 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)BNT无铅压电陶瓷的制备己进展研究)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)BNT无铅压电陶瓷的制备己进展研究的全部内容。

BNT无铅压电陶瓷的制备及进展研究 摘要:随着社会可持续发展战略的实施和人们环保意识的增强,Bi0.5Na0.5TiO3基无铅压电陶瓷以其良好的电学性能和较高的的居里温度等特点成为当前铁电压电材料及其应用研究的热点之一。本文主要介绍了Bi0.5Na0.5TiO3基无铅压电陶瓷的研究现状、制备工艺及其发展与实际应用。 关键词:BNT基无铅压电陶瓷、制备工艺、研究进展、改性研究. 引言:材料是人类生活和生产活动必需的物质基础,同人类文明密切相关。历史上,人们把材料作为人类进步的里程碑,如“石器时代”、“铜器时代”、“铁器时代”等。到20世纪60年代,人们把材料、信息、能源誉为当代文明的三大支柱;20世纪70年代又把新材料、信息技术、生物技术作为新科技革命的主要标志,现在这些技术仍然是21世纪发展的主导。现代科学技术发展的历史表明,材料对推动科学技术的发展极其重要。随着信息时代的到来,各种具有优异性能的新型无机材料开始受到人们的关注和重视。20世纪80年代以来,随着高科技的兴起和发展,需要许多能满足高科技要求的新材料,其中大部分属于功能材料.因此,材料开发的重点越来越转向功能材料。可以说,研究功能材料的合成与制备、组成与结构、性能与使用效能之间的关系和规律,己经成为一门新的学科. 压电材料是功能材料的重要组成部分,是实现机械能(包括声能)与电能之间转换的重要功能材料,其应用己遍及人类日常生活的各个方面,由于其在信息、激光、导航和生物等高技术领域占有重要的地位,因此对它的研究在无机材料研究领域中非常活跃并具有诱人的前景。压电陶瓷是重要的机一电能量转换材料,其应用领域广泛,在国民经济中占有重要地位。压电陶瓷主要用于声纳(军用)、医疗设备、电视、通讯、导航及自动化.压电驱动器和超声马达构成的灵巧器件,是最近的重要发展方向。2000年,美国Business ComunicationCO。发表了长达174页的压电材料研究发展及市场的调查报告,认为这种材料具有许多重要应用领域及发展前景,并列举出44项新应

压电陶瓷材料及应用

压电陶瓷材料及应用 一、概述 1.1电介质 电介质材料的研究与发展成为一个工业领域和学科领域,是在20世纪随着电气工业的发展而形成的。国际上电介质学科是在20世纪20年代至30年代形成的,具有标志性的事件是:电气及电子工程师学会(IEEE)在1920年开始召开国际绝缘介质会议,以后又建立了相应的分会(IEEE Dielectric and Electrical Insulation Society)。美国MIT建立了以Hippel教授为首的绝缘研究室。苏联列宁格勒工学院建立了电气绝缘与电缆技术专业,莫斯科工学院建立了电介质与半导体专业。特别是德国德拜教授在20世纪30年代由于研究了电介质的极化和损耗特性与其分子结构关系获得了诺贝尔奖,奠定了电介质物理学科的基础。随着电器和电子工程的发展,形成了研究电介质极化、损耗、电导、击穿为中心内容的电介质物理学科。 我国电介质领域的发展是在1952年第一个五年计划制定和实行以来,电力工业和相应的电工制造业得到迅速发展,这些校、院、所、首先在我国开展了有关电介质特性的研究和人才的培养,并开出了“电介质物理”、“电介质化学”等关键专业课程,西安交大于上海交大、哈尔滨工大等院校一道为我国培养了数千名绝缘电介质专业人才,促进了我国工程电介质的发展。80年代初中国电工技术学会又建立了工程电介质专业委员会。 近年来,随着电子技术、空间技术、激光技术、计算机技术等新技术的兴起以及基础理论和测试技术的发展,人们创造各种性能的功能陶瓷介质。主要有: (1)、电子功能陶瓷如高温高压绝缘陶瓷、高导热绝缘陶瓷、低热膨胀陶瓷、半导体陶瓷、超导陶瓷、导电陶瓷等。 (2)、化学功能陶瓷如各种传感器、化学泵等。 (3)、电光陶瓷和光学陶瓷如铁电、压电、热电陶瓷、透光陶瓷、光色陶瓷、玻璃光纤等。(电介质物理——邓宏)

无铅压电陶瓷的制备

渭南师范学院 本科毕业论文 题目:无铅压电陶瓷的制备及其研究进展专业:材料化学 学院:化学与生命科学学院 毕业年份:2013 姓名:丁妮 学号:090944080 指导教师:李俊燕 职称:讲师 渭南师范学院教务处制

