文档库 最新最全的文档下载
当前位置:文档库 › 光纤端面研磨机

光纤端面研磨机

光纤端面研磨机
光纤端面研磨机

光纤连接器端面检测技术

光纤连接器端面检测技术 1. 前言 随着网络应用的扩大和网络情报流量的急速增加,公共网及局域网对网络带宽的要求越来越高。带宽网络也就应运而生。具有代表性的带宽网络有使用电话线的 ADSL(Asymmetric Digital Subscriber Line), 使用有线电视线路的CATV(CAble TeleVvision), 使用无线发射与接收的无线网络,还有使用光纤的光纤通信网络。 作为现代通讯讯号的传播介质,光纤通信具有其独特的优点。其传送速度比一般ADSL方式及CATV方式至少快一个数量级。并且不受高压线及电视,收音机的电磁波的影响,保密性强。此外,光纤所用的材料是地球上大量存在的硅, 所以不会有资源枯竭的问题。自从光纤通信正式进入电信网络以来,它已经成为现代化通信网的主要支柱之一。近年来,随着光同步数字系列(SDH)、掺铒光纤放大器(EDFA)、密集波分复用(DWDM等技术的商业化,光纤通信系统的传输容量不断扩大,光纤传输的带宽潜力和技术优越性不断得到挖掘和发挥。与此同时,由于互联网的迅速普及,世界各国纷纷把光纤接入网的发展作为战略性的国策加以重视。基 于波长多重(DWDM的光通讯大容量化,光纤家家通FTTH (Fiber To The Home)计划也在急速的展开。 光通信需要大量的光纤连接器,用于远程电话通讯装置间的连接,程控电话交换机, 中继器,以及同一电讯局内的通讯装置间的连接等。由于对光纤通信网络的经济性和高性能的要求,高信頼性,小型化,低成本的光纤连接器就显得非常重要。 由于光纤是一种直径仅有数微米能传送光信号的纤芯和将光束缚在纤芯内的覆盖层构成的高纯度石英玻璃拉制而成的玻璃丝线,为了提高光纤连接及光信号传输的效率,必需控制光纤连接器的几何参数以减少光纤连接的插入损耗和回损(或称为反射減衰量) 。例如,对于插入损耗,一般要求在0.05dB 以下。对于回损,通常研磨

光纤端面清洗操作规范及判定标准

作业指导类文件 光纤端面清洗操作规范及判定标准 一、名称:光纤端面清洗操作规范及判定标准 二、内容:模块清洗的操作方式和判定标准,以及清洗机的使用和维护。 三、适用范围:此作业指导书适应于恒宝通单、多模组件/模块的光纤端面清洁,及清洗机的维护。

四、所需仪器、设备及工具:台式清洗机/手提式清洗机、酒精、棉签、牙签、棉、防静电手链。 电源开关 初始化按键 (B) (C)(D) SC清洗针头 探测针头LC清洗针头 LC探测针头 ) 弹簧开关 (I) (J) 6.1 检查区域的划分

Zone 1a(A区):中间直径25微米以内部分,对于单模光纤包括部分的包层(cladding),对于多模光纤就只包含纤芯的中间部分; Zone 1b(B区):从直径25微米以外至直径120微米部分,对于单模光纤包括大部分的包层部分,对于多模光纤包含纤芯的外围部分和包层的部分; Epoxy Zone Ring(C区):中间直径120微米以外,130微米以内部分,为环氧树脂区域,包层边缘10微米宽度部分; Zone 2(D区):中间直径130微米以外,250微米以内部分,扩展到陶瓷插芯部分区域。 Zone 3(E区):中间直径250微米以外的部分。 6.2 不良现象定义: 6.3 PC/UPC/APC单模连接头端面外观检查标准:

PC/UPC/APC 多模连接头端面外观检查标准: 1)多模连接头端面划痕:通过纤芯(纤芯的直径为50um 或62.5um )的划痕不允许超过2条,且划痕宽度必须小于2um ,见示例图片6.4.5.1和6.4.5.2); 2)其余各项检查标准和单模连接头相同。 注意: 1. 可清除的任何污染物一定要被清除. 2. 任何污染物过多的区域受制于最严格的标准. 3. 测量污染物的大小时应使用最大的直径. 6.4 图片示例 (说明:当肉眼无法判定污点/划痕等大小时,须依据对比图做出判定,见下图所示:) 光通道端面判定对比图(仅适用于台式显示器200X 放大时使用) 6.4.1 脏污: 5um 10um 20um 30um 50um 2um 5um

光纤连接器的标准要求

光纤连接器,是光纤与光纤之间进行可拆卸(活动)连接的器件,它把光纤的两个端面精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去,并使由于其介入光链路而对系统造成的影响减到最小,这是光纤连接器的基本要求。在一定程度上,光纤连接器影响了光传输系统的可靠性和各项性能。 光纤是传光的纤维波导,裸纤一般分为三层:中心高折射率玻璃芯,折射率较高,用来传送光;中间为低折射率硅玻璃包层,与纤芯一起形成全反射条件;最外是保护用的树脂涂层。 光纤分类方法很多,可以按照传输模式、工作波长、折射率分布、等进行分类。 (一)按传输模式 多模光纤:可传输多种模式的光,外径一般为125微米(一根头

发平均100微米),典型纤芯直径为50或62.5微米。 单模光纤:只能传输一种模式的光,外径与多模光纤相同,但纤芯直径较细,一般为9微米。 如何辨别单模光纤与双模光纤呢?最常规的分辨方法就是:黄色的光纤线一般是单模光纤,橘红色或者灰色的光纤线一般是多模光纤。 单模光纤不存在模间时延差,且模场直径仅几微米,带宽一般比渐变型多模光纤的带宽高一两个数量级。因此,它适用于大容量、长距离通信。 (二)按工作波长 短波长光纤:光纤的工作波长为850nm。 长波长光纤:光纤的工作波长为1300nm和1550nm。 光纤损耗一般是随波长加长而减小,850nm的损耗约为2.5dB/km,1300nm的损耗约为0.35dB/km,1550nm的损耗约为0.20dB/km,这是光纤的最低损耗,波长1650nm以上的损耗趋向加大。 (三)按光纤材料 石英光纤:一般是指由掺杂石英芯和掺杂石英包层组成的光纤。这种光纤有很低的损耗和中等程度的色散。目前通信用光纤绝大多数是石英光纤。 全塑光纤:用高度透明的聚苯乙烯制成的,成本低,使用方便,但损耗较大、带宽较小,只适合短距离低速率通信。

