文档库 最新最全的文档下载
当前位置:文档库 › 柴油微乳化技术中乳化剂的选择及配方的研究

柴油微乳化技术中乳化剂的选择及配方的研究

柴油微乳化技术中乳化剂的选择及配方的研究
柴油微乳化技术中乳化剂的选择及配方的研究

ChemicalIntermediate2006年第9期科技与开发

1前言

柴油乳化和微乳化技术的研究自上世纪至今已有几十年的时间,美国、德国、日本等发达国家早在上世纪末微乳化柴油已进入使用阶段[1],为此欧洲国家已在排放标准上达到了欧Ⅲ标准,但我国至今仍没能将这项技术推广使用,重要的一点就是微乳化剂的选配不合适,导致微乳化柴油稳定性差,不能长期贮存,无法进入销售使用。因此,选配优质稳定的柴油微乳化剂是目前我国柴油微乳化技术的关键[2]。

乳化液的形成理论包括定向楔理论、界面张力理论、界面膜理论、相似相溶原理和电效应理论等。这些理论的出发点为:在油-水非连续体系中加入复合乳化剂,乳化剂在油-水界面作定向吸附,不仅可以降低界面张力,而且可以形成致密的界面复合膜,对液

柴油微乳化技术中乳化剂的选择及配方的研究

黄艳娥,徐伟,沈春红

(唐山师范学院化学系,河北唐山063000)

摘要:讨论了柴油微乳化研究中的应用理论,应用相似相溶原理和HLB值初选柴油乳化剂并对乳化剂进一步筛选和复配,同时确定助表面活性剂为正戊醇。利用HLB值的计算对复配得到的微乳化剂进行验证,表明:非离子表面活性剂Span80、AEO-3、TX-4与阳离子表面活性剂D08/1021或D12/1421复配作乳化剂时HLB值在6-15.9范围内均可制得柴油微乳液;对不同复配乳化剂制得微乳化柴油稳定性验证表明:微乳化剂的组成以AEO-3、TX-4与D08/1021三种乳化剂复配,复配比为0.6:1.4:8时掺水量达14%,且稳定性高。

关键词:乳化剂;柴油;微乳化;表面活性剂

中图分类号:TQ027.35文献标识码:A文章编号:1006-253x(2006)09-020-6

StudyoftheSelectionandPrescriptionofEmulsifier

inDieselOilMicro-emulsification

HUANGYan-e,XUWei,SHENChun-hong

(Departmentofchemical,TangshanNormalCollege,Tangshan063000,HebeiChina)

Abstract:Orientedwedgetheory,Interfacialtensiontheory,Interfacialfilmtheory,Similitudedissolvetheory,HLBvalueandsoonwerediscussed.Throughapplicationofthesetheories,thedirectionofemulsifierselectedoriginallywasdeterminedandemulsifierswerethoroughlyscreenedoutandcom-pounded.Inthemeanwhile,co-surfactantwasconfirmedtoben-pentanol.Thecompoundedmicro-emulsifierswereverifiedbycalculationofHLBvalue.Itshowedthatmicro-emulsionswereformedwhennonionicsurfactantsuchasSpan80,AEO-3,TX-4andcationicsurfactantsuchas(D08/1021orD12/1421)wereusedasemulsifiers,aswellasHLBvalueiswiderthanthatinthedatas,anddieselmicro-emulsionsareallformedfrom6to15.9.Thesituationandstabilityofmicro-emulsifieddieseloilintheconditionofdifferentformulaswereexplored.TheresultsshowedthatAEO-3,TX-4andD08/1021wereoptimal,andtheweightratioofAEO-3/TX-4/D(08/1021)is0.6/1.4/8.

Keywords:emulsifier;dieseloil;micro-emulsified;surfactant

收稿日期:2006-6-25

?20?

滴起保护作用。另外,由于吸附和摩擦等作用使得液滴带电,带电液滴在界面两侧形成双电层结构,液滴

间双电层的排斥作用使液滴难以聚集,因而提高乳液的稳定性[3]。

目前微乳液研究理论认为微乳状液的形成是自发过程[4],即没有表面活性剂存在时,一般油/水界面张力约为30×10-5~50×10-5N/cm,有表面活性剂时界面张力下降,若再加入一定质量的极性有机物,可将界面张力降至不可测量的程度,此后,质点的热运动使质点易于聚结,一旦质点变大,则可形成临时的负界面张力,而使液滴自发分散,此时即形成相对稳定

的粒径为10~100nm的微乳状液。微乳状液的形成,实际上就是在一定条件下表面活性剂胶团溶液对油或水的加溶结果———形成了加溶的胶团溶液[5]。乳化剂的种类直接影响微乳液的形成和稳定性[6],由表1可见,对W/O型乳液体系来说,乳化剂的亲水亲油平衡值(HLB值)在3~6范围内,此时亲油性较强,亲水性较差。乳化液界面膜理论表明:表面活性剂在乳化液两相界面上形成界面膜,其紧密程度和强度是影响乳化液稳定的重要因素。当界面膜由复合表面活性剂形成时,膜的强度增大,不易破裂,分散相不易聚结。因此,采用亲油性强及亲水性强的两种表面活性剂复合要比采用单一表面活性剂时稳定性好[7]。而对于一个具体的油水体系,存在一个最佳HLB值[8]。微乳液的形成与稳定性与乳化剂的碳链长也有着密切关系。乳化剂的碳链长与油相碳链长越接近,乳化剂的非极性基越易与油相相混,越易在油水界面吸附,表面活性越大。柴油本身是多种组分的复杂体系[9],饱和烷烃占65.16%~77.85%,其中C13~C22的直链正构烷烃最多,为44.50%~56.39%;余为异构烷烃及取代环烷烃;芳香烃5.82%~21.39%,其中取代萘最多为4.2%~17.24%,因此乳化剂初选时碳链长确定在C7~C20范围内。助乳化剂的作用使油水界面的吸附膜强度更大,表面张力下降更多,分散相液滴直径更小,从而形成介于溶液与乳液之间的微乳液,而使体系更稳定[10]。助乳化剂通常选择醇类,其分子中碳氢链起亲油疏水作用,而羟基能与水形成氢键具有较好的亲水作用。

2实验部分

利用乳化剂的HLB值和碳链长度进行选择并进

一步实验确认,选定助乳化剂,在此基础上对选定的乳化剂进行两组分复配和多组分复配,最终确定微乳化剂的配方。由于乳化剂的成本比较高,乳化剂用量增加使得微乳化柴油的成本增加,导致商业利润空间小而难推广,因此乳化剂的用量应在保证微乳液稳定

性的基础上进行核算后确定,一般选择微乳化剂用量

为3%~15%(质量分数)[11]

。本实验选用微乳化剂用量占柴油用量的10%(柴油20g,乳化剂2g)。

操作方式为先将乳化剂和柴油混合搅拌均匀后,

加水、加醇至澄清,再加水、加醇……,直至加入最后一滴醇,溶液也不再变澄清为止,观察加入水和形成的微乳液情况[12]。

2.1试剂

脂肪醇聚氧乙烯醚(AEO-3),工业级,HLB值6~7(邢台科王助剂有限公司);C8~C9烷基酚聚氧乙烯醚

(TX-4),工业级,HLB值12~13(邢台科王助剂有限公司);Tween80,化学纯,HLB值15.0(天津市大茂化学式剂厂);Span80,化学纯,HLB值4.3(天津市大茂化学式剂厂);Span20,化学纯,HLB值16.9(上海化学试剂公司);双烷基氯化铵(D08/1021),工业级,HLB值17(江苏南京市栖霞山化工有限公司);双烷基氯化铵(D12/1421),工业级,HLB值17(江苏南京市栖霞山化工有限公司);双烷基氯化铵(D16/1821),工业级,HLB值17(江苏南京市栖霞山化工有限公司);正丁醇,分析纯(天津市化学试剂二厂);异丁醇,分析纯(天津市

化学试剂一厂);正戊醇,化学纯(北京化工厂);异戊

醇,

分析纯(天津市化学试剂一厂);柴油(-10#),市售(燕山石化公司);自来水。2.2仪器78-1型磁力加热搅拌器,杭州仪表电机厂;精密电子天平,上海恒生科学仪器有限公司;800型离心机,功率75KW,上海手术器械厂;101-3型电热鼓风干燥箱,功率4KW,鼓风功率0.03KW,天津市豪斯特仪器有限公司。

2.3乳化剂的单选和助乳化剂的确定2.3.1初选的乳化剂和助乳化剂根据乳化剂的HLB值和碳链长度粗选乳化剂如

ChemicalIntermediate2006年第9期

剂时,四种助乳化剂下加水量均为1mL,但不同的助乳

化剂用量不同,其中以正戊醇用量最低,异丁醇次之;以Span20做乳化剂时,形成的基本为乳液,Span80与正丁醇配伍时加水量达1mL外,其余情况下加水量均较低,且助乳化剂用量除Span80与正戊醇配伍时较低外,其余情况下助乳化剂用量均较高;同时由Tween80制得的澄清微乳液颜色深红,与原油样颜色偏差大;以TX-4做乳化剂时,四种助乳化剂下加水量均较高,最高达1.4mL,而助乳化剂用量均较低;以D08/1021、D12/1421做乳化剂时,以正丁醇、正戊醇为助乳化剂下加水量均为1mL,此时助乳化剂用量均较高;D16/1821溶解过程困难,加入的水量也偏低。初步筛选将Span20、Tween80和D16/1821淘汰,其他乳