无铅压电陶瓷的制备及其研究进展 丁妮 (渭南师范学院化学与生命科学学院材料科学系09级1班) 摘要:无铅压电陶瓷的开发和应用已经成为各个国家的研究热点。因此本文总结了粉体的合成方法和无铅压电陶瓷的制备技术,并分析了当前应用最多的五类无铅压电陶瓷的特点和性能,最后指出其未来发展趋势。 关键词:无铅压电陶瓷;制备方法;水热法;陶瓷晶粒定向技术 压电陶瓷是一种能够实现机械能与电能之间转换的新型功能材料,与压电晶体相比,具有易制成复杂形状、成本低、机电耦合系数大、压电性能可调节性好以及优越的光、电、热、磁力学性能和化学稳定性等优点,已广泛用于电子、通信、航空、发电、探测、冶金、计算机等诸多领域[1]。传统压电陶瓷主要是以含铅的锆钛酸铅(PZT)系材料为主,其主要成分是氧化铅(60~70%以上)。氧化铅是一种易挥发的有毒物质,在生产、使用及废弃后的处理过程中,都会给人类和生态环境造成损害。PbO的挥发也会造成陶瓷中的化学计量比的偏离,使产品的一致性和重复性降低,需要密封烧结,使成本提高[2-6]。因此,研究开发高性能的无铅压电陶瓷具有非常重要的科学意义和紧迫的市场需求,逐渐成为研究的热点。特别是我国加入WTO后,能否成功开发出具有原始创新性的、拥有自主知识产权的、性能优良的无铅压电陶瓷体系,对我国压电陶瓷产业来说,既是严峻的生存挑战,又是腾飞的机遇。 1 无铅压电陶瓷的概念和分类 无铅压电陶瓷是指不含铅的压电陶瓷,其更深层含义是指既具有满意的使用性又有良好的环境协调性的压电陶瓷,它要求材料体系本身不含有可能对生态环境造成损害的物质,在制备、使用及废弃后处理过程中不产生可能对环境有害的物质,也不对人类及生态环境造成危害[7]。 目前研究的无铅压电陶瓷材料按组成可分为以下几类:钛酸钡基无铅压电陶瓷、铌酸盐基无铅压电陶瓷、Na0.5Bi0.5TiO3(BNT)基无铅压电陶瓷、钨青铜结构无铅压电陶瓷和铋层状结构无铅压电陶瓷。这些材料和传统的PZT基压电陶瓷相比,虽然有各自的特点,但压电性能比较差,不能完全取代目前广泛使用的PZT基压电陶瓷,为了提高无铅压电陶瓷的压电性能,人们已经在改变组分、掺杂改性等方面进行了大量的研究。作为无铅压电陶瓷材料研究、应用的基础,制备方法在提高无铅压电陶瓷性能方面显得尤为重要。 2 无铅压电陶瓷的制备方法 2.1 粉体制备方法 目前,固相法由于具有成本低、产量高以及制备工艺较简单等优点而成为无铅压电陶瓷最常用的制备方法,但是通过该方法制备的粉体,各种原料很难混合均匀,易混入杂质,且粉料活性较差,煅烧温度高,易造成组分的挥发,影响烧结样品的致密化,从而降低了样品性能。近几年来,人们开始研究软化学法制备陶瓷粉体以克服传统工艺的不足。软化学合成方法由于具有化学计量比准确、化学均匀性高以及成相温度低、致密化程度高、电学性能优异等优点而备受青睐。目前,制备无铅压电陶瓷的软化学方法主要有共沉淀法、溶胶-凝胶法、熔盐法和水热法等[8]。 2.1.1 共沉淀法 共沉淀法为在含有多种金属离子的溶液中加入沉淀剂利用Ksp作为理论依据,使金属离子完全、同时沉淀[9]。 杜仕国等[10]将草酸滴人BaCl2和TiCl4(或Ti(NO3)4、Ba(N03)2)的混合水溶液中,得BaTi(C2O4)2·4H2O的高纯度沉淀,经过滤、洗涤、热分解后,得到BaTiO3纳米微粒。因为共沉淀法在制备过程中就能完成反应及掺杂过程,故也可用于功能陶瓷的制备,如以H2Ti03、H2O2、NH3和Ca(NO3)2为原料,合成出CaTiO3。此法也可用于制备ZrO2基陶瓷粉体,如

