文档库 最新最全的文档下载
当前位置:文档库 › 基因的转录、转录后调控

基因的转录、转录后调控

基因的转录、转录后调控
基因的转录、转录后调控

基因的转录、转录后

加工及逆转录

转录 (transcription)是以DNA单链为模板,NTP为原料,在DNA依赖的RNA聚合酶催化下合成RNA链的过程。与DNA的复制相比,有很多相同或相似之处,亦有其特点,它们之间的异同可简要示于表13-1

转录的模板是单链DNA,与复制的模板有较多的不同特点,引出了下列相关概念。转录过程只以基因组DNA中编码RNA(mRNA、tRNA、rRNA及小RNA)的区段为模板。把DNA分子中能转录出RNA的区段,称为结构基因(structure gene)。结构基因的双链中,仅有一股链作为模板转录成RNA,称为模板链(template strand),也称作Watson(W)链(Watson strand)、负(-)链(minus strand)或反意义链(antisense strand)。与模板链相对应的互补链,其编码区的碱基序列与mRNA的密码序列相同(仅T、U互换),称为编码链(coding strand),也称作Crick(C)链(Crick strand)、正(+)链(plus strand),或有意义链(sense strand)。不同基因的模板链与编码链,在DNA分子上并不是固定在某一股链,这种现象称为不对称转录(asymmetric transcription)。模板链在相同双链的不同单股时,由于转录方向都从5’→3’,表观上转录方向相反,如图13-1。

与DNA复制类似,转录过程在原核生物和真核生物中所需的酶和相关因子有所不同,转录过程及转录后的加工修饰亦有差异。下面的讨论中将分别叙述。

参与转录的酶

转录酶(transcriptase)是依赖DNA的RNA聚合酶(DNA dependent RNA polymerase,DDRP),亦称为DNA指导的RNA聚合酶(DNA directed RNA polymerase),简称为RNA聚合酶(RNA pol)。它以DNA为模板催化RNA的合成。

原核生物和真核生物的转录酶,均能在模板链的转录起始部位,催化2个游离的

NTP形成磷酸二酯键而引发转录的起始,如图13-2所示。因此,转录的起始不需引物,这也是转录与复制在起始阶段的一大区别。

一、原核生物的RNA聚合酶

细菌中只发现一种RNA聚合酶,能催化mRNA,tRNA和rRNA等的合成,研究得比较清楚的是大肠杆菌(E coli)的RNA聚合酶。

(一)大肠杆菌RNA聚合酶的组成

大肠杆菌RNA聚合酶的分子量约450kDa,由四种5个亚基(α2ββ′σ)组成全酶(holoenzyne),σ亚基与全酶疏松结合,在胞内、外均容易从全酶中解离,解离后的部分(α2ββ′)称为核心酶(core enzyme)。通过利福霉素等抑制转录的实验研究,对转录酶各亚基的功能已有一定的认识:α亚基可能参与全酶的组装及全酶识别启动子,从而决定哪些基因可转录;β亚基与底物(NTP)及新生RNA链结合;β′亚基与模板DNA结合;β和β′亚基组成酶的活性中心,通过DNA的磷酸基团与核心酶的碱性基团间的非特异性吸附作用,核心酶能与模板DNA非特异性松驰结合;σ亚基的功能是识别启动子,辩认转录起始点,但不能单独与DNA模板结合,当它与核心酶结合时,可引起酶构象的改变,从而改变核心酶与DNA结合的性质,使全酶对转录起始点的亲和力比其他部位高4个数量级,在转录延长阶段,σ亚基与核心酶分离,仅由核心酶参与延长过程。因此,σ亚基实际上被认为是一种转录辅助因子,因而称为σ因子(σfactor)。

(二)σ因子

生物体在生命周期的不同阶段或在内、外环境有所变化时,其基因表达有一定的时、空顺序,以适应生长、发育及环境变化的需要。RNA聚合酶的活性是决定基因表达的重要一环。而σ因子是RNA聚合酶识别及结合启动子的亚基,原核生物中所有RNA的转录都由同一种RNA聚合酶催化,在生命周期的不同阶段或不同环境下,这个酶如何识别所有转录单位的启动子,是由识别启动子的σ因子来完成的。

基因启动子 -35和-10区的共有序列(图13-3)是σ因子识别的位点,如表13-2所示,不同的σ因子能识别的共有序列可以完全不同。

二、真核生物的RNA聚合酶

真核生物的RNA聚合酶已发现有三种,称为RNA聚合酶I、II和III,分别负责转录不同的RNA,它们对特异性抑制剂鹅膏蕈碱的敏感性亦有差异,如表13-3所示。

第二节转录过程

转录是生物合成RNA的过程,与复制相似,有起始、核苷酸链延长和链合成终止

三个阶段。

一、转录的起始

转录的起始,就是形成转录起始复合物的过程。这一阶段反应所需的辅助因子,在原核生物与真核生物之间有较大的差异。

㈠原核生物转录的起始

转录的起始由RNA聚合酶与DNA模板的启动子(promoter)结合。

经过对百种以上原核生物不同基因的启动子进行分析,发现启动子具有下列的共同点:在-10bp处有一段共有序列(consensus sequence),富含AT,即–TATAAT-,系Pribnow等首先发现,因而称为Pribnow盒(box),再往上游-35bp的中心处又有一组保守的共有序列,即-TTGACT-。启动子邻近的结构示如图13-3。

结合过程可分为二个步骤,首先由σ因子辨认启动子的–35区,全酶与该区结合,形成疏松的复合物,此时DNA双链未解开,因而称为封闭型转录起始复合物,继而RNA聚合酶移向–10区及转录起始点,在–20区处DNA发生局部解链,形成12~17bp的单链区,RNA聚合酶与DNA结合更紧密,形成开放型转录起始复合物。以单链的模板链为模板,RNA聚合酶上的起始位点和延伸位点被相应的NTP 占据,聚合酶的β亚基催化第一个磷酸二酯键的生成,σ亚基从全酶解离,形成DNA-RNA聚合酶(核心酶)结合在一起的起始延伸复合物。

㈡真核生物转录的起始

真核生物有三种RNA聚合酶,分别催化不同RNA的合成,每种酶都需要一些蛋白质辅助因子,称为转录因子(transcription factor,TF)。为方便讨论,转录因子的命名冠以聚合酶的名称。如RNA聚合酶Ⅱ所需的转录因子称为转录因子Ⅱ(transcription factorⅡ, TFⅡ)。

1. RNA聚合酶I催化的转录起始RNA聚合酶I催化前rRNA(40S RNA)的合成。前rRNA基因转录起始点上游有两个顺式作用元件(cis acting element),一个是跨越起始点的核心元件(core element),另一个在–100bp处有上游调控元件(upstream control element,UCE)。RNA聚合酶I催化的转录需要2种转录因子,分别称为上游结合因子(upstream binding factor,UBF)和选择性因子1(selective factor1,SL1)。SL1含有4个亚基,一个是TATA盒结合蛋白(TATA-binding protein,TBP),另3个是TBP相关因子(TBP-associated factors,TAF)。UBF与DNA结合令模板DNA发生弯曲,使相距上百bp的UCE和核心元件靠拢,接着SL1和pol I相继结合到UBF-DNA复合物上,完成起始复合物的组建,开始转录,如图13-4所示。

2.RNA聚合酶II催化的转录起始

RNA聚合酶II催化各种前体mRNA的合成。研究表明,RNA聚合酶II催化的转录

起始需要较多的转录因子参与。为了便于讨论,它们的命名是在转录因子Ⅱ(TFⅡ)后加上大写字母,分别称为TFⅡA~J。

RNA聚合酶Ⅱ结合的启动子的特点是,转录起始点上游有三处参与转录调控的保守序列或称为顺式作用元件。在–90bp处有核心序列为GGGCGG的GC盒,–70bp 处有共有(consensus)序列为GGC(T)CAATCT的CAAT盒,–30bp处有共有序列为TATAA(T)AAT的TATA盒,又称Hogness盒(Hogness box)。转录起始点与原核生物相似,大多数为A或G。

转录起始复合物的组装:如图13-5。

3.RNA聚合酶Ⅲ催化的转录起始RNA聚合酶Ⅲ催化tRNA,5S rRNA和7S rRNA 的转录。

(1) tRNA基因转录的起始: tRNA基因的转录初产物是tRNA的前体,经加工后产生多个成熟tRNA。在DNA上的调控序列位于起始转录位点的下游,称为内部启动子。有二个调控区,分别位于编码tRNA D-环和Tψ环的序列,分别称为A盒和B盒。