化剂进一步复配选择。根据初选微乳化剂实验,在有

助乳化剂正丁醇、异丁醇、正戊醇、异戊醇存在时形成微乳液的实验中,加水量相等,所用的助乳化剂量少者为优,选定正戊醇为助乳化剂。2.4乳化剂的复配2.4.1双组分复配

根据初选的乳化剂,按它们的HLB值(双组分复配后HLB值可达3~8之间),将上述乳化剂分为3组,AEO-3和D12/1421、AEO-3和TX-4、Span80和D08/1021,二种组分的比例由10:0~0:10,共十一种配比,乳化剂总量2g,柴油20g,助乳化剂为正戊醇。按前述操作,实验结果记录如下。

(1)AEO-3和D12/1421复配

下:Span类、Tween类、双烷基氯化铵(D08/1021、D12/1421、D16/1821)、脂肪醇聚氧乙烯醚(AEO-3)、C8~C9烷基酚聚氧乙烯醚(TX-4)等,观察其对柴油的相溶性和加水后的乳化性,从而对这些乳化剂进一步

筛选。选择正丁醇、异丁醇、正戊醇、异戊醇四种

极性有机物作为助乳化剂进行比较。2.3.2

数据记录、分析

操作条件:常温,自来水,搅拌30分钟。结果如表

2、表3、表4、表5。

由以上数据可看出:以Tween80和AEO-3做乳化

?22?

由图1可以看出,在AEO-3和D12/1421的复配中,AEO-3(g):D12/1421(g)为9:1时有一最大加水量

2.4mL,而此时加醇量为0.6mL,相对较低。

计算此时HLB值为AEO-3(HLB值)×90%+D12/1421(HLB值)×10%=6×90%+17×10%=7.1

(2)AEO-3和TX-4

复配

由图2

可以看出,在AEO-3和TX-4的复配中,AEO-3(g):TX-4(g)为3:7时有一最大加水量1.6mL,而此时加醇量为0.2mL,助乳化剂用量很低。

计算此时HLB值为AEO-3(HLB值)×30%+TX-4(HLB值)×70%=6×30%+12×70%=10.2

(3)Span80和D08/1021复配

由图3可以看出,在Span80和D08/1021的复配中,Span80(g):D08/1021(g)为1:9时有一最大加水量0.8mL,而此时加醇量为0.6mL。

计算此时HLB值为:Span80(HLB值)×10%+D08/1021(HLB值)×90%=6×10%+17×90%=15.92.4.2

三组分复配

由以上三组双组分复配可看出:第一组和第三组

中数据跳跃跨度大,第二组AEO-3和TX-4的复配数据过渡平稳,且在质量比为3:7时加水量最大(1.6mL),加醇量为0.2mL,相对非常小;由以上三种复配还可看出:三种复配得出的HLB值相差很大,第一组复配有一个加水量的突起峰,即HLB值为7.1时,第二组复配加水量增大后过渡平稳,即AEO-3和

TX-4复配自7:3至1:9加水量均很大,7:3时HLB值为7.8,1:9时HLB值为11.4,说明在HLB值为7.1-

15.9的范围内均可制得柴油微乳液,而该数值也表明柴油微乳液体系HLB值将比原预期的高。为此,将HLB值为10.2复配比为3:7的AEO-3和TX-4作为一整体再与D08/1021复配,比例仍由10:0~0:10。数据见图4。

由图4明显看出:AEO-3:TX-4为3:7再和

D08/1021复配时在很大范围内(8:2—2:8)加水量都很高(2.4~2.8mL),而加入的醇量则很低(0.4~0.6mL),加入水量最大时复配比为2:8,此时加水量达2.8mL;在复配比为8:2时,HLB值为10.2×80%+17×20%=11.56,在复配比为2:8时HLB值为10.2×20%+17×80%=15.6;由此进一步说明微乳液制备时微乳化剂的HLB值与乳液制备时乳化剂的HLB值不同。2.4.3

四组分复配

由图4可知,由脂肪醇聚氧乙烯醚(AEO-3)和烷基酚聚氧乙烯醚(TX-4)3:7再和双烷基氯化铵

(D08/1021)复配比2:8时效果最好,而由图3分析:

Span80和D08/1021复配比为4:6、3:7和1:9时效果较好,将该四种组分分别按照上述比例进行复配,即先取AEO-3和TX-4按3:7配制为组分R,再取D08/1021、Span80为组分E、D,使R:E=2:8,E:D分别

ChemicalIntermediate2006年第9期

为6:4、7:3和9:1,制备出的微乳化剂总量均为2g,与20g柴油混合搅拌,按前述操作,观察微乳液和加入水量情况,结果如表6。

由表6数据和图4可以明显看出:由AEO-3、TX-4、D08/1021、Span80四组分复配不如AEO-3、TX-4、D08/1021三组分复配效果好,虽加入的醇量降低,但加入的水量也大大降低。此时HLB值分别为11.7、12.74、14.71,在复配比2:8时HLB值为15.6;由此进一步说明微乳液制备时微乳化剂的HLB值与乳液制备时乳化剂的HLB值不同。

3所制微乳液稳定性的考察

微乳液的形成理论上认为自发形成,即在合适的微乳化剂配比下油相与水相能自发形成稳定的微乳液体系[13],但该微乳液体系随储存时间的延长以及环境条件的变化仍会破乳。

对上述微乳化剂制备的微乳液的稳定性,利用常温常压下静置法、加热加速破乳法和高速离心加速破乳法进行考察。

3.1静置法微乳液稳定性考察

将复配的微乳化剂与柴油混合,再与水、正戊醇混合制备出澄清的微乳液,将这些微乳液在常温(15~18℃)常压下静置两个月,观察:

(1)由2.4.1中(1)复配所制微乳液一部分产生大量乳光,大多数样品分层。

(2)由2.4.1中(2)复配所制微乳液中,配比为1:9、2:8、3:7、4:6的四组样品仍保持澄清透明,无颜色变化,其他配比下的样品多产生乳光。

(3)由2.4.1中(3)复配所制微乳液中,配比为1:9、2:8的两组样品仍保持澄清透明,无颜色变化,其他配比下的样品多产生乳光,一部分颜色变深。

(4)由2.4.2复配所制微乳液中,配比为8:2~2:8的七组样品仍保持澄清透明,无颜色变化,其他四组配比下的样品稍有乳光。

(5)由2.4.3复配所制微乳液中,组分配比为7:3的样品保持澄清透明,但颜色稍深,其他两组配比下

的样品分层。

3.2高速离心加速破乳法微乳液稳定性考察

一半径为10cm的离心机以3750r/min的转速转5小时就等于在地心重力场中一年的结果[14]。对3.1中稳定的微乳液进行高速离心,在离心机中以3500r/min的转速离心5小时。离心结果:所有样品均保持澄清透明,外观无任何变化。

3.3加热加速破乳法微乳液稳定性考察

对3.1中稳定的微乳液和3.2中离心后的样品进行加热,在50℃烘箱中烘5小时后观察,由2.4.1中(3)复配比为2:8的微乳化剂所制的微乳液保持澄清透明(此时A:C:E=0.6:1.4:8);由2.4.2复配比为2:8、7:3的微乳化剂所制的微乳液保持澄清透明,但颜色偏深,其余样品全部分层。

4结论

通过柴油与不同微乳化剂及不同复配微乳化剂混合后制备的微乳液进行性状、加水量、加醇量、微乳液稳定性比较,得出:

(1)制备稳定的微乳化柴油,加入复配微乳化剂效果较好。

(2)助乳化剂为正戊醇时乳化效果最好,且加入量应适当,过高或过低都不易生成稳定的微乳液。

(3)微乳化剂的组成以脂肪醇聚氧乙烯醚(AEO-3)和烷基酚聚氧乙烯醚(TX-4)

(非离子表面活性剂)与双烷基氯化铵(D08/1021)(阳离子表面活性剂)复配效果最好。在AEO-3(g):TX-4(g)为3:7时,再与D08/1021(g)以2:8配制的微乳化剂(此时AEO-3、TX-4、D08/1021复配质量比为0.6:1.4:8),制备的微乳液澄清透明,外观颜色与柴油相同,加水量达(2.8/20)14%,经60天静置、高速离心及5小时50℃恒温,仍为稳定的微乳液。

(4)制备柴油微乳液的最佳亲水亲油平衡值(HLB)不在3.6~6.5之间,HLB值在6~15.9范围内均可制得柴油微乳液(W/O),且在HLB值15.6时有最佳点。

(5)利用普通自来水即可制得柴油微乳液。

参考文献:

[1]吕效平,韩萍芳.超声波对柴油乳化的影响[J].石油化工,

2001,30(8):615~618.

[2]顾国兴.一种柴油乳化和微乳化复合添加剂及方法[P].?24?

CN:1130672A,1996.

[3]陈向明.汽油、柴油微乳化复合清净助燃剂[P].CN:1480513A,2004.

