文档库 最新最全的文档下载
当前位置:文档库 › 煤层气的吸附量

煤层气的吸附量

煤层气的吸附量
煤层气的吸附量

很多人认为煤层气是吸附气,这个认识主要来自于实验。实验把一块煤岩放入密闭容器中,然后测量从煤岩跑出的气体,这个数值大约在1~30m3/t之间。从煤岩跑出的气体,被认为是从煤岩孔隙解吸下来的吸附气。这个认识当然不正确,从煤岩孔隙跑出来的气体为何不能是自由气?若煤层气是吸附气,常规气藏应该也是吸附气,因为你的前提条件已经假设从岩心跑出的气体为吸附气。

下面算一下煤层气到底有多少吸附气。煤岩的比表面与孔渗参数的关系满足Kozeny 方程

煤岩的孔隙度取10%,渗透率取10mD=0.01D,带入上式计算的煤岩比表面为1138cm2/cm3,也就是113800m2/m3,即1方煤岩中有113800平方米的孔隙面积。

甲烷分子的大小是0.4nm,甲烷分子的横截面积大约为0.1256nm2,也就是0.1256x10-18m2。

如果煤岩孔隙的内表面完全被吸附甲烷分子所覆盖,则1方煤岩的极限吸附数量为9.06x1023个,实际上远小于这个数值。

1摩尔气体的分子数量为6.02x1023个,因此,1方煤岩的吸附甲烷量大约为1.5摩尔。

1摩尔甲烷气体的标准体积为22.4升,也就是0.0224m3。因此,1方煤岩中的吸附甲烷最多也仅有0.0336m3,这个数值非常小,基本上没有开采价值。

实验测量的煤岩含气量非常大,可见那不是吸附气,而是自由气。

希望那些坚持认为煤层气为吸附气的专家学者,尽早转变观念,理性地科学地分析煤层气的赋存状态。

地球物理探测规范

规范: 1、城市地球物理探测规范CJJ7-2007 2、地面重力勘探技术规程SY-T5819-2002 3、区域重力调查技术规程DZ/T0082-2006 4、地面高精度磁测技术规程DZ/T0071-93 5、地面磁法勘探技术规程SY/T5771-2011 6、电阻率剖面法技术规程DZ/T0073-1993 7、电阻率测深法技术规程DZ/T0072-1993 8、自然电场法技术规程DZ/T0081-1993 9、地面甚低频电磁法技术规程DZ/T0084-1993 10、直流充电法技术规程DZ/T01086-1997 11、地面瞬变电磁法技术规程DZ/T01087-1997 12、大地电磁测深技术规程DZ/T0173-1997 13、电偶源频率电磁测深法技术规程DZ/T0217-2006 14、可控源音频大地电磁法勘探技术规程SY/T5772-2002 15、浅层地震勘探技术规范DZ/T0170-1997 16、地震勘探爆炸安全规程GB12950-1991 17、煤层气地震勘探规范NB/T10002-2014 18、多道瞬态面波勘察技术规程JGJ/T143-2004\J370-2004 19、中国地震活动断层探测技术系统技术规程JSGC-04 20、地面γ能谱测量技术规程DZ/T0205-1999 21、地球物理勘查图图式、图例和用色标准DZ/T0069-1993

22、固体矿产勘查原始地质编录规定DZ/T0078-93 23、固体矿产勘查地质资料综合整理、综合研究规定DZ/T0079-93 24、固体矿产勘查报告格式规定DZ/T0131-94 25、固体矿产地质勘查规范总则GB/T13908-2002 26、铁路工程物理勘探规程TB/10013-2004\J340-2004 27、铁路隧道衬砌质量无损检测规程TB/10223-2004\J341-2004 28、铁路工程地质勘察规范TB10012-2001 29、公路工程物探规程JTGTC22-2009 30、公路工程地质勘察规范JTJ064-98 31、物化探测量规范DZ/T0153-1995