如图3-6所示。

(2)5S RNA基因转录的起始: 5S RNA基因的转录除了需要TFⅢB和TFⅢC外,还需要TFⅢA,首先由TFⅢA结合到起始位点下游81~99 bp处(C盒),然后TFⅢC结合到A盒和B盒,继而是类似tRNA的转录,TFⅢB与TFⅢC作用,和聚合酶Ⅲ的结合,即可起始转录。

二、转录的延长

转录延长阶段发生的反应,在原核生物和真核生物比较相近。总的来说,一是聚合酶如何向转录起始点下游移动,继续指导核苷酸之间磷酸二酯键的形成,二是转录区的模板如何形成局部单链区,便于转录。

原核生物RNA聚合酶催化转录起始,即核苷酸链中的第一个磷酸二酯键形成后,σ因子从全酶中解离出来,核心酶就能沿DNA分子移动,真核生物RNA聚合酶不仅需要较多的转录因子来催化起始,而且转录起始后,酶的移动也靠多种转录因子的共同作用使酶的构象发生改变来实现,如在TFⅡH等作用下,聚合酶ⅡC 端丝氨酸残基的磷酸化是聚合酶向下游移动的重要因素。

在转录延长过程中,DNA双链需解开10~20 bp,形成的局部单链区象一个小泡,故形象地称为转录泡(transcription bubble)。转录泡是指RNA聚合酶-DNA 模板-转录产物RNA结合在一起形成的转录复合物。为了保持局部的转录泡状态,在RNA聚合酶下游的DNA需不断解链,可使其下游的DNA(未解开双链部分)越缠越紧,形成正超螺旋,而其上游DNA变得松驰,产生负超螺旋,需要解旋酶(gyrase)和拓扑异构酶来消除这些现象,如图13-7。

转录起始复合物中,核苷酸之间第一个磷酸二酯键的形成是由第一个核苷酸的3’-OH与第二个核苷酸的5’-磷酸之间脱水而成。第一个核苷酸常为G,来自GTP的5’-三磷酸仍保留,第二个核苷酸的3’-OH仍然游离形成

5’pppGp N-OH3’。在聚合酶沿模板链的3’→5’移动时,可按模板链碱基序列的指引,相应NTP上的α-磷酸可与延长新链的3’-OH相继形成磷酸二酯键,其β、γ磷酸基脱落生成焦磷酸后迅速水解,释放的能量进一步推动转录,使新合成的RNA链沿着5’→ 3’方向逐步延长。在转录局部形成的RNA∶DNA杂化双链之间的引力比DNA双链的弱(因为杂化双链间存在dA∶rU配对,dA∶rU 的稳定性比dA∶dT的小),延长中的RNA链的5’-端会被重新形成的DNA双链挤出,使合成中的RNA的5’-端游离于转录复合物。

三、转录的终止

㈠原核生物转录的终止

原核生物转录的终止有两种主要机制。一种机制是需要蛋白质因子ρ(Rho)的参与,称为依赖ρ因子(ρfactor)的转录终止机制,另一种机制是在离体系统中观察到,纯化的RNA聚合酶不需要其他蛋白质因子参与,可使转录终止,称为不依赖ρ因子的转录终止机制。

1依赖ρ因子的转录终止:ρ因子是一种分子量为46kDa的蛋白质,以六聚体为活性形式。依赖ρ因子的终止位点,未发现有特殊的DNA序列,但ρ因子能与转录中的RNA结合。ρ因子的六聚体被约70~80 nt的RNA包绕,激活ρ因子的ATP酶(ATPase)活性,并向RNA的3’端滑动,滑至RNA聚合酶附近时,RNA聚合酶暂停聚合活性,使RNA∶DNA杂化链解链,转录的RNA释放出来而终止转录。如图13-8所示。

2.不依赖ρ因子的转录终止:在这种转录终止系统中,模板DNA在终止位点附近有特殊的连续T序列,在连续T之前有富含GC互补区及几个插入碱基,如图13-9。这种互补区的转录物可形成茎-环结构,影响RNA聚合酶的构象使转录暂停;同时,由于转录产物的(rU)n与模板的(dA)n之间的dA∶rU杂交区的双链是最不稳定的双链,使杂化链的稳定性下降,而转录泡模板区的两股DNA

容易恢复双链,释出转录产物RNA,使转录终止。

㈡真核生物转录的终止

真核生物转录终止的机制,目前了解尚不多,而且3种RNA聚合酶的转录终止不完全相同。RNA聚合酶Ⅰ催化的转录有18 bp的终止子序列,可被辅助因子识别。RNA聚合酶II和III催化转录的终止子,可能有与原核生物不依赖ρ因子的终止子相似的结构和终止机制,即有富含GC的茎-环结构(stem-loop structure)和连续的U。由于成熟的mRNA 3’端已被切除了一段并加入了poly A尾,具体的转录终止点目前尚未认识。

四、转录的抑制作用

(一)作用于模板DNA的转录抑制剂

如放线菌素D(actinomycin D),能插入至DNA双链中两对dG?dC之间,低浓度时,阻止RNA链的延长,高浓度时可抑制RNA的起始,也抑制DNA复制。

(二)作用于RNA聚合酶的转录抑制剂

如利福平或利福霉素,能与原核细胞RNA聚合酶的β亚基非共价结合,阻止RNA 转录的起始,对真核生物RNA聚合酶无作用。该药临床用于治疗结核杆菌引起的疾病。

α鹅膏蕈碱则是真核生物RNA聚合酶Ⅱ的抑制剂。

第三节RNA转录后的加工

一、原核生物RNA转录后的加工

原核生物mRNA的转录产物,一般无需加工已具有活性,即可作为翻译的模板,近年也发现需要添加3’poly A的现象。而对rRNA和tRNA转录产物的加工、修饰了解比较多,分别叙述如下:

㈠ rRNA的加工

㈡ tRNA的加工

1.RNA酶III:

2.RNA酶D:

3.RNA酶P:

4.tRNA核苷酸转移酶:Ⅱ型tRNA没有3’端的CCA,I型tRNA的3’端CCA亦有被核酸酶降解的可能性。此酶以ATP和CTP为原料催化tRNA 3’端CCA的形成。

二、真核生物RNA转录后的加工

㈠ rRNA转录后的加工

真核生物的rRNA有5S、5.8S、18S和28S四种,其中5.8S、18S和28S是由RNA 聚合酶I催化一个转录单位,产生45S rRNA前体,rRNA转录后加工包括前体rRNA 与蛋白质结合,然后再切割和甲基化。

在研究rRNA转录加工的过程中,发现某些真核生物如四膜虫(Trtrahymena)的26S

rRNA的前体为6.4kb,含有414核苷酸的内含子,可以在完全没有蛋白质的条件下,自身剪接,能很准确地将414核苷酸内含子剪除,而使两个外显子相连接为成熟的26S RNA。这种具有催化功能的RNA称为核酶(ribozyme),意为可切割特异性RNA序列的RNA分子。核酶的二级结构有多种,其中一种呈槌头状(hammerhead)结构,含有若干茎(stems)和环(loops)。例如烟草环斑(rinsport)病毒的卫星RNA的自身剪接序列具有槌头状结构,如图13-11所示。

根据核酶的槌头状结构,通过人工设计合成,可使原来没有核酶活性的RNA,成为具有核酶活性的RNA,用于阻断病源生物或肿瘤基因的表达,为对感染性疾病及肿瘤的治疗提供了新的思路。如图13-12所示,下半部的24核苷酸链,是没有核酶活性的病原体或肿瘤的RNA,,根据槌头状结构原理,人工设计合成上半部的19核苷酸链,与其配成槌头状结构,使下半部分成为人工核酶的特异切割部位,阻断其表达,达到防治某些疾病的目的。例如,现已在探索用核酶来破坏人免疫缺陷病毒(HIV)的临床治疗方案。

㈡ tRNA转录后的加工

前tRNA的加工包括切除和碱基修饰,有些则需剪接。

前tRNA的碱基约有10%需要酶促修饰,修饰有如下类型:①前tRNA3’端的U

由CCA取代;②嘌呤碱或核糖C2’的甲基化;③尿苷被还原成双氢尿苷(DH)或核苷内的转位反应,成为假尿嘧啶核苷(Tψ);④某些腺苷酸脱氨成为次黄嘌呤核苷酸(AMP→IMP)。