[4]陈振江,穆文俊,赵德智.柴油乳化液的制备及稳定性能研究[J].节能技术,1998,(1):14~16.

[5]李铁臻,许世海,蒋丰翼,等.柴油乳化的进展[J].化工纵横,2002,(11):22~25.

[6]袁凤英.甲醇—柴油微乳燃料工艺研究[J].华北工学院学报,2004,25(28):125~127.

[7]谢洁,王锡斌,卢红兵,等.甲醇—柴油微乳燃料的制备及燃烧特性研究[J].内燃机工程,2004,25(2):1~5.[8]赵武奇,殷涌光,梁歧,等.大豆色拉油包水乳浊液中乳化剂的应用[J].吉林大学学报,2004,(2):307~311.[9]蔡智鸣,张俊勇,杨科峰.色谱-质谱测定市售0号柴油成分[J].同济大学学报,2002,30(1):124-126.

[10]李铁臻,侯滨.微乳化柴油配方的研制[J].表面技术.2004,33(2):72~74.

[11]李建彤,韩萍芳,吕效平.乳化柴油研究及应用进展[J].化工进展,2004,4:364~369.

[12]谢新玲,王红霞,张高勇,等.柴油微乳化技术研究[J].日用化学工业,2004,1:13~16.

[13]杨锦宗,兰云军.微乳状液制备技术及其发展状况[J].精细化工,1995,4:7~10.

[14]侯万国,孙德军,张春光.应用胶体化学[M].北京:科学出版社出版,1998,11(1):246~292.

[1]徐济民,汪复,边友珍.临床实用新药手册[M].第1版.上海:上海科学技术出版社,1996:318.

[2]胡惠云,刘满仓,何勇.丁咯地尔的临床应用研究进展[J].安徽医药,2006,10(2):148-150.

[3]张曼红,侯大庆.盐酸丁咯地尔冻干注射剂的制备及质量控制[J].齐鲁药事,2005,24(3):167-168.

[4]王静,田西菊,张东素.盐酸丁咯地尔治疗血管性痴呆30例[J].中西医结合心脑血管病杂志,2005,3(9):835-836.

[5]LouisLafon.Newphloroglucinolderivatives[P].GB1325192,1970.

[6]louislafon.Newphloroglucinolderivatives,their

methodofpreparationandtheiruseaspharmaceu-ticals[P].GB2004883,1978.

[7]Mekellin.Processformakinghaloalkytri-alkoxyphenone[P].U.S.4326083,1982.

[8]李志裕,林克江,尤启冬.盐酸丁咯地尔的合成[J].中国医药工业杂志,2000,31(6):253-255.

[9]宫平,赵临襄,马蓉.盐酸丁咯地尔的合成[J].中国药物化学杂志,1997,7(3):221-222.

[10]三森信夫,大久保龙志,小原次男.ダトソの制法[P].JP60-38375,1985.

[11]姜晔,张荣久.盐酸丁咯地尔的合成[J].中国医药工业杂志,1999,30(2):58-59.

(上接第2页)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

5%时,产率为80.2%。弱碱性吡啶催化剂合成乙酰水杨酸产率高于浓硫酸[3]催化剂产率,实验结果与本人报道的乙酸钠[7]合成阿司匹林收率相当。吡啶是合成乙酰水杨酸的优良催化剂,具有工业开发价值。但是存在不足,吡啶较易吸水,形成共沸物,使反应温度较难控制,同时有较难闻气味。

参考文献:

[1]欧阳男,张贺.阿斯匹林在农业上的妙用[J].四川农业科技,2004,(2):35-35.

[2]任春晖,高文革.阿司匹林的用途及进展[J].中华临床内科杂志,2004,12(006):1045-1046.

[3]兰州大学,复旦大学化学系有机化学教研室.有机化学实

验[M].北京:高等教育出版社,1994.164-165.

[4]李继忠.对甲苯磺酸催化合成乙酰水杨酸的研究[J].化学世界,2005,(6):365-366,335.

[5]张国升,张懋森.以固体氢氧化钾为催化剂制备乙酰水杨酸[J].化学试剂,1986.8(4):245-246.

[6]宋小平,郭保礼,杨金明.固体碳酸钠催化合成阿司匹林[J].精细石油化工,1992(3):46-48.

[7]李西安,李丕高,贺宝宝,等.微波辐射合成乙酰水杨酸[J].延安大学学报,自然科学版,2005.24(03):49-50,85.[8]林沛和,李承范.乙酸钠催化合成阿司匹林[J].河北化工,2006,29(04):19-20.

[9]山东大学,山东师范大学等高校合编.基础化学实验(R)-有机化学实验[M].北京:化学工业出版社,2004.231-242.

(上接第19页)

乳化反应的引发剂与乳化剂的种类与选择原则

引发剂: 引发剂,指一类容易受热分解成自由基(即初级自由基)的化合物,可用于引发烯类、双烯类单体的自由基聚合和共聚合反应,也可用于不饱和聚酯的交联固化和高分子交联反应。 引发剂一般是带有弱键、易分解成活性种的化合物,其中共价键有均裂和异裂两种形式。又称启动剂。能使正常细胞转变为显性肿瘤细胞的化学致癌物。引发剂具有下述特点:本身有致癌性,必须在促长剂之前给予,单次接触或染毒即可产生作用,其作用可累加,而不可逆,不存在阈量;可产生亲电子物质与细胞大分子(DNA)共价结合,绝大多数为致突变物。例如,反-4-乙酰氨基茋为引发剂。 引发剂能引发单体进行聚合反应的物质。不饱和单体聚合活性中心有自由基型、阴离子型、阳离子型和配位化合物等,目前在胶黏剂工业中应用最多的是自由基型,它表现出独特的化学活性,在热或光的作用下发生共价键均裂而生成两个自由基,能够引发聚合反应。 引发剂在胶黏剂和密封剂的研究和生产中作用很大,丙烯酸酯溶剂聚合制备压敏胶,醋酸乙烯溶剂聚合制造建筑胶和建筑密封胶,合成苯丙乳液、乙丙乳液、VAE乳液、丁苯胶乳、氯丁胶乳、白乳胶等,接枝氯丁胶黏剂,sBs接枝胶黏剂,不饱和聚酯树脂交联固化,厌氧胶固化,快固丙烯酸酯结构胶黏剂固化等,都必须璃用引发剂。引发剂可以直接影响聚合反应过程能否顺利进行,也会影响聚合反应速率,还会影响产品的储存期。 编辑本段分类 引发剂种类很多,在胶黏剂中常用的是自由基型引发剂,包括过氧化合物引发剂和偶氮类引发剂及氧化还原引发剂等,过氧化物引发剂又分为有机过氧化物引发剂和无机过氧化物引发剂。[2] 1、有机过氧化物引发剂 有机过氧化合物的结构通式为R—O—O—H或R—O—O—R,R为烷基、酰基、碳酸酯基等。. 有机过氧化合物分为如下6类 (1)酰类过氧化物(过氧化苯甲酰、过氧化月桂酰)。 (2)氢过氧化物(异丙苯过氧化氢、叔丁基过氧化氢)。 (3)二烷基过氧化物(过氧化二叔丁基、过氧化二异丙苯)。 (4)酯类过氧化物(过氧化苯甲酸叔丁酯、过氧化叔戊酸叔丁基酯). (5)酮类过氧化物(过氧化甲乙酮、过氧化环己酮)。 (6)二碳酸酯过氧化物(过氧化二碳酸二异丙酯、过氧化二碳酸二环己酯)。 有机过氧化物的活性次序为:二碳酸酯过氧化物>酰类过氧化物>酯类过氧化物>二烷基过氧化物>氢过氧化物。 2、无机过氧化物引发剂 无机过氧化合物因溶于水,多用于乳液和水溶液聚合反应,主要为过硫酸盐类,如过硫酸钾、过硫酸钠、过硫酸铵,其中最为常用的是过硫酸铵和过硫酸钾。 3、偶氮类引发剂 偶氮类引发剂有偶氮二异丁腈、偶氮二异庚腈,属低活性引发剂。常用的为偶氮二异丁腈,使用温度范围50~65℃,分解均匀,只形成一种自由基,无其他副反应。比较稳定,纯粹状态可安全储存,但在80~90℃也急剧分解。其缺点是分解速率较低,形成的异了腈自由基缺乏脱氢能力,故不能用作接枝聚合的引发剂。 偶氮二异庚腈活性较大,引发效率高,可以取代偶氮二异丁腈。而偶氮二异丁酸二甲酯(AIBME)引发活性适中,聚合反应易控,聚合过程无残渣,产品转化率高,分解产物无害,是偶氮二异丁腈(AIBN)的最佳替代品。 4、氧化还原引发剂