煤体瓦斯吸附和解吸特性的研究_张力

煤体瓦斯吸附和解吸特性的研究 张 力1,邢平伟2 (1.中国矿业大学,江苏徐州221008;2.太原理工大学,山西太原030024) [摘 要] 简要介绍了煤吸附瓦斯气体的本质,影响煤吸附量的主要因素以及煤吸附瓦斯气体的过程;分析了煤体瓦斯解吸扩散的主要形式和影响煤体瓦 斯扩散速度的主要因素。 [关键词] 煤;瓦斯;吸附;解吸;扩散 [中图分类号]T D712 [文献标识码]A [文章编号]1003-6083(2000)04-0018-03 0 引 言 固体物质都具有或大或小的把周围介质中的分子、原子或离子吸附到自己表面的能力,这一性能被称为物质的吸附性能。煤是一种复杂的多孔介质,是天然吸附剂[1],其中直径在10-6cm以下的微孔,由于其内表面积占表面积的97.3%,可以高达200m2/g,具有很大的比表面积,从而决定了煤的吸附容积。甲烷以两种形式(承压游离状态和吸附状态)存在于煤层和共生岩层的孔隙裂隙中,对不同状态甲烷相对含量的实验研究表明煤中全部甲烷含量的90%~95%以吸附状态存在。研究煤与瓦斯的吸附和解吸规律,对于煤与瓦斯的突出预测,煤层瓦斯流动机理,煤的瓦斯含量预测及计算采落煤瓦斯涌出,煤层气开发和利用都有现实意义。 1 煤的吸附特性 1.1 煤吸附瓦斯的本质 研究表明煤对瓦斯的吸附作用,在一定瓦斯压力下乃是物理吸附,其吸附热一般小于20k J/m ol。煤表面的原子(它们的价力尚未达到完全饱和程度)在其表面产生一种力场。在这种力场的影响下,周围的瓦斯分子比无力场存在时更易凝结。瓦斯的凝结能力决定着它的被吸附能力,煤分子对瓦斯气体分子的吸引力越大,煤对瓦斯气体的吸附量越大。煤分子和瓦斯气体分子之间的作用力由德拜(Debye)诱导力和伦敦色散力(London dispersion force)组成,由此而形成吸引势,即吸附势阱深度Ea(也称势垒)。自由气体分子必须损失部分所具有的能量才能停留在煤的孔隙表面,因此吸附是放热的;处于吸附状态的瓦斯气体分子只有获得能量Ea才能越出吸附势阱成为自由气体分子,因此脱附是吸热的[2]。瓦斯气体分子的热运动越剧烈,其动能越高,吸附瓦斯分子获得能量发生脱附可能性越大。当瓦斯压力增大时,瓦斯气体分子撞击煤体孔隙表面的机率增加,吸附速度加快,瓦斯气体分子在煤孔隙表面上排列的稠密度增加。吸附量与瓦斯压力的关系(吸附等温线),一般可用朗格缪尔方程式计算。 1.2 瓦斯吸附影响因素 (1)温度的变化会引起瓦斯气体分子热运动剧烈程度的变化。温度升高时,瓦斯气体分子的热运动加剧,因而其扩散能力增加,瓦斯气体分子在煤孔隙表面停留时间缩短,因而吸附能力下降。温度降低时情况相反。吸附气体不同,其吸附能力不同。 (2)研究表明煤体对于二氧化碳(C O2)、甲烷(CH4)和氮气(N2)来说,其吸附能力C O2 >CH4>N2。 (3)外载荷对吸附的影响与煤体孔隙率变化有关。压力升高时,煤体孔隙、裂隙逐渐闭合。一方面孔隙率降低,煤体孔隙表面积减小,因面吸附量减小;另一方面瓦斯通道缩 81 江 苏 煤 炭 2000年第4期  收稿日期:2000-08-19

煤层气等压吸附实验研究

Advances in Geosciences地球科学前沿, 2018, 8(1), 19-31 Published Online February 2018 in Hans. https://www.wendangku.net/doc/c88646905.html,/journal/ag https://https://www.wendangku.net/doc/c88646905.html,/10.12677/ag.2018.81003 Experimental Research on Isobaric Adsorption of CBM Dongmin Ma1,2, Tian Mu1, Nan Dai1, Qian Li1, Hailong Xiangli3, Fu Yang2, Qingqing Li1, Qian He1, Chenyang Zhang1 1Xi’an University of Science and Technology, Xi’an Shaanxi 2Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi’an Shaanxi 3Dafosi Mineral Company, Binxian Shaanxi Received: Jan. 19th, 2018; accepted: Feb. 3rd, 2018; published: Feb. 23rd, 2018 Abstract To determine the influence of temperature on the adsorption capacity of coalbed methane, sam-ples are collected from the long flame coal in Coal Seam 4 at Dafosi Coal Mine in Binchang, coking coal in Coal Seam 11 at Shanggaozhai exploration area in Jiaxian and anthracite in coal seam 3 at east wing of Sihe Coal Mine in Jincheng. They are prepared as the air-dry basis and equilibrium water samples to make isothermal adsorption and desorption experiments at 25?C, 30?C, 35?C, 40?C and 45?C. The results showed that the adsorption capacity of air-dry basis was larger than that of equilibrium water samples at the same temperature. Through fitting and analyzing the ex-perimental data, it is found that there was a linear relationship between the temperature and the adsorption capacity of isobaric points in the process of adsorption and desorption. The results could be supplied to predict CBM content in deep and determine the isobaric surface-collecting radius of production wells. Keywords CBM (Coalbed Methane), Temperature, Adsorption Capacity, Isobaric Adsorption 煤层气等压吸附实验研究 马东民1,2,慕甜1,戴楠1,李倩1,相里海龙3,杨甫2,李庆庆1,何倩1,张晨阳1 1西安科技大学,陕西西安 2国土资源部煤炭资源勘查与综合利用重点实验室,陕西西安 3大佛寺矿业公司,陕西彬县 收稿日期:2018年1月19日;录用日期:2018年2月3日;发布日期:2018年2月23日