㈢ mRNA转录后的加工

真核生物mRNA由RNA聚合酶II催化转录,初始产物为核不均一RNA (heterogeneous nuclear RNA,hnRNA),新生的hnRNA从开始形成到转录终止,就逐步与蛋白质结合形成不均一核糖核蛋白(hnRNP)颗粒,前mRNA加工的顺序是形成5’帽子结构;内切酶去除3’端的一段序列;poly A聚合酶催化形成3’polyA尾;最后是剪接去除内含子转变为成熟的mRNA。

1.5’帽的形成:hnRNA 5’端的第一个核苷酸通常为三磷酸鸟苷(5’-pppGpN-),在磷酸酶催化下去除γ-磷酸基团形成5’-ppGpN···,经鸟苷酰转移酶催化与另一个GTP(pppG)作用生成GpppGpN···,在鸟嘌呤-7-甲基转移酶作用下,以S-腺苷蛋氨酸为甲基来源,生成m7GpppGpN···,再经2’甲基转移酶催化,使5’端原来的第一位,甚至第二位核苷酸的2’-O位甲基化,形成

m7GpppGmN···,或m7GpppGpmNm···。

可见5’帽结构有三种形式;m7GpppGpN···为帽0,m7G pppGmpN···为帽1,m7GpppGmpNm···为帽2。不同真核生物的mRNA或同一生物的不同mRNA有不同的5’帽结构。

2.前mRNA 3’端切除及加poly A尾:除组蛋白的mRNA外,真核生物的所有mRNA都有3’poly A尾。研究表明,由于结构基因中编码链的3’端没有poly A

序列,mRNA的poly A尾是转录后加工形成的,其过程是:加poly A位点上游10~35核苷酸处有AAUAAA序列,下游约50核苷酸处有富含GU序列,这两处序列是剪切和加poly A所需的信号。首先由剪切和聚腺苷化特异因子(cleavage and polyadenylation specific factor,CPSF)结合到上游富AAUAAA序列,剪除刺激因子(cleavage stimulation factor,CSF)与下游富含GU序列作用,剪除因子Ⅰ、Ⅱ(cleavage factor,CF)相继与之结合,使其更趋稳定。在剪除之前,poly A聚合酶结合到复合物上,使剪切后游离的3’端能迅速腺苷酸化。poly A的生成分二个阶段,如图13-14。

3.mRNA的剪接:真核生物编码mRNA的基因是断裂基因,有外显子和内含子并共同转录于初始转录产物中,须将转录产物中的内含子去除,并把外显子连接为成熟的mRNA分子,这个过程称为剪接(splicing),剪接位点在外显子的3’端与内含子的5’端连接点及内含子3’端与下一个外显子5’端连接点。为便于叙述,把位于内含子5’端的剪切点称为5’端剪接点,位于内含子3’端的剪切点称为3’端剪接点。

从图13-15中可见,几乎所有真核生物的核前mRNA都有特征的GU、AG序列,称为GU-AG规则。内含子离3’剪切点20~50bp范围有一个A也是不变的,称为分支点。分支点附近有保守序列,如UACU A AC,其中3’端倒数第二个碱基A为分支点。

剪接过程:

(四)RNA编辑

RNA编辑(RNA editing)是指RNA前体除上述加帽、添尾、剪接、修饰等程序外,需对其序列进行改编,改编过程包括在RNA前体分子中插入、剔除、或置换一些核苷酸残基。例如人的载脂蛋白B(Apo B)有两种形式,一种是肝细胞合成的分子量为512 kDa的Apo B-100,参与细胞内合成的脂类的运输;另一种在小肠细胞合成的分子量为240 kDa的Apo B-48,参与以乳糜微粒形式携带食物中的脂类。这是由mRNA合成后在其第2 153位密码子CAA(谷氨酰胺)的C变成U而成UAA(终止子),所以蛋白质合成到此密码子即终止,产生含2 152氨基酸残基的Apo B-48,未被编辑的mRNA则翻译成含4 536氨基酸残基的Apo B-100(图13-18)。由于催化胞嘧啶变成尿嘧啶的脱氨酶只存在于小肠,故Apo B-48只在小肠合成,所以RNA编辑可以看作是对生物学中心法则的一个重要补充。RNA 编辑的多种形式极大地增加了mRNA的遗传信息容量。

第四节逆转录、逆转录病毒及癌基因

一、逆转录病毒及逆转录酶

(一)发现

前节讨论的转录是以DNA为模板,在RNA聚合酶的作用下转录成RNA,即信息是从DNA流向RNA。某些病毒的基因组是RNA,而不是DNA,这类病毒称为RNA病

毒。1964年Temin观察到有些致肿瘤的RNA病毒(如鸡肉瘤病毒avian sarcoma virus,ASV)感染细胞的作用能被DNA复制抑制剂(如甲氨喋呤,MTX)、5FdUMP 等所阻断,说明ASV的繁殖需要DNA的合成。另一发现为放线菌素D能抑制子代病毒颗粒的产生。放线菌素D是抑制以DNA为模板的RNA合成,这说明RNA肿瘤病毒在宿主细胞的繁殖,需要通过细胞RNA的合成。因此,Temin大胆提出一种设想,即RNA肿瘤病毒先变成DNA原病毒(provirus),再产生RNA肿瘤病毒。这意味着遗传信息也可以从RNA流向DNA。

1970年Temin和Baltimore各自发现RNA肿瘤病毒含有一种酶,称为逆转录酶(reverse transcriptase)。这种酶以RNA为模板,在有4种dNTP存在及合适条件下,能按碱基互补配对的原则,合成互补DNA(complementary DNA,cDNA)。这种酶也称RNA依赖的DNA聚合酶(RNA-dependent DNA polymerase)。由于RNA 肿瘤病毒含有这种逆转录酶,所以也称为逆转录病毒(retrovirus)。这一发现使生物中心法则内容更充实和完善。Temin和Baltimore也因此而获得诺贝尔奖金。

逆转录病毒颗粒的直径约为1 000?,基因组由两个完全相同的单链RNA分子组成,每分子约3.5~10 kb,不同毒株差异较大, 还含有若干分子的逆转录酶及来自宿主的tRNA。

(二)ASV的基因组

图13-19显示ASV原病毒基因组的结构,两侧端为长末端重复序列(1ong terminal repeat,LTR),R为两侧完全相同的序列,U5及U3,则序列不同,两侧LTR含整合信号,启动子,增强子及加poly A等信号序列,紧接5’端的下游有病毒包装的序列(Ψ),是包装成病毒颗粒的必需信号。

(三)逆转录病毒的生活周期

当病毒与宿主细胞受体结合后,病毒颗粒进入细胞内,开始病毒的生活周期,有两个阶。

1.第一阶段病毒RNA基因组逆转录成DNA前病毒,再整合至宿主基因组中。

逆转录酶具有催化三种反应的活性:①RNA指导的DNA合成;②RNA的水解;③DNA 指导的DNA合成,如图13-20所示。合成的起始可能是利用tRNA作为引物。合成的双链DNA原病毒可整合到宿主细胞的基因组中。

2.第二阶段包括已整合至宿主基因组的原病毒DNA,通过宿主细胞的RNA聚合酶II转录成相应的mRNA,此mRNA可作为病毒的RNA基因组,或作为合成相应蛋白质的模板。结果,病毒RNA基因组与病毒蛋白质可包装成新的病毒颗粒进行繁殖,后者以芽植式离开宿主,这种逆转录病毒一般不会杀死宿主细胞。

