文档库 最新最全的文档下载
当前位置:文档库 › 计数原理与二项式定理

计数原理与二项式定理

计数原理与二项式定理
计数原理与二项式定理

高中新课程数学选修2-3教学指导

5.1 计数原理(约14节)

一、知识要求及变化

1.整体定位

为了更好的把握计数原理的要求,首先需要明确整体定位。标准对计数原理这部分内容的整体定位如下:

“计数问题是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际提供了思想和工具。在本摸块中,学生将学习计数基本原理、排列、组合、二项式定理及其应用,了解计数与现实生活的联系,会解决简单的计数问题。”

为了更好的理解整体定位,需要明确以下几个方面的问题:

(1)正确地使用基本计数原理是这一章教学中必须抓住的一个关键。

(Ⅰ)两个基本计数原理是计数原理的开头课,学习它所需的先行知识与学生已熟知的数学知识联系很少,通常教师们或者感觉很简单,一带而过;或者感觉难以开头。中学数学课程中引进的关于排列、组合的计算公式都是以分类加法计数和分步乘法计数原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本计数原理,因此必须使学生

学会正确地使用两个基本计数原理,学会正确地使用基本计数原理是这一章教学中必须抓住的一个关键。所以课程标准中特别提出“能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理,解决一些简单的实际问题。”

(II)正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件。而原理中提到的分步和分类,学生不是一下子就能理解深刻的,这就需要教师引导学生,帮助他们分析,找到分类和分步的具体要求——类类互斥,步步独立。

(III)分类加法计数原理,分步乘法计数原理,单纯这点学生是容易理解的,问题在于怎样合理地进行分类、分步,特别是在分类时必须做到既不重复,又不遗漏,找到分步的方法有时是比较困难的,这就要着重进行训练。

2.课程标准的要求。

(1)分类加法计数原理、理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步分步乘法计数原理

通过实例,总结分类加法计数原乘法计数原理,解决一些简单的实际问题。

(2)排列与组合

通过实例,理解排列、组合的概念,能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题。

(3 )二项式定理

能用计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题。

3.课程标准要求的具体化和深广分析。

(1)如何认识“通过实例,总结分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理,解决一些简单的实际问题。”的含义。

可以从以下两个方面来把握标准的要求:

第一,通过具体问题情境和实际事例,让学生不断感悟和总结两个基本计数原理,仅仅由教材中的几个实例是不够的,教师必须补充与之匹配的事例充实教材,这样学生才能更深刻地领悟两个基本计数原理。

第二,在理解具体问题时,着重分析题意,领悟题眼,用分类或者分步或两者都用,分类要做到“不重不漏”,分步要做到步骤完整,善于归纳用计数原理解决计数问题的方法,这样有利于充分利用两个基本计数原理解题。

(2)如何认识“通过实例,理解排列、组合的概念,能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题。”

第一,运用大量实例,理解排列的特殊性与组合的特殊性。排列的特殊性在于排列中元素的“互异性”和“有序性”,例如“从全班60名同学中选出4名同学,分别担任班长、学习委员、文艺委员、体育委员,”这就是一个排列问题。可以由学生思考

为什么这个问题有元素的“互异性”和“有序性”的特点。

与排列比较,组合的特殊性在于它只有元素的“互异性”而

不需要考虑顺序,例如,上述问题如果改为“从全班60名同学

中选出4名代表参加一项活动,”那么它就要变成一个组合问题

了。本质上,“从n 个不同元素中取出k 个元素的组合”就是这

几个不同元素组成的集合的一个k 元子集。

第二,排列数公式、组合数公式的推导是两个计数原理的一

个应用过程,只有理解了排列、组合的概念,并会用两个计数原

理解决实际问题,才能把排列数公式、组合数公式推导出来。

第三,在教学中注意通过大量实例运用排列数公式、组合数

公式解决,但是组合数的性质只作一般性的探究,至于应用不作

重点要求,更不研究排列数的性质,在数学中必须引起注意。

(3)如何认识“能用计数原理证明二项式定理,会用二项式

定理解决与二项展开式有关的简单问题。”

第一,在推导二项式定理(a+b )

n =()011.n n r n r r n n n n n n C a C a b C a b C b n N --++???++???+∈ 时,我们应用了两

个计数原理,而这种应用也是基于我们多项式乘法中的经验:每

一项都是a n-r b r

(r=0,1,…,n ) 的形式,而用了两个计数原

理来得到a n-r b r 的步骤,就可以得出其同类项的个数为 C r n 个的

结论。

第二,结合“杨辉三角”和从函数的角度来分析二项式系数

的一些性质(① 对称性② 增减性与最大值 ③ 各二项式系数的

和),在探究以上性质的过程中,实际上是二项式定理的应用,在教学中列举实例,将二项式系数的性质充分应用。

例如:运用“在(a+b)n的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和,并且二项式系数之和为2n,”可以解决问题。

例一、求C111 +C311 +…+C1111 =?

例二、求证:C0n +C2n +C4n +…+C n n =2n-1

例三、求证:C1n +2C2n +3C3n +…+nC n n =n2n-1

4 教学要求

(1)标准与大纲要求的对比与说明:

在具体内容上,标准与大纲有明显区别:

①在标准中这部分内容是选修内容,而且是对理科的要求,大纲中这部分内容要求为必修内容,而且文理科都要求。

②大纲中要求的两个“理解”、四个“掌握”、四个“并能用”;在标准中分别变为“通过实例总结”、“通过实力理解”、“能根据”、“能利用”、“会用”,并能利用基本计算原理“解决”、“推导”、“证明”,说明两个基本计数原理是本章的灵魂,并串穿于始终。

③与大纲比较,标准降低要求,不要求掌握和应用“组合数的两个性质”。

④大纲中的“分类计数原理”、“分步计数原理”,在标准中分别改为“分类加法计数原理”、“分步乘法计数原理”。

(2)教学要求

①课时减少,要求并没有降低.