不同煤阶煤层气吸附、解吸特征差异对比

第28卷第3期天然气工业 为进一步定量描述高、低煤阶煤层气藏吸附特征差异,应用FY一Ⅱ型煤层气成藏模拟系统,开展煤吸附特征定量物理模拟实验。 选择一定质量完全解吸的褐煤(R。=0.41%~O.46%)和无烟煤(R。=2.44%~3.82%)样品,样品分别采自准噶尔南缘昌吉地区昌试1井侏罗系西山窑组下段(J:z1)及沁水盆地南部郑庄区块晋试10井山西组,置于FY一Ⅱ型煤层气成藏模拟系统的样品仓中,系统保持38℃恒温,先用氦气将系统的空气排出,充入99.6%的甲烷气体,加压至6MPa。系统压力降至稳定值时,煤岩样品达到吸附平衡。 图1煤阶与煤的吸附能力的关系图 (Ro<0.8%的资料由桑树勋提供) 实验表明,褐煤达到吸附平衡的时间短,无烟煤达到吸附平衡的时间长(图2)。吸附速率呈现出各自的特点,褐煤吸附速率绝对值较小,迅速达到吸附最大速率,并在一较长时段内维持较高吸附速率,吸附饱和后吸附速率降至零;无烟煤吸附速率绝对值大,随实验时间而增加,一般在60~100h达到峰值,然后逐渐降低;两者的吸附速率均存在一个极大值且无烟煤吸附速率极大值较低,煤阶明显增高;但实验前期,褐煤吸附速率高于无烟煤吸附速率(图3)。 2 、一 星 营 掘 * 莲 餐 R(%) 图2R。值与吸附平衡时间的关系图 图3高、低煤阶煤吸附甲烷速率差异图 (褐煤R。一O.42%,无烟煤R。一3.68%) 笔者认为,这是因为在初始状态下,两者均处于吸附“饥饿’’状态,褐煤以大孑L为主,孔隙度大,吸附甲烷速率更快;达到一定吸附饱和度后,高煤阶煤体现出绝对吸附能力强的优势,其吸附速率超出褐煤。 二、解吸特征 采自北票煤层气藏及沁水盆地郑庄区块山西组的罐装煤样解吸结果表明:低煤阶煤心解吸时间较短,通常40~60h解吸量超过总解吸体积的68%(图4),相对解吸速率快;高煤阶煤心解吸时间长,解吸68%的解吸气体体积的时间往往需要100~120h,相对解吸速率低;低煤阶煤心阶段解吸百分率变化大,高煤阶煤心阶段解吸百分率变化平缓,初始阶段解吸百分率大(图5)。 图4高、低煤阶煤层气解吸量达68%的解吸时间差异图 图5高、低煤阶煤层气阶段解吸百分率对比图 注:阶段解吸百分率=特定时间间隔内解吸量/总解吸量 由于高煤阶煤层气含气量高,平均解吸速率大。因此,相对解吸速率更能体现高、低煤阶煤储层物性的差异。 消除含气量的差异,对高、低煤阶煤层气的相对解吸速率进行模拟测试。分别选择尺。一O.58%、质量为935g、长度12.1cm的I煤心及R。=2.78%、质量为940g、长度11.8cm的II煤心。 将I煤心置于FY一Ⅱ煤层气藏模拟系统,注入99.6%的甲烷气体,初始压力4MPa,240h平衡后,平流泵注入蒸馏水,维持压力4MPa左右,计算含气量为3.73m3/t。 同样,放置Ⅱ煤心的FY一Ⅱ煤层气藏模拟系统初始压力1.4MPa,360h平衡后,维持压力1.4MPa左右,计算含气量为4.1m3/t。 降低系统压力至O,煤层气开始解吸,用排水法 ?3】 ?

地震勘探报告编制

地震勘探报告编制

地震勘探报告编制若干问题(潘振武2010.4) ●地震勘探工作程序 地震勘探设计—地震数据采集—地震数据处理—地震数据解释—地震勘探报告与审批—“售后服务” ●地质报告的作用 ——开采(或灾害防治)设计、可行性研究、规划的地质依据; 地质构造影响矿井采区布置、工作面划分。 由于地质构造不清,未采取防范措施,巷道遇断层揭露瓦斯突出煤层、含水层、采空区带来危险。 构造不清造成掘进巷道增加。百万吨掘进率、百万吨死亡率增加。 煤矿五大灾害(瓦斯、水、火、顶板、粉尘)都与煤矿地质条件有关。查明地质情况,采取相应对策,则为合理开采、提高资源回收率、安全生产提供了保障。 二维地震为找煤、指导下一步勘查或其它专项目的。 ——为本单位科研集累资料,集累经验; ——展示本单位在行业中形象,是客观的广告和宣传。 ●《煤炭煤层气地震勘探规范》-MT/T896-2000:(22~24 页) “编写成果报告时应充分分析有关地质、物探资料、做到报告内容齐全,观点明确,证据充分,重点突出,叙述清楚,文字简练,图表齐全,整洁、美观。”

·其它物探成果资料 ·区域地质资料 ·周边其它煤矿、小窑情况 需要时:煤质、岩石力学性质,水文地质试验、观测成果表。 地球物理测井资料 一般应有: ·视电阻率(电阻率电位) ·自然伽玛 ·伽玛—伽玛(密度测井) ·自然电位 ·孔斜测量成果 ·地温 80年代开始数字测井,增加: ·声波测井---可计算岩层的波速 ·中子测井 ·可直接显示出煤层的碳、灰、水比例 ·可直接显示出岩层的砂、泥、水比例 ·计算岩石孔隙度和其它岩石力学指标 ·可测定或计算地层倾角 矿井资料 ·采掘工程平面图 ·主要煤层底板等高线图

煤层气数值模拟

煤层气藏数值模拟 By gulfmoon79@精准石油论坛目录 1. 煤层气藏开发生产特点 2. 煤层气流动机理 3. 煤层气藏几个重要参数 3.1 孔隙度 3.2 煤层渗透率 3.3 变煤层渗透率 3.4 相对渗透率曲线 3.5 煤层厚度 3.6 煤层气连通性 3.7 煤层气含量 3.8 煤吸附能力 4. 模拟煤层气藏 4.1 变黑油模型 4.2 单孔介质模型 4.3 双孔介质模型 4.4 多孔介质模型 4.5 黑油模型 4.6 组分模型