二、癌基因与抑癌基因

(一)癌基因的概念

上述ASV基因组含四个基因,其中gag,pol和env是病毒生活所必需的,而src 不是病毒生活必需的。但src基因与细胞的转化(transformation)和引起动物肿瘤有关,故称为癌基因(oncogene)。

src基因不是病毒生活所必需的, ASV中的src是ASV的前体(不含src)通过重组而获得细胞中的src,并突变成癌基因。因此,将病毒中与转化和致癌有关的基因称为癌基因,又因为来自病毒,故加一前缀v-src。而正常细胞的基因则称为c-src(c代表cellular),或原癌基因。原癌基因如何转变成癌基因的呢? 如上述src被逆转录病毒获得后,受到逆转录病毒顺式作用元件——启动子和增强子的调控,转录速度增强,产物量大大增加,可使细胞转化及恶变。另一种情况是原癌基因发生染色体移位,或者基因发生突变而产生异常产物。例如c-Ha-ras 的正常产物Ras蛋白(p21)是一类调控细胞生长和其他功能的信号传导体,当Ras 蛋白与GTP结合时为活化状态,GTP水解后,Ras蛋白与GDP的结合形式即为非活化状态。Ras蛋白具有GTP酶的作用,所以在正常生理情况下,这两种状态呈动态平衡。一旦基因发生突变,如编码N端第12位氨基酸残基甘氨酸的密码子一GGC一突变成一GTC—,而GTC为缬氨酸的密码子。由于一个氨基酸的改变,即甘氨酸转变为缬氨酸,可改变Ras蛋白的空间构象,使其水解GTP的活性下降1 000倍,结果使Ras蛋白处于与GTP结合的活化状态而造成细胞恶变。首例发现的人类的癌基因就是在膀胱癌细胞中找到的ras基因,其第12位氨基酸残基的密码子,由正常的甘氨酸密码子转变成缬氨酸密码子。可见原癌基因在特定条件下可转变为癌基因。目前已发现有百余种原癌基因和癌基因。

(二)癌基因产物及其作用

现知原癌基因广泛分布于生物界,从单细胞酵母、无脊椎生物果蝇到脊椎动物,乃至人类的正常细胞都存在着这类基因,而且结构上有很高的同源性,说明这类基因在进化上是高度保守的“管家基因”,提示这类基因的产物是生命活动所必需的。现已知原癌基因的产物对细胞的正常生长、繁殖、发育和分化起着精密的调控作用。不容置疑,若基因的结构发生异常变化或表达失控,必然导致细胞生长增殖和分化的异常,使细胞恶变而形成肿瘤。

根据处于或作用于细胞生长信号传递途径不同,如图13-21所示,可将原癌基因产物分

成四大类:

1.细胞外生长因子

2.跨膜生长因子受体有不少原癌基因的产物为跨膜受体,其作用是接受细胞外的生长信号并将其传递至细胞内。

3.细胞内信号传导体细胞受生长信号刺激后,通过一系列的胞内传导体

(transdu-

cers)将其生长信号传递至细胞内、核内,而引起生长反应。

4.核内转录因子现知不少原癌基因的产物为核内转录因子,能调控某些基因的表达。当生长信号沿着细胞内传递途径进入核内,使c-Fos蛋白与c-Jun蛋白聚合成一种异二聚体的转录因子AP l而启动一些基因的表达。

另一类与人类疾病有关的逆转录病毒,为近年发现的引起艾滋病(acquired immunodeficiency syndrome,AIDS,获得性免疫缺陷综合征)的“人免疫缺陷病毒”(human immunodeficiency virus,HIV),HIV主要作用于CD4+ 淋巴细胞(辅助T淋巴细胞),这类细胞具有CD4表面抗原,CD4是HIV的受体,所以HIV能侵入人CD4+ 淋巴细胞,从而破坏机体的免疫功能。

(三)抑癌基因

抑癌基因(tumor suppressor genes),也称抗癌基因(antioncogenes),是指一类基因,其产物对细胞生长、增殖起负调控的作用,能抑制细胞进入增殖期,促使细胞成熟,朝终极分化。而癌基因是起正调控作用,促使细胞进入增殖周期,阻止其分化及凋亡。在正常情况下,正、负作用处于动态平衡。不单纯是由于癌基因过度表达或产物异常,而且抑癌基因的失活也造成正、负平衡的失调,继而导致肿瘤的发生与发展。现知抑癌基因近20种。研究比较详细的如成视网膜细胞瘤基因,(又称视网膜母细胞瘤易感基因,Rb基因)。Rb的缺陷与成视网膜细胞瘤的发生有关,并发现在部分骨肉瘤、小细胞肺癌、乳腺癌及膀胱癌中也存在Rb缺陷。另一种研究比较详细的抑癌症基因为p53基因,约50%恶性肿瘤中存在p53基因缺陷。

真核生物的基因转录及调控

8 真核生物的基因转录及调控 一选择题(单选或多选) 1锌指蛋白与锌的结合 ( ) (a)是共价的 (b)必须有DNA的存在 (c)通过保守的恍氨酸和组氨酸残基间协调进行 (d)位于蛋白质的妒螺旋区域 2锌指蛋白与DNA的结合( ) (a)位于DNA大沟 (b) 通过"锌指"的C端进行 (c)利用蛋白的α-螺旋区域 (d)每个"指"通过形成两个序列特异的DNA接触位点 (e)通过"指"中保守的氨基酸同DNA结合 3 甾醇类受体转录因子( ) (a)结合的激素都是相同的 (b) 与DNA的结合不具序列特异性 (c)与锌结合的保守序列不同于锌指蛋白" (d)通过第二"指"C端的氨基酸形成二聚体 (e)参与转录激活,与DNA和激素结合分别由不同的结构域完成 4糖皮质激素类的甾醇受体( ) (b)所结合的DNA回文序列都不相同 (c)结合的回文序列相同,但组成回文序列两段DNA间的序列不同 (d)RXR受体通过形成异源二聚体后与同向重复序列结合 (e)这类受体存在于细胞核中 5 同源异型域蛋白( ) (a)形成具有三个α-螺旋的结构 (b) 主要通过α-螺旋3和N端的臂与DNA接触 (c)与原核生物螺旋-转角-螺旋蛋白(如λ阻遏物)的结构很相似 (d)通常存在于细胞核中 (e)在果蝇早期发育调控中起重要作用 6 HLH蛋白( ) (a)在序列组成上与原核生物螺旋-转角-螺旋蛋白具有相关性 (b)向通过环区与DNA结合 (c)形成两个α-螺旋与DNA的大沟结合 (d)形成两性螺旋,其中疏水残基位于螺旋的一侧 (e)以上都不是 7 bHLH蛋白( ) (a)在环中含有保守的碱性氨基酸 (b) 不能形成同源二聚体 (c)非诱导表达 (d)通过它们碱性区与HLH相互作用

原核生物的转录及调控 习题

原核生物的转录及转录调控习题 一填空题 1 能够诱导操纵子但不是代谢底物的化合物称为诱导物。能够诱导乳糖操纵子的化合物就是其中一例。这种化合物同蛋白质结合,并使之与分离。乳糖操纵子的体内功能性诱导物是。 2色氨酸是一种调节分子,被视为。它与一种蛋白质结合形成乳糖操纵子和色氨酸操纵子是两个控制的例子。cAMP-CAP蛋白通过控制起作用。色氨酸操纵子受另一种系统一一的调控,它涉及到第一个结构基因被转录前的转录。 二、选择题(单选或多选) 1 标出以下所有正确表述:( ) (a)转录是以半保留方式获得序列相同的两条DNA链的过程 (b)依赖DNA的DNA聚合酶是多亚基酶,它负责DNA的转录 (c)细菌的转录物(mRNA)是多基因的 (d)σ因子指导真核生物hnRNA的转录后加工,最后形成mRNA (e)促旋酶在模板链产生缺口,决定转录的起始和终止 2·下面哪些真正是乳糖操纵子的诱导物?( ) (a)乳糖 (b)蜜二糖 (c)O-硝基苯酚-β-半乳糖苷(ONPG) (d)异丙基-卜半乳糖甘 (e)异乳糖 3·σ因子的结合依靠( ) (a)对启动子共有序列的长度和间隔的识别 (b)与核心酶的相互作用 (c)弥补启动子与共有序列部分偏差的反式作用因子的存在 (d)转录单位的长度 (e)翻译起始密码子的距离 4·下面哪一项是对三元转录复合物的正确描述:( ) (a)σ因子、核心酶和双链DNA在启动子形成的复合物 (b)全酶、TFⅠ和解链DNA双链形成的复合物 (c)全酶、模板DNA和新生RNA形成的复合物 (d)三个全酶在转录起始位点(tsp)形成的复合物 (e)σ因子、核心酶和促旋酶形成的复合物 5 σ因子和DNA之间相互作用的最佳描述是:( ) (a)游离和与DNA结合的σ因子的数量是一样的,而且σ因子合成得越多,转录起始的机会越大 (b) σ因子通常与DNA结合,且沿着DNA搜寻,直到在启动子碰到核心酶。它与DNA的结合不需依靠核心酶