乳化柴油

乳化柴油 乳化柴油(微乳化柴油)是水(或甲醇)和柴油通过乳化剂、助乳化剂在一定乳化设备经乳化而形成的油包水(W/O)型(透明)乳液。 一、性质 微乳化柴油是视觉透明的,乳化油则是不透明的; 乳化油的粒径约为0.1~10微米; 微乳的乳化剂用量远大于乳化的用量; 微乳化油的稳定性较乳化油的好。 二、应用特点 操作简单(只需机械搅拌); 原料充足(乳化剂为植物油厂下脚料活炼油厂副产物等) 能耗低(油燃烧释放热的减少低于水量的比重,即燃烧率提高); 污染少(乳化后其燃烧排放的颗粒物(PM10)、氮氧化物(NOx)明显减少); 提高燃油效率等优点(二次雾化的结果等); 税收优惠(产品为节能减排项目,享受税收减免政策,政府部门大力支持)。 三、研发背景 随着经济的不断发展和世界人口的急剧增加,能源危机日益凸显,并逐渐成为制约各国经济发展的主要因素,开源和节流成为人类应对能源危机的两大主要措施。柴油作为传统能源具有高热值、难挥发等特点,在人类活动中占有重要地位。2006年中国柴油消费量为10 962万t,缺口840万t,国内柴油供不应求。因此,柴油燃烧节能问题日益重要。燃油的乳化是指在乳化剂的存在下,通过机械搅拌、超声等手段形成油包水型乳液的过程。由于乳化柴油具有乳化过程简单、乳化油燃烧效率高、燃烧过程污染物排放少等诸多优点而备受关注。乳化柴油的应用研究已成为燃料节能减排研究领域中的热点。乳化柴油适用于各种拖拉机、农用运输车、抽水机、发电机、燃油热风炉、烘干炉、柴油机轮船等。此种新型燃料与柴油性能相当,并且能大大提高燃烧效率,不污染环境,这种清洁柴油经权威机构检测,环保指标还优于柴油,价格比原柴油低1000元/吨以上,是一种经济高效的新型燃料。 四、效益分析 环境效益: 有赖于其独特的燃烧特性,乳化柴油发挥的环境效益远超柴油。视乎发动机的类型、机龄和条件、服务历史、维护、占空比、驱动程序行为和水含量,广泛的测试证明了乳化柴油常见的减排幅度为: · 氮氧化物 --- 10% 至 30% · 一氧化碳 --- 10% 至 60% · 二氧化碳 --- 1% 至 3% · 颗粒物 --- 高达 60% · 烟 --- 基本上消除

微乳柴油实验报告

柴油微乳液拟三元相图的绘制及燃烧性能测定 1.实验背景 Schulman 在1959 年首次报道微乳液以来,微乳的理论和应用研究获得了迅速发展。1985年,Shah定义微乳液为两种互不相溶的液体在表面活性剂界面膜的作用下生成的热力学稳定、各向同性的透明的分散体系。由于微乳液能形成超低界面张力,具有高稳定性、大增溶量、以及粒径小等特殊性质,已引起人们广泛关注。 燃油掺水是一个既古老又新兴的课题。早在一百多年前就有人使用掺水燃油。由于油、水在表面活性剂作用下形成的W/O或O/W乳液在加热燃烧时水蒸气受热膨胀后能够产生微爆,使得燃油二次雾化燃烧更加充分,提高了燃烧效率,大大降低了废气中的有害气体的含量。但是由于一般的乳状液稳定时间短,易分层,使得这一技术的应用受到了很大的限制。 微乳燃料的制备比较简单,只需要把油、水、表面活性剂、助表面活性剂按 合适的比例混合在一起就可以自发形成稳定的微乳燃料。微乳燃油可长期稳定,不分层,且制备简单, 并能使燃烧更完全,燃烧效率更高,其节油率可达5 %~15 % ,排气温度下降20 %~60 % ,烟度下降40 %~77 % ,NO x 和CO 的排放量降低25 %,在节能环保和经济效益上都有较为可观的效果,已成为世界各国竞相开发的热点。随着近年来对两亲分子有序组合体研究的不断深入,微乳液理论在乳化燃油领域取得了突破性进展,开发透明、稳定、性能与原燃油差不多的微乳液燃料成为了研究热点。 近年来,随着我国农业和交通运输业的飞速发展,对石油的需求量增大,而石油资源有限,于是出现了石油供应不足、价格上涨的趋势。2004全年我国进口原油12,272吨,2005年中国的石油日需求量比去年增11%;2006年石油消费量增长了%。我国进口原油的30%用于汽车消耗,据预测,中国未来能源供需缺口将越来越大,即使在采用先进技术、推进节能,加速可再生能源开发利用以及依靠市场力量优化资源配置的条件下,2010年仍将短缺能源8%,石油进口依存度,预计2010年将上升为23%。现在我国年耗汽油和柴油总量约为亿吨,进口原油及成品油已成为国家财政的沉重负担而且天然石油的储备是有限的,人类面临日益严峻的能源危机。但经济的可持续发展必须是在保护生存环境、节约宝贵资源和降低能耗的前提下的发展。因此,如何提高燃油燃烧效率和减少环境污染,研究新型节油防污染技术,包括最为人们青睐并具有节能效率高,减少尾气污染的燃料乳化以及微乳化技术,己成为人们十分关心的问题。 2.微乳柴油与燃烧减排机理 乳化燃油与通常的乳状液一样,也分为油包水型(W/o)和水包油型(O/W), 在油包水型乳化燃料油中,水是以分散相均匀地悬浮在油中,被称为分散相或内 相,燃料油则包在水珠的外层,被称为连续相或外相。我们目前所见的大多数乳化燃料油都为油包水型乳化燃料。乳化燃料燃烧是个复杂的过程,对其节能降污机理较为成熟的解释是乳化燃料中存在的“微爆”现象和水煤气反应,也就是从燃料的物理过程和化学过程来解释。一些燃烧机理包括: 物理作用—“微爆现象”

乳化柴油工艺配方大全

乳化柴油工艺配方大全 微乳化柴油 微乳化柴油,属于一种乳化油。微乳化柴油,是由柴油、油酸、水和乙醇胺配制成,其配料比按重量百分比计:柴油%、油酸3-15%、水5-30%、乙醇胺%。微乳化柴油与其它乳化油相比,具有透明,保存期长,生产工艺简单,成本低,可作为商品油大量推广应用等优点。 微乳化复合柴油添加剂 本发明涉及一种复合燃料所使用的添加剂,特别是制造微乳化复合柴油燃料。本发明的微乳化复合柴油添加剂组成为:按重量百分比,油酸60-80%、浓氨水15-20%、一乙醇胺1-5%、乙酸1-5%、烷基萘%、肼6-10%。本添加剂用于制造微乳化柴油复合燃料,配制时按重量百分比为,柴油∶水∶添加剂=58%∶30%∶12%。该燃料的物理指标和化学指标与柴油接近,具有成本低、外观透明、稳定性好、热值高、对发动机无副作用。同时,本发明的添加剂可起到改善柴油燃烧性能、节省能源、减少排气污染的效果。 含有柴油、醇和水的乳化液及其制备方法 本发明涉及一种液体燃料及其制备方法,特别是涉及一种含有柴油、醇和水的乳化液新型液体燃料及其制备方法。在非塑料容器中,以含有柴油、醇和水的乳化液的总重量百分比计,加入60%-90%的柴油和%-8%的高效复合乳化剂,然后将频率为18KHZ-26KHZ超声波探头放入液面之下,经超声波作用接近1分钟后,逐次加入2%-11%的醇和%-21%的水,再经超声波作用两到三分钟,在整个过程中,保证液体温度不超过80℃,即可形成稳定的含有柴油、醇和水的乳化液。该乳化液稳定性良好,保存一至三个月,作为燃油可以降低NOx、碳黑等的排放,其烟度下降值最大可达50%。 自控优化掺水率的乳化柴油在线合成器 本发明公开了一种自控优化掺水率的乳化柴油在线合成器。包括在蓄水箱出水口依次接有浮子室、由控制器控制的自动剂量阀和手控的电磁阀;油箱经柴油清滤器,装有流量传感器的油路与手控的电磁阀出口的水路连通后接输油泵,随车式油水乳化器安置在输油泵和喷油泵之间的油路中。本发明可以不需添加任何乳化剂,也不需附加其他动力驱动就能获得良好效果的乳化油,并能根据柴油机负荷对水在燃油中的比例进行自动优化,提高节油水平。安装于柴油机上,边乳化边使用,降低柴油机油耗、减少排气烟度,具有节能和环保效益。本发明结构简单,操作方便。 自动旋转壁孔剪切式柴油乳化器 本发明公开了一种自动旋转壁孔剪切式柴油乳化器。其进油口和出油口分别设置在同一根中心轴的两端中心孔,在轴的中间通过轴承配合安装了能自动产生高速旋转的乳化筒,乳化筒的下端盖底面上径向对称布置了两个喷口相反的喷嘴,乳化筒的外壁上均匀布置多个极微小的通孔。一定比例的油水,通过输油泵以一定压力进入乳化器

HLB值及乳化剂的选择

字体大小:大 | 中 | 小 2006-08-09 16:25 - 阅读:6838 - 评论:2 HLB值和乳化剂的选择 2 乳化剂的选择和混合乳化剂配方 现适用于选择乳化剂的方法主要有两种:HLB法(亲水亲油平衡法)和PIT法(相转变温度法).前者适用于各种类型表面活性剂,后者是对前一方法的补充,只适用于非离子型表面活性剂. 2.1 HLB值与乳化剂筛选 一个具体的油-水体系究竟选用哪种乳化剂才可以得到性能最佳的乳状液,这是制备乳状液的关键.最可靠的方法是通过实验筛选,HLB值有助于筛选工作.通过实验发现,作为O/W型(水包油型)乳状液的乳化剂其HLB值常在8~18之间;作为W/O型(油包水型)乳状液的乳化剂其HLB值常在3~6之间.在制备乳状液时,除根据欲得乳状液的类型选择乳化剂外,所用油相性质不同对乳化剂的HLB值也有不同要求,并且,乳化剂的HLB值应与被乳化的油相所需一致.[4]有一种简单的确定被乳化油所需HLB值的方法:目测油滴在不同HLB值乳化剂水溶液表面的铺展情况,当乳化剂HLB值很大时油完全铺展,随着HLB值减小,铺展变得困难,直至在某一HLB值乳化剂溶液上油刚好不展开时,此乳化剂的HLB值近似为乳化油所需的HLB值.这种方法虽然粗糙,但操作简便,所得结果有一定参考价值.