碳纳米管材料的研究现状及发展展望

碳纳米管材料的研究现状及发展展望 摘要: 碳纳米管因其独特的结构和优异的物理化学性能,具有广阔的应用前景和巨大的商业价值。本文综述了碳纳米管的制备方法、结构性能、应用以及碳纳米管发展趋势。 关键词:碳纳米管;制备;性质;应用与发展 1、碳纳米管的发展历史 1985年发现了巴基球(C60);柯尔、克罗托和斯莫利在模拟宇宙长链碳分子的生长研 究中,发现了与金刚石、石墨的无限结构不同的,具有封闭球状结构的分子C60。(1996年获得诺贝尔化学奖) 1991年日本电气公司的S. Iijima在制备C60、对电弧放电后的石墨棒进行观察时,发现圆柱状沉积。空的管状物直径0.7-30 nm,被称为Carbon nanotubes (CNTs); 1992年瑞士洛桑联邦综合工科大学的D.Ugarte等发现了巴基葱(Carbon nanoonion); 2000年,北大彭练矛研究组用电子束轰击单壁碳纳米管,发现了Ф0.33 nm的碳纳米管,稳定性稍差; 2003年5月,日本信州大学和三井物产下属的公司研制成功Ф 0.4 nm的碳纳米管。 2004年3月下旬, 中国科学院高能物理研究所赵宇亮、陈振玲、柴之芳等研究人员,利用一定能量的中子与C70分子相互作用,首次成功合成、分离、表征了单原子数目富勒烯 分子C141。 2004 ,曼彻斯特大学的科学家发现Graphene(石墨烯)。进一步激发了人们研究碳纳米材料的热潮。 2、碳纳米管的分类 2.1碳纳米管 碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳 米管、多壁碳纳米管。 2.2纳米碳纤维 纳米碳纤维是由碳组成的长链。其直径约50-200nm,亦即纳米碳纤维的直径介于纳米碳 管(小于100 nm)和气相生长碳纤维之间。 2.3碳球 根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2) 纳米碳粉。 2.4石墨烯 石墨烯(graphene)是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,是构建其它维度碳质材料的基本单元。 3、碳纳米管的制备 3.1电弧法

压电晶体与压电陶瓷的结构、性能与应用Word版

压电晶体与压电陶瓷的结构、性能与应用 摘要:压电晶体与压电陶瓷作为典型的功能材料,具有能实现机械能与电能之间互相转换的工作特性,在电子材料领域占据相当大的比重。本文从压电效应入手,阐述了压电晶体与压电陶瓷的结构原理以及性能特点。针对压电晶体与压电陶瓷在生产实践中的应用情况,综述了其近年来的研究进展,并系统介绍了其在各个领域的应用情况和发展趋势。 关键词:压电晶体压电陶瓷压电效应结构性能应用发展 引言 1880年皮埃尔?居里和雅克?居里兄弟在研究热电现象和晶体对称性的时候,在α石英晶体上最先发现了压电效应。1881年,居里兄弟用实验证实了压电晶体在外加电场作用下会发生形变。1894年,德国物理学家沃德马?沃伊特,推论出只有无对称中心的20中点群的晶体才可能具有压电效应。[1] 石英是压电晶体的代表,利用石英的压电效应可以制成振荡器和滤波器等频率控制元件。在第一次世界大战中,居里的继承人朗之万,为了探测德国的潜水艇,用石英制成了水下超声探测器,从而揭开了压电应用史的光辉篇章。 除了石英晶体外,酒石酸钾钠、BaTiO3陶瓷也付诸应用。1947年美国的罗伯特在BaTiO3陶瓷上加高压进行极化处理,获得了压电陶瓷的压电性。随后,美国和日本都积极开展应用BaTiO3压电陶瓷制作超声换能器、音频换能器、压力传感器等计测器件以及滤波器和谐振器等压电器件的研究,这种广泛的应用研究进行到上世纪50年代中期。 1955年美国的B.贾菲等人发现了比BaTiO3的压电性优越的PbZrO3-PbTiO3二元系压电陶瓷,即PZT压电陶瓷,大大加快了应用压电陶瓷的速度,使压电的应用出现了一个崭新的局面。BaTiO3时代难以实用化的一些应用,特别是压电陶瓷滤波器和谐振器以及机械滤波器等,随着PZT压电陶瓷的出现而迅速地实用化了。采用压电材料的SAW滤波器、延迟线和振荡器等SAW器件,上世纪70年代末也已实用化。上世纪70年代初引起人们注意的有机聚合物压电材料(PVDF),现在也已基本成熟,并已达到了生产规模。如今,随着应用范围的不断扩大以及制备技术的提升,更多高性能的环保型压电材料也正在研究中。 一、压电晶体与压电陶瓷的结构及原理 压电效应包含正压电效应与逆压电效应,当某些电介质在一定方向上受到外力的作用而发生变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷,当作用力的方向改变时,电荷的极性也随之改变,并且受力所产生的电荷量与外力的大小成正比,而当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应;相反,当在电介质的极化方向上施加交变电场,这些电介质也会发生机械变形,电场去掉后,电介质的机械变形随之消失,这种现象称为逆压电效应。正压电效应是把机械能转换为电能,而逆压电效应是把电能转换为机械能。 1.1压电效应原理