前言 煤层气藏与常规气藏的最主要区别在于煤层气是以吸附状态吸附在煤基质微孔隙的表面,在生产过程中,当气藏压力下降到临界解析压力,煤层气从煤基质解析出来,通过煤基质扩散到煤裂缝,然后从煤裂缝流入到生产井。煤裂缝通常初始充满地层水,其中可能存在自由气,但一般不会超过储量的1%。而常规气藏气体是以自由气状态储存在气藏孔隙,气体在孔隙间的流动是达西渗流。 煤层气藏数值模拟模型需要模拟煤层气从煤基质解析然后扩散到煤裂缝的流动机理,这是与常规模拟模型的主要不同。常规模拟模型只描述流体在储层中的渗流,而煤层气模型需要描述煤层气从煤基质解析,煤层气扩散到煤裂缝,煤层气在煤裂缝间渗流以及从裂缝流入到生产井。 煤层气数值模拟模型可以采用单孔介质模型,双孔介质模型以及多孔介质模型。对流体的描述可以采用黑油模型或组分模型。单孔介质模型一个网格中的孔隙部分代表煤裂缝,非孔隙部分代表煤基质,煤层气从煤基质实时解析,与煤裂缝自由气达到瞬间平衡。双重介质模型包括基质网格以及基质网格对应的裂缝网格。模型基质网格描述煤层基质,基质网格提供气源,在开采过程中随着压力下降,气体从基质网格解析然后扩散流动到裂缝网格。模型裂缝网格描述煤层裂缝,流体在煤层裂缝渗流,然后流入到生产井。多孔介质模型可以将煤层基质划分为多个模型基质体系,然后模拟基质体系间的流动特征。在实际工作中最常用的是双孔介质模型。 煤层气组分主要是甲烷,在我现在工作的煤层气藏,甲烷含量占98%以上,只含有很少量的氮气和二氧化碳。因此煤层气模拟模型采用黑油模型。有些煤层气藏氮气和二氧化碳含量很高,可以高达50%以上,而且分布不均匀,这时需要用煤层气组分模型。如果采用注气提高煤层气产量的开采方法,也需要应用组分模型。 下面我们详细介绍煤层气藏开发生产特点,影响煤层气产能的几个重要参数,煤层气流动机理以及如何模拟煤层气藏。

低浓度煤层气吸附浓缩技术研究与发展

CIESC Journal, 2018, 69(11): 4518-4529 ·4518· 化工学报 2018年第69卷第11期| https://www.wendangku.net/doc/c88646905.html, DOI:10.11949/j.issn.0438-1157.20180602低浓度煤层气吸附浓缩技术研究与发展 杨颖1,曲冬蕾1,李平1,2,于建国1,2 (1华东理工大学国家盐湖资源综合利用工程技术研究中心,上海 200237;2化学工程联合国家重点实验室, 华东理工大学,上海 200237) 摘要:我国是一个多煤少气贫油的国家,煤层气储量约30万亿立方米,由于缺乏先进实用的低浓度煤层气甲烷分离浓缩技术,当前抽采煤层气利用率仅为50%左右。因此,对低浓度煤层气甲烷富集浓缩过程开展研究,可在开发能源的同时减少温室气体的排放,具有重大的应用价值和战略意义。简要介绍了我国煤层气资源开发利用情况,综述了近年来低浓度煤层气吸附浓缩技术研究进展,包括新型吸附材料及先进吸附工艺。对于低浓度煤层气中CH4/N2分离,目前文献报道吸附材料的吸附容量及分离系数仍然处于较低水平;受吸附材料的分离性能较差影响,传统变压吸附工艺对低浓度煤层气中CH4浓缩效果并不理想。最后指出,高吸附容量、高选择性吸附材料及多种方法结合的新型吸附工艺是未来低浓度煤层气吸附浓缩技术的发展方向。 关键词:低浓度煤层气;吸附作用;吸附剂;甲烷浓缩;分离 中图分类号:TQ 028.8 文献标志码:A 文章编号:0438—1157(2018)11—4518—12 Research and development on enrichment of low concentration coal mine methane by adsorption technology YANG Ying1, QU Donglei1, LI Ping1,2, YU Jianguo1,2 (1National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, Shanghai 200237, China; 2State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China) Abstract: China is a country with more coal, less gas and lean oil. The coalbed methane reserves are about 30 trillion cubic meters. Due to the lack of advanced and practical separation technology for the low concentration coal mine methane (CMM), only about 50% total drained CMM is utilized at present. The recovery and utilization of low concentration CMM provide a number of significant energy, economic and environmental benefits. Situation of extraction and utilization of CMM resource in China is briefly introduced. Research on adsorption materials and adsorption processes for the enrichment of low concentration CMM in recent years have been surveyed and future research on these two areas has been discussed. The adsorption capacity and selectivity of the adsorbents is low when they are used to separate low concentration coal mine methane. And the performance of the typical pressure swing adsorption (PSA) process is limited. Finally, the development of adsorbents with high CH4 adsorbed amount and high CH4/N2 selectivity and novel PSA process are proposed for the future enrichment of low concentration coal 2018-06-01收到初稿,2018-07-26收到修改稿。 联系人:于建国。第一作者:杨颖(1987—),男,博士后。 基金项目:国家自然科学基金项目(51804127, U1610102, 21776089);国家国际合作项目(2016YFE0132500, 2015DFG42220);国家科技支撑计划项目(2015BAC04B01);中央高校基本科研业务费专项资金。 Received date: 2018-06-01. Corresponding author: Prof. YU Jianguo, jgyu@https://www.wendangku.net/doc/c88646905.html, Foundation item: supported by the National Natural Science Foundation of China(51804127, U1610102, 21776089), the International S&T Cooperation Program of China(2016YFE0132500, 2015DFG42220), the National Key Technology R&D Program of the Ministry of Science and Technology (2015BAC04B01) and the Fundamental Research Funds for the Central Universities. 万方数据