光纤端面处理工艺流程

光纤端面处理工艺流程 摘要:本文主要分析了光纤端面处理熔接对光纤激光器功率的影响,研究了光纤端面处理工艺流程,分析了光纤端面的切割和研磨方法,对光纤熔接过程提出了具体要求,为同类激光器的研制提供了参考依据。 1、前言光纤是圆柱形介质波导由纤芯、包层和涂敷层3部分组成,一般单模和多模光纤的纤芯直径分别为5~15μm和40~100μm,包层直径大约为125~600μm。经过处理的光纤端面,理想状态是一个光滑平面。但实际中,光纤端面的加工往往不能达到理想状态,例如抛光不理想、有划痕、表面或边缘破碎损伤等等,都将使端面情况复杂化。对于光纤与激光器中其它元件的耦合以及光纤之间的熔接来说,要求光纤端部必须有光滑平整的表面,否则会增大损耗。本文分类介绍了光纤损耗产生的原因,通过实验验证了光纤端面质量对光纤激光器输出功率的影响,研究了光纤端面处理工艺流程,分析了光纤端面的切割和研磨方法,对光纤熔接过程提出了具体要求,为同类激光器的研制提供了参考依据。 2、光纤损耗种类 2.1光纤本征损耗光纤本征损耗即光纤固有损耗,主要由于光纤机基质材料石英玻璃本身缺陷和含有金属过渡杂质和OH- ,使光在传输过程中产生散射、吸收和色散,一般可分为散射损耗,吸收损耗和色散损耗。其中散射损耗是由于材料中原子密度的涨落,在冷凝过程中造成密度不均匀以及密度涨落造成浓度不均匀而产生的。吸收损耗是由于纤芯含有金属过渡杂质和OH-吸收光,特别是在红外和紫外光谱区玻璃存在固有吸收。光纤色散按照产生的原因可分为三类,即材料色散、波导色散和模间色散。其中单模光纤是以基模传输,故没有模间色散。在单模光纤本征因素中,对连接损耗影响最大的是模场直径。单模光纤本征因素引起的连接损耗大约为0.014dB,当模场直径失配20%时,将产生0.2dB的连接损耗。多模光纤的归一化频率

光纤连接器之插损

光纤连接器的插入损耗 深圳市光波通信有限公司 罗群标 张磊 徐晓林 光纤连接器作为光通信系统中最基本也是最重要的光纤无源器件,其市场需求量越来越大。近年来随着光纤宽带接入系统的发展,光纤链路中光纤连接器(包括其它有源及无源器件上使用的连接头)的使用越来越多,这对光纤连接器的插入损耗的测试准确性提出了越来越高的要求。本文将就影响光纤连接器插入损耗的原因以及如何确保插入损耗测试的准确性及可靠性等问题作以简单的论述。 一. 有关概念 1. 光纤连接器插入损耗(IL )的定义: IL=0 1lg 10P P ? (dB) 其中P1为输出光功率,P0为输入光功率。插入损耗单位为dB 。 2. 光纤连接器插入损耗的测试方法 光纤连接器的插入损耗的测试方法一般有三种:基准法、替代法、标准跳线比对法。 由于在大批量的生产过程中,要求插入损耗的测试必须快速、准确且无破坏性。因此现在的生产厂家大都采用第三种方法,即标准跳线比对法。其测试原理图如下: 4 1 2 3 标准适配器 光功率计 稳定光源 标准测试跳线 被测跳线 当单模光纤尾纤小于50M 、多模光纤尾纤小于10M 时,尾纤自身的损耗可以忽略不计,此时测得的数据即为3端相对于标准连接器的插入损耗,并将此数据提供给客户。当单模光纤尾纤大于50M 、多模光纤尾纤大于10M 时,应在测出的损耗值中减去光纤自身的损耗值。 3. 重复性 重复性是指同一对插头,在同一只适配器中多次插拔之后,其插入损耗的变化范 围。单位用dB 表示。重复性一般应小于0.1dB. 4. 互换性 由于光纤连接器的插入损耗是用标准跳线比对法测出的,其值是一个相对值。所 以在任意对接时,实际的插入损耗值很可能会大于用标准跳线比对法测出的值,而且不同的连接头、不同的适配器,其影响程度也会有所不同。因此就有了互换性这一指标要求。连接头互换性是指不同插头之间,或者不同适配器任意转换后,其插入损耗的变化范围。其一般应小于0.2dB 。如光波公司向客户承诺插入损耗小于0.3dB,互换性小于0.2dB ,则任意对接其插入损耗应小于0.5dB 。 二. 光纤连接器插入损耗的主要因素 1. 光纤结构参数(纤芯直径不同、数值孔径不同、折射率分布不同及其它原因等)的