2.2 HLB值与最佳乳化剂的选择 每种乳化剂都有特定的HLB值,单一乳化剂往往很难满足由多组分组成的体系的乳化要求.通常将多种具有不同HLB值的乳化剂混合使用,构成混合乳化剂,既可以满足复杂体系的要求,又可以大大增进乳化效果.欲乳化某一油-水体系,可按如下步骤选择最佳乳化剂. 油-水体系最佳HLB值的确 ①定选定一对HLB值相差较大的乳化剂,例如,Span-60(HLB=4.3)和Tween-80(HLB=15),按不同比例配制成一系列具有不同HLB值的混合乳化剂,用此系列混合乳化剂分别将指定的油水体系制成系列乳状液,测定各个乳状液的乳化效率(可用乳状液的稳定时间来代表,也可以用其他稳定性质来代表),与计算出的混合乳化剂的HLB,作图,可得一钟形曲线,与该曲线最高峰相应的HLB值即为乳化指定体系所需的HLB值.显然,利用混合乳化剂可得到最适宜的HLB 值,但此乳化剂未必是效率最佳者.所谓乳化剂的效率好是指稳定指定乳状液所需乳化剂的浓度最低!价格最便宜.价格贵但所需浓度低得多的乳化剂也可能比价格便宜!浓度大的乳化剂效率高. ②乳化剂的确定 在维持所选定乳化体系所需HLB值的前提下,多选几对乳化剂混合,使各混合乳化剂之HLB 值皆为用上述方法确定之值.用这些乳化剂乳化指定体系,测其稳定性,比较其乳化效率,直到找到效率最高的一对乳化剂为止.值得注意的是,这里未提及乳化剂的浓度,但这并不影响这种选配方法,因为制备一稳定乳状液所要求的HLB值与乳化剂浓度关系不大.在乳状液不

乳化柴油

乳化柴油 柴油乳化剂是基于多分子吸附膜理论,该理论是由乳化剂与分散相共同形成的强穿透性复合物构成,膜厚、强度大、难破乳、阻止聚结。乳化柴油特点如下: 1乳化柴油的主要结构 在乳化剂的作用下,使水在短时间内发生质的变化,经专业乳化机械的处理,水即形成微小颗粒,周边被油包围形成油包水的大分子结构,得到与柴油原色相近的新型燃料——乳化柴油。 二、乳化柴油的燃烧原理 乳化柴油是在乳化剂的作用下形成油包水的结构,而水是不可燃烧的,但水又是由H和O组成这两个成分中H可燃烧,O又是助燃的,怎样能使水中的这两个成分各发挥其性能呢?乳化柴油较好的解决了这个问题,这就是: 1、微爆作用 因为乳化柴油是以油包水的状态存在的,由于水和柴油的沸点不同(水100℃、油200-350℃),当乳化柴油燃烧时,每一个包裹水珠的油珠在高温的燃烧室中,水先于柴油汽化,这一过程使包含水珠外面的油膜炸裂成无数的小片,这样的每一下片由于自身的表面张力,将重新形成小细珠。这种微爆现象的存在,使每一个小油珠进行了两次雾化,柴油与助燃空气的接触面也自然成比例增长,分散更好,混合更加均匀,燃烧更加充分,从而减少或消除了原有的不完全燃烧问题从而达到提高

燃烧效率的功效。 2、加速燃烧反应 油的燃烧过程主要是其中的C—C键和C—H与O2的反应,碳氢元素是否完全燃烧取决于燃烧接触面和O2、OH等活性物质的含量。在乳化柴油的燃烧过程中,水参与了燃烧,会发生一系列的附加化学反应,水是非能源物质,最后还是以水(水蒸气)的形式排出,并没有热量的放出,但是在高温反应中,水产生了H、O 和OH等原子或自由基。这些活性物质极大地活化了整个油料的燃烧过程,使生成的一氧化碳尽可能完全燃烧。此外还可加入水裂解催化剂促使H、O和OH等原子或自由基的生成,水煤气反应还加速了燃油裂解所形成的焦炭的进一步燃烧,从而抑制了烟尘的生成。使燃烧更充分、更完全,从而达到提高燃烧效率和热效率的目的,降低了油耗率。 NO x的生成主要是汽缸吸入的空气中含有氮气和氧气,两者在汽缸内混合,反应生成一氧化氮,一氧化氮在高温下又被氧气氧化,从而生成各种氮氧化合物NO x。油掺水后燃烧改善了柴油与空气的混合比例,使氧气尽可能多的参与了与油的燃烧,达到充分燃烧的效果,减少了过剩空气系数。此外乳化柴油中水滴的汽化需吸收热量,防止燃烧火焰局部高温,从而达到了抑制了NO x 的生成,减少了环境污染,保护了大气环境。 三、乳化柴油的优点

乳化剂选择解读

表面活性剂表面活性剂表面活性剂表面活性剂一一一一、、、、HLB值值值值----HLB值越大代表亲水性越强,HLB值越小代表亲油性越强,一般而言HLB值从 1 ~ 40之间。亲水亲油转折点HLB为10。HLB小于10为亲油性,大于10为亲水性。1~--3作消泡剂3~--6作W/O型[乳化剂司盘(脱水山梨醇脂肪酸酯)是w/o型乳化剂,具有很强的乳化、 分散、润滑作用,可与各类表面活性剂混用,尤其适应与吐温-60,HLB值 4.7。7~--9作润湿剂;8~--18作O/W型乳化剂,也叫吐温型乳化剂,为司盘(Span,山梨醇脂肪酸酯)和环氧乙烷的缩合物,为聚氧乙烯山梨醇脂肪酸酯的一类非离子型去污剂;常作为水包油(O/W)型,药用:(1)可作某些药物的增溶剂。(2)有溶血作用,以吐温-80作用最弱。(3)水溶液加热后可产生混浊,冷后澄明, 不影响质量。(4)在溶液中可干扰抑菌剂的作用13~-18作增溶剂 PEG是一种非离子的表面活性剂,生物上应该可以用,其他的像吐温-20,TRITON 等都可以试试 化学上常用的是SDS,SLS价格比较便宜不过这种事阴离子型的可能对蛋白之类的有影响 乳化油的稳定是靠一定浓度的乳化剂、稳定剂用一定的工艺方法实现的。虽然,乳液中的油状物质有巨大的比表面,从热力学上讲,是不稳定的体系,但由于有足够量的乳化剂、稳定剂的存在,乳液本身相对来说是较稳定的。但是,如果用水合工作液稀释,或者加入到被乳化油体系中,这时乳化油稳定存在的环境被破坏了,在新的环境中,乳化油就很容易破乳、 漂油。一般的工作液合被消泡体系中,都含有盐、醇、酸、碱等有机物合无机物,这些物质 一般都有破乳的作用,油脂以很少的量加入被乳化的介质中,乳化油完全处于一个全新的不 同的环境中。如果消泡剂技术水平低下,使用的是一些普通的或不适合的乳化剂、助乳化剂,那么,这样的消泡剂就很容易破乳漂油。 国际上一些品质优良的乳化剂就不会或很难产生这种现象,因为其乳化剂、助乳化剂合乳化技术都是各家公司独特的自行研制生产的。 关键在于乳化剂质量和匹配问题。 在一定条件下,两种互不混溶的液体,一种以微粒(液滴或液晶)分散于另一种中形成的 体系称为乳状液.乳状液在工农业生产!日常生活以及生理现象中都有广泛应用.乳状液 是热力学上的不稳定系统,为了进行乳化作用和得到有一定稳定性的乳状液,要加入能降 低界面能的第三种物质,此物质称为乳化剂.乳化剂是乳状液赖以稳定存在的关键,大多 为各种类型的表面活性剂.但并非表面活性剂都适合做乳化剂,所以在制备乳状液时如何 选择乳化剂就成为一个关键问题.实际生产中对乳化剂的选择有多种方法和原则,其中使 用HLB值选择乳化剂有直观方便的优点,几十年来一直被许多部门作为选择乳化剂的重 要依据和手段. 1 表面活性剂的亲水亲油平衡(HLB)问题 任何表面活性剂分子的结构中,既含有亲水基也含有疏水基(即亲油基),HLB,即亲水亲油平衡值,是衡量表面活性剂在溶液中的性质的一个定量指标,是表明表面活性剂亲水能力的一个 重要参数.