某煤矿初步设计

某煤矿初步设计

第一章序言 为了初步了解XX勘查区的煤炭资源赋存状况及地质构造情况,为后期资源评估开发提供依据,受宁夏庆华煤化有限公司委托,安徽省煤田地质局物探测量队承接了该区二维地震勘查工程。 2009年8月,我单位组织有关技术人员和专家对该区进行踏勘,并进行了相关试验,此后根据试验情况在认真分析甲方提供的该矿区文字说明和部分技术图纸的基础上,结合前期二维地震工作经验,参照原煤炭部颁发的《煤炭煤层气地震勘探规范》(MT/T897-2000),编制了本次二维地震勘探设计。 第一节地质任务 参照《煤炭煤层气地震勘探规范》MT/T 897-2000及甲方要求,拟定本次二维地震勘查的地质任务如下: 1、控制测线上煤层隐伏露头,其平面位置误差不大于150m; 2、控制测线上落差大于50m的断层,其平面位置误差不大于150m; 3、控制主要煤层底板的深度。 4、初步控制边界断层的位置。

第二节 勘探区范围 根据矿方提供图纸,控制勘查区范围的拐点坐标如下: 表1-2-1 拐点坐标一览表 拐点 X Y 1 4120461.1060 36387186.3506 2 4120431.5646 36389406.0747 3 4121356.5306 36389418.2609 4 4121351.8895 36389788.1757 5 4122276.7127 36389800.3160 6 4122272.2349 36390170.1927 7 4123659.6079 36390188.3378 8 4123693.8564 36387599.6776 9 4123231.2941 36387593.4861 10 4123236.2533 36387223.6235 图1-2-1 勘探区范围示意图 N

煤层气基础知识

1.1. 煤层气的定义和基本特征 从矿产资源的角度讲,煤层气是以甲烷为主要成分(含量>85%),是在煤化作用过程中形成的,储集在煤层气及其临近岩层之中的,可以利用开发技术将其从煤层中采出并加以利用的非常规天然气。 对煤层气而言,煤层既是气源岩,又是。煤层具有一系列独特的物理、化学性质和特殊的岩石力学性质,因而使煤层气在贮气机理、孔渗性能、气井的产气机理和产量动态等方面与常规天然气有明显的区别(详见表1.1),表现出鲜明的特征。 表1.1 煤层气藏与常规天然气藏基本特征的对比 特征煤层气常规天然气 气藏类型层状的沉积岩局部圈闭 气源自生外源 储基层岩性有机质高度富集的可燃有积岩,易受 入井液、水泥等的伤害几乎是100%的无机质岩石,不易受伤害 双重空隙结构煤基质块中的孔隙是主要的孔隙,占 总空隙体积德绝大部分;裂隙系统是 天然气裂隙,占总空隙体积的次要部 分,它们基本上等间距分布,并使煤 具有不连续性主要发育于石灰岩、白云岩,页岩及致密砂岩中。天然裂隙(包括节理、裂隙、溶道、洞穴等)将粒间孔隙分割成一个个方块,裂隙是随机分布的 气体的贮存气体的绝大部分贝吸附在煤的内表面 上,孔隙空间中很少或没有游离气气体以游离态贮集在岩石的孔隙空间中 流动机理在基质中的流动是由浓度梯度引起的 扩散,然后由于压力梯度的作用在裂 隙中引起渗滤流动是由压力梯度引起的层流,并服从达西定律;在近井地带可出现紊流 气产出机理解吸-扩散-渗流在气体自身的压力梯度作用下流动 气井生产状况气产量随时间而增加,直至达最大值, 然后大降。起初主要产水,气水值随 时间而增大气产量开始最大,然后随时间而降低。起初,很少或者没有水产出,但气水值随时间而减少 机械性能由于煤具有脆性和裂隙较发育,因而 是一种较弱的岩石,这使钻井的稳定 性较差,并影响水力压裂的效果。在 一定条件下,可采用特殊的洞穴完井 技术。杨氏模量在700MPa范围内岩石较坚硬,通常钻井的稳定性不成问题。杨氏模量在7000MPa范围内 储层性质易被压缩,孔隙体积压缩系数在 0.01MPa-1范围内,因而孔隙度、渗透 性对应力较敏感,在生产期间有明显 的变化压缩性很小,孔隙体积压缩系数在10-4MPa-1范围内,孔隙度、渗透性在生产期间的变化不明显 资料来源:张新民中国煤层气地质与资源评价2002年