第十三章-基因表达的调控讲课教案

第十三章基因表达的调控 一、基因表达调控基本概念与原理: 1.基因表达的概念:基因表达(gene expression)就是指在一定调节因素的作用下,DNA分子上特定的基因被激活并转录生成特定的RNA,或由此引起特异性蛋白质合成的过程。 2.基因表达的时间性及空间性: ⑴时间特异性:基因表达的时间特异性(temporal specificity)是指特定基因的表达严格按照特定的时间顺序发生,以适应细胞或个体特定分化、发育阶段的需要。故又称为阶段特异性。 ⑵空间特异性:基因表达的空间特异性(spatial specificity)是指多细胞生物个体在某一特定生长发育阶段,同一基因的表达在不同的细胞或组织器官不同,从而导致特异性的蛋白质分布于不同的细胞或组织器官。故又称为细胞特异性或组织特异性。 3.基因表达的方式: ⑴组成性表达:组成性基因表达(constitutive gene expression)是指在个体发育的任一阶段都能在大多数细胞中持续进行的基因表达。其基因表达产物通常是对生命过程必需的或必不可少的,且较少受环境因素的影响。这类基因通常被称为管家基因(housekeeping gene)。 ⑵诱导和阻遏表达:诱导表达(induction)是指在特定环境因素刺激下,基因被激活,从而使基因的表达产物增加。这类基因称为可诱导基因。阻遏表达(repression)是指在特定环境因素刺激下,基因被抑制,从而使基因的表达产物减少。这类基因称为可阻遏基因。 4.基因表达的生物学意义:①适应环境、维持生长和增殖。②维持个体发育与分化。 5.基因表达调控的基本原理: ⑴基因表达的多级调控:基因表达调控可见于从基因激活到蛋白质生物合成的各个阶段,因此基因表达的调控可分为转录水平(基因激活及转录起始),转录后水平(加工及转运),翻译水平及翻译后水平,但以转录水平的基因表达调控最重要。 ⑵基因转录激活调节基本要素:①顺式作用元件:顺式作用元件(cis-acting element)又称分子内作用元件,指存在于DNA分子上的一些与基因转录调控有关的特殊顺序。②反式作用因子:反式作用因子(trans-acting factor)又称为分子间作用因子,指一些与基因表达调控有关的蛋白质因子。反式作用因子与顺式作用元件之间的共同作用,才能够达到对特定基因进行调控的目的。③顺式作用元件与反式作用因子之间的相互作用:大多数调节蛋白在与DNA结合之前,需先通过蛋白质-蛋白质相互作用,形成二聚体或多聚体,然后再通过识别特定的顺式作用元件,而与DNA分子结合。这种结合通常是非共价键结合。 二、操纵子的结构与功能: 在原核生物中,若干结构基因可串联在一起,其表达受到同一调控系统的调控,这种基因的组

真核生物基因表达调控

真核生物基因表达的调控远比原核生物复杂,可以发生在DNA水平、转录水平、转录后的修饰、翻译水平和翻译后的修饰等多种不同层次。但是,最经济、最主要的调控环节仍然是在转录水平上。 DNA水平的调控 DNA水平上的调控主要指通过染色体DNA的断裂,删除,扩增,重排,修饰(如甲基化与去甲基化,乙酰化与去乙酰化等)和染色质结构变化等改变基因的数量、结构顺序和活性而控制基因的表达。 转录水平的调控 转录水平的调控包括染色质的活化和基因的活化。通过染色质改型,组蛋白乙酰化,染色质变得疏松化及DNA去甲基化以便被酶和调节蛋白作用,基因的表达受顺式作用元件包括启动子及应答元件,转座元件,增强子,抑制子的调控,同时受反式作用因子包括基本转录因子,上游转录因子和转录调节因子等的调控。 转录后调控 转录后调控包括hnRNA的选择性加工运输和RNA编辑 在真核生物中,蛋白质基因的转录产物统称为hn RNA,必须经过加工才能成为成熟的mRNA分子。加工过程包括三个方面:加帽、加尾和去掉内含子。同一初级转录产物在不同细胞中可以用不同方式剪接加工,形成不同的成熟mRNA分子,使翻译成的蛋白质都可能不同。转录后的RNA在编码区发生碱基插入,缺失或转换的现象。

翻译水平的调控 阻遏蛋白与mRNA结合,可以阻止蛋白质的翻译并使成熟的mRNA变为失活状态贮存起来。一些调控作用的micRNAh和siRNA 还可以与mRNA作用降解mRNA,阻止其翻译 此外,还可以控制mRNA的稳定性和有选择的进行翻译。 翻译后调控 直接来自核糖体的线状多肽链是没有功能的,必须经过加工才具有活性。在蛋白质翻译后的加工过程中,还有一系列的调控机制。 1.蛋白质折叠 线性多肽链必须折叠成一定的空间结构,才具有生物学功能。在细胞中,蛋白质的折叠必须有分子伴侣的作用下才能完成折叠。 2.蛋白酶切割 末端切割 有些膜蛋白、分泌蛋白,在氨基端具有一段疏水性强的氨基酸序列,称为信号肽,用于前体蛋白质在细胞中的定位。信号肽必须切除多肽链才具有功能。 多聚蛋白质的切割 有些新合成的多肽链含有几个蛋白质分子的序列,切割以后产生具有不同功能的蛋白质分子。

四、 原核生物种的转录后调控

四、原核生物种的转录后调控 1.稀有密码子对翻译的影响 已知dnaG和rpoD(编码RNA聚合酶亚基)及rpsU(30S核糖体上的S21б蛋白)属于大肠杆菌基因组上的同一个操纵子,而这3个基因产物在数量上却大不相同,每个细胞内仅有dnaG产物50拷贝,而rpoD为2800拷贝,rpsU则高达40 000拷贝之多。细胞通过翻译调控,解决了这个问题。 研究dnaG序列发现其中含有不少稀有密码子,也就是说这些密码子在其他基因中利用频率很低,而在dnaG中却很高。 许多调控蛋白如LacI、AraC、TrpR等在细胞内含量也很低,编码这些蛋白的基因中密码子的使用频率和dnaG相似,而明显不同于非调节蛋白。高频率使用这些密码子的基因翻译过程极容易受阻,影响了蛋白质合成的总量。 2. 重叠基因对翻译的影响 重叠基因最早在大肠杆菌噬菌体ΦX174中发现,用不同的阅读方式得到不同的蛋白质,丝状RNA噬菌体、线粒体DNA和细菌染色体上都有重叠基因存在。 Trp操纵子由5个基因(trpE、D、C、B、A)组成,在正常情况下,操纵子中5个基因产物是等量的,但trpE突变后,其邻近的trpD产量比下游的trpBA产量要低得多。这种与ρ蛋白无关的表达调控,已被证实是在翻译水平上的调控。研究trpE和trpD以及trpB和trpA两对基因中核苷酸序列与翻译耦联的关系,发现trpE基因的终止密码子和trpD基因的起始密码子共用一个核苷酸。

由于trpE的终止密码子与trpD的起始密码重叠,trpE翻译终止时核糖体立即处在起始环境中,这种重叠的密码保证了同一核糖体对两个连续基因进行翻译的机制。 3. RNA高级结构对翻译的影响 以RNA噬菌体f2的RNA作为模板,在大肠杆菌无细胞系统中进行蛋白质合成时,大部分合成外壳蛋白,RNA聚合酶只占外壳蛋白的1/3。用同位素标记分析RNA噬菌体几种蛋白质的起译过程,发现外壳蛋白起译频率比合成酶至少要高3倍。 研究发现f2外壳蛋白基因的琥珀突变也影响了RNA聚合酶合成的起始。但若该突变不是发生在外壳蛋白接近翻译起始区,而是较靠后的位点,对RNA聚合酶的起译就没有影响。现在一般认为,聚合酶的翻译起始区被RNA的高级结构所掩盖,外壳蛋白的起始翻译破坏了RNA的立体构象,使核糖体有可能与翻译起始区结合,导致聚合酶的起译。用甲醛处理RNA可以增加聚合酶的产量,这说明RNA 的高级结构对基因表达调控的可能性。 4. 魔斑核苷酸水平对翻译的影响 科学上,把培养基中营养缺乏,蛋白质合成停止后,RNA合成也趋于停止这种现象称为严紧控制(rel+);反之则称为松散控制(rel-)。研究发现,在氨基