这部分内容课程标准中要求课时的14节,与原大纲比较少了4节。新课程课时虽然少了,但突出了以下几点:打好的基础,发展能力,注重联系,强调整体;改变学生学习方式,淡化了严格执行课程计划的提法。

②突出实例,由学生主动总结两个基本计数原理。

在这部内容中,要通过大量具体实例,来帮助学生总结出分类加法计数原理,分步乘法计数原理,并能分析具体问题的特征,选择两个计数原理解决一些简单的实际问题。

③注重数学思想方法,介绍我国古代数学成就,丰富学生的数学文化。

当我们面临一个复杂问题时,通过分类或分步将它分解成为一些简单的问题,先解决简单问题,然后再将它们整合起来得到整个问题的解决,达到以简驭繁的效果,这是一种重要而基本的思想方法。两个计数原理就是这种思想的体现。

教学中,应引导学生根据计数原理分析、处理问题,而不应机械地套用公式,同时,在这部分教学中,应避免烦琐的技巧性过高的计数问题。另外,可以在二项式定理中介绍我国古代数学成就“杨辉三角”,以丰富学生的数学文化。

④注重知识的应用,掌握解决问题的过程。

两个基本计数原理贯穿于这部内容的始终,这也是计数原理的一个应用。排列与组合是学习二项式定理、概率的预备知识,同时也是进一步学习高等数学有关分支的必备知识。二项式定理揭示了二项式的正整数次幂的展开法则。它是初中代数

乘法公式()2

+=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3的推广。二

a b

项式定理在数学学习中经常用到,例如概率、微积分等有关内容的学习都要用到二项式定理,因此,二项式定理在实际运算和以后的学习中都是常用的基础知识。另外注意,课程标准对组合数的两个性质不做要求,即如何证明性质1:m

C=n m n C-,性

n

质2:m

C+1m n C-=1m n C+以及它们的应用都不作要求。教材中二项式n

定理的应用——近似计算未作明确要求。

二、重点和难点

1.重、难点分析

(1)本章的重点是分类加法计数原理和分步乘法计数原理,排列和组合的意义,以及排列数、组合数计算公式,二项式定理。

(2)本章的主要难点是如何正确运用有关公式解决应用问题。在解决问题时,由于对问题本身和有关公式的理解不够准确,常常发生重复和遗漏计算、用错公式的情况。为了突破这一难点,教学中应强调一些容易混淆的概念之间的联系与区别,强调运用各个公式的前提条件,并对学生计算中出现的一些典型错误进行认真剖析。

2.重、难点教学案例

课堂教学片段案例(一)

二项式定理

目的要求

1、掌握二项式定理及二项式展开式的通项公式

2、会利用二项展开式及通项公式解有关问题

内容分析

1、本节课主要内容实际上是初中学习的多项式乘法的基础上研究一种特殊的多项式——二项式乘法的展开式。这一小节与不少内容都有密切联系,特别是它在本章学习中起着承上启下的作用。学习本小节的意义主要在于:

①二项式定理与概率论中的三大概率分布之一的二项分布有其内在联系,也是学习后面的概率知识以及进一步学习概率统计的准备知识。

②由于二项式系数是一些特殊的组合数,利用二项式定理可以得到关于组合数的一些恒等式,从而深化对组合数的认识。

③基于二项展开式与多项式乘法的联系,本小节的学习又对初中学习的多项式的变形起到复习、深化的作用。

④二项式定理是解决某些整除性等问题的一种方法。

2、本小节的前半段是在具体的例子基础上归纳出二项式定理,提出二项式定理是从学生熟悉的(a+b)2公式入手的,接着考虑(a+b)3的展开式,虽然它在初中并未作为公式提出,但运

用整式的乘法则容易写出其展开式,再进一步研究(a+b)4的展开式,这是归纳得出二项式定理的关键一步。

3、二项式定理的推导和理解是本节课的重点。用心体会一番下面给出的引出定理的思维过程将是很有益处的。因为它对学生掌握知识内容、学习思想方法、了解创造的过程都极有利。定理大致是按“设想”→“突破”→“论证”三个层次得到的。

第一层,设想,把(a+b)2、(a+b)3并列排在一起,从而刺激人们去探讨(a+b)的其他的情况,再进一步则产生了去探讨(a+b)n的情况的设想。

第二层,突破,突破是由于追究了(a+b)4展开式的各项系数的来源,才得以实现的。为什么要从追究来源处解决?那是因为直接观察(a+b)2、(a+b)3等的展开式,要想从中发现如二项式定理中所表现的系数规律是很困难的,造成困难的原因是其各项系数已是经过计算而得出的结果,这种被加工的结果掩盖了它们各自的来源,直接观察数字系数不行,于是转而追究系数的来源,经过努力,借助于组合的思想、组合的符号,终于找到了规律。

在找规律的时候,采取解剖(a+b)4这一典型的方法,这无疑是一次数学中的试验。人们常有一种偏见,似乎一提试验就是物理、化学的事。其实不然,数学中也有大量运用试验,只是有时运用得不自觉而已。希望同学们在今后学习和解决数学问题时,能自觉运用这一方法。我们在研究(a+b)4展开式的系数时,

可以抓一项做为试验的典型,从中悟出道理,再以此为指导去认

识其它知识。

通过解剖(a+b )4摸索出规律,实现了突破,即找到了

(a+b )n

=()011.n n r n r r n n n n n n C a C a b C a b C b n N --++???++???+∈ 第三层,证明,上面的结论是分析了少数特例以后立即对任