各种光纤连接器结构及性能浅析

各种光纤连接器结构及性能浅析 1.引言 在安装任何光纤系统时,都必须考虑以低损耗的方法把光纤或光缆相互连接起来,以实现光链路的接续。光纤链路的接续,又可以分为永久性和活动性的两种。永久性的接续,大多采用熔接法、粘接法或固定连接器来实现;活动性的接续,一般采用活动连接器来实现。本文将活动连接器做一简单的介绍。 光纤活动连接器,俗称活接头,一般称为光纤连接器,是用于连接两根光纤或光缆形成连续光通 路的可以重复使用的无源器件,已经广泛应用在光纤传输线路、光纤配线架和光纤测试仪器、仪表中,是目前使用数量最多的光无源器件。 2.光纤连接器的一般结构 光纤连接器的主要用途是用以实现光纤的接续。现在已经广泛应用在光纤通信系统中的光纤连接器,其种类众多,结构各异。但细究起来,各种类型的光纤连接器的基本结构却是一致的,即绝大多数的光纤连接器一般采用高精密组件(由两个插针和一个耦合管共三个部分组成)实现光纤的对准连接。 这种方法是将光纤穿入并固定在插针中,并将插针表面进行抛光处理后,在耦合管中实现对准。插针的外组件采用金属或非金属的材料制作。插针的对接端必须进行研磨处理,另一端通常采用弯曲限制构件来支撑光纤或光纤软缆以释放应力。耦合管一般是由陶瓷、或青铜等材料制成的两半合成的、紧固的圆筒形构件做成,多配有金属或塑料的法兰盘,以便于连接器的安装固定。为尽量精确地对准光纤,对插针和耦合管的加工精度要求很高。 3.光纤连接器的性能 光纤连接器的性能,首先是光学性能,此外还要考虑光纤连接器的互换性、重复性、抗拉强度、温度和插拔次数等。 (1)光学性能:对于光纤连接器的光性能方面的要求,主要是插入损耗和回波损耗这两个最基本 的参数。 插入损耗(Insertion Loss)即连接损耗,是指因连接器的导入而引起的链路有效光功率的损耗。插入损耗越小越好,一般要求应不大于0.5dB。 回波损耗(Return Loss)是指连接器对链路光功率反射的抑制能力,其典型值应不小于25dB。实际应用的连接器,插针表面经过了专门的抛光处理,可以使回波损耗更大,一般不低于45dB。 (2)互换性、重复性 光纤连接器是通用的无源器件,对于同一类型的光纤连接器,一般都可以任意组合使用、并可以重复多次使用,由此而导入的附加损耗一般都在小于0.2dB的范围内。 (3)抗拉强度 对于做好的光纤连接器,一般要求其抗拉强度应不低于90N。 (4)温度

光纤连接器实训报告

光线连接器制造实习工作报告 班级:光电09303 姓名:胡飞 学号:09012003 指导教师:刘孟华 日期:2011/4/5

一、工作任务 1)熟悉光纤活动连接器的基本结构及其组装工艺 2)学会端面研磨技术与质量检验 3)自己动手制作出合格的FC、SC型活动连接器 二、主要工艺流程及设备 工艺流程: Ⅰ组装阶段物料准备→下线/绕线(线圈直径不能小于6cm)→穿散件→剥纤→注胶→穿纤与固化(约30分钟)→切纤→压接(二次卡紧)→去胶与自检 Ⅱ研磨阶段装夹→粗磨→细磨→精磨→抛光 Ⅲ检验阶段端面检查与分析→指标测试(插入损耗、回波损耗) 主要设备: 高温固化炉、压接机、端面研磨机、端面检查机 插回损测试仪 三、制作的产品质量分析 合格的连接器应该是各个零部件按正确的顺序紧密牢固连接。插芯端面中心的光纤上及光纤附近没有划痕、麻点、气泡和色斑,通光后出现亮点。插入损耗IL≤0.30dB,RL≥60dB。

现象分析:自己的端面在进行端面检测时能观察到显微图像上方为颜色略与圆面不一的线条。这是由于研磨片或研磨液不均匀造成的端面缺陷。插入损耗测试为0.1dB,回拨损耗为63dB。 四、工作中的职业表现 ?能严格按照工作时间准时上下班。 ?能认真听取老师和师傅的安排,并按要求完成任务。 ?能和小组成员积极有效的配合,讨论。 ?面对不足与失误,找出问题,深刻反省。 五、掌握了的技能 ●对光纤连接器分类和组成有了基本的认识 ●掌握了制造光纤连接器的主要工艺流程并能自己动手制作 出合格的光纤活动连接器 ●能准确分析制作过程中出现的常见问题 ●能检测光纤连接器的好坏并能测其重要指标参数 六、工作中的得失及感悟 ?要严格按照各项规定进行操作,不能随心所欲,投机取巧 ?遇到问题冷静处理,认真分析,及时解决 ?工作中要和团队成员协调配合,服从安排

光纤连接器图解1

光纤连接器图解1

光纤连接器 自从前年开始,基于光缆的千兆以太网有了非常迅猛的发展。在局域网中的主干网 络(backbone)几乎大部分都采用了基于光 缆的千兆以太网。而在千兆网络的光缆链路 中使用的光缆链路连接方式中也发生了新 的变化。 路连接方式主要是ST,SC或者FC的连接方式。目前。这些光缆的连接方式简单方便,所连接的每条光缆都些光缆链路时,并不知道在实际中这些光缆是如果使用际使用中,将光缆和网络设备连接时,就要首先确定信连接。此外,光缆的连接器的制作也不方便,需要特殊

SC插入锁定-------------ST插入锁定---------------- FC旋紧锁定 2.新型的光缆连接方式 大家知道,千兆以太网在连接光缆时都是成对儿使用的,即一个输出(output,也为光源),一个输入(input,光检测器),例

如路由器和交换机的光缆连接。如果在使用时,能够成对一块儿使用而不用考虑连接的方向,而且连接简捷方便,那将会有助于千兆以太网的连接。因此不少光缆布线的厂商推出了各种连接器来满足这种应用。这种新的光缆连接器叫做SFF(Small Form Factor)。目前还没有比较明确的术语来描述,我们一般将其称作微型光缆连接器。 目前市场最主要SFF光缆连接器有四种类型。1)LC类型,它是Lucent公司推出的一种SFF类型的连接器。2)FJ类型,它是由Panduit公司推出的连接器。 3)MT-RJ 型,它是由美国AMP公司推出

的连接器以及由3M公司推出的VF-45连接器。 下图是这几种类型的连接器。这种连接器是一对儿光缆一起连接而且接插的方向是固定的。所以在实际使用中比较方便,也不会误插。 光纤配线箱