无铅压电陶瓷的制备【开题报告】

毕业论文开题报告 应用物理 无铅压电陶瓷的制备 一、选题的背景与意义 铁电压电陶瓷作为一种非常有用的功能材料已经深入我们的生活,它在许多的电子产品上有着重要的功能,目前压电陶瓷主要是以锆钛酸铅(PZT)为基通过掺杂制得的,由于PZT中含有污染环境的Pb,所以国际上对电子产品中Pb的含量有着严格的限制,并且PZT在烧结时它的主要成分PbO2(高达60%-70%)会产生严重的挥发,所以在制备的过程中需要密封烧结,不仅增加了成本,也使得产品的性能有所下降.为解决目前压电陶瓷中Pb对环境的污染问题,提高产品的性能,降低生产成本,大力发展无铅铁电压电陶瓷就非常具有现实意义.基于无铅压电陶瓷必定会在未来取代有铅压电陶瓷,所以国家对此项目也十分的支持,无铅压电陶瓷的性能研究和制备技术已得到国家"十五"和"863"高技术新材料特种功能材料领域的支持。 二、研究的基本内容与拟解决的主要问题 在所有无铅压电陶瓷中,(Bi0.5Na0.5)TiO3是一种有前途的基材料。BNT在室温下具有较强的铁电性,相当大的剩余极化强度Pr=3.8×10-5C/cm2,也具有相对较高的居里温度Tc=320℃,但是它有较高的矫顽场强Ec=73kv/cm,难以极化,并且在去极化温度T d=220℃时会发生退极化,失去压电性,相对PZT它对温度的稳定性也较差,所以,有必要提高BNT的压电性能,并且适当降低它的矫顽电场。由BNT-BT组成的二元系可能具有较低的矫顽电场,使陶瓷极化较容易。并且掺入适当的KNbO3可使晶粒择优定向生长,可获得性能良好的无铅压电陶瓷。 研究的基本内容: 1.本课题主要的研究内容是利用固相法以及分析纯氧化物Bi2O3(99.9%), Na2CO3 (99.8%), BaCO3(99%), TiO2(99%) and K2CO3(99%), Nb2O5(99.5%)制备出三元无铅的Bi0.5Na0.5TiO3-BaTiO3-KNbO3(BNT-BT-KN)陶瓷。 制备所利用的原理: Bi2O3+NaCO3+TiO3煅烧(Bi1/2Na1/2)TiO3+CO2 BaCO3+TiO3煅烧BaTiO3+CO2 K2CO3+Nb2O5煅烧KNbO3+CO2