何一般而得到的。也就是说,上述结论是用不完全归纳法得到的,

因此,其正确性还有待于证明,因为我们的教科书对这个定理的

证明不做要求,所以在此就不做更深层的研究。

4、二项展开式的通项。研究通项这种找代表、抓典型的方

法是值得学习的。我们知道,二项展开式的第r+1项r n r r n C a b -具有

代表性、典型性,所以称为通项。

1r n r r r n T C a b -+=叫通项公式。学习时要注意抓住通项公式的结构特

征。

课堂教学片段案例(二)

排列应用问题

一、 教学目标

1、 理解排列的意义,掌握排列数的计数公式,并能灵活运

用排列知识来解决排队、排数问题。

2、 培养学生对数学概念的理解能力和对公式、原理的应用

能力。

二、 教学重点与难点

重点是排列应用问题

难点是排列应用问题

三、教学情况设计

(一)设计情境,复习回顾

1、分类计数原理和分步计数原理

2、排列、排列数的概念及排列数公式是什么?

3、解排列应用问题的注意点

(1)认真审题。根据题意分析它属什么数学问题?题目中的事件是什么?有没有限制条件?通过怎样的程序来完成

这个事件?用什么计算方法?

(2)弄清问题的限制条件。注意研究问题,确定特定元素和特殊的位置。考虑问题的原则是特殊元素、特殊位置优先,必要时可通过试验、画图、小数字简化等手段帮助思考。(3)恰当分类,合理分步

4、解排列应用问题的基本思路和常用方法:

(1)基本思路

①直接法,即从条件出发,直接考虑符合条件的排列数。

②间接法,即先不考虑限制条件,求出所有排列数,然后再从中减去不符合条件的排列数。

(2)常用方法:特殊元素、特殊位置分析法、排除法、对称分析法、捆绑法、插空法、构造法等等。

(二)典型例题分析

例1.(1)现有5名男生、4名女生排成一行,则共有多少种不同的排法?

(2)男生、女生各自排在一起,则共有多少种不同的排法?

(3)女生排在一起,则共有多少种不同的排法?

(4)女生不相邻,则共有多少种不同的排法?

(5)男女相间排列,则共有多少种不同的排法?

(6)某甲在排头,则共有多少种不同的排法?

(7)某甲在排头,某乙在排尾,则共有多少种不同的排法?

(8)某甲不在排头,某乙不在排尾,则共有多少种不同的排法?

(9)某甲不在排头,也不在排尾,则共有多少种不同的排法?

(10)其中,甲、乙、丙三人顺序一定,则共有多少种不同的排法?

(11)其中男生顺序一定,女生顺序一定,则共有多少种不同的排法?

(12)排两排,前排4人,后排5人,则共有多少种不同的排法?

(13)排两排,前排4人,后排5人,甲在前排,乙、丙在后排,则共有多少种不同的排法?(本题请学生先自己分析,

然后与后面的结果进行查对,只要求列出算式)

例2 . 用1,2,3,4,5这五个数字,可以组成多少没有重复数字的

(1)四位数?

(2)自然数?

(3)能被5整除的四位数?

(4)四位奇数?

(5)大于40000的自然数?

(6)大于4000的自然数?

(7)在3000与4000之间的偶数?

(8) 3不在百位,5不在个位的五位数?

(9)偶数数字和奇数数字相间排列的五位数?

(10)偶数数字在偶数位上的五位数?

(11)所有四位数的个位数上数字之和?

(12)所有四位数之和?

(三)总结反思

1、本节学习的数学知识

2、本节学习的数学方法

(四)排难解惑

1、(1)由数字1,2,3,4,5可以组成多少个没有重复数字的正整数?

(2)由数字1,2,3,4,5可以组成多少个没有重复数

字,并且比13000大的正整数?

2、用0,1,2,3,4,5六个数字可以组成多少个没有重复数字的

(1)五位数

(2)六位偶数

(3)能被25整除的四位数

(4)大于201345的自然数

3、某地开展赈灾福利彩票销售有奖活动,号码从000001到999999,购买时揭号兑奖,若规定从个位起,第一、三、五位是不同的奇数,第二、四、六位均为偶数(可以相同)时为中奖号码,求中奖面所占的百分比(精确到0.01%)

5.2 统计案例

一,知识要求及变化

1,整体定位

课程标准对统计案例的整体定义如下:

学生将在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。

为了更好的理解整体定位,需要明确以下几个方面的问题:(1)通过对典型案例的讨论,了解回归分析的基本思路、方法及其初步应用。回归分析是对其有相关关系的两个变量进行统

计分析的一种常用方法。教学中应该通过生活中详实事例理解回归分析的方法,其步骤为通过散点图,直观地了解两个变量的关系,然后,通过最小二乘法建立回归模型,最后通过分析残差,相关指数等,评价模型的好坏。重点是了解回归分析的思想方法,对其理论基础不做要求,避免学生单纯记忆和机械套用公式进行计算。

(2)通过对典型案例的分析,了解独立性检验的基本思想、方法及其初步应用。教学中应用实例分析总结得出独立性检验的意义,并且认真体会独立性检验的基本思路类似于反证法,会用类比的思想方法得出独立性检验的基本步骤。重点是了解独立性检验的思想方法,对其理论基础不做要求,避免学生单纯记忆和机械套用公式进行计算。另外,通过以上两种思想方法学习,让学生有真正对统计思维和确定思维差异的理解。

(3)回归分析和独立性检验两种思想方法的学习重在使用。这部分内容是《必修3》统计内容的深化,反映了对已学知识的螺旋式上升的认识过程,也充分体现两种思想应用价值,在应用中不断提高对两种思想方法的认识。