光纤端面处理对光纤激光器地影响

光纤端面处理对光纤激光器地影响.txt18拥有诚实,就舍弃了虚伪;拥有诚实,就舍弃了无聊;拥有踏实,就舍弃了浮躁,不论是有意的丢弃,还是意外的失去,只要曾经真实拥有,在一些时候,大度舍弃也是一种境界。光纤端面处理对光纤激光器地影响 1、前言 光纤是圆柱形介质波导由纤芯、包层和涂敷层3部分组成,一般单模和多模光纤的纤芯直径分别为5~15μm和40~100μm,包层直径大约为125~600μm。经过处理的光纤端面,理想状态是一个光滑平面。但实际中,光纤端面的加工往往不能达到理想状态,例如抛光不理想、有划痕、表面或边缘破碎损伤等等,都将使端面情况复杂化。对于光纤与激光器中其它元件的耦合以及光纤之间的熔接来说,要求光纤端部必须有光滑平整的表面,否则会增大损耗。本文分类介绍了光纤损耗产生的原因,通过实验验证了光纤端面质量对光纤激光器输出功率的影响,研究了光纤端面处理工艺流程,分析了光纤端面的切割和研磨方法,对光纤熔接过程提出了具体要求,为同类激光器的研制提供了参考依据。 2、光纤损耗种类 2.1光纤本征损耗 光纤本征损耗即光纤固有损耗,主要由于光纤机基质材料石英玻璃本身缺陷和含有金属过渡杂质和OH-,使光在传输过程中产生散射、吸收和色散,一般可分为散射损耗,吸收损耗和色散损耗。其中散射损耗是由于材料中原子密度的涨落,在冷凝过程中造成密度不均匀以及密度涨落造成浓度不均匀而产生的。吸收损耗是由于纤芯含有金属过渡杂质和OH-吸收光,特别是在红外和紫外光谱区玻璃存在固有吸收。光纤色散按照产生的原因可分为三类,即材料色散、波导色散和模间色散。其中单模光纤是以基模传输,故没有模间色散。在单模光纤本征因素中,对连接损耗影响最大的是模场直径。单模光纤本征因素引起的连接损耗大约为0.014dB,当模场直径失配20%时,将产生0.2dB的连接损耗[1]。多模光纤的归一化频率V>2.404,有多个波导模式传输,V值越大,模式越多,除了材料色散和波导色散,还有模间色散,一般模间色散占主要地位。所谓模间色散,是指光纤不同模式在同一频率下的相位常数β不同,因此群速度不同而引起的色散。 此外,光纤几何参数如光纤芯径、包层外径、芯/包层同心度、不圆度,光学参数如相对折射率、最大理论数值孔径等,只要一项或多项失配,都将产生不同程度的本征损耗。 2.2光纤附加损耗 光纤的附加损耗一般由辐射损耗和应用损耗构成。其中辐射损耗是由于光纤拉制工艺、光纤直径、椭圆度的波动、套塑层温度变化的胀缩和涂层低温收缩导致光纤微弯所致;应用损耗是由于光纤的张力、弯曲、挤压造成的宏弯和微弯所引起的损耗。 3、实验装置与结果 掺Er3+光纤环形腔激光器实验装置如图1所示,泵浦光由波长980nmLD尾纤输出,经波分复用器(WDM)耦合进入环形光纤谐振腔,经过耦合器分光后输出激光。其中光纤光栅中心波长为1546.3nm,掺Er3+光纤长度为3m,掺杂浓度为400ppm,隔离器工作波长范围为1535~1565nm,各元件插入损耗均为0.4dB,经上述装置输出功率与输入功率的关系曲线如图2所示,最大输出功率可达16.9mW。但由于光纤激光器各个部件之间均熔接在一起,插入损耗和熔接损耗对整个系统具有非常大的影响。在熔接质量比较好的情况下,总体光光效率可达5.3%,在光纤焊接较差的情况下,焊点漏光严重,用转换片可以看到明显的泵浦光泄露,严重影响总体光光效率,二者功率相差23%左右。因此如何降低腔内熔接损耗是影响激光器输出功率的关键因素。 4、光纤端面处理 光纤端面处理也称为端面制备,是光纤技术中的关键工序,主要包括剥覆、清洁和切割三个环节。端面质量直接影响光纤激光器的泵浦光耦合效率和激光输出功率。

光纤连接器制造实习工作报告

武汉职业技术学院 实验报告 光线连接器制备 系、专业:电子系光电班级:光电09305班实训人:朱军 指导教师:刘孟华 2011年4月5日

摘要 光纤(缆)活动连接器是实现光纤(缆)与光纤之间可拆卸(活动)连接的无源光器件。我们的实习主要是进行SC→FC光纤连接器的制备。实习主要以制备为主,同时在制备的过程中,思考为什么要如此制备,借以引出书本上所学,这样就可以做到学练结合,更加牢固的掌握知识,也为以后进去入职场打好了基础。 实习中主要使用一些高技术含量的工具,如光纤研磨机、超声波清洗机等,并无大型机器设备。工艺流程也较为简单,每到工序对质量要求很高,否则一不小心,做出的光纤连接器就不合格而成为废品。其中最重要的步骤是注胶穿纤固化和研磨光抛光纤连接器端面。最后一步是进行光纤连接器的测试和检验,主要检测光纤连接器的插接损耗和回波损耗。插损和回损都在允许范围之内,即为合格产品。 关键词:光纤连接器,SC,FC,穿纤固化,研磨抛光,插损回损 具体内容 1.1 概述 光纤(缆)活动连接器是实现光纤(缆)与光纤之间可拆卸(活动)连接的无源光器件,它还具有将光纤(缆)与其他无源器件、光纤(缆)与光发射机输出或光接收机输入之间、系统和仪表进行活动连接的功能。现在光纤连接器已成为光通信、光传感器以及其他光纤领域中不可或缺的、应用最广的基础元件之一。光纤连接器主要应用①光纤通信系统中,光发射端机和光接收端机;②光纤通信工程机房内的光纤管理机架及与出机房光缆的连接;③光纤通信产品及研发中,测试及连续使用。 1.2 相关知识 将一根光纤(缆)的两头都装上插头,成为跳线,即光纤连接器。 光纤连接器的型号、品种很多,按连接头结构形式分为:FC、SC、ST、LC、DC等。 其中实习中制备的FC和FC系列的特点如下: FC连接器,外部是一种用螺纹连接其外部零件,加强方式是采用金属材料制作的金属套,紧固方式为螺纹扣。