BiAlO_3基高温无铅压电陶瓷的研究进展

第25卷第3期2010年3月 无机材料学报Jour nal of I norgan i cM aterials V o.l 25,No .3 Mar .,2010 文章编号:10002324X(2010)0320225205 DO I :10.3724/SP.J .1077.2010.00225 收稿日期: 2009206220,收到修改稿日期: 2009208213 基金项目: 国家自然科学基金(60601020);北京市自然科学基金(4072006);北京市科技新星计划(2007A014)作者简介: 侯育冬(1974-),男,博士,副教授.E 2ma i :l ydhou@b j u t .edu .cn Bi A l O 3基高温无铅压电陶瓷的研究进展 侯育冬,崔磊,王赛,王超,朱满康,严辉 (北京工业大学材料科学与工程学院,北京100124) 摘要:铝酸铋(B i A l O 3)是近年发现的一种新型钙钛矿结构无铅压电材料,在-133e 到550e 的温度范围内不存在结构相变,适合作为高温压电器件材料使用.本文从理论计算,高压合成工艺和添加第二组元等方面归纳和分析了B i A l O 3基无铅陶瓷的研究进展和趋势,评述了现有研究中存在的问题和不足,并对B i A l O 3基无铅压电陶瓷今后的研究和发展提出一些建议. 关 键 词:高温压电陶瓷;铝酸铋;钙钛矿结构中图分类号:T M 282 文献标识码:A P rogress in R esea rch on B i A l O 32based H igh T e m pera ture L ead 2free P iezoelectr ic Ceram ics HO U Yu 2Dong ,CU I Le,i WANG Sa,i WANG Chao ,Z HU M an 2Kang ,Y AN H u i (College ofMateri als Science and Engi neeri ng ,Beiji ng Un i versity ofTechnology ,Beiji ng 100124,China) A bstra ct :The b is muth a l u m inate (Bi A l O 3)is a ne w developed lead 2f ree piez oelectric materialw it h perovs 2kite structure .Bi A l O 3has no structura l phase transiti o ns bet w een -133e and 550e ,wh ich i n dica tes that it is suitab le to be applied in h i g h te mperature p iez oelectric device .I n this paper ,the research progress and trends on Bi A l O 3based cera m ics are revie wed w ith e mphases on t h e t h eoretica l calcu lation ,high pressure syn t h etic technology and the additi o n of t h e second co mpound .The li m itation and proble ms in t h e recent wor ks are d iscussed ,and so me i d eas f or f u rther deve l o pment of Bi A l O 3based cera m ics are suggested .K ey words :h i g h te mperature piez oelectric cera m ics ;Bi A l O 3;perovskite struct u re 压电陶瓷可以实现机械能与电能的相互转换,是一类重要的功能材料,已广泛应用于通信、电子、冶金和机械等诸多领域.近10年来,随着航天航空、石油化工、地质勘探、核能发电、汽车制造等工业的迅猛发展,电子设备需要在更高温度下工作,对高温压电材料和器件的需求越来越迫切.例如:在汽车中工作的动态燃料注射喷嘴工作温度高达300e ;油井下使用的声波测井换能器工作温度也达到200~300e .作为高温压电陶瓷材料,必须在较高温度下(>400e )不出现结构相变以保证不发生高温退极化现象而劣化压电器件的温度稳定性.但是,目前商业化应用的压电陶瓷仍以钙钛矿结构的锆钛酸铅Pb(Zr ,T i)O 3(缩写为PZ T )体系为主,这类材料的居里温度低于400e (一般在250~380e ),由于热激活老化过程,其安全使用温度被限制在居里温度的 1/2处,仅适于常规条件下使用[1] . 2001年,美国宾州州立大学的E itel 等研究发现,PbT i O 32BiSc O 3体系存在准同型相界结构(MPB),具有高居里温度(T c >450e )和优良压电性能,可以满足高温压电换能器件的使用需要[2] .这一发现引发了国内外的研究热潮,针对PbT i O 32BiSc O 3体系的掺杂与复合改性开展了许多工作[324].尽管PbT i O 32BiSc O 3体系性能优异,部分甚至已经商用于高温压电换能器,但是与传统的PZ T 体系一样,这类材料的共同缺点是含铅.铅基材料在生产、使用及废弃处理过程中会污染环境,给生物和人类健康带来很大危害[526] .因而,研究和开发具有优良压电性能的高温无铅压电陶瓷材料具有重大的经济价值和社会意义. 1 钙钛矿结构无铅压电陶瓷 压电陶瓷根据其晶体结构一般可分为三种类型:

高温压电陶瓷材料研究进展

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2008年第27卷第1期 ·16· 化 工 进 展 高温压电陶瓷材料研究进展 李庆利,曹建新,赵丽媛,吕剑明,范冠锋 (贵州大学化学工程学院,贵州 贵阳 550003) 摘 要:随着高新技术的迅速发展,对压电器件工作温度的要求越来越高,因此高温压电陶瓷材料成为近几年研究的热点之一。介绍了国内外学者对钙钛矿结构、钨青铜结构和铋层状结构压电陶瓷进行改性,获得一系列高温压电陶瓷材料的研究现状。展望了高温压电陶瓷材料的发展前景,并对其今后的研究方向提出了建议。 关键词:高温压电陶瓷;改性;钙钛矿结构;钨青铜结构;铋层状结构 中图分类号:TM 282 文献标识码:A 文章编号:1000–6613(2008)01–0016–05 Research progress in high temperature piezoceramics LI Qingli ,CAO Jianxin ,ZHAO Liyuan ,Lü Jianming ,F AN Guanfeng (College of Chemical Engineering ,Guizhou University ,Guiyang 550003,Guizhou ,China) Abstract :Along with the rapid development of high-technology ,the operation temperature of piezoelectric devices are getting higher and higher ,consequently ,the high temperature piezoceramics has become one of the research focuses of piezoceramics. In this paper ,the research status of modified perovskite ,tungsten bronze and bismuth layer structure of high temperature piezoceramics is introduced. The prospect of the high temperature piezoceramics is presented ,and suggestions for its future research are made. Key words :high temperature piezoceramics ;modification ;perovskite structure ;tungsten bronze structure ;Bi-layer structure 作为一种新型功能材料,高温压电陶瓷被广泛应用于航空航天、核能、冶金、石油化工、地质勘探等许多特殊领域。但是,目前商业化应用的锆钛酸铅体系压电陶瓷的居里温度一般在250~380 ℃,由于热激活老化过程,其安全使用温度被限制在居里温度的1/2处。压电性能优良,使用温度低于400 ℃的高温压电陶瓷材料已经不能满足当前高新技术发展的要求。此外,商用高温传感器所采用的压电材料仅限于LiNbO 3等单晶材料,生产工艺复杂,价格极其昂贵,而且国内目前尚无性能优良、使用温度高于350 ℃的高温压电陶瓷传感器产品,国外对这类器件的研究 报道也很少[1- 4]。因此,高温压电陶瓷材料成为近几年来研究的热点,各种新成果、新技术不断涌现。本文综述了高温压电陶瓷材料的最新研究进展。 1 钙钛矿结构高温压电陶瓷材料 2.1 改性钛酸铅压电陶瓷 纯钛酸铅在常温下为四方钙钛矿型结构,介电 常数小,压电性能高,压电各向异性大,居里温度 高(T C =490 ℃) ,因而适于在高温下工作。但是,由于纯钛酸铅陶瓷难以烧结,当晶体冷却通过居里点时,在内应力作用下易自行开裂;大的轴向比率使得其矫顽场大,难以极化。为此,很多研究者采用掺杂形成固熔体的方法来解决这一问题,并取得 了较好的研究成果(见表1[5- 12]) 。 宴伯武等[5]选用居里点较高的复合钙钛矿型化 合物Pb (Cd 4/9Nb 2/9W 3/9 )O 3(T C =495 ℃)对PbTiO 3进行B 位取代,并掺杂适量MnO 2抑制晶粒的过分生长,以形成均匀细密的内部结构,制备了0.2PCNW-0.8PT-x MnO 2陶瓷。这种陶瓷材料在 x =1.0%时,系统k t 可达0.45, T C ≥480℃,T 33ε在200收稿日期:2007–07–13;修改稿日期:2007–08–13。 基金项目:贵州省优秀科技教育人才省长专项基金(2005-111)及贵州省科技攻关计划项目[黔科合GY 字(2006)3030]。 第一作者简介:李庆利(1981—),男,硕士研究生。E –mail pie_ql@https://www.wendangku.net/doc/c13006155.html, 。联系人:曹建新,教授,硕士生导师,主要从事高性能无机材料研究。电话 0851–4733010;E –mail jxcao@https://www.wendangku.net/doc/c13006155.html, 。