2,课程标准的要求

通过典型案例,学习下列一些常用的统计方法,并能初步应用这些方法解决一些实际问题。

①通过对典型案例(如“患肺癌与吸烟有关吗”等)的探究。

了解独立性检验(只要求2×2列联表)的基本思想、方法及

初步应用。

②通过对典型案例(如“人的体重与身高的关系”等)的探究,了解回归的基本思想、方法及其初步应用。

3,课程标准要求的具体化和深广度分析。

(1)如何认识回归分析的基本思想。

在必修课程《数学3》的基础上,我们进一步研究两个变量的关系。由实例,通过散点图直观地了解两个变量的关系,然后通过最小二乘法建立回归模型,最后通过分析残差,相关指数等,评价模型的好坏。如果模型比较好地刻画了两个变量的关系,对自变量的某个值,就可以通过模型预测相应固变量的值。

例如:在教学中解决如下三个问题,就能加深认识回归分析的思路:

①在两个变量的回归分析中做散点图的目的是什么?

②在回归分析中,分析残差能够帮助我们解决哪些问题?

③如果发现散点图中所有的样本点都在一条直线上,请回答下列问题:

a,解释变量和预报变量的关系是什么?残差平方和是什么?

b,解释变量和预报变量之间的相关系数是多少?

例如:收集本班某一学期的期中和期末数学考试成绩,二者之间可以用线性模型来描述吗?如果可以,请问,期中成绩能够在多大程度上解释期末的成绩?进一步地发现数据中的异常点,分析其形成的原因。

(2)如何认识独立性检验的基本思想

具体实例中,例如研制出一种新药,需要判断此药是否有效?再比如有人怀疑吸烟的人更容易患肺癌,那么吸烟是否与患肺癌有关呢?在对类似的问题作出推断时,我们不能仅凭主观意愿作出结论。需要通过试验来收集数据,并依靠独立性检验的原理作出合理的推断。教学中避免学生单纯记忆和机械套用公式进行计算。

4 教学要求

(1)标准与大纲要求的对比与说明:

在具体内容上,标准与大纲有明显区别:

①从知识要求上来看标准要求较大纲高一些,标准要求了

解回归分析和独立性检验的两种基本思想,并强调通过

对典型案例(如“人的体重与身高的关系”、“患肺癌

与吸烟有关吗”等等)的探究,加深对两种基本思想的

认识。

②大纲中只要求“了解线性回归的方法和简单应用”,并未

提出加深对回归的基本思想的了解或认识,要求比较肤

浅。

(2)教学要求

①这部分内容约4节课时。

②统计案例的教学中,应鼓励学生经历数据处理的过程,培养他们对数据的直观感觉,认识统计方法和特点(如统计推断可能犯错误,估计结果的随机性),体会统计方法应用的广泛性,以丰富学生对数学文化价值的认识。对于统计案例内容,只要求学生了解几种统计方法的基本思想及其初步应用,对于其理论基础不做要求,避免学生单纯记忆和机械套用公式进行计算。应尽量给学生提供一定的实践活动机会,可结合教学建摸的活动,选择一个案例,要求学生亲自实践。

③教学中,应鼓励学生使用计算器、计算机等现代技术手段来处理数据,有条件的学校还可运用一些常用的统计软件解决实

际问题。

二、重点和难点

1.重、难点分析

(1)、在“正态分布”这一节中,根据新课标的要求:要认识正态分布、曲线的特点及曲线所表示的意义,因此本节的教学重点是正态分布的意义和正态曲线的性质,难点是要结合指数函数的性质来理解这些性质。突破难点的关键是把指数函数的性质与正态曲线图形结合起来,并配合多媒体手段以增强直观性。

(2)、在“统计案例”这一章中,教学重点是回归分析的基本思想和独立性检验的基本思想,难点是:掌握建立回归模型的基本步骤和利用随机变量K2来确认“两个分类变量有关系”这一结论成立的可信程度(类似于反证法)。突破难点的关键是建立线性回归模型和列出2×2列联表求随机变量K2,并配合多媒体手段以增强其直观性。

2.重、难点教学案例

案例:相关关系与回归分析的概念的教学片段

一、导入新课

教师提出问题,引发学生讨论.

问题1. 我们知道,函数的两个变量x,y有着确定的关系,但是不是两个变量之间的关系都是确定的呢?譬如,一块农田的水稻产量与施肥量之间的关系,它们是否有必然而确定的关系呢?

问题2. 在7块并排、形状大小相同的试验田上,进行施化

高考数学-计数原理-1-二项式定理

专项-二项式定理 知识点 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等 于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与 b 的系数(包括二项式系数) 。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和:

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++ 等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求9 1()x x -的展开式中3 x 的系数及二项式系数

计数原理与二项式定理

小题精练:计数原理与二项式定理(限时:50分钟) 1.甲、乙两人计划从A 、B 、C 三个景点中各选择两个游玩,则两人所选景点不全相同的选 法共有( ) A .3种 B .6种 C .9种 D .12种 2.(2013·高考四川卷)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a , b ,共可得到lg a -lg b 的不同值的个数是( ) A .9 B .10 C .18 D .20 3.(2013·高考全国卷)(x +2)8 的展开式中x 6 的系数是( ) A .28 B .56 C .112 D .224 4.将4名实习教师分配到高一年级的3个班实习,若每班至少安排1名教师,则不同的分 配方案种数为( ) A .12 B .36 C .72 D .108 5.(2014·济南市模拟)二项式? ?????x 2-13x 8 的展开式中常数项是( ) A .28 B .-7 C .7 D .-28 6.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,不许有空盒且任意一 个小球都不能放入标有相同标号的盒子中,则不同的放法有( ) A .36种 B .45种 C .54种 D .84种 7.一个盒子里有3个分别标有号码1,2,3的小球,每次取出一个,记下它的标号后再放 回盒子中,共取3次,则取得小球标号最大值是3的取法有( ) A .12种 B .15种 C .17种 D .19种 8.(2014·安徽省“江南十校”联考)若(x +2+m)9 =a 0+a 1(x +1)+a 2(x +1)2 +…+a 9(x + 1)9 ,且(a 0+a 2+…+a 8)2 -(a 1+a 3+…+a 9)2 =39 ,则实数m 的值为( ) A .1或-3 B .-1或3 C .1 D .-3 9.我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合 数”中首位为2的“六合数”共有( ) A .18个 B .15个 C .12个 D .9个 10.设复数x =2i 1-i (i 是虚数单位),则C 12 013x +C 22 013x 2+C 32 013x 3+…+C 2 0132 013x 2 013 =( ) A .i B .-I C .-1+i D .1+i 11.(2014·郑州市质检)在二项式? ?? ???x +1 2·4x n 的展开式中,前三项的系数成等差数列, 把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( )