煤层气与常规天然气主要异同比较

生意社9月27日讯煤层气产业是近二十多年来在世界上崛起的新兴产业。煤层气是一种以吸附状态为主、生成并储存于煤层及其围岩中的甲烷气体,发热量大于8100大卡/m3,与常规天然气相比主要异同如下: 1、相同点 ①气体成分大体相同: 煤层气主要由95%以上的甲烷组成,另外5%的气体一般是CO2或氮气,;而天然气成分也主要是甲烷,其余的成分变化较大。 ②用途相同: 两种气体均是优质能源和化工原料,可以混输混用。 2、不同点 ①煤层气基本不含碳二以上的重烃,产出时不含无机杂质,天然气一般含有含碳二以上的重烃,产出时含无机杂质;②在地下存在方式不同,煤层气主要是以大分子团的吸附状态存在于煤层中,而天然气主要是以游离气体状态存在于砂岩或灰岩中;③生产方式、产量曲线不同。煤层气是通过排水降低地层压力,使煤层气在煤层中解吸-扩散-流动采出地面,而天然气主要是靠自身的正压产出;煤层气初期产量低,但生产周期长,可达20-30年,天然气初期产量高,生产周期一般在8年左右;④煤层气又称煤矿井斯,是煤矿生产安全的主要威胁,同时煤层气的资源量又直接与采煤相关,采煤之前如不先采气,随着采煤过程煤层气就排放到大气中,据有关统计,我国每年随煤炭开采而减少资源量190亿m3以上,而天然气资源量受其他采矿活动影响较小,可以有计划地控制。表格归纳如下: 各项常规气藏煤层气储层 1、埋深有深有浅,一般大于1500米一般小于1500米 2、资源量计算不可靠较可靠 3、勘探开发开发模式滚动勘探开发或先勘探后开发滚动勘探开发 4、储气方式圈闭,游离气吸附于煤系地层中(大部分) 5、气成分烃类气体,主要是C1—C495%以上是甲烷 6、储层孔隙结构多为单孔隙结构,双孔隙结构,微孔和裂隙发育 7、渗透性渗透率较高,对应力不敏感渗透率较低,对应力敏感 8、开采范围在圈闭范围内大面积连片开采 9、井距大,可采用单井,一般用少量生产井开采小,必须采用井网,井的数量较多

槽波地震勘探施工标准.

Q/JMJT 山西晋城无烟煤矿业集团有限责任公司 企业标准 Q/SXJMJT××××-2015 槽波地震勘探施工标准Construction standards of In-seam Seismic exploration ××××-××-××发布××××-××-××实施山西晋城无烟煤矿业集团有限责任公司发布

山西晋城无烟煤矿业集团有限责任公司企业标准 槽波地震勘探施工标准Construction standards of In-seam Seismic exploration Q/SXJMJT××××-2015 主编部门:山西晋煤集团技术研究院有限责任公司 批准部门:山西晋城无烟煤矿业集团有限责任公司准委员会 实施日期:2016年?月?日

关于发布山西晋城无烟煤矿业集团有限责任公司企业标准 《槽波地震勘探施工标准》的通知 为保证槽波探测施工质量,指导施工,由山西晋煤集团技术研究院有限责任公司主编的《槽波地震勘探施工标准》通过公司组织专家会审,现批准为五山西晋城无烟煤矿业集团有限责任公司企业标准,编号为Q/SXJMJT××××-2015,自发布之日起实施,在集团公司槽波探测工程中严格执行。

前言 本标准是根据集团公司2015年科技规划要求,在晋煤集团技术中心的组织下,会同晋煤集团技术研究院、各矿总工和集团公司相关专家等,共同完成编制工作。 在编写过程中,编制组进行了充分的调研和试验,总结了国内多年来的工程实践经验,并通专家多次评审,反复修改后,最后经审查定稿。 本标准由晋煤集团技术中心管理及具体解释。各单位在执行本标准过程中,注意总结经验,积累资料,随时将有关意见和建议反馈给集团公司,以供今后修订时参考。 主编单位:山西晋煤集团技术研究院有限责任公司 主要起草人:窦文武、焦阳等 主要审核人:付峻青,刘永胜、卫金善、杨新亮、李应平、牟义

煤层气产出过程

第五章煤层气产出过程 煤层气井的排采过程与常规天然气井显然不同,通常具有一个产气高峰期。这种差异,起源于煤层气主要以吸附状态赋存。 第一节主要内容: 在煤层气开采初期一般要进行“脱水”处理,即所谓的“排水降压”过程,目的是诱导煤层气的解吸、扩散、渗流作用由高势能方向往低势能方向连续进行。 一、煤层气流动机理 煤层气产出包括三个相互联系的过程,即解吸、扩散与渗流。 地下水的采出使煤层气压力降低。当煤层压力降低到一定程度时,煤中被吸附的气体开始从微孔隙表面分离,即解吸。解析气浓度在解吸面附近较高,在裂隙空间中较低。因此,煤层气会在浓度梯度的驱动下,通过孔隙—微裂隙系统向裂隙空间扩散。在煤层中,可能有三种扩散机理:以分子之间相互作用为主的体积扩散,以分子—表面相互作用为主的Knudsen扩散,基质表面的吸附气层表面扩散。 按照煤层中发生的物理过程,煤层气产出相继经历了三个阶段: 第一阶段,水的单相流。在此阶段,煤层裂隙空间被水所充满,为地下水单相流动阶段。 第二阶段,非饱和单相流。这一阶段,裂隙中为地下水的非饱和单相流阶段,虽然出现气—水两项阶段,单只有水相才能够连续流动。 第三阶段,气—水两相流。随着储层压力下降和水饱和度降低,水的相对渗透率不断下降,气的相对渗透率逐渐升高。最终,在煤层裂隙系统中形成了气—水两相达西流,煤层气连续产出。 上述三个阶段在时间和空间上都是一个连续的过程。随着排采时间的延长,第三阶段从井筒沿径向逐渐向周围的煤层中推进,形成一个足以使煤层气连续产出的降压漏斗。 二、煤层气开采过程 原始地层条件下,煤层及其围岩中地下水一般较多,储层压力大致等同于水