原核生物和真核生物基因表达调控复制、转录、翻译特点的比较

原核生物和真核生物基因表达调控、复制、转录、翻译特点的比较 1.相同点:转录起始是基因表达调控的关键环节 ①结构基因均有调控序列; ②表达过程都具有复杂性,表现为多环节; ③表达的时空性,表现为不同发育阶段和不同组织器官上的表达的复杂性; 2.不同点: ①原核基因的表达调控主要包括转录和翻译水平。真核基因的表达调控主要包括染色质活化、转录、转录后加工、翻译、翻译后加工多个层次。 ②原核基因表达调控主要为负调控,真核主要为正调控。 ③原核转录不需要转录因子,RNA聚合酶直接结合启动子,由sita因子决定基因表的的特异性,真核基因转录起始需要基础特异两类转录因子,依赖DNA-蛋白质、蛋白质-蛋白质相互作用调控转录激活。 ④原核基因表达调控主要采用操纵子模型,转录出多顺反子RNA,实现协调调节;真核基因转录产物为单顺反子RNA,功能相关蛋白的协调表达机制更为复杂。 ⑤真核生物基因表达调控的环节主要在转录水平,其次是翻译水平。原核生物基因以操纵子的形式存在。转录水平调控涉及到启动子、sita因子与RNA聚合酶结合、阻遏蛋白、负调控、正调控蛋白、倒位蛋白、RNA聚合酶抑制物、衰减子等。翻译水平的调控涉及SD序列、mRNA的稳定性不稳定(5’端和3’端的发夹结构可保护不被酶水解mRNA的5’端与核糖体结合可明显提高稳定性)、翻译产物及小分子RNA的调控作用。 真核生物基因表达的调控环节较多: 在DNA水平上可以通过染色体丢失、基因扩增、基因重排、DNA甲基化、染色体结构改变影响基因表达。 在转录水平主要通过反式作用因子调控转录因子与TA TA盒的结合、RNA聚合酶与转录因子-DNA复合物的结合及转录起始复合物的形成。 在转录后水平主要通过RNA修饰、剪接及mRNA运输的控制来影响基因表达。 在翻译水平有影响起始翻译的阻遏蛋白、5’AUG、5’端非编码区长度、mRNA的稳定性调节及小分子RNA。 真核基因调控中最重要的环节是基因转录,真核生物基因表达需要转录因子、启动子、沉默子和增强子。 真核生物和原核生物复制的不同点: ①真核生物DNA的合成只是在细胞周期的S期进行,而原核生物则在整个细胞生长过程中都可进行DNA合成 ②原核生物DNA的复制是单起点的,而真核生物染色体的复制则为多起点的。真核生物中前导链的合成并不像原核生物那样是连续的,而是以半连续的方式,由一个复制起点控制一个复制子的合成,最后由连接酶将其连接成一条完整的新链。 ③真核生物DNA的合成所需的RNA引物及后随链上合成的冈崎片段的长度比原

转录的调节控制

(四)转录的调节控制 转录的调节是基因表达调节的重要环节,包括时序调节和适应调解。遗传信息的表达可按一定时间程序发生变化,而且随着细胞内外环境条件的改变而加以调整。 原核生物的操纵子:它既是表达单位,也是协同调节的单位。 操纵子是细菌基因表达和调控的单位,它包括结构基因、调节基因和由调节基因产物所识别的控制序列。 操纵子模型,见P561。 由于经济原则,细菌通常并不合成那些在代谢上无用的酶,因此一些分解代谢的酶类只在有关的底物或底物类似物存在时才被诱导合成。如E. coli利用外界乳糖时会需要三种有关的酶,一般情况下极少产生,只有当乳糖存在时,按乳糖操纵子模型这三种利用乳糖所必需的酶才大量产生。 一些合成代谢的酶类在产物或产物类似物足够量存在时,其合成则被阻遏。 P562 图39-21 说明酶诱导和阻遏的操纵子模型。 酶的诱导和阻遏是在调节基因产物—阻遏蛋白的作用下,通过操纵基因控制结构基因或基因组的转录而发生的。 A.酶的诱导:阻遏蛋白结合在操纵基因上,结构基因不表达;但当诱导物与阻遏蛋 白结合使阻遏蛋白不能结合在操纵基因上,结构基因可以表达。 B.酶的阻遏:阻遏蛋白不能与操纵基因结合,结构基因可表达;当代谢产物与阻遏 蛋白结合使阻遏蛋白能够结合在操纵基因上,结构基因不表达。 P563 图39-22 为E. coli中乳糖操纵子模型。 调节有正调节和负调节,原核生物以负调节为主。 阻遏蛋白的作用属于负调节,阻遏蛋白称为负调节因子。 正调节:调节蛋白(激活子)与DNA结合时,使转录发生。 真核生物的调节更为复杂,基因不组成操纵子,以正调节为主,并可在染色质结构水平上进行调节。 (五) RNA生物合成抑制剂 (1)碱基类似物:可作为核苷酸代谢拮抗物而抑制核酸前体的合成,直接抑制核苷酸生物合成有关的酶,或通过掺入到核酸分子中形成异常的DNA或RNA影响核 酸的功能并导致突变: 如6-巯基嘌呤,6-巯基鸟嘌呤,5-氟尿嘧啶等,结构式见P469。 (2)DNA模板功能抑制物:通过与DNA结合,使DNA失去模板功能从而抑制其复制和转录: 如临床上应用的氮芥类似物。(结构见P470)。 环磷酰胺:体外无活性,进入肿瘤细胞后受磷酰胺酶作用水解成活性氮芥,可治疗多种癌症。 苯丁酸氮芥:因含有酸性基团不易进入正常细胞,而癌细胞酵解作用旺盛,大量积累乳酸,pH较低,故容易进入癌细胞。 10-2 RNA的转录后加工 细胞中由RNA聚合酶合成的原初转录物往往需经过一系列变化,包括链的裂解,5‘端与3‘端的切除和特殊结构的形成,核苷的修饰和糖苷键的改变以及拼接和编辑,才能转变为成熟的RNA分子,此过程为转录后加工或称RNA的成熟。 (一)原核生物中RNA的加工 mRNA一般不进行转录后加工,一经转录通常立即进行翻译。

基因的转录、转录后调控

基因的转录、转录后 加工及逆转录 转录 (transcription)是以DNA单链为模板,NTP为原料,在DNA依赖的RNA聚合酶催化下合成RNA链的过程。与DNA的复制相比,有很多相同或相似之处,亦有其特点,它们之间的异同可简要示于表13-1 转录的模板是单链DNA,与复制的模板有较多的不同特点,引出了下列相关概念。转录过程只以基因组DNA中编码RNA(mRNA、tRNA、rRNA及小RNA)的区段为模板。把DNA分子中能转录出RNA的区段,称为结构基因(structure gene)。结构基因的双链中,仅有一股链作为模板转录成RNA,称为模板链(template strand),也称作Watson(W)链(Watson strand)、负(-)链(minus strand)或反意义链(antisense strand)。与模板链相对应的互补链,其编码区的碱基序列与mRNA的密码序列相同(仅T、U互换),称为编码链(coding strand),也称作Crick(C)链(Crick strand)、正(+)链(plus strand),或有意义链(sense strand)。不同基因的模板链与编码链,在DNA分子上并不是固定在某一股链,这种现象称为不对称转录(asymmetric transcription)。模板链在相同双链的不同单股时,由于转录方向都从5’→3’,表观上转录方向相反,如图13-1。 与DNA复制类似,转录过程在原核生物和真核生物中所需的酶和相关因子有所不同,转录过程及转录后的加工修饰亦有差异。下面的讨论中将分别叙述。 参与转录的酶 转录酶(transcriptase)是依赖DNA的RNA聚合酶(DNA dependent RNA polymerase,DDRP),亦称为DNA指导的RNA聚合酶(DNA directed RNA polymerase),简称为RNA聚合酶(RNA pol)。它以DNA为模板催化RNA的合成。 原核生物和真核生物的转录酶,均能在模板链的转录起始部位,催化2个游离的