二项式定理11种题型解题技巧

二项式定理知识点及11种答题技巧 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和:

高考数学 考点23 两个计数原理、排列、组合及其应用、

考点23 两个计数原理、排列、组合及其应用、 二项式定理及应用 1.(2010·湖北高考文科·T6)现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( ) (A)65(B)56(C)565432 2 ????? (D)6543 ????2 【命题立意】本题主要考查分类和分步计数原理,考查考生的逻辑推理能力. 【思路点拨】因每名同学可自由选择其中的一个讲座,故6名同学的安排可分6步进行,每步均有5种选择,由分步计数原理即可得出答案. 【规范解答】选A.每名同学可自由选择5个讲座中的其中一个讲座,故6名同学的安排可分6步进行,每步均有5种选择,因此共有65种不同选法. 【方法技巧】本题每名同学可自由选择其中的一个讲座,故每位同学的选择都有5种,共有65种不同选法.若将“每名同学可自由选择其中的一个讲座”改为“每一个讲座都至少有一位同学去听”,它就是一个典型的不同元素的分组问题.利用“先分堆,再分配”的思想将6名同学分为5堆,再分给5个不同的讲座, 有 25 65 1800 C A= 1 800种不同选法. 2.(2010·湖北高考理科·T8)现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是() (A)152 (B)126 (C)90 (D)54 【命题立意】本题主要考查分类和分步计数原理,考查排列、组合知识的应用,考查考生的运算求解能力.【思路点拨】由甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作知,司机工作很特殊.按安排几个人担任司机工作可分为两类:①司机只安排1人;②司机安排2人,然后将其余的人安排到其他三个不同的位置. 【规范解答】选B.当司机只安排1人时,有 123 343 C C A =108(种);当司机安排2人时有 23 33 C A =18(种).由分类 计数原理知不同安排方案的种数是108+18=126(种). 【方法技巧】本题要求每项工作至少有一人参加,因此属于不同元素的分组问题,解题时往往采用“先分堆,再分配”的办法.若去掉“每项工作至少有一人参加”的限制,则甲、乙二人各有3种选择,丙、丁、 戊各有4种选择,因此共有33444576 ????=(种)安排方案. 3.(2010·全国高考卷Ⅱ理科·T6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( ) (A)12种(B)18种(C)36种(D)54种 【命题立意】本题考查了排列、组合的知识. 【思路点拨】运用先选后排解决,先从3个信封中选取一个放入标号为1,2的2张卡片,然后剩 余的2个信封分别放入2张卡片. 【规范解答】选B.标号为1,2的卡片放法有A 1 3种,其他卡片放法有 2 2 2 4 C C种,所以共有A132 2 2 4 C C=18 (种). 【方法技巧】先排列特殊元素是解决排列、组合问题的常用方法.

二项式定理 练习题 求展开式系数的常见类型

二项式定理 1.在()103x -的展开式中,6 x 的系数为 . 2.10()x -的展开式中64x y 项的系数是 . 3.92)21(x x -展开式中9x 的系数是 . 4.8)1(x x - 展开式中5x 的系数为 。 5.843)1()2 (x x x x ++-的展开式中整理后的常数项等于 . 6.在65 )1()1(x x ---的展开式中,含3x 的项的系数是 . 7.在x (1+x )6的展开式中,含x 3项的系数为 . 8.()()8 11x x -+的展开式中5x 的系数是 . 9.72)2)(1(-+x x 的展开式中3x 项的系数是 。 10.54)1()1(-+x x 的展开式中,4x 的系数为 . 11.在6 2)1(x x -+的展开式中5x 的系数为 . 12.5)212(++x x 的展开式中整理后的常数项为 . 13.求(x 2+3x -4)4的展开式中x 的系数.

14.(x 2+x +y )5的展开式中,x 5y 2的系数为 . 15.若 32()n x x -+的展开式中只有第6项的系数最大,则n= ,展开式中的常数项是 . 16.已知(124 x +)n 的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数. 17.在(a +b )n 的二项展开式中,若奇数项的二项式系数的和为64,则二项式系数的最大值为________. 18.若2004200422102004...)21(x a x a x a a x ++++=-)(R x ∈,则展开式的系数和为________. 19.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,则a 1+a 2+…+a 7的值是________. 20.已知(1-2x +3x 2)7=a 0+a 1x +a 2x 2+…+a 13x 13+a 14x 14.求:(1)a 1+a 2+…+a 14; (2)a 1+a 3+a 5+…+a 13.