三维地震监理工程合同书

编号^本资料为word版本,可以直接编辑和打印,感谢您的下载 三维地震监理工程合同书 方: 方: 期: i说明:本合同资料适用丁?约定双方经过谈判 .协商而共冋承认.共同遵守的责任与i i义务,同时阐述确定的时间内达成约定的承诺结果。文档可H 接下载或修改,使用] I I i时请详细阅读内容。1

三维地震监理工程合同书三维地震监理工程合同书甲方: 乙方: 合同编号: 签订地点: 签订日期: 、工程名称及工程内容: 、合同价款: 、甲方责任:1协助乙方与三维地震勘探施工单位建立联系。 2对乙方的监理工作进行监督检查。 四、乙方责任: 1、审查三维地震工程的〈〈勘探设计》,并出具书面意见。 2、随施工队伍进驻施工现场,对野外施工进行全过程质量监理。施工期间不得出现现场无监理人员现象。 3、根据野外资料对进站上机进度安排,及时进驻计算站,对资料处理 与解释进行质量监理。 4、参加最终勘探报告的评审。 5、提出监理报告。

6、监理人员必须具备工程师以上技术职务和三项以上三维地震工程 项目的实践经验。 7、对实施监理过程中的白身安全负责。 &不得与施工单位发生影响监理工作公正性的不正当往来。 五、监理工期及监理时间 1、监理工期:监理工作的工期从审查〈〈勘探设计》起到施工单位〈〈勘探报告》通过评审,监理单位提出监理报告达到合同规定要求为±o 2、监理时间:时间约为年月至年月。 六、付款方式 1、合同签定并野外施工监理结束,提交野外施工监理报告后付乙方

合同价款的%(万元)。 2、合同全部履行并达到合同所规定条款后付给乙方余额,计万元。 七、工程质量及违约责任 1、工程质量:参与监理的三维地震勘探施工及勘探报告质量必须达 到〈〈煤炭、煤层气地震勘探规范》及合同所规定的质量要求。 2、违约责任:乙方所监理三维地震施工达不到规定的质量要求或勘 探报告不能通过评审时,乙方必须承担全部连带责任,赔偿甲方由此造 成的直接损失,并白费承担返工过程中的监理任务。 八、其它1、本合同履行地: 2、本合同未尽事宜,双方经协商后签订补充协议,补充协议与本合 同具有同等法律效力。 3、本合同一式份,甲方份,乙方份。 4、本合同白双方签字盖章之日起生效。 注:无本企业合同管理部门的审批,财务部门不得作为下账依据,供应部门不得作为入库验收的依据。

地震勘探报告编制

地震勘探报告编制若干问题(潘振武) ●地震勘探工作程序 地震勘探设计—地震数据采集—地震数据处理—地震数据解释—地震勘探报告与审批—“售后服务” ●地质报告的作用 ——开采(或灾害防治)设计、可行性研究、规划的地质依据; 地质构造影响矿井采区布置、工作面划分。 由于地质构造不清,未采取防范措施,巷道遇断层揭露瓦斯突出煤层、含水层、采空区带来危险。 构造不清造成掘进巷道增加。百万吨掘进率、百万吨死亡率增加。 煤矿五大灾害(瓦斯、水、火、顶板、粉尘)都与煤矿地质条件有关。查明地质情况,采取相应对策,则为合理开采、提高资源回收率、安全生产提供了保障。 二维地震为找煤、指导下一步勘查或其它专项目的。 ——为本单位科研集累资料,集累经验; ——展示本单位在行业中形象,是客观的广告和宣传。 ●《煤炭煤层气地震勘探规范》-MT/T896-2000:(22~24 页) “编写成果报告时应充分分析有关地质、物探资料、做到报告内容齐全,观点明确,证据充分,重点突出,叙述清楚,文字简练,图表齐全,整洁、美观。” (用自己的思想和语言) 地质报告编制提纲(内容): 文字说明包括:序言;概况;地质及地震地质条件;野外施工方法;资料处理和解释;地质成果;结论等七章。 附图包括:实际材料图;反射波T0等时线平面图;煤层底板等

高线图;地震地质剖面图;地震时间剖面图等。 附表包括:测量成果表;工程量统计表;断层控制表等。 1.以往地质资料(包括矿井地质资料)收集、分析 目的:了解地层、地质构造特征;以往地质工作质量; 地震地质条件。作为物探工作设计、资料解释的依据。 存在问题:——收集不足(范围、内容) ——分析、利用不够,如测井资料 ——对以往地质资料中差错甄别不够 应收集的资料 ·最近(新)的井田勘探报告或矿井地质报告 ·地形地质图(或基岩地质图) ·综合柱状图 ·主要煤层底板等高线图 ·煤层基础资料表 ·钻孔坐标 ·主要剖面图 ·煤、岩层对比图 ·全部有关钻孔的钻孔综合柱状图(含测井曲线) ·其它物探成果资料 ·区域地质资料 ·周边其它煤矿、小窑情况 需要时:煤质、岩石力学性质,水文地质试验、观测成果表。