(完整版)基因的转录与翻译真题练习

基因的表达真题演练遗传信息的转录和翻译 命 题 剖 析 考 向 扫 描 1 以示意图等形式考查DNA的结构、特点、转录过程及与DNA分子复制的区别, 考查学生对DNA分子复制与转录过程的理解能力及对二者区别的分析能力。 选择题是常见题型 2 以选择题或非选择题等形式考查转录、翻译过程及其调控机制,考查学生的 识图能力及理解、推理分析等综合思维能力 3 以选择题的形式考查中心法则相关内容及基因对性状的控制,考查学生获取 信息、分析问题的能力 命 题 动 向 遗传信息的转录和翻译部分是高考的重点,内容侧重转录与翻译的具体过程、条 件、特点及碱基数目的计算等,题型多样化,选择题、非选择题均有。对中心法 则和基因与性状的关系的考查以选择题为主,可能会结合具体实例分析基因控 制性状的模式或遗传信息传递的过程 1.(2012年课标全国卷,1,6分)同一物种的两类细胞各产生一种分泌蛋白,组成这两种蛋白质的各种氨基酸含量相同,但排列顺序不同。其原因是参与这两种蛋白质合成的( ) A.tRNA种类不同 B mRNA碱基序列不同 C.核糖体成分不同 D.同一密码子所决定的氨基酸不同 2.(2012年安徽理综卷,5,6分)图示细胞内某些重要物质的合成过程。该过程发生在( ) A.真核细胞内,一个mRNA分子上结合多个核糖体同时合成多条肽链 B.原核细胞内,转录促使mRNA在核糖体上移动以便合成肽链 C 原核细胞内,转录还未结束便启动遗传信息的翻译 D.真核细胞内,转录的同时核糖体进入细胞核启动遗传信息的翻译 3.(2011年海南卷)野生型大肠杆菌能在基本培养基上生长,用射线照射野生型大肠杆菌得到一突变株,该突变株在基本培养基上培养时必须添加氨基酸甲后才能生长。对这一实验结果的解释,不合理的是( ) A.野生型大肠杆菌可以合成氨基酸甲 B 野生型大肠杆菌代谢可能不需要氨基酸甲 C.该突变株可能无法产生氨基酸甲合成所需的酶 D.该突变株中合成氨基酸甲所需酶的功能可能丧失 4.(2011年海南卷)关于RNA的叙述,错误的是( ) A.少数RNA具有生物催化作用 B 真核细胞内mRNA和tRNA都是在细胞质中合成的 C.mRNA上决定1个氨基酸的3个相邻碱基称为密码子 D.细胞中有多种tRNA,一种tRNA只能转运一种氨基酸 5.(2011年安徽理综卷)甲、乙图示真核细胞内两种物质的合成过程,下列叙述正确的是( )

转录调控

分子机制研究套路(五) 转录调控 课题:转录因子A对B基因的转录调控 1.概念介绍: 转录水平的调控是真核生物基因表达调控中重要环节。真核细胞RNA 聚合酶自身对启动子并无特殊亲和力,单独不能进行转录,也就是说基因是无活性的。因此,转录需要众多的转录因子和辅助转录因子形成复杂的转录装置。在基因转录起始阶段,通用转录因子协助RNA 聚合酶与启动子结合,但其作用很弱,不能高效率地启动转录。只有在反式作用因子(基因特异性转录因子)的协助下,RNA 聚合酶Ⅱ和TFⅡ才能有效地形成转录起始复合物。反式作用因子(trans acting factor)在转录调节中具有特殊的重要性。它是能直接或间接地识别或结合在顺式作用元件8~12bp 核心序列上,参与调控靶基因转录效率的一组蛋白质。这类DNA 结合蛋白有多种,能特异性识别这类蛋白的序列也有多种,正是不同的DNA 结合蛋白与不同的识别序列之间的空间结构上的相互作用,以及蛋白质与蛋白质之间的相互作用构成了复杂的基因转录调控机制的基础。 在真核生物中转录因子的调控是最重要,也是研究得最多的。蛋白质相互作用在转录因子活性的调控方面具有重要的意义。细胞内的反式作用因子都是处于有活性和无活性两种状态,这两种状态是可以转换的。反式作用因子处于无活性状态时,与之相应的基因就不能表达;反式作用因子处于有活性状态、并与相应的顺式作用元件结合时,就可以促进RNA 聚合酶和通用转录因子与相应的启动子结合,形成转录起始复合物。所以,真核基因的表达调控主要是调节反式作用因子的活性,随后反式作用因子调控基因的转录起始。 转录因子被激活后,即可识别并结合上游启动子元件和增强子,对基因转录发挥调控作用。大部分转录因子在激活以后与顺式作用元件结合,但也可能有一些转录因子是先结合DNA,

第六章 原核基因表达调控模式思考题答案

第七章原核生物的基因调控思考题答案 一、填空题 1. 能够诱导操纵子但不是代谢底物的化合物称为安慰诱导物。能够诱导乳糖操纵子的化合物IPTG 就是其中一例。这种化合物同阻遏蛋白质结合。并使之与操纵基因分离。乳糖操纵子的体内功能性诱导物是异乳糖。 2. 色氨酸是一种调节分子,被视为辅阻遏物。它与一种蛋白质结合形成全阻遏物;乳糖操纵子和色氨酸操纵子是两个负控制的例子。cAMP—cAP蛋白通过正控制起作用。色氨酸操纵子受另一种系统弱化作用的调控,它涉及到第一个结构基因被转录前的转录终止作用。 二、选择题(单选或多选) 1. 标出以下所有正确表述:( C ) (a)转录是以半保留方式获得序列相同的两条DNA链的过程 (b)依赖DNA的DNA聚合酶是多亚基酶,它负责DNA的转录 (c) 细菌的转录物(mBNA)是多基因的 (d)σ因子指导真核生物hnRNA的转录后加工,最后形成mRNA (e)促旋酶在模板链产生缺口,决定转录的起始和终止 2.下面哪些真正是乳糖操纵子的诱导物?( (c) (d) ) (a) 乳糖 (b) O—硝基苯酚—β—半乳糖苷(ONPG) (c) 异丙基巯基—β—半乳糖苷 (d) 异乳糖 3.氨酸操纵子的调控作用是受两个相互独立的系统控制的,其中一个需要前导肽的翻译,下面哪一个调控这个系统?( (b) ) (a) 色氨酸 (b) 色氨酰-tRNA Trp (c) 色氨酰—tRNA (d) cAMP (e)以上都不是 三、判断题 1. 下面哪些说法是正确的? (a) LacA的突变体是半乳糖苷透性酶的缺陷 (b) 在非诱导的情况下,每个细胞大约有4分子的p—半乳糖苷酶 (c) 乳糖是一种安慰诱导物 (d) RNA聚合酶同操纵因子结合 (e) 多顺反子mRNA是协同调节的原因 (f) Lac阻遏物是一种由4个相同的亚基组成的四聚体 (g) 腺苷酸环化酶将cAMP降解成AMP (h) CAP和CRP蛋白是相同的 (i) —35和—10序列对于RNA聚合酶识别启动子都是很重要的 (j) 色氨酸的合成受基因表达、阻遏、弱化作用和反馈抑制的控制 (k) Trp的引导mRNA能够同时形成三个“茎—环”结构 (l) 在转录终止子柄部的A—T碱基对可以增强结构的稳定性 (m) 真核生物和原核生物的转录和翻译都是偶联的

原核生物转录表达调控-0607-第三次

1、原核生物基因表达的方式:组成性表达和适应性表达。 2、在负控中,调节基因的产物是阻遏蛋白,调节产物与结构基因结 合,起着阻止结构基因转录的作用,阻遏蛋白作用的是操纵区。(1)负控诱导中,阻遏蛋白不与诱导物结合时,结构基因不转录。 诱导物与阻遏蛋白结合后致使阻遏蛋白构象变化以致不能和操作基因结合。 (2)负控阻遏中,阻遏蛋白与诱导物结合时,结构基因不转录。3、正控诱导中,诱导物的存在使激活蛋白处于活性状态。正控阻遏 中,诱导物存在使激活蛋白处于非活性状态。 4、葡萄糖效应:当葡萄糖存在的情况下,即使培养基中加入乳糖、 半乳糖、阿拉伯糖或麦芽糖等,但是降解这些糖的操纵子仍然处于关闭状态,不会产生降解这些糖的酶,称为葡萄糖效应。(1)葡萄糖存在时cAMP酶合成受抑止。cAMP是lac操纵子活化不可缺少的条件。 5、细菌应急反应:信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸 (pppGpp),能影响大批操纵子,故称为超级调控子。干扰RNA聚合酶与启动子结合的专一性。 6、操纵子:原核生物转录调控的基本单位,包括调节基因、启动子、 操纵基因及其所控制的一组功能上相关的结构基因所组成。(多顺反子) 7、操纵子类型:可诱导、代谢型,可阻遏、合成型。 8、乳糖操纵子:包括3个结构基因lacZ、lacY、lacA,以及启动