(推荐)高中数学二项式定理

二项式定理 【2011?新课标全国理,8】51()(2)a x x x x +-的展开式中各项系数的和为2,则该展开式中常数项为( ). A .-40 B .-20 C .20 D .40 【答案】D 【最新考纲解读】 二项式定理 (1)能用计数原理证明二项式定理. (2)会用二项式定理解决与二项展开式有关的简单问题. 【回归课本整合】 1.二项式定理的展开式 011()n n n r n r r n n n n n n a b C a C a b C a b C b --+=+++++,其中组合数r n C 叫做第r +1项的二 项式系数;展开式共有n +1项. 注意:(1)项的系数与二项式系数是不同的两个概念,但当二项式的两个项的系数都为1 时,系数就是二项式系数。如在()n ax b +的展开式中,第r+1项的二项式系数为r n C ,第

3.项的系数和二项式系数的性质 (1)对称性:与首末两端“等距离”的两个二项式系数相等( m n m n n C C- = ). 【方法技巧提炼】

(2)()()n m a b c d ++结构:①若n 、m 中一个比较小,可考虑把它展开得到多个;②观察()()a b c d ++是否可以合并;③分别得到()()n m a b c d ++、 的通项公式,综合考虑. 例2 61034(1)(1)x x 展开式中的常数项为( ) A .1 B .46 C .4245 D .4246

答案: D 例3 5 )2 1 2 (+ + x x 的展开式中整理后的常数项为 .

答案: 632 例5 若对于任意实数x,有 323 0123 (2)(2)(2) x a a x a x a x =+-+-+- ,则2 a的值为()

二项式定理知识点总结复习过程

二项式定理知识点总 结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110(*∈N n )等号右边的多项式 叫做()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设 x b a ==,1,则()n n n k n k n n n n n x C x C x C x C x +++++=+-ΛΛ101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式;另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++Λ等于 ( ) A .n 4 B 。n 43? C 。134-n D.314-n 例2.(1)求7(12)x +的展开式的第四项的系数;

二项式定理10种题型的解法

二项式定理十种题型及解法 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N * +=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和:

排列组合与二项式定理知识点

排列组合与二项式定理知识点

第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序...... 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: ) ,,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--=Λ 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 1 1 --=m n m n nA A 规定10 ==n n n C C

2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排 列个数等于! !...!!2 1 k n n n n n =. 例如:已知数字3、2、2,求其排列个数3 ! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列 个数1!3!3==n . 三、组合. 1. ⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. ⑵组合数公式: )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -= +--==Λ ⑶两个公式:①;m n n m n C C -= ②m n m n m n C C C 11+-=+ ①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合. (或者从n+1个编号不同的小球中,n 个白球一

二项式定理及性质

二项式定理及系数2019/3/23 一、二项式定理: 例题:1.(x +2)6的展开式中x 3的系数是 2.(2x -12x )6的展开式的常数项是 3.在(1-x )5-(1-x )6的展开式中,含x 3的项的系数是 4.??? ?x +a x 5(x ∈R )展开式中x 3的系数为10,则实数a 等于 5.533)1()21(x x -+的展开式中x 的系数是 练习: 1.若(x +a )5的展开式中的第四项是10a 2(a 为大于0的常数),则x =________. 2.(1+x +x 2)??? ?x -1x 6的展开式中的常数项为__________. 3.n x x )2 (3+展开式第9项与第10项二项式系数相等,则x 的一次项系数是 4.用二项式定理证明1110-1能被100整除. 二、二项式系数的性质: 例题:1.已知(2-x )10=a 0+a 1x +a 2x 2+…+a 10x 10,则a 8等于 2.二项展开式(2x -1)10中x 的奇次幂项的系数之和为 3.在(a -b )20的二项展开式中,二项式系数与第6项二项式系数相同的项是 4.(1+x )+(1+x )2+…+(1+x )n 的展开式中各项系数和为 5.若??? ?x +1x n 展开式的二项式系数之和为64,则展开式的常数项为 6.设(x 2+1)(2x +1)9=a 0+a 1(x +2)+a 2(x +2)2+…+a 11(x +2)11,则a 0+a 1+a 2+…+a 11 练习: 1.若? ???x 2+1x 3n 展开式的各项系数之和为32,则其展开式中的常数项是________. 2.若? ???x 3+1x 2n 的展开式中,仅第六项系数最大,则展开式中不含x 的项为________. 3.已知(1-2x )7=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a 7(x -1)7.求: (1)a 0+a 1+a 2+…+a 7; (2)a 0+a 2+a 4+a 6.

二项式定理试题类型大全

二项式定理试题类型大全 一.选择题 1.有多少个整数n 能使(n+i)4成为整数(B )A.0 B.1 C.2 D.3 2. ()82x -展开式中不含..4x 项的系数的和为(B )A.-1 B.0 C.1 D.2 3.若S=123100123100A A A A ++++L L ,则S 的个位数字是(C ) A 0 B 3 C 5 D 8 4.已知(x - x a )8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( C )A.28 B.38 C.1或38 D.1或28 5.在3100(25)+的展开式中,有理项的个数是()A.15个B.33个.17个D.16个 6.在2431??? ? ??+x x 的展开式中,x 的幂指数是整数的项共有(C ) A .3项 B .4项 C .5项 D .6项 7.在(1-x)5-(1-x)6的展开式中,含x 3的项的系数是( C ) A 、-5 B 、 5 C 、10 D 、-10 8.35)1()1(x x +?-的展开式中3x 的系数为( ) A .6B .-6 C .9D .-9 9.若x= 21,则(3+2x)10的展开式中最大的项为(B )A.第一项B.第三项 C.第六项 D.第八项 10.二项式431(2)3n x x - 的展开式中含有非零常数项,则正整数n 的最小值为( ) A .7 B .12 C .14 D .5 11.设函数,)21()(10x x f -=则导函数)(x f '的展开式2x 项的系数为(C ) A .1440 B .-1440 C .-2880 D .2880 12.在51(1)x x +-的展开式中,常数项为( B ) (A )51 (B )-51 (C )-11 (D )11 13.若32(1)1()n n x x ax bx n *+=+++++∈N L L ,且:3:1a b =,则n 的值为( C ) A.9 B.10 C.11 D.12 14.若多项式102x x +=10109910)1()1()1(++++???+++x a x a x a a ,则=9a ( ) (A ) 9 (B )10 (C )9- (D )10- 故选D 。 17.若二项式6)sin ( x x -θ展开式的常数项为20,则θ值为( B ) A. )(22Z k k ∈+ππ B. )(22z k k ∈-ππ C. 2π D. 2π- 18.5310 被8除的余数是( )A 、1 B 、2 C 、3 D 、7 19已知i x +=2,设444334224141x C x C x C x C M +-+-=,则M 的值为( ) A 4 B -4i C 4i D 20.数(1.05)6的计算结果精确到0.01的近视值是………………………( ) A .1.23 B .1.24 C .1.33 D .1.44