压电陶瓷及其应用

压电陶瓷及其应用 一. 概述 压电陶瓷是一种具有压电效应的多晶体,由于它的生产工艺与陶瓷的生产工艺相似(原料粉碎、成型、高温烧结)因而得名。 某些各向异性的晶体,在机械力作用下,产生形变,使带电粒子发生相对位移,从而在晶体表面出现正负束缚电荷,这种现象称为压电效应。晶体的这种性质称为压电性。压电性是J·居里和P·居里兄弟于1880年发现的。几个月后他们又用实验验证了逆压电效应、即给晶体施加电压时,晶体会产生几何形变。 1940年以前,只知道有两类铁电体(在某温度范围内不仅具有自发极化,而且自发极化强度的发向能因外场强作用而重新取向的晶体):一类是罗息盐和某些关系密切的酒石酸盐;一类是磷酸二氢钾盐和它的同品型物。前者在常温下有压电性,技术上有使用价值,但有易溶解的缺点;后者要在低温(低于—14 C)下才有压电性,工程使用价值不大。 1942-1945年间发现钛酸钡(BaTiO)具有异常高的介电常数,不久又发现它具有压电性,BaTi O压电陶瓷的发现是压电材料的一个飞跃。这以前只有压电单晶材料,此后出现了压电多晶材料——压电陶瓷,并获得广泛应用。1947年美国用BaTiO陶瓷制造留声机用拾音器,日本比美国晚用两年。BaTiO存在压电性比罗息盐弱和压电性随温度变化比石英晶体大的缺点。 1954年美国B·贾菲等人发现了压电PbZrO-PbTiO(PZT)固溶体系统,这是一个划时代大事,使在BaTiO时代不能制作的器件成为可能。此后又研制出PLZT透明压电陶瓷,使压电陶瓷的应用扩展到光学领域。

迄今,压电陶瓷的应用,上至宇宙开发,下至家庭生活极其广泛。 我国对压电陶瓷的研究始于五十年代末期,比国外晚10年左右,目前在压电陶瓷的试制、工业生产等方面都已有相当雄厚力量,有不少材料已达到或接近国际水平。 二. 压电陶瓷压电性的物理机制 压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释,晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象、因此压电性与极化,形变等有密切关系。 1. 极化的微观机理 极化状态是电场对电介质的荷电质点产生相对位移的作用力与电荷间互相吸引力的暂时平衡统一的状态。极化机理主要有三种。 (1)电子位移极化——电介质的原子或离子在电场力作用下,带正电原子核与壳层电子的负电荷中心出现不重合。 (2)离子位移极化——电介质正、负离子在电场力作用下发生相对位移,从而产生电偶极矩。 (3)取向极化——组成电介质的有极分子,有一定的本征(固有)电矩,由于热运动,取向无序,总电矩为零,当外加电场时,电偶极矩沿电场方向排列,出现宏观电偶极矩。 对于各向异性晶体,极化强度与电场存在有如下关系 m,n=1,2,3 式中为极化率,或用电位移写成:

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强,因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carb on nano tubes(CNTs) are nano meter-sized carb on materials with the characteristics of unique one-dimensional geometric structure large surface area high electrical conductivity,elevated mechanical strength and strong chemical inertn ess. Selecti ng appropriate methods to prepare carb on nano tube composites can enhance physical and chemical properties , and these composites have a great future in many areas especially in energy storage batteries . In this paper, based on the analysis and comparis on of the adva ntages and disadva ntages of carb on nano tube composites the enhan ceme nt mecha ni sms of the CNTs catalysts are in troduced. Afterwardthe lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carb on nano tube; composite; en ergy storage batteries; applicati on 1引言 碳纳米管(CNTs)在2004年被人们发现,是一种具有特殊结构的一维量子材料,它 的径向尺寸可达到纳米级,轴向尺寸为微米级,管的两端一般都封口,因此它有很大的强度,同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着碳纳米管的管径减小其表现出非化学平衡或整数配位数的化合价,储锂的容量增大;第三,碳纳米管具有良好的导

无铅压电陶瓷的研究现状与发展前景

无铅压电陶瓷的研究现状与发展前景 Tadashi Takenaka,Hajime Nagata Faculty of Science and Technology,Tokyo University of Science,Y amazaki 2641,Nada, Chiba-ken 278-8510,Japan 摘要:钙钛矿结构的陶瓷和铋层结构BLSF陶瓷因具有优良的绝缘性、铁电性和压电性,成为污染环境的含铅压电陶瓷的良好替代材料。钙钛矿陶瓷广泛应用于高能换能器,具有较高的压电常数d33(>300pC/N)和高的居里温度Tc(>200℃)。采用固相法制备的BaTiO3,即(1-x) BaTiO3-x(Bi0.5K0.5)TiO3[BTBK-100x]陶瓷,Tc随着x的增加而增加。BTBK-20+MnCO30.1wt%陶瓷显示出高的Tc(~200℃),同时机电耦合系数k33=0.35。固相法得到的a Bi0.5Na0.5)TiO3-b BaTiO3-c Bi0.5K0.5)TiO3[BNBK(100a/100b/100c)陶瓷,相对于BNBK(85.2/2.8/12)的d33和Tc 分别为191pC/N和301℃。另一方面,BLSF陶瓷是优良的高温压电传感器和具有高机械品质因数Qm的陶瓷共振器,并且在低温下谐振频繁(Tc-f r)。施主掺杂Bi4Ti3O12的陶瓷例如Bi4Ti3-x Nb x O12[BINT-x]和Bi4Ti3-x V x O12[BIVT-x]表现出高的Tc(~650℃)。BINT-0.08陶瓷初始晶粒的k33值为0.39并在350℃时保持这一值。基于固相体系的Bi3TiTaO9(BTT)Sr x-1Bi4-x Ti2-x Ta x O9[SBTT2(x)](1≤x≤2)在x=1.25的P型半导体中表现出高的Qm值(=13500)。 关键词:铁电性,压电性,钙钛矿,铋层结构铁电体 1. 前言 压电性是电子和机电材料表现出来的重要性质。应用最广泛的压电材料是三元系的PbTiO3-PbZrO3(PZT)。然而,近年来为了环境保护人们期望使用无铅材料。例如,欧盟将在电子和电器设备(WEEE)方面执行立法草案,限制有毒物质(RoHS)的排放和控制生活交通工具(ELF)。因此,无铅压电材料作为PZT陶瓷的替代材料吸引了广泛的注意力。 无铅压电材料,如压电单晶,有钙钛矿结构的铁电陶瓷,以及钨青铜和铋层结构铁电陶瓷(BLSF)已有报道。然而,没有哪种材料显示出优于PZT体系的压电性能。为了替代PZT体系,要求划分和发展各种应用领域的压电性能。例如,钙钛矿陶瓷能够应用于高能态的调节器。另一方面,铋层结构铁电陶瓷(BLSF)可应用于陶瓷过滤和谐振器的可选择材料。 本文将详细介绍钙钛矿铁电陶瓷和BLSF陶瓷的绝缘性、铁电性和压电性,这两种陶瓷是可优先选择并能减少对环境损害的无铅压电材料。

无铅压电陶瓷厚膜研究进展新 (修复的)