光纤制作过程

光纤研磨工艺介绍 光纤是光导纤维的简称,是由一组光导纤维组成的用于传播光束的,细小而柔韧的传输介质。它是用石英玻璃或者特制塑料拉成的柔软细丝,直径在几个μm(光波波长的几倍)到120μm。就象水流过管子一样,光能沿着这种细丝在内部传输。光纤的构造一般由3个部分组成:涂覆层,包层,纤芯,如图: 通过对光纤结构的了解我们知道,光纤结构自内向外为纤芯,包层,涂覆层。光纤内部一共有两种光折射率,纤芯的折射率为n1,包层的折射率为n2,由于所掺的杂质不同,使包层的折射率略低于纤芯的折射率,即n2

光纤连接器研磨

光纤连接器研磨 研磨是組裝工藝中最重要的一部分。研磨主要是對端面參數的調整,以及端面的處理。 參數會影響的對接性能,比如:對接是否精確,接觸是否緊密等﹔從而對光學特性造成一定的影響,主要是影響其跟。 端面好壞對也會影響的光學特性以及使用壽命。 研磨是影響的因數之一﹔但是對,研磨是起著決定性作用的。 研磨首先需要了解的常識: 研磨機: 中心加壓式研磨機:從研磨盤的中心施加的壓力,如光紅的。 最大的優點是: 、壓力可以調節,即可以調節壓力來調節參數,又可通過更換研磨墊的硬度來調節參數,其對參數的調節有更多的選擇,所以可以減少對研磨墊種類的需求。 缺點是: 、上盤苦難,對上盤的一致性要求比較高,否則將會對研磨產生不理想的效果。比如:沒擰緊會造成沒有研磨不充分﹔上歪了會造成其頂點偏心,嚴重者影響附近的幾個甚至正盤的偏心狀況。研磨時上盤需要嚴格的對稱,不能一邊多,一邊少。 、研磨程式難于控制,研磨程式受限于每盤的數量。滿盤研磨才可以得到較好的效果。 、返修苦難,如在新的一盤加入一部分返修的,其往往不理想,或者是全盤(拆卸過的)返修,返修工序要從前幾道工序開始。因拆邪過以及上盤時,難免會出

現長度不一致的現象,所以只能依靠前幾道工序將的長度研磨成一致,才可以得到良好的返修效果,但是會對產生不理想的效果。 四角加壓式研磨機: 從研磨盤的四個角施加的壓力,如廠內的精工技研的。 其優點是: 、研磨程序比較穩定,研磨盤的設計是采用(獨立的拋光控制)控制。理論上可以研磨數量從其最大孔位。因其每個孔位是獨立的,不影響周邊孔位的。實際上當數量上少的話,研磨時間應當相應減少。 、上盤容易,可避免因上盤而出現長短不一致的現象。裝歪的現象也可以容易檢查出來。 、反修容易,其反修一般可以從后几道工序反修(主要指端面有不太嚴重的缺陷,黑點、划痕、膠圈等)。 缺點是: 、壓力不可調節,完全依賴于研磨墊的硬度跟研磨時間的長短來調節端面的參數。 總體而言,研磨機比研磨機更穩定,操作上更為簡便。 研磨墊: 、橡膠墊,其高度跟硬度對端面參數有著重要的影響。 精工技研的研磨墊型號:(高度)(肖氏硬度)指厚度為,硬度為。廠內常用的有高度為,硬度是、、、等。另外還有高度為的,硬度為。 、玻璃墊,主要運用在研磨度角的,即。 研磨片: 研磨片上的砂粒材質:、金剛石、等

光纤端面的研磨方法总则

光纤端面的研磨方法总则 光纤是光通信中最基本及最重要的一个组成部份,光纤一词是光导纤维的简称。光纤的主要材料是石英玻璃,所以事实上光纤是一种比人的头发稍粗的玻璃丝。一般通信光纤是由纤芯和包层两部份组成而外径为125um至140um。在讨论光纤端面研磨中,不可不提光纤的损耗。在光信号通过光纤端面传送中,由于折射或某一些原因,会使光能量衰减了一部份,这就是光纤的传输损耗。所以光纤端面研磨的效果就显得非常重要了。而成熟的研磨工艺及优良的研磨系统设备是达到优质研磨效果不可或缺的因素。以下本文将以研磨优质光纤连接器端面作为讨论的重心。而本文主旨主要在于分享我们在光纤连接器端面研磨方面的实际经验,而不在于艰涩的理论性的探讨。 简介 在光纤跳线生产工艺中,主要可分为三部份。1、光缆与连接器散件的组装;2、端面研磨3、检查及测试。而其中以研磨及测试部份对生产优质光纤端面的影响最大。故厂商往往都非常重视这部份的运作。而本文亦会集中讨论这部份的工艺。 生产光纤跳线,要达到最佳效果,其中包括了8个要素: 1、使用正确的工具及组装程序; 2、使用高质素的光纤连接器散件; 3、稳定的研磨机器; 4、优质的研磨砂纸; 5、正确的操作程序; 6、精确及可靠的测试仪器; 7、有责任感与富有经验的操作员; 8、整洁及无尘的工作环境。 生产优质光纤跳线之要素