高考数学分类解析专题计数原理和二项式定理理

2019高考数学最新分类解析专题10计数原理 和二项式定理(理) 一.基础题 1.【2013年山东省日照市高三模拟考试】设 321x x ??+ ??? 旳展开式中旳常数项为 a ,则直线 y ax =与曲线2y x =围成图形旳面积为 A.272 B.9 C.92 D.274 【答案】C 【解析】.∵x x 23 1 ( ) 旳展开式中旳常数项为 23C ,即3a =. 2.【东北三省三校2013届高三3月第一次联合模拟考试】若 3 1() 2n x x - 旳展开式中第四 项为常数项,则n =( ) A .4 B .5 C .6 D .7 3.【广西百所高中2013届高三年级第三届联考】从5位男生,4位女生中选派4位代 表参 加一项活动,其中至少有两位男生,且至少有1位女生旳选法共有 ( ) A .80种 B .100种 C .120种 D .240种 【答案】B 【解析】 2231 5454100C C C C +=. 4.【北京市顺义区2013届高三第一次统练】从0,1中选一个数字,从2,4,6中选两个数字,组成无重复数字旳三位数,其中偶数旳个数为 A.36 B.30 C.24 D.12 【答案】C 【解析】若选1,则有 21232212C C A =种·若选0,则有232 332()12C A A -=种,所以共有 121224+=,选C.

5.【北京市昌平区2013届高三上学期期末理】在高三(1)班进行旳演讲比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连续出场,且女生甲不能排在第一个,那么出场顺序旳排法种数为 A. 24 B. 36 C. 48 D.60 6.【北京市朝阳区2013届高三上学期期末理】某中学从4名男生和3名女生中推荐4人参 加社会公益活动,若选出旳4人中既有男生又有女生,则不同旳选法共有 A . 140种 B . 120种 C . 35种 D . 34种 7.【广西百所高中2013届高三年级第三届联考】 51(2) 2x -旳展开式中2x 旳系数是( ) A .5 B .10 C .-15 D .-5 【答案】D 【解析】由二项式旳通项公式得2x 旳系数为 22 3 5 12()5 2 C -=- 8.【北京市丰台区2013届高三上学期期末理】从装有2个红球和2个黑球旳口袋内任取2个球,则恰有一个红球旳概率是 (A) 13 (B) 12 (C) 23 (D) 56 【答案】C 【解析】P = 1122 24 C C C =2 3 故选C ·

二项式定理知识点总结

二项式定理知识点总结 1.二项式定理公式: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。 各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是0 1 2 ,,,,,,. r n n n n n n C C C C C ??????项的系数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N * +=++++++∈L L

令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即 0,n n n C C =·1 k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:0242132111222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和: 00112220120120011222021210 01230123()()1, (1)1,(1)n n n n n n n n n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----L L L L n n L n n n L 024135(1)(1),() 2 (1)(1),() 2 n n n n n n a a a a a a a a a a a a ----++-++++=+---+++=n n n n L n n n n n n n n n n L n n n n n n n ⑤二项式系数的最大项: 如果二项式的幂指数n 是偶数时,则中间一项的二项式系数21 2n n n C T +=取得最大值。

例说二项式定理的常见题型及解法

例说二项式定理的常见题型及解法 二项式定理的问题相对较独立,题型繁多,解法灵活且比较难掌握。二项式定理既是排列组合的直接应用,又与概率理论中的三大概率分布之一的二项分布有着密切联系。二项式定理在每年的高考中基本上都有考到,题型多为选择题,填空题,偶尔也会有大题出现。本文将针对高考试题中常见的二项式定理题目类型一一分析如下,希望能够起到抛砖引玉的作用。 一、求二项展开式 1.“n b a )(+”型的展开式 例1.求4)13(x x + 的展开式; 解:原式=4 )1 3( x x +=2 4)13(x x + = ])3()3()3()3([144342 243144042C C C C C x x x x x ++++ =)112548481(1 2342++++x x x x x =541 12848122++++x x x x 小结:这类题目一般为容易题目,高考一般不会考到,但是题目解决过程中的这种“先化简在展开”的思想在高考题目中会有体现的。 2. “n b a )(-”型的展开式 例2.求4)13(x x - 的展开式; 分析:解决此题,只需要把4)13(x x - 改写成4)]1(3[x x -+的形式然后按照二项展开式的格式展 开即可。本题主要考察了学生的“问题转化”能力。 3.二项式展开式的“逆用” 例3.计算c C C C n n n n n n n 3)1( (279313) 2 1 -++-+-; 解:原式=n n n n n n n n C C C C C )2()31()3(....)3()3()3(3 33 22 11 -=-=-++-+-+-+ 小结:公式的变形应用,正逆应用,有利于深刻理解数学公式,把握公式本质。