煤层气检测相关标准信息

煤层气检测相关标准信息 煤层气,是指储存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主、部分游离于煤孔隙中或溶解于煤层水中的烃类气体,是煤的伴生矿产资源,属非常规天然气,是近一二十年在国际上崛起的洁净、优质能源和化工原料。(15.02.09)(001) 煤层气俗称“瓦斯”,其主要成分是CH4(甲烷),与煤炭伴生、[1]以吸附状态储存于煤层内的非常规天然气,热值是通用煤的2-5倍,主要成分为甲烷。1立方米纯煤层气的热值相当于1.13kg汽油、1.21kg标准煤,其热值与天然气相当,可以与天然气混输混用,而且燃烧后很洁净,[2]几乎不产生任何废气,是上好的工业、化工、发电和居民生活燃料。煤层气空气浓度达到5%-16%时,遇明火就会爆炸,这是煤矿瓦斯爆炸事故的根源。煤层气直接排放到大气中,其温室效应约为二氧化碳的21倍,对生态环境破坏性极强。在采煤之前如果先开采煤层气,煤矿瓦斯爆炸率将降低70%到85%。煤层气的开发利用具有一举多得的功效:洁净能源,商业化能产生巨大的经济效益。 检测项目: 1.煤层气含气量测定、煤的吸附等温线测定、煤瓦斯放散初速度测定、煤的工业分析、煤层气组份、煤的有机组分反射率,煤岩组份、密度、孔隙度、渗透率、比表面等专项分析。 2.煤层气资源评价。 科标能源实验室针对煤层气检测分析,取样有两种: 一种是利用绳索取心获得的煤心样; 一种是在钻进时从循环钻井液中获得的煤屑样。 煤心样品在岩心管中基本保持煤层的原始状态,提上地面后按自然顺序装罐密封。煤屑样品多为毫米级粉粒样,循环到振动筛后冲洗干净无序状装罐密封。 自然解吸过程中,煤心样品随解吸时间加长,累计解吸量明显增加,解吸持续时间长,总解吸量大,吸附时间(定义为总气量的63.2%处的时间)长;煤屑样品在解吸初期解吸量大,以后很快趋于平缓,解吸持续时间短,总解吸量小,吸附时间短。 检测标准: AQ1081-2010煤层气地面开采防火防爆安全规程 AQ1082-2010煤层气集输安全规程 AQ4213-2011煤层气开采防尘防毒技术规范 DB14/738-2013煤层气制甲醇单位产品能源消耗限额

3H-2000PHD高压瓦斯吸附及解吸速度分析仪操作步骤

3H-2000PHD仪操作说明书 3H-2000PHD仪器不仅可以测试材料的高压吸附、脱附,也可以测试材料在高压下的解吸速度,并可以完全收集。因此该仪器的操作以两种测试系统来说明。 一:高压吸附、脱附测试: 第一步:开气 测试气体和驱动气体钢瓶总阀门打开半圈。 A、测试气体直接输出钢瓶压力。 注:压力需要高于测试压力上限,并确保软件目录:工具/系统设置(密码:best17)/压力传感器配置/进气最高压力 下的该参数不大于钢瓶输出压力,建议比钢瓶输出压力低5bar,该值不能大于95bar,因为压力传感器上限为100bar。 B、驱动气体输出压力为0.4Mpa~0.5Mpa(因气动高压阀门驱动压力为0.4Mpa~0.5Mpa)。 第二步:联机、恒温 打开仪器侧面电源开关,设置恒温温度,再点击3H-2000PH软件图标。注:A、先开仪器电源,再开软件; B、恒温温度高于室温10℃最佳,恒温温度最高位60℃,一般设30℃。(首次恒温时会有气味,为加热装置正常预警,如果气味越来越大,请检查设置的恒温温度是否正常,正常情况气味会逐渐消失,如果仪器经常使用,建议不要关闭仪器电源,让仪器一直处于恒温状态) C、恒温温控操作步骤(仪器左侧右上角:上面温度为实测温度,下面温度为设定温度): 1、按“AT”建移动光标,放置在合适的位置; 2、按“RUN”或者“STOP”来降低或者升高设定值; 3、按“最左侧键”确定。 第三步:样品管空管体积测试 使用【样品管体积测试】功能测试“空管+填充棒”体积。 注:如果空管体积以前测试过,可不用测试,跳过此步操作。

第四步:称取样品 用样品管称取样品,质量尽量多装,以填充棒放入后刚好挨着样品管为准。 建议使用长填充棒。 如果是定制样品管,那么就需要完全填充满,死体积越小越好,防止死体积过大,导致游离气体太大,使得游离量管溢水。 注:样品如含水量较大,需要在称取前使用烘箱把样品进行烘干处理后再称取,烘干温度110℃,时常10h。 第五步:脱气 脱气目的是除去样品表面吸附的杂质气体和水分,建议:脱气时常10h,脱气温度150℃,建议使用原位脱气功能。 A、原位脱气:把样品管装在测试位即可(即右侧箱)。 B、脱气位脱气:把样品管装在脱气位,选择合适的脱气模式和样品类型,防止样品在脱气过程中抽飞。(建议使用脱气模式一,样品类型选择“适用于易抽飞样品”) C、脱气温控操作步骤: 1、按“向下箭头键”调出温度1路参数; 2、按“F1”转换温度路显示参数; 3、按“确定键”调出温度设置的光标; 4、按“向左箭头键”或者“向右箭头键”移动光标; 5、按“向下箭头键”或者“向上箭头键”设置温度; 6、按“确定键”后再按“向下箭头键”退出设定。 第六步:测试 如果在脱气位脱气的话,需要把样品移到测试位;如选择测试位脱气的话直接点击“设置”按钮设置参数即可: 1、输入【样品名称】和【样品重量】; 2、选择【测试气体】并输入【脱气条件】; 3、设置【气体压缩系数计算】参数(若测试气体改变后,需点击两个“计算”按钮,重新计算气体压缩系数),两个温度指恒温温控温度;压力上、下限和增量是和压力传感器有关,不需要设置。 4、吸附腔体积有三种获取方式,建议使用【计算】。在“样品真密度”处输入测试样品的

相关文档