文档库 最新最全的文档下载
当前位置:文档库 › 传感器技术-实验指导书

传感器技术-实验指导书

传感器技术-实验指导书
传感器技术-实验指导书

《传感器技术实验》实验指导书

适用专业:电气自动化

湖南交通工程学院

前言

《传感器技术》课程,在高等理工科院校测控技术与仪器类各专业的教学计划中,是一门重要的专业基础课,而《传感器技术实验》课程是完成本课程教学的重要环节。其主要任务是通过实验巩固和消化课堂所讲授理论内容的理解,掌握常用传感器的工作原理和使用方法,提高学生的动手能力和学习兴趣。其目的是使学生掌握非电量检测的基本方法和选用传感器的原则,熟悉各种传感器与检测技术的关系,以及各类在工程中的实际应用,拓宽学生的知识领域,锻炼学生的实践技能,培养学生独立处理问题和解决问题的能力,培养学生科学的工作作风。本实验开设实验总学时数:16,开设实验总个数: 8 个,课内选做2个。实验内容有:金属箔式应变计性能——应变电桥、双孔应变传感器——称重实验、温度传感器——热电偶测温实验、温度传感器——铂热电阻、电感式传感器——差动变压器性能、电感传感器——差动螺管式传感器位移测量、霍尔式传感器——直流激励特性、电容式传感器性能等。其中双孔应变传感器——称重实验、电感传感器——差动螺管式传感器位移测量为综合性实验。课内选做实验有:差动变压器的应用——电子秤、电涡流传感器——静态标定。其他仪器与仪表专业也选择其中的2个或3个较为典型的传感器实验作为课内实验。

目录

实验一金属箔式应变计性能——应变电桥 (3)

实验二双孔应变传感器——称重实验 (6)

实验三温度传感器——热电偶测温实验 (8)

实验四温度传感器——铂热电阻 (11)

实验五电感式传感器——差动变压器性能 (13)

实验六电感传感器——差动螺管式传感器位移测量 (15)

实验七霍尔式传感器——直流激励特性 (17)

实验八电容式传感器性能 (19)

实验九差动变压器的应用——电子秤 (21)

实验十电涡流传感器——静态标定 (23)

附录A 实验仪器简介 (25)

附录B 实验操作须知 (27)

实验一:金属箔式应变计性能——应变电桥

实验学时:2

实验类型:(验证)

实验要求:(必修)

一、实验目的

1、观察了解箔式应变片的结构及粘贴方式。

2、测试应变梁变形的应变输出。

3、比较各桥路间的输出关系。

二、实验内容

本实验主要了解和掌握箔式应变片及直流电桥的原理和工作情况。

三、实验原理、方法和手段

应变片是最常用的测力传感元件。当用应变片测试时,应变片要牢固地粘贴在测试体表面,测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。通过测量电路,转换成电信号输出显示。

电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R1、R2、R3、R4中,电阻的相对变化率分别为△R1/ R1、△R2/ R2、△R3/ R3、△R4/ R4 ,当使用一个应变片时,

?

=

R

R

R

;当二个应变片组成差动状态工作,则有

?

=

R

R

2

R

;用四个应变片组

成二个差动对工作,且R1= R2= R3= R4=R,∑

?

=

R

R

4

R

四、实验组织运行要求

本实验采用以学生自主训练为主的开放模式组织教学。

五、实验条件

直流稳压电源+4V、公共电路模块(一){公共电路模块}、贴于主机工作台悬臂梁上的箔式应变计、螺旋测微仪、数字电压表。

六、实验步骤

1、连接主机与模块电路电源连接线,差动放大器增益置于最大位置(顺时针

方向旋到底),差动放大器“+”“—”输入端对地用实验线短路。输出端接电压表2V 档。开启主机电源,用调零电位器调整差动放大器输出电压为零,然后拔掉实验线,调零后模块上的“增益、调零”电位器均不应再变动。

(图1)

2、观察贴于悬臂梁根部的应变计的位置与方向,按图(1)将所需实验部件连接成测试桥路,图中R1、R2、R3分别为固定标准电阻,R 为应变计(可任选上梁或下梁中的一个工作片),图中每两个节之间可理解为一根实验连接线,注意连接方式,勿使直流激励电源短路。

将螺旋测微仪装于应变悬臂梁前端永久磁钢上,并调节测微仪使悬臂梁基本处于水平位置。

3、确认接线无误后开启主机,并预热数分钟,使电路工作趋于稳定。调节模块上的WD 电位器,使桥路输出为零。

4、用螺旋测微仪带动悬臂梁分别向上和向下位移各5mm ,每位移1mm 记录一个输出电压值,并记入下表:

位移mm

电压V

根据表中所测数据在坐标图上做出V —X 曲线,计算灵敏度S : S=X /V ?? 七、思考题

比较各桥路间的输出关系。 八、实验报告

实验报告簿应事先准备好,用来做预习报告、实验记录和实验报告,要求这三个过程在一个实验报告中完成。

九、其它说明

1、实验前应检查实验连接线是否完好,学会正确插拔连接线,这是顺利完成实验的基本保证。

2、由于悬臂梁弹性恢复的滞后及应变片本身的机械滞后,所以当螺旋测微仪回到初始位置后桥路电压输出值并不能马上回到零,此时可一次或几次将螺旋测微仪反方向旋动一个较大位移,使电压值回到零后再进行反向采集实验。

3、实验中实验者用螺旋测微仪进行位移后应将手离开仪器后方能读取测试系统输出电压数,否则虽然没有改变刻度值也会造成微小位移或人体感应使电压信号出现偏差。

4、因为是小信号测试,所以调零后电压表应置2V档,用计算机数据采集时应选用200mv量程。

实验二:双孔应变传感器——称重实验实验学时:2

实验类型:(综合)

实验要求:(必修)

一、实验目的

1、比较各桥路间的输出关系

2、几种桥路的性能比较

3、桥路电路的实际应用

二、实验内容

本实验主要是在实验1的基础上进一步了解和掌握几种桥路的性能,以及桥路的实际应用。知识点:应变电桥差动的概念几种电桥的输出比较电桥的实际应用

三、实验原理、方法和手段

本实验选用的是标准商用双孔悬臂梁式称重传感器,四个特性相同的应变片贴在如图所示位置,弹性体的结构决定了R1和R3、R2 和R4的受力方向分别相同,因此将它们串接就形成差动电桥。

当弹性体受力时,根据电桥的加减特性其输出电压为:

R

R

4

E

4

R

R

R

R

R

R

R

R

4

E

U

4

4

3

3

2

2

1

1

?

?

?

=

??

?

?

?

??

-

?

+

?

-

?

=

四、实验组织运行要求

本实验采用以学生自主训练为主的开放模式组织教学。

五、实验条件

直流稳压电源、双孔悬臂梁称重传感器、公共电路模块(一){公共电路模块},称重砝码(20克/个)、数字电压表。

(图2)

六、实验步骤

1、观察称重传感器弹性体结构及贴片位置,连接主机与实验模块的电源连接线,开启主机电源,调节放大器调零电位器使无负载时的称重传感器输出为零。

2、接好传感器测试系统线路,称重传感器工作电压选用+4V,差动放大器增益为最大(100倍),输出端接电压表。调节电桥WD调零电位器使无负载时的称重传感器输出为零。

3、逐步将砝码放上称重平台,调节增益电位器,使V0端输出电压与所称重量成一比例关系,记录W(克)与V(mv)的对应值,并填入下表:

4、记录W与V值,并做出W-V曲线,进行灵敏度、线性度与重复性的比较。

5、与双平行悬臂梁组成的全桥进行性能比较。

七、思考题

比较三种桥路的灵敏度。

八、实验报告

实验报告簿应事先准备好,用来做预习报告、实验记录和实验报告,要求这三个过程在一个实验报告中完成。

九、其它说明

称重传感器的激励电压请勿随意提高。

注意保护传感器的引线及应变片使之不受损伤。

实验三:温度传感器——热电偶测温实验

实验学时:2 实验类型:(验证) 实验要求:(必修) 一、实验目的

了解和掌握温度传感器-热电偶的测温原理和方法。 二、实验内容

1、观察热电偶的结构

2、热电偶测温回路的连接。

3、热电偶的测量温度和输出电压的关系

三、实验原理、方法和手段

由两根不同质的导体熔接而成的闭合回路叫做热电回路,当其两端处于不同温度时则回路中产生一定的电流,这表明电路中有电势产生,此电势即为热电势。

(图3)

图(3)中T 为热端,To 为冷端,热电势Et=)T ()T (o AB AB λλ- 本实验中选用两种热电偶镍铬—镍硅(K )和镍铬—铜镍(E )。

四、实验组织运行要求

本实验采用以采用集中授课形式模式组织教学。

五、实验条件

K 、E 分度热电偶、温控电加热炉、{温度传感器实验模块}、214位数字电压

表。

六、实验步骤

1、观察热电偶结构(可