1、使用正确的工具及组装程序--所有的组装程序都必须采用合适的工具, 如脱皮钳,烘炉,针筒及胶水……等等,需要选择专为生产光纤跳线而设计的产品,故千万不能随便使用一般性的工具。另外,熟练而正确的组装方法,也是不能忽略的一点。 2、使用高质素的光纤连接器散件--高素质的连接器散件也能间接使问题减少,从而更易达到优质的研磨效果。 3、稳定的研磨机--研磨机(Polishing Machine)可说是生产光纤跳线的核心部份,在生产过程中相当大比例的品质问题,都间接或直接与研磨机的稳定性有关。可见研磨机在光纤跳线中的重要性,本文在“研磨机”一节中会作更详细的探讨。 4、优质的研磨纱纸--研磨片的使用则更直接影响到产品的质量。若能透彻地了解研磨材料的性质与操作方法,找出最适合的配套方案,对于研磨效果及成本控制有很大的帮助,在“研磨片”一节,本文会对此要素作更深入的叙述。 5、正确的操作程序--除了材料与机器的配套外,还必须依循正确的操作程序与时间的操控, 产品才能获得稳定的质量。 6、精确及稳定的测试仪器--随着科技的进步, 回损、插损及干涉仪等测试仪器的应用更为普遍,可说是光纤跳线生产线上不可缺少的,故其精确度便显得更重要了。详细的运用会在“测试仪器的重要性”一节中作出进一步讨论。 7、有责任感与富有经验的操作员--再优良的仪器工具也需要有熟练的操作员配合才能保证产品的质量,所以挑选及训练员工,也是生产优质光纤跳线不可忽视的一环。 8、整洁及无尘的环境--尘埃对光的传输有很大的影响,所以生产光纤跳线的过程中,对环境的要求也是很高的。现在已有很多生产商都采用了无尘车间,而事实上这也是生产光纤跳线不可避免的趋势。 何为优质的陶瓷芯端面呢?在国际上,一般都是以IEC的建议数据为基准,然后再根据自身的要求做一些调整以设定制造商对陶瓷芯研磨出的效果之要求标准。例如球面纤心高度应在-50至50nm的范围,而偏心最大不超过50um等,附表一的数值为一般市场上认可的PC类纤芯格式的标准, 谨供参考。 研磨机 研磨机是研磨系统中最重要的一部份,而在选择研磨机时,首先必须考虑它的运转及加压方式。现今在市场上使用的研磨机其运转原理一般可分成--齿轮带动(RB-12C,RB-550C),皮带带动(RB-12B)等。利用齿轮直接带动运转的,一般马力较强,而稳定性较高。皮带带动的,则一般马力较小,而其转速在高压环境下容易发生变化,另外皮带的胶质随时间老化后也很容易出现问题。 而在加压方面,市场上的研磨机有单点中心加压,包括重力锤,法码,气压及液压等方式。单点式中心加压(RB-12B RB-12C),如在理想的环境下运作,的确可以得到良好的效果,但其如受到外在因素的影响容易产生变化,例如每盘研磨端面的件数会受到一定的限制, 在研磨的过程中,当一盘陶瓷芯中有一部份达不到技术指标的时候,重磨是不可避免的情况,当一盘陶瓷芯中有一部分要重磨的时候,单点加压的机种,因为磨盘安装瓷芯的件数受到限制,故在研磨过程中会是一个很大的困扰及不便。而陶瓷管长度不一的问题亦会使用单点中心加压式研磨机打磨的端面容易产生偏心。在美国的机种有些采用气压,但此种方式比较难控制其稳定性,反之液压之操控较精确,力度也相对较大,但价格则比较昂贵。 四角平台式加压(RB-550C),则由磨盘及垫片之距离调整压力,所以其压力较大且比较稳定。研磨端面件数的多少,基本上不会影响其稳定性及效果。 另外制造研磨盘的材料与设计也是很重要的,陶瓷芯安装在研磨盘上,凸出的部份应为0.8mm 如果凸出的部份太长,研磨时因受压的关系,就比较容易影响效果。而材料方面,使用纯刚制造的磨盘才能达到耐用、耐磨的要求,市场上一些用塑胶做的磨盘,其可用性还是有待考验的。 除此之外,选择研磨机时亦要留意其适应性,稳定性,耐用性等。并要考虑其是否适合长时间运作及维修是否简单。现今市场上,深圳荣邦通讯设备有限公司的RB-550C研磨机是其中一种能具备以上要求的平台式加

光纤接续方法及操作步骤

光纤接续方法及操作步骤 光纤接续是一项细致的工作,特别在端面制备、熔接、盘纤等环节,要求操作者仔细观察,周密考虑,操作规范。本文为您详细介绍了其中的步骤和实际操作技巧。 1.端面的制备 光纤端面的制备包括剥覆、清洁和切割这几个环节。合格的光纤端面是熔接的必要条件,端面质量直接影响到熔接质量。 1.1光纤涂面层的剥除 光纤涂面层的剥除,要掌握平、稳、快三字剥纤法。“平”,即持纤要平。左手拇指和食指捏紧光纤,使之成水平状,所露长度以5cm为准,余纤在无名指、小拇指之间自然打弯,以增加力度,防止打滑。“稳”,即剥纤钳要握得稳。“快”即剥纤要快,剥纤钳应与光纤垂直,上方向内倾斜一定角度,然后用钳口轻轻卡住光纤右手,随之用力,顺光纤轴向平推出去,整个过程要自然流畅,一气呵成。 1.2裸纤的清洁 裸纤的清洁,应按下面的两步操作:

1)观察光纤剥除部分的涂覆层是否全部剥除,若有残留,应重新剥除。如有极少量不易剥除的涂覆层,可用绵球沾适量酒精,一边浸渍,一边逐步擦除。 2)将棉花撕成层面平整的扇形小块,沾少许酒精(以两指相捏无溢出为宜),折成“V”形,夹住以剥覆的光纤,顺光纤轴向擦拭,力争一次成功,一块棉花使用2~3次后要及时更换,每次要使用棉花的不同部位和层面,这样即可提高棉花利用率,又防止了探纤的两次污染。 1.3裸纤的切割 裸纤的切割是光纤端面制备中最为关键的部分,精密、优良的切刀是基础,而严格、科学的操作规范是保证。 1)切刀的选择。 切刀有手动(如日本CT—07切刀)和电动(如爱立信FSU—925)两种。前者操作简单,性能可靠,随着操作者水平的提高,切割效率和质量可大幅度提高,且要求裸纤较短,但该切刀对环境温差要求较高。后者切割质量较高,适宜在野外寒冷条件下作业,但操作较复杂,工作速度恒定,要求裸纤较长。熟练的操作者在常温下进行快速光缆接续或抢险,采用手动切刀为宜;反之初学者或在野外较寒冷条件下作业时,采用电动切刀。 2)操作规范