乳化柴油实验报告

1、实验目的 1.1 学会柴油微乳体系拟三元相图的绘制与研究方法,并根据相图,选择合适的柴油微乳液进行燃烧性能测定。 1.2 通过氧弹卡计进行燃烧性能的测定,比较柴油、微乳柴油燃烧时其燃烧效率的不同,对微乳柴油的经济与环保价值进行评价。 1.3通过对乳化柴油的燃烧热的测定,掌握燃烧热的定义,学会测定物质燃烧热的方法,了解恒压燃烧热与恒容燃烧热的差别。 1.4 了解氧弹卡计的主要部件的作用,掌握氧弹卡计的量热技术;熟悉雷诺图解法校正温度改变值的方法。 2、实验原理 2.1实验背景知识 Schulman 在1959 年首次报道微乳液以来,微乳的理论和应用研究获得了迅速发展。1985 年,Shah 定义微乳液为两种互不相溶的液体在表面活性剂界面膜的作用下生成的热力学稳定、各向同性的透明的分散体系[1]。由于微乳液能形成超低界面张力,具有高稳定性、大增溶量、以及粒径小等特殊性质,已引起人们广泛关注[2]。 燃料中掺水, 能提高油料的燃烧效率, 降低燃烧废气中有害气体的含量[3]。燃油掺水是一个既古老又新兴的课题。早在一百多年前就有人使用掺水燃油。由于油、水在表面活性剂作用下形成的W/O或O/W乳液在加热燃烧时水蒸气受热膨胀后能够产生微爆,使得燃油二次雾化燃烧更加充分,提高了燃烧效率,大大降低了废气中的有害气体的含量。但是由于一般的乳状液稳定时间短,易分层,使得这一技术的应川受到了很大的限制[4]。 微乳燃料的制备比较简单,只需要把油、水、表面活性剂、助表面活性剂按合适的比例混合在一起就可以自发形成稳定的微乳燃料。微乳燃油可长期稳定,

不分层,且制备简单, 并能使燃烧更完全,燃烧效率高,节油率达5 %~15 % ,排气温度下降20 %~60 % ,烟度下降40 %~77 % ,NO x和CO 排放量降低25 %,在节能环保和经济效益上都有较为可观的效果,已成为世界各国竞相开发的热点。随着近年来对两亲分子有序组合体研究的不断深入,微乳液理论在乳化燃油领域取得了突破性进展,开发透明、稳定、性能与原燃油差不多的微乳液燃料成为了研究热点。 随着经济快速发展与人口的急剧增长, 80% ~90%的空气污染来自交通工具排放的尾气,柴油不完全燃烧造成的环境污染越来越受到人们的关注,根治大气污染已成为人类面临的重要课题。另一方面,由于中国未来石油供需缺口将越来越大,进口量呈逐步增大的趋势,而且天然石油的储备是有限的,人类面临日益严峻的能源危机。因此,如何提高燃油燃烧效率和减少环境污染,研究新型节油防污染技术,包括最为人们青睐并具有节能效率高,减少尾气污染的燃料乳化以及微乳化技术,己成为人们十分关心的问题。本着节能和环保两个根本宗旨,各国都在加紧对微乳燃油性能的研究。微乳柴油的性能决定着它的应用,研究微乳柴油的性能就显得十分重要[5]。 2.2微乳柴油与燃烧减排机理 乳化燃油与通常的乳状液一样,也分为油包水型(W/o)和水包油型(O/W), 在油包水型乳化燃料油中,水是以分散相均匀地悬浮在油中,被称为分散相或内 相,燃料油则包在水珠的外层,被称为连续相或外相。我们目前所见的大多数乳化燃料油都为油包水型乳化燃料。乳化燃料燃烧是个复杂的过程,对其节能降污机理较为成熟的解释是乳化燃料中存在的“微爆”现象和水煤气反应,也就是从燃料的物理过程和化学过程来解释。一些燃烧机理介绍如下: 2.2.1物理作用—“微爆现象” 二十世纪六十年代初,前苏联科学家伊万诺夫等人发现了乳化燃料的“微爆”现象,从而为乳化燃料的节能、降污机理提供了理论基础。油包水型分子基

乳化反应的引发剂与乳化剂的种类与选择原则

引发剂: 引发剂,指一类容易受热分解成白由基(即初级白由基)的化合物,可用于引发烯类、双烯类单体的白由基聚合和共聚合反应,也可用于不饱和聚酯的交联固化和高分子交联反应。 引发剂一般是带有弱键、易分解成活性种的化合物,其中共价键有均裂和异裂两种形式。 又称启动剂。能使正常细胞转变为显性肿瘤细胞的化学致癌物。引发剂具有下述特点: 本身有致癌性,必须在促长剂之前给予,单次接触或染毒即可产生作用,其作用可累加,而不可逆,不存在阈量;可产生亲电子物质与细胞大分子(DNA)共价结合,绝大多数为致突变物。 例如,反-4-乙酰氨基茂为引发剂。 引发剂能引发单体进行聚合反应的物质。不饱和单体聚合活性中心有白由基型、阴离子型、阳离子型和配位化合物等,目前在胶黏剂工业中应用最多的是白由基型,它表现出独特的化学活性,在热或光的作用下发生共价键均裂而生成两个白由基,能够引发聚合反应。 引发剂在胶黏剂和密封剂的研究和生产中作用很大,丙烯酸酯溶剂聚合制备压敏胶,醋酸乙烯溶剂聚合制造建筑胶和建筑密封胶,合成苯丙乳液、乙丙乳液、VAE乳液、丁苯胶乳、氯丁胶乳、白乳胶等,接枝氯丁胶黏剂,sBs接枝 胶黏剂,不饱和聚酯树脂交联固化,厌氧胶固化,快固丙烯酸酯结构胶黏剂固化等,都必须璃用引发剂。引发剂可以直接影响聚合反应过程能否顺利进行,也会影响聚合反应速率,还会影响产品的储存期。 编辑本段分类 引发剂种类很多,在胶黏剂中常用的是白由基型引发剂,包括过氧化合物引发剂和偶氮类引发剂及氧化还原引发剂等,过氧化物引发剂又分为有机过氧化物引发剂和无机过氧化物引发剂。[2]

1、有机过氧化物引发剂 有机过氧化合物的结构通式为FHO—O— H或R—O—O-R,R为烷基、酰基、碳酸酯基等。. 有机过氧化合物分为如下6类 (1) 酰类过氧化物(过氧化苯甲酰、过氧化月桂酰)。 (2) 氢过氧化物(异丙苯过氧化氢、叔丁基过氧化氢)。 (3) 二烷基过氧化物(过氧化二叔丁基、过氧化二异丙苯)。 (4) 酯类过氧化物(过氧化苯甲酸叔丁酯、过氧化叔戊酸叔丁基酯). (5) 酮类过氧化物(过氧化甲乙酮、过氧化环己酮)。 (6) 二碳酸酯过氧化物(过氧化二碳酸二异丙酯、过氧化二碳酸二环己酯 )。 有机过氧化物的活性次序为: 二碳酸酯过氧化物>酰类过氧化物>酯类过氧化物>二烷基过氧化物>氢过氧化物。 2、无机过氧化物引发剂 无机过氧化合物因溶于水,多用于乳液和水溶液聚合反应,主要为过硫酸盐类,如过硫酸钾、过硫酸钠、过硫酸铉,其中最为常用的是过硫酸铉和过硫酸钾。 3、偶氮类引发剂 偶氮类引发剂有偶氮二异丁腊、偶氮二异庚腊,属低活性引发剂。常用的为偶氮二异丁腊,使用温度范围50?65C,分解均匀,只形成一种白由基,无其他副反应。比较稳定,纯粹状态可安全储存,但在80?90C也急剧分解。其 缺点是分解速率较低,形成的异了腊白由基缺乏脱氢能力,故不能用作接枝聚合的引发剂。 偶氮二异庚腊活性较大,引发效率高,可以取代偶氮二异丁腊。而偶氮二异丁酸

生物柴油工艺技术简介

年产2万吨生物柴油生产技术简介 一、总论 生物柴油概念:生物柴油是清洁的可再生能源,它以生物质资源作为原料为基础加工而成的一种柴油(液体燃料),主要化学成分是脂肪酸甲酯。具体而言,动植物油,如菜籽油、大豆油、花生油、玉米油、米糠油、棉籽油;以及动植物油下脚料酸化油,脂肪酸;动物油:猪油、鸡油、鸭油、动物骨头油等经一系列化学转化,精制而成的液体燃料,是优质的石油柴油代用品。生物柴油是典型的“绿色能源”,大力发展生物柴油对经济可持续发展,推进能源替代,减轻环境压力,控制城市大气污染具有重大的战略意义。 二、生物柴油的主要特性 与常规柴油相比,生物柴油具有下述无法比拟的性能。 1、优良的环保特性。主要表现在由于生物柴油中硫含量低,使得二氧化硫和硫化物的排放低,可减少约30%;生物柴油中不含对环境会造成污染的芳香族烷烃,如苯等化合物,因而废气对人体损害低于石化柴油。检测表明,与普通柴油相比,使用生物柴油可降低90%的空气毒性,降低94%的患癌率;由于生物柴油含氧量高,使其燃烧时排烟少,一氧化碳的排放与柴油相比减少约10%(有催化剂时为95%);生物柴油的生物降解性高。 2、具有较好的低温发动机启动性能,无添加剂冷滤点达–20℃。 3、具有较好的润滑性能。使喷油泵、发动机缸体和连杆的磨损