子、控制子、阻遏子等。 (1)lacZ编码β-半乳糖苷酶,lacY编码β-半乳糖苷透过酶,lacA 编码β-半乳糖苷乙酰基转移酶。 (2)Lac操纵子控制模型的内容 ①Z,Y,A基因的产物是由同一条mRNA分子编码 ②P区位于I基因和O区之间,但不能单独高效启动乳糖操纵子; ③O是阻遏物的结合位置;当阻遏物与O区结合时,Lac RNA转录收 到抑制; ④诱导物可以与阻遏物结合,改变阻遏物的三维构象,使之不能与操 纵区结合,诱导Lac mRNA的转录和蛋白合成 ⑤lac操纵子有本底表达水平:即在没有乳糖存在时也能微量表达, 微量表达的透过酶能帮助第一个诱导物穿过细胞膜来诱导lac操纵子大量表达。 9、乳糖操纵子需要正调控(葡萄糖不存在)和负调控(乳糖存在) 机制都打开的情况下才能起始转录。葡萄糖对lac操纵子的调控相当于正控阻遏:glu存在时使激活蛋白处于失活状态,laz操纵子不表达。 10、半乳糖操纵子(gal)有两个启动子,其mRNA可从两个不同的起 始点开始转录。每个启动子拥有各自的RNA聚合酶结合位点S1和S2。 (1)从S1起始培养基中无葡萄糖,S2起始依赖葡萄糖。 (2)当有cAMP-CAP时(即没有glu),转录从S1开始,当无cAMP-CAP

原核生物和真核生物基因表达调控复制、转录、翻译特点的比较

1.相同点:转录起始是基因表达调控的关键环节 ①结构基因均有调控序列; ②表达过程都具有复杂性,表现为多环节; ③表达的时空性,表现为不同发育阶段和不同组织器官上的表达的复杂性; 2.不同点: ①原核基因的表达调控主要包括转录和翻译水平。真核基因的表达调控主要包括染色质活化、转录、转录后加工、翻译、翻译后加工多个层次。 ②原核基因表达调控主要为负调控,真核主要为正调控。 ③原核转录不需要转录因子,RNA聚合酶直接结合启动子,由sita因子决定基因表的的特异性,真核基因转录起始需要基础特异两类转录因子,依赖DNA-蛋白质、蛋白质-蛋白质相互作用调控转录激活。 ④原核基因表达调控主要采用操纵子模型,转录出多顺反子RNA,实现协调调节;真核基因转录产物为单顺反子RNA,功能相关蛋白的协调表达机制更为复杂。 ⑤真核生物基因表达调控的环节主要在转录水平,其次是翻译水平。原核生物基因以操纵子的形式存在。转录水平调控涉及到启动子、sita因子与RNA聚合酶结合、阻遏蛋白、负调控、正调控蛋白、倒位蛋白、RNA聚合酶抑制物、衰减子等。翻译水平的调控涉及SD序列、mRNA的稳定性不稳定(5’端和3’端的发夹结构可保护不被酶水解mRNA的5’端与核糖体结合可明显提高稳定性)、翻译产物及小分子RNA的调控作用。 真核生物基因表达的调控环节较多: 在DNA水平上可以通过染色体丢失、基因扩增、基因重排、DNA甲基化、染色体结构改变影响基因表达。 在转录水平主要通过反式作用因子调控转录因子与TATA盒的结合、RNA聚合酶与转录因子-DNA复合物的结合及转录起始复合物的形成。 在转录后水平主要通过RNA修饰、剪接及mRNA运输的控制来影响基因表达。 在翻译水平有影响起始翻译的阻遏蛋白、5’AUG、5’端非编码区长度、mRNA的稳定性调节及小分子RNA。 真核基因调控中最重要的环节是基因转录,真核生物基因表达需要转录因子、启动子、沉默子和增强子。 真核生物和原核生物复制的不同点: ①真核生物DNA的合成只是在细胞周期的S期进行,而原核生物则在整个细胞生长过程中都可进行DNA合成 ②原核生物DNA的复制是单起点的,而真核生物染色体的复制则为多起点的。真核生物中前导链的合成并不像原核生物那样是连续的,而是以半连续的方式,由一个复制起点控制一个复制子的合成,最后由连接酶将其连接成一条完整的新链。 ③真核生物DNA的合成所需的RNA引物及后随链上合成的冈崎片段的长度比原核生物要短。

真核基因和原核基因表达调控的异同

真核基因和原核基因表达调控的异同? 真核基因表达调控的基本原理与原核基因相同,主要表现在: 1、与原核基因的调控一样,真核基因表达调控也以转录水平调控为最重要; 2、在结构基因均有调控序列,并依靠特异蛋白因子与这些调控序列的结合与否调控基因的表达。 3、都要经历转录、翻译的过程。 4、表达过程都有复杂性,多环节 不同 1、真核基因表达调控过程更复杂。 2、在染色质结构上。原核细胞的DNA是裸露的,而真核细胞DNA包装在染色体中。DNA与组蛋白组成核小体形成为染色体基本单位。在原核细胞中染色质结构对基因的表达没有明显的调控作用,而在真核细胞中染色质的变化调控基因表达,并且基因分布在不同的染色体上,存在染色体间基因的调控问题; 3、真核生物中编码蛋白质的基因通常是断裂基因,含有有非编码序列即内含子,因而转录产生的mRNA前体必须剪切加工才能成为有功能的成熟的mRNA,而不同拼接方式的可产生不同的mRNA。而原核生物的基因由于不含有外显子和内含子,因此,转录产生的信使RNA不需要剪切、拼接等加工过程。 4、在原核基因转录的调控中,既有正调控,也有负调控,二者同等重要,而真核细胞中虽然也有正调控成分和负调控成分,但目前已知的主要是正调控,且一个真核基因通常都有多个调控序列,必须有多个激活物同时特异地结合上去才能调节基因的转录; 5、原核基因的转录和翻译通常是相互偶联的,而真核基因的转录与翻译在时空上是分开的,从而使真核基因的表达有多种调控机制。 6、真核生物细胞中存在mRNA的稳定性调控

7、真核生物大都为多细胞生物,基因的表达随细胞内外环境条件的改变和时间程序在不同的表达水平上进行着精确调控,而原核生物主要受环境因素和营养状况影响基因调控。 8、真核生物由三种RNA聚合酶分别负责三种RNA的转录,而原核生物只有一种。

真核基因转录水平的调控1-3

真核基因转录水平的调控 一、真核生物的RNA聚合酶 有三种RNA聚合酶:RNA聚合酶Ⅰ;RNA聚合酶Ⅱ;RNA聚合酶Ⅲ。 二、真核基因顺式作用元件 (一)、顺式作用元件概念 指DNA上对基因表达在调节活性的某些特定的调控序列,其活性仅影响其自身处于同一DNA分子上的基因。 (二)、种类 启动子、增强子、静止子 1、启动子的结构和功能 启动子与原核启动子的含义相同,是指RNA聚合酶结合并起动转录的DNA序列。 但真核同启动子间不像原核那样有明显共同一致的序列。而且单靠RNA聚合酶难以结合DNA而起动转录,而是需要多种蛋白质因子的相互协调作用。 RNA聚合酶Ⅱ启动子结构 1)TATA框(TATA frame):其一致顺序为TATAA(T)AA(T)。TATA框中心在-30附近,相当于原核的-10序列(pribnow box)。 对大多数真核生物来说,RNA聚合酶与TATA框牢固结合之后才能开始转录。TATA框的左右富含G┇C 序列,这就有利于该框与RNA聚合酶形成开放性启动子复合物。 2)CAAT框(CAAT frame):位置在-75附近,一致序列为GG C(T)CAATCT。CAAT框可能控制着转录起始的频率。 (3)GC框 在-90bp左右的GGGCGG序列称为GC框。 一个在-30—+15即核心启动子(core promoter element),另一为上游启动子区(upstream promoter element)在-150—-50,不同物种的启动子因子有显著差异,启动子区没有和mRNA的TATA和CAAT盒顺序,故物种间大前体-rRNA基因的转录起始是不同的。基因间间隔含一个或几个终止信号可终止其之前的基因的转录而其本身不转录,间隔区含多种反向顺序可作为增强子结合转录因子

相关文档