光纤连接器的型号

光纤连接器的型号 (1)FC型光纤连接器 这种连接器最早是由日本NTT研制。FC是Ferrule Connector的缩写,表明其外部加强方式是采用金属套,紧固方式为螺丝扣。最早,FC类型的连接器,。此类连接器结构简单,操作方便,制作容易,但光纤端面对微尘较为敏感,且容易产生菲涅尔反射,提高回波损耗性能较为困难。后来,对该类型连接器做了改进,采用对接端面呈球面的插针(PC),而外部结构没有改变,使得插入损耗和回波损耗性能有了较大幅度的提高。 (2)SC型光纤连接器 这是一种由日本NTT公司开发的光纤连接器。其外壳呈矩形,所采用的插针与耦合套筒的结构尺寸与FC型完全相同,。其中插针的端面多采用PC或APC型研磨方式;紧固方式是采用插拔销闩式,不需旋转。此类连接器价格低廉,插拔操作方便,介入损耗波动小,抗压强度较高,安装密度高。 ST和SC接口是光纤连接器的两种类型,对于10Base-F连接来说,连接器通常是ST类型的,对于100Base-FX来说,连接器大部分情况下为SC类型的。ST连接器的芯外露,SC连接器的芯在接头里面。 (5) MT-RJ型连接器 MT-RJ起步于NTT开发的MT连接器,带有与RJ-45型LAN电连接器相同的闩锁机构,通过安装于小型套管两侧的导向销对准光纤,为便于与光收发信机相连,连接器端面光纤为双芯(间隔0.75mm)排列设计,是主要用于数据传输的下一代高密度光纤连接器。 (6) LC型连接器 LC型连接器是著名Bell(贝尔)研究所研究开发出来的,采用操作方便的模块化插孔(RJ)闩锁机理制成。其所采用的插针和套筒的尺寸是普通SC、FC等所用尺寸的一半,为1.25mm。这样可以提高光纤配线架中光纤连接器的密度。目前,在单模SFF方面,LC类型的连接器实际已经占据了主导地位,在多模方面的应用也增长迅速。 (7) MU型连接器 MU连接器是以目前使用最多的SC型连接器为基础,由NTT研制开发出来的世界上最小的单芯光纤连接器,。该连接器采用1.25mm直径的套管和自保持机构,其优势在于能实现高密度安装。利用MU的l.25mm直径的套管,NTT已经开发了MU连接器系列。它们有用于光缆连接的插座型连接器(MU-A系列);具有自保持机构的底板连接器(MU-B系列)以及用于连接LD/PD模块与插头的简化插座(MU-SR系列)等。随着光纤网络向更大带宽更大容量方向的迅速发展和DWDM技术的广泛应用,对MU型连接器的需求也将迅速增长。LC接头与SC接头形状相似,较SC接头小一些。 FC 圆型带螺纹(配线架上用的最多) 接头是金属接头,一般在ODF侧采用,金属接头的可插拔次数比塑料要多。 ST 卡接式圆型 SC 卡接式方型(路由器交换机上用的最多) 接头是标准方型接头,采用工程塑料,具有耐高温,不容易氧化优点。传输设备侧光接口一般用SC接头 PC 微球面研磨抛光 APC 呈8度角并做微球面研磨抛光 MT-RJ 方型,一头双纤收发一体

光纤熔接工艺流程及施工方法

光纤熔接工艺流程及施工方法 1、前言 光纤是圆柱形介质波导由纤芯、包层和涂敷层3部分组成,一般单模和多模光纤的纤芯直径分别为5~15μm和40~100μm,包层直径大约为125~600μm。经过处理的光纤端面,理想状态是一个光滑平面。但实际中,光纤端面的加工往往不能达到理想状态,例如抛光不理想、有划痕、表面或边缘破碎损伤等等,都将使端面情况复杂化。对于光纤与激光器中其它元件的耦合以及光纤之间的熔接来说,要求光纤端部必须有光滑平整的表面,否则会增大损耗。 2、光纤损耗种类 2.1光纤本征损耗 光纤本征损耗即光纤固有损耗,主要由于光纤机基质材料石英玻璃本身缺陷和含有金属过渡杂质和OH-,使光在传输过程中产生散射、吸收和色散,一般可分为散射损耗,吸收损耗和色散损耗。其中散射损耗是由于材料中原子密度的涨落,在冷凝过程中造成密度不均匀以及密度涨落造成浓度不均匀而产生的。吸收损耗是由于纤芯含有金属过渡杂质和OH-吸收光,特别是在红外和紫外光谱区玻璃存在固有吸收。光纤色散按照产生的原因可分为三类,即材料色散、波导色散和模间色散。其中单模光纤是以基模传输,故没有模间色散。在单模光纤本征因素中,对连接损耗影响最大的是模场直径。单模光纤本征因素引起的连接损耗大约为0.014dB,当模场直径失配20%时,将产生0.2dB的连接损耗。多模光纤的归一化频率V>2.404,有多个波导模式传输,V值越大,模式越多,除了材料色散和波导色散,还有模间色散,一般模间色散占主要地位。所谓模间色散,是指光纤不同模式在同一频率下的相位常数β不同,因此群速度不同而引起的色散。 此外,光纤几何参数如光纤芯径、包层外径、芯/包层同心度、不圆度,光学参数如相对折射率、最大理论数值孔径等,只要一项或多项失配,都将产生不同程度的本征损耗。 2.2光纤附加损耗