率低,使用寿命长。运动粘度稍高,在不影响燃油雾化的情况下,更容易生气缸内壁形成一层油膜,从而提高运动机件的润滑性,保护发动机,降低机件磨损。 4、具有较高的安全性能。由于闪点高,生物柴油不属于危险品。因此,在运输、储存、使用方面的安全性更高。 5、具有良好的燃烧性能。十六烷值高,含氧量高,燃烧性优于石化柴油,燃烧残留物呈微酸性,发动机油的使用寿命加长。 6、具有可再生性能。作为可再生能源,与石油储量不同,其通过农业和生物科学家的努力,可供应量不会枯竭。 7、无需改动柴油机,可直接添加使用,同时无需另添设加油设备、储存设备及人员的特殊技术训练。 8、使用性广。可广泛用于各种载重汽车、火车、公交车、卡车、舰船、工程机械、地质矿业设备、农用机械、发电机组等柴油内燃机;更是非动力的工民用窑炉、锅炉及灶具上佳燃料。 三、生物柴油的发展前景及意义 (一)国家立法、政策支持 从2006年1月1日起正式生效的《中华人民共和国可再生能源法》明确规定“国家将再生能源的开发利用列为能源的优先领域,——依法保护可再生资源开发利用者的合法权益”。并指出“生物液体燃料,是指利用生物质资源生产的甲醇、乙醇和生物柴油”。 (二)资源十分广泛 一是可利用各种动、植物油脂的各种废料、副产物,例如加工植

微乳化柴油技术简介

Biodisel and the microemulsion additives 生物柴油及微乳化剂简介 生物柴油(biodisel)是指以一部分可再生生物质资源代替不可再生柴油,通过特殊的工艺和技术生产的一种燃烧高效的环保柴油。本公司推出的生物柴油是利用微乳化剂,将9%-12%的水和80%-84%的柴油这两种完全不相溶的液体在特定的条件下经过物理化学反应,生成一种透明、稳定的微乳化生物柴油。本产品不同于现有市场上通过乳化剂和乳化设备加工而成的白色乳浊状柴油,而是通过巧妙的物理化学工艺生成的燃烧值更高,物化性质更为稳定的微乳化生物柴油(以下简称微乳化柴油)。 微乳化柴油的特点: 1、透明、清澈,经过充分乳化后,外观与常规柴油外观相同,完全不同于目前市场上 的白色乳浊状乳化柴油。 2、状态稳定。在-20℃到80℃的恶劣工况下无油水分离现象。 3、燃烧值高。微乳化柴油的燃烧值>9800Cal/kg,完全达到或超过国家0#柴油的标准。 4、环保清洁。有害气体量下降30%以上,PM达到欧Ⅱ标准,能清洁常用设备的油路。 5、使用范围广。该乳化柴油适用于不同型号的柴油发动机和其他内、外燃机使用。 6、微乳化范围广。可以针对市场上常用的柴油和重油进行微乳化调配。 微乳化柴油的工作原理: 柴油分子链较长,在正常使用的情况下20%-30%的柴油都是在没有经过充分燃烧的情况就排放掉,这样理论净燃烧值就大打折扣。微乳化柴油则是通过掺入一定比例的水,通过微乳化剂的作用,在柴油体系中形成稳定的纳米粒径(<50nm)的油包水(w/o)稳定结构。这样,柴油在燃烧的过程燃烧不充分形成的C和CO经过水分子的参与下以微爆的形式得以充分燃烧,最终以CO2的形式排出,从而提高柴油的燃烧效率。其作用化学反应原理如下所示: CO + H2O ==CO2 + H2+E(能量) 2H2 + O2 ==H2O + E(能量) 微乳化柴油的工作示意图: 柴油液滴 微乳化柴油液滴水珠

浅谈乳化剂的应用

课题: 浅谈乳化剂的应用 一、课题分析: 乳化剂是乳浊液的稳定剂,是一类表面活性剂。乳化剂的作用是当它分散在分散质的表面时,形成薄膜或双电层,可使分散相带有电荷,这样就能阻止分散相的小液滴互相凝结,使形成的乳浊液比较稳定。例如,在农药的原药(固态)或原油(液态)中加入一定量的乳化剂,再把它们溶解在有机溶剂里,混合均匀后可制成透明液体,叫乳油。常用的乳化剂有肥皂、阿拉伯胶、烷基苯磺酸钠等。 随着社会的进步和人们环保意识的增强,高毒高残留的农药已经越来越没有立足之地,而同时很多农药开始朝着环保型剂型的方向发展,这些新发展起来的剂型以水基化为主,但是由于大多数原药不溶于水,要想将其加工成水基化剂型必须要利用乳化剂,因而对乳化剂的研究也继在乳油中的应用之后增加起来,乳化剂的应用领域也变得更加广阔,至今乳化剂已经并发展成为具相当规模的工业。 本课题就乳化剂的定义、分类及特点、稳定性机理、选择及用量和乳化性能鉴定,乳化剂在农药、乳液聚合中、食品等方面应用中进行评述。 二、搜索工具的选择: 《中国学术期刊数据库》 三、搜索词: 1.中文:乳化剂的应用 2.英语:emulsifying agent 四、检索过程和结果: 文献一:浅谈乳化剂—在农药剂型加工中的应用 农药乳化剂的作用和地位主要体现在两方面:第一,在化学农药的基本加工剂型中,是最基本剂型——农药乳油的必不可少的量大的组分,是决定乳油质量的一个关键因素。虽然乳油这一种剂型已经开始被禁止注册,但是乳化剂在乳油

这一强大剂型中所发挥的巨大作用不容忽视。另外,许多其它农药剂型包括乳粉、悬浮剂、水乳剂、微乳剂等也都用到乳化剂,并都对制剂质量起到重要作用。第二,在农药助剂领域内,农药乳化剂是品种最多、产量大、应用广、发展一直很快的一大类,它居世界农药表面活性剂需求量的首位。仅到1988年,按表面活性剂结构分类,农药乳化剂非离子34类,阴离子22类,阳离子和两性离子5类,共计61类。几乎年年都有新结构品种和新产品问世。 农药剂型加工中,当所要加工的农药品种即原药以及要加工的剂型确定以后,首先要做的工作一般就是为这种原药选择合适的乳化剂。在正式选用乳化剂之前,首先应该明确乳化剂在这种原药剂型中应该起到的作用,在内吸性药剂中乳化剂的作用除了稳定和乳化之外还要能帮助活性组分在植株体内传递,对叶面处理药剂而言,这也包括药剂通过植株表皮的传输,而在触杀型/保护型药剂中则需要乳化剂帮助增加覆盖面(润湿剂),增强耐冲涮能力(粘着剂)。 乳化剂的选择在理论方面非常匮乏,乳化剂具体的选择是很复杂的,应该首先考虑分散相的结构、特点及被乳化物所需的HLB值,其次考虑乳化剂的结构、组成HLB值。吸附于油水界面的乳化剂的亲水亲油平衡值(HLB值)是选择乳化剂时的重要指标。我们主要介绍一下用HLB值选择乳化剂的方法。 1. HLB值法选择乳化剂 HLB值是Griffin于1949提出的,用以指示表面活性剂与油、水的亲和性,其值介于0到20(后发展为40),越小表示亲油性越强,越大则亲水性越强,大于10可认为亲水。每种表面活性剂都有一个基本固定不变的HLB值,同时,每个分散体系都有一个HLB的需求值,称RHLB。当乳化剂HLB等于RHLB时乳化效果最好,偏离时乳化效果减弱。RHLB只与分散体系的成份相关,与分散体系的浓度及乳化剂浓度均无关。研究表明,油包水乳液体系的RHLB常在3~5之间,水包油乳液体系的RHLB则在8~18之间。这说明稳定的乳液中,乳化剂应易溶于连续相。 测量体系的RHLB,要求不高时可通过理论计算,计算的方法有多种,如分子结构式法、结构因子法、结构参数法、极性指数法等。或以简单的铺展法测量,配制一系列HLB由高到低的水溶液,将油滴在水面。HLB较高时,油滴可以完全铺展开,HLB降低后铺展越来越困难。当油滴恰不铺展而结作一滴时,即得RHLB。此法简便,但较为粗糙。也可用精确的实验方法测量,如乳化法、浊点法、CMC