无铅压电陶瓷厚膜的研究进展 (西安建筑科技大学材料学院,西安 710055 ) 摘要:近年来随着人们对环境问题的重视,无铅压电陶瓷的研究成为热点。无铅压电厚膜因其特殊的电学性能在生活中具有广泛的应用。本文从丝网印刷法、复合溶胶-凝胶法、流延成型法、气溶胶沉淀法、电泳沉积法等方面综述了近年来无铅压电厚膜的制备方法,归纳了无铅厚膜的研究热点和研究进展。然而无铅粉体掺杂改性和粉体晶粒定向生长的内在物理机制的研究还未成熟。织构化陶瓷的制备工艺和更低的烧结温度及多种工艺的结合使用制备厚膜应成为今后的研究重点,为制备高性能的无铅压电陶瓷厚膜打下良好的基础。 关键词:无铅压电陶瓷;制备方法; 厚膜 中文图书分类号:TB34文献标识码:A Abstract:Recentlytheresearchoflead-freepiezoelectricceramichasattractedconsiderableattentionwithimprov ementofenvironmentprotection.Thethickfilmsoflead-freepiezoelectricceramichavebeenwidelyusedwithitsex cellentproperties.Inthispaperwesummarizedthelatestfabricationmethodsandresearchprogressofthethickfilmsf romscreenprinting, sol-gel, tape-casting,aerosol-deposited,electrophoreticdepositionetal. However,theinnerphysicalmechanismresearchofthemodificationoflead-freepowderdopedandtemplategraingrowtharest illimmature.Theprocesstofabricatetexturedlead-freepiezoelectricceramicandlowersinteringtemperatureandth euniteofvariousprocesswouldbeemphasizedinthefuture,whichwilllayagoodfoundationforthepreparationofhig h-performancelead-freepiezoelectricceramicthick-film. Keywords:lead-freepiezoelectricceramic;fabricationmethod; thickfilm 1.引言 压电陶瓷是一种将机械能与电能相互转化的功能材料,在传感器、微泵、振荡器、换能器、滤波器、微位移器和制动器等方面具有广泛的应用[1-3]。在使用温度下它具有稳定的化学、物理性能。目前被广泛应用的压电陶瓷体系大多是铅基压电陶瓷,如锆钛酸铅基(PZT)压电陶瓷[4]。但在PZT陶瓷体系中,氧化铅(PbO)的含量通常在60wt%以上,而氧化铅在陶瓷成型烧结中具有较强的挥发性,不仅对人体的健康、环境造成危害,而且使烧结过程中陶瓷的化学计量比偏离原配方,给陶瓷的制作工艺和产品的稳定性带来诸多问题,使陶瓷的性能降低。含铅器件废弃后回收进行无公害处理所需的成本甚至高于制造成本[5]。近年来随着人们对环境保护的重视和市场对压电材料需求的增大,研发新型环境友好的铁电、压电材料已成为世界发达国家致力研发的热点材料之一[6]。 压电厚膜厚膜材料厚度一般在10μm-100μm之间。其与薄膜材料相比电性受界面表面等影响较小,较大的厚度能够产生较强的驱动力且具有高灵敏度和宽工作频率[7]。与压电块体材料相比,压电厚膜驱动电压低(﹤5V),使用频率高,能够与半导体工艺兼

压电材料的研究

摘要:本文阐述了各类新型压电材料的性能和应用。从压电材料的压电效应入手,介绍了压电材料的分类及发展应用。针对不同类型的压电材料在实际生活中的应用情况,概述了近年压电材料的研究状况,并系统地简介了压电材料在各个领域的应用和发展。 关键词:压电材料压电效应压电材料的分类研究方向实际应用压电材料的应用遍及大家日常生活的各个角落,人们几乎每天都在应用压电材料。香烟、电热水器、汽车发动机等的点火装置要用到压电点火器;电子手表、声控门、电话等要用到压电谐振器或者是蜂鸣器;收音机要用到压电微音器、压电扬声器;数码相机要用到压电马达等等。 压电材料不仅在工业和民用产品上使用广泛,在军事上也有大量应用。雷达、军用通讯和导航设备等都需要大量的压电陶瓷滤波器和压电SAW滤波器。 压电材料还应用于结构缺陷的识别、柔性结构振动的控制以及医学上的免疫检测、人工耳蜗等。 一、压电材料与压电效应 1880年,法国物理学家居里兄弟发现:把重物放在石英晶体上,晶体的表面会产生电荷,产生的电荷量与其承受的压力成比例,这一发现被称为压电效应。随即,居里兄弟又发现了逆压电效应:即在外电场作用下,压电体会产生形变。 压电效应表现为:当某些电介质在一定方向上受到外力的作用而发生形变时,其内部会发生极化现象,同时在它的两端出现正负相反的电荷,当作用力的方向改变时,电荷的极性也随之改变,受力所产生的电荷量与外力的大小成正比。当去除外力后,它又会恢复到不带电的状态,这种现象称为正压电效应。正压电效应是把机械能转换为电能,逆压电效应是把电能转换为机械能。 二、压电材料的分类 我们可以将压电材料分为以下六类: (1)单晶材料,如石英、磷酸二氢氨等;

相关文档