计数原理及二项式定理概念公式总结

排列组合及二项式定理概念及公式总结 1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 N=m 1+m 2+……+m n 2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有N=m 1×m 2×……m n 种不同的方法 分类要做到“不重不漏”,分步要做到“步骤完整” 3.两个计数原理的区别: 如果完成一件事,有n 类办法,不论哪一类办法中的哪一种方法,都能独立完成这件事,用分类计数原理, 如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,用分步计数原理. 4.排列:从n 个不同的元素中取出m 个(m ≤n)元素并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. (1)排列数: 从n 个不同的元素中取出m 个(m ≤n)元素的所有排列的个数.用符号m n A 表示 (2)排列数公式:)1()2)(1(+-???--=m n n n n A m n 或m n A )! (! m n n -=() n m N m n ≤∈*,, n n A =!n =()1231????- n n =n(n-1)! 规定 0!=1 5.组合:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 (1)组合数: 从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,用m n C 表示 (2)组合数公式: (1)(2)(1) ! m m n n m m A n n n n m C A m ---+==或 )! (!! m n m n C m n -= ),,(n m N m n ≤∈*且

二项式定理的高考常见题型及解题对策

二项式定理的高考常见题型及解题对策 浙江省温州22中学 高洪武 325000 二项式定理是初中学习的多项式乘法的继续,它所研究的是一种特殊的多项式----二项式的乘方的展开式。二项式定理既是排列组合的直接应用,又与概率理论中的三大概率分布之一的二项分布有着密切联系。掌握好二项式定理既可对初中学习的多项式的变形起到很好的复习,深化作用,又可以为进一步学习概率统计作好必要的知识储备。所以有必要掌握好二项式定理的相关内容。二项式定理在每年的高考中基本上都有考到,题型多为选择题,填空题,偶尔也会有大题出现。本文将针对高考试题中常见的二项式定理题目类型一一分析如下,希望能够起到抛砖引玉的作用。 题型一:求二项展开式 1.“n b a )(+”型的展开式 例1.求4 )13(x x + 的展开式; 解:原式=4 )13( x x += 2 4 ) 13(x x + = ])3()3()3()3([144 3 4 2 2 4 3 1 4 4 42 C C C C C x x x x x ++++ = )112548481(12 3 4 2 ++++x x x x x =5411284812 2 ++ + +x x x x 小结:这类题目一般为容易题目,高考一般不会考到,但是题目解决过程中的这种“先化简在展开”的思想在高考题目中会有体现的。 2. “n b a )(-”型的展开式 例2.求4 )13(x x - 的展开式; 分析:解决此题,只需要把4 )13(x x - 改写成4 )]1(3[x x - +的形式然后按照二 项展开式的格式展开即可。本题主要考察了学生的“问题转化”能力。 3.二项式展开式的“逆用” 例3.计算c C C C n n n n n n n 3 )1( (279313) 2 1 -++-+-; 解:原式=n n n n n n n n C C C C C )2()31()3(....)3()3()3(3 3 3 2 2 1 1 -=-=-++-+-+-+ 小结:公式的变形应用,正逆应用,有利于深刻理解数学公式,把握公式本质。 题型二:求二项展开式的特定项

第十一篇 计数原理第3讲 二项式定理

第3讲二项式定理 1.能用计数原理证明二项式定理. 2.会用二项式定理解决与二项展开式有关的简单问题. 【复习指导】 二项式定理的核心是其展开式的通项公式,复习时要熟练掌握这个公式,注意二项式定理在解决有关组合数问题中的应用. 基础梳理 1.二项式定理 (a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n(n∈N*)这个公式所表示的定理叫二项式定理,右边的多项式叫(a+b)n的二项展开式. 其中的系数C r n(r=0,1,…,n)叫二项式系数. 式中的C r n a n-r b r叫二项展开式的通项,用T r+1表示,即通项T r+1=C r n a n-r b r. 2.二项展开式形式上的特点 (1)项数为n+1. (2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n. (3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n. (4)二项式的系数从C0n,C1n,一直到C n-1 n ,C n n. 3.二项式系数的性质 (1)对称性:与首末两端“等距离”的两个二项式系数相等.即C r n=C n-r n . (2)增减性与最大值: 二项式系数C k n,当k<n+1 2时,二项式系数逐渐增大.由对称性知它的后半部分 是逐渐减小的; 当n是偶数时,中间一项C n 2n取得最大值; 当n是奇数时,中间两项C n-1 2n,C n+1 2n取得最大值. (3)各二项式系数和:C0n+C1n+C2n+…+C r n+…+C n n=2n;

C0n+C2n+C4n+…=C1n+C3n+C5n+…=2n-1. 一个防范 =C r n a n-r b r,注意(a+b)n与(b+a)n虽然相同,运用二项式定理一定要牢记通项T r +1 但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n,而后者是字母外的部分.前者只与n和r有关,恒为正,后者还与a,b有关,可正可负.一个定理 二项式定理可利用数学归纳法证明,也可根据次数,项数和系数利用排列组合的知识推导二项式定理.因此二项式定理是排列组合知识的发展和延续. 两种应用 (1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等. (2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等. 三条性质 (1)对称性; (2)增减性; (3)各项二项式系数的和; 以上性质可通过观察杨辉三角进行归纳总结. 双基自测 1.(2011·福建)(1+2x)5的展开式中,x2的系数等于(). A.80 B.40 C.20 D.10 =C r5(2x)r=2r C r5x r, 解析T r +1 当r=2时,T3=40x2. 答案 B 2.若(1+2)5=a+b2(a,b为有理数),则a+b=(). A.45 B.55 C.70 D.80 解析(1+2)5=1+52+10(2)2+10(2)3+5(2)4+(2)5=41+29 2 由已知条件a=41,b=29,则a+b=70.

相关文档
相关文档 最新文档