光纤连接器磨接

5.9.2 光纤连接器磨接制作技术 采用光纤磨接技术制作的光纤连接器有SC光纤接头和和ST光纤接头两类,以下为采用光纤磨接技术制作ST光纤接头的过程. (1)布置好磨接光纤连接器所需要的工作区,要确保平整,稳定; (2)使用光纤环切工具,环切光缆外护套,如图5-93所示; 图5-93 环切光缆外护套 (3)从环切口处,将已切断的光缆外护套滑出,如图5-94所示; 图5-94 将光缆外护套滑出 (4)安装连接器的缆支撑部件和扩展器帽,如图5-95所示; 图5-95 安装缆支撑部件和扩展器帽 (5)将光纤套入剥线工具的导槽并通过标尺定位要剥除的长度后,闭合剥线工具将光纤的外衣剥去,如图5-96所示; 图5-96 用剥线工具将光纤外衣剥除 (6)用浸有纯度99%以上乙醇擦拭纸细心地擦拭光纤两次,如图5-97所示; 图5-97 擦拭光纤 (7)使用剥线工具,逐次剥去光纤的缓冲层,如图5-98所示; 图5-98 剥除光纤缓冲层 (8)将光纤存放在保护块中,如图5-99所示; 图5-99 光纤存放在保护块中 (9)将环氧树脂注射入连接器主体内,直至在连接器尖上冒出环氧树脂泡,如图5-100 所示; 图5-100 将环氧树脂注射入连接器主体内 (10)把已剥除好的光纤插入连接器中,如图5-101所示; 图5-101 将光纤插入连接器中 (11)组装连接器的缆支撑,加上连接器的扩展器帽,如图5-102所示; 图5-102 安装连接器的缆支撑部件 (12)将连接器插入到保持器的槽内,保持器锁定到连接器上去,如图5-103所示; 图5-103 将保持器锁定到连接器上去 (13)将已锁到保持器中的组件放到烘烤箱端口中,进行加热烘烧,如图5-104所示; 图5-104 将已锁到保持器中的组件放到烘烧箱端口中 ( 14)烘烧完成后,将已锁在保持器内组件插入保持块内进行冷却,如图5-105所示; 图5-105 将锁在保持器内组件插入保持块内冷却 (15)使用光纤刻断工具将插入连接器中突出部分的光纤进行截断,如图5-106所示; 图5-106 使用刻断工具截断突出连接器的部分光纤 (16)将光纤连接器头朝下插入打磨器件内,然后用8字形运动在专用砂纸上进行初始磨光,如图5-107所示; 图5-107 用8字形运动来磨光连接器接头 (17)检查连接器尖头,如图5-108所示; 图5-108 检查连接器尖头 (18)将连接器插入显微镜中,观察连接器接头端面是否符合要求,如图5-109所示.通过显微镜可以看到放大的连接器端面,根据看到的图像可以判断端面是否合格,如图5-110所示; 图5-109 用显微镜检查连接器接头端面

光纤连接器跳线知识

光纤连接器的种类 常见的光纤模块有两种,一是GBIC光模块,另一个是SFP光模块。SFP模块是一种光模块(Small Form Factor Pluggable 小封装模块),相比于GBIC模块要小,是GBIC光模块的发展,适应于高密度端口数而设计的,端口速率从100M到2.5Gbps不等。两种模块都支持热插拔。 光纤连接器,也就是接入光模块的光纤接头,也有好多种,且相互之间不可以互用。不是经常接触光纤的人可能会误以为GBIC和SFP模块的光纤连接器是同一种,其实不是的。SFP模块接LC光纤连接器,而GBIC接的是SC光纤光纤连接器。下面对网络工程中几种常用的光纤连接器进行详细的说明: ① FC型光纤连接器 FC是Ferrule Connector的缩写,表明其外部加强方式是采用金属套,紧固方式为螺丝扣。最早,FC类型的连接器,采用的陶瓷插针的对接端面是平面接触方式(FC)。此类连接器结构简单,操作方便,制作容易,但光纤端面对微尘较为敏感,且容易产生菲涅尔反射,提高回波损耗性能较为困难。后来,对该类型连接器做了改进,采用对接端面呈球面的插针(PC),而外部结构没有改变,使得插入损耗和回波损耗性能有了较大幅度的提高。 ② SC型光纤连接器 也就是连接GBIC光模块的连接器,它的外壳呈矩形,所采用的插针与耦合套筒的结构尺寸与FC型完全相同,其中插针的端面多采用PC型或APC型研磨方式;紧固方式是采用插拔销闩式,不须旋转。此类连接器价格低廉,插拔操作方便,介入损耗波动小,抗压强度较高,安装密度高。 ③ ST型光纤连接器 常用于光纤配线架,外壳呈圆形,所采用的插针与耦合套筒的结构尺寸与FC型完全相同,其中插针的端面多采用PC型或APC型研磨方式;紧固方式为螺丝扣。 ④ LC型光纤连接器 也就是连接SFP模块的连接器,它采用操作方便的模块化插孔(RJ)闩锁机理制成。该连接器所采用的插针和套筒的尺寸是普通SC、FC等所用尺寸的一半,为1.25m,提高了光配线架中光纤连接器的密度。 关于光纤连接器端面接触方式PC、UPC、APC 1.光纤连接器端面接触方式有PC、UPC、APC型三种。 PC——插针体端面为物理端面;微球面研磨抛光 UPC——插针体端面为超级物理端面;平面研磨抛光 APC型——插针体端面为角度物理端面 ;呈8度角并做微球面研磨抛光; 2.三者的区别除了物理不一样以外,还有回波损耗,即反射损耗不一样。区别是回损分别为:PC≥40dB、UP C≥50dB、APC≥60dB。 PC,UPC多用于电信网络 APC用于单纤双向系统或广电。 APC主要为了防止反射,由于广电通常为单纤,且光功率通常较大,因此使用APC 常见的三种光纤连接器: FC/PC:FC,圆头尾纤连接器,PC,陶瓷截面为平面; SC/PC:SC,方头尾纤连接器,PC,同上; FC/APC:FC,同上,APC,以截面中心为圆心,向外倾斜8度

相关文档
相关文档 最新文档