乳化柴油的研究现状及应用前景

乳化柴油喷入气缸后,由于乳化油液滴中的水分先达到沸点,气化而发生“微爆”现象,可使得油滴进一步微粒化,雾滴的“2次雾化”大大改进了燃油的燃烧过程,更加快了燃烧速率,使油分子燃烧趋近完全,达到节油的目的。 一般柴油机中产生碳氢化合物的主要原因是混合不均匀,以及在燃烧过程后期低速离开喷油器的燃油混合及燃烧不良所致;一氧化碳是一种不完全燃烧产物;柴油机碳烟的生成机理,概括地说是由烃类燃料在高温缺氧条件下裂解生成的。与纯柴油相比,乳化柴油能发生“2次雾化”,其雾化质量是任何柴油机喷嘴都难以达到的,它使柴油分子与高温空气的混合更均匀,使油分子的燃烧更加完全,避免了柴油在瞬时间由于雾化不好,油滴直径过大,表面积小,不能与氧充分接触,而生成较多的碳烟、CO和碳氢化合物造成油耗高及环境污染。大量研究和实践证明,乳化柴油的燃烧环境能显著减少烟尘排放。 NO X是柴油机的主要污染物,其生成过程为:在温度大于1600℃的条件下, O2→2O N2+O→N+NO N+O2→N+NO NO进一步氧化生成NO2。可见温度、氧浓度在NO X生成过程中起着重要作用,一般认为,当温度高于1600℃时,NO X的生成才比较明显,并且温度越高越容易生成。乳化柴油中水的存在降低了燃烧温度和烟气温度,不利于NO X的生成,从而使NO X排放显著下降;另外,与纯柴油相比,乳化柴油能更充分的燃烧,使得烟气中未反应的氧大大降低,也减少了NO X的生成机会。 柴油乳化技术早在100多年前就有人提出,50年代末由于环境保护及石油危机等原因受到重视,70年代末达到实用性发展阶段,目前工业发达国家柴油掺水技术已达到广泛应用[4]并已有多项专利发表。我国柴油掺水乳化技术起步较晚,八十年代初才有突破性进展,最近几年发展比较迅速,并有初步应用与少量乳化柴油专利申请。由于对乳化柴油在燃烧过程中的物理、化学现象缺乏研究以及乳化技术的不完善使得内燃机锈蚀、节油效果不明显。同时由于乳化柴油为热力学不稳定体系,存储时间短、易破乳分层,导致内燃机运行不正常。而微乳化柴油水微滴直径小于0.1微米,为热力学稳定体系,色质透明,非常适合内燃机使用,但微乳所需乳化剂量较大,价格偏贵,推广应用仍有困难。乳化液的形成与稳定理论仍不完整,其研究与应用尚少[2]。 我国每年柴油消耗量约为2000万吨左右,如果能够全部采用柴油掺水乳化技术,按节油率10%计,每年可以节省大约200万吨。这样不仅可以缓解国内柴油的紧张的状况,带来上亿元的经济效益,还可以大大减少由于柴油燃烧不完全成的环境污染。

柴油微乳化技术中乳化剂的选择及配方的研究

ChemicalIntermediate2006年第9期科技与开发 1前言 柴油乳化和微乳化技术的研究自上世纪至今已有几十年的时间,美国、德国、日本等发达国家早在上世纪末微乳化柴油已进入使用阶段[1],为此欧洲国家已在排放标准上达到了欧Ⅲ标准,但我国至今仍没能将这项技术推广使用,重要的一点就是微乳化剂的选配不合适,导致微乳化柴油稳定性差,不能长期贮存,无法进入销售使用。因此,选配优质稳定的柴油微乳化剂是目前我国柴油微乳化技术的关键[2]。 乳化液的形成理论包括定向楔理论、界面张力理论、界面膜理论、相似相溶原理和电效应理论等。这些理论的出发点为:在油-水非连续体系中加入复合乳化剂,乳化剂在油-水界面作定向吸附,不仅可以降低界面张力,而且可以形成致密的界面复合膜,对液 柴油微乳化技术中乳化剂的选择及配方的研究 黄艳娥,徐伟,沈春红 (唐山师范学院化学系,河北唐山063000) 摘要:讨论了柴油微乳化研究中的应用理论,应用相似相溶原理和HLB值初选柴油乳化剂并对乳化剂进一步筛选和复配,同时确定助表面活性剂为正戊醇。利用HLB值的计算对复配得到的微乳化剂进行验证,表明:非离子表面活性剂Span80、AEO-3、TX-4与阳离子表面活性剂D08/1021或D12/1421复配作乳化剂时HLB值在6-15.9范围内均可制得柴油微乳液;对不同复配乳化剂制得微乳化柴油稳定性验证表明:微乳化剂的组成以AEO-3、TX-4与D08/1021三种乳化剂复配,复配比为0.6:1.4:8时掺水量达14%,且稳定性高。 关键词:乳化剂;柴油;微乳化;表面活性剂 中图分类号:TQ027.35文献标识码:A文章编号:1006-253x(2006)09-020-6 StudyoftheSelectionandPrescriptionofEmulsifier inDieselOilMicro-emulsification HUANGYan-e,XUWei,SHENChun-hong (Departmentofchemical,TangshanNormalCollege,Tangshan063000,HebeiChina) Abstract:Orientedwedgetheory,Interfacialtensiontheory,Interfacialfilmtheory,Similitudedissolvetheory,HLBvalueandsoonwerediscussed.Throughapplicationofthesetheories,thedirectionofemulsifierselectedoriginallywasdeterminedandemulsifierswerethoroughlyscreenedoutandcom-pounded.Inthemeanwhile,co-surfactantwasconfirmedtoben-pentanol.Thecompoundedmicro-emulsifierswereverifiedbycalculationofHLBvalue.Itshowedthatmicro-emulsionswereformedwhennonionicsurfactantsuchasSpan80,AEO-3,TX-4andcationicsurfactantsuchas(D08/1021orD12/1421)wereusedasemulsifiers,aswellasHLBvalueiswiderthanthatinthedatas,anddieselmicro-emulsionsareallformedfrom6to15.9.Thesituationandstabilityofmicro-emulsifieddieseloilintheconditionofdifferentformulaswereexplored.TheresultsshowedthatAEO-3,TX-4andD08/1021wereoptimal,andtheweightratioofAEO-3/TX-4/D(08/1021)is0.6/1.4/8. Keywords:emulsifier;dieseloil;micro-emulsified;surfactant 收稿日期:2006-6-25 ?20?

HLB值和乳化剂的选择

HLB值和乳化剂的选择 HLB值和乳化剂的选择表面活性剂的亲水亲油平衡值(HLB值)的概念!获取方法!及其在选择乳化剂和控制复合乳化剂配比用量方面的应用. 在一定条件下,两种互不混溶的液体,一种以微粒(液滴或液晶)分散于另一种中形成的体系称为乳状液.乳状液在工农业生产!日常生活以及生理现象中都有广泛应用.乳状液是热力学上的不稳定系统,为了进行乳化作用和得到有一定稳定性的乳状液,要加入能降低界面能的第三种物质,此物质称为乳化剂.乳化剂是乳状液赖以稳定存在的关键,da 多为各种类型的表面活性剂.但并非表面活性剂都适合做乳化剂,所以在制备乳状液时如何选择乳化剂就成为一个关键问题.实际生产中对乳化剂的选择有多种方法和原则,其中使用HLB值选择乳化剂有直观方便的优点,几十年来一直被许多部门作为选择乳化剂的重要依据和手段. 1 表面活性剂的亲水亲油平衡(HLB)问题 任何表面活性剂分子的结构中,既含有亲水基也含有疏水基(即亲油基),HLB,即亲水亲油平衡值,是衡量表面活性剂在溶液中的性质的一个定量指标,是表明表面活性剂亲水能力的一个重要参数. 1.1 HLB的概念 1949年,W.C.Griffin在5美国化妆品化学协会期刊6上,发表了题为/表面活性剂按HLB分类0的论文,最先提出了HLB,并做出了如下定义:/我们称之为亲水亲油平衡(HLB)值,它是分子中亲油的和亲水的这

2个相反的基的da小和力量的平衡.0[1]表面活性剂在不同性质溶液中所表现出来的活性,可由其HLB值来表示.HLB值的范围为 1~40,HLB值越低,表面活性剂的亲油性越强;HLB值越高,表面活性剂的亲水性越强.一般地,HLBda于10则认为亲水性好,HLB小于10则认为亲油性好.HLB值可作为选择和使用表面活性剂的一个定量指标,同时,根据表面活性剂的HLB值,也可以推断某种表面活性剂可用于何种用途或用于设计合成新的表对于多数多元醇的脂肪酸酯类表面活性剂[3]:HLB=20(1-S/A).其中S代表表面活性剂(多元醇酯)的皂化值(又称皂化数),A代表成酯的脂肪酸的酸值.对于皂化值不易测定的多元醇乙氧基化合物:HLB=(E+P)/5.式中E为表面活性剂的亲水部分,即乙氧基(C2H4O)的质量分数,P为多元醇的质量分数.皂化值不清的脂肪酸酯如妥尔油!松香酸酯!蜂蜡酯及羊毛酯等的HLB值都可以由上式求算.对于只用乙氧基(C2H4O)为亲水部分的表面活性剂和脂肪醇与C2H4O的聚合体,上式简化为:HLB=E/5.混合表面活性剂的HLB 值具有加和性.A,B两种表面活性剂混合之后的HLB值 为:HLB=HLBA*A%+HLBB*B%.2)J.T.Davies关系式基团数法:1957年Davies提出将表面活性剂分子分解为不同的基团,这些基团各自对HLB有一定的贡献:HLB=7+Σ(亲水基的基数)+Σ(亲油基的基数).该方法适用于计算阴离子型表面活性剂和非离子型表面活性剂的计算指标[2]. 1.2 HLB值的计算 (1)Griffin关系式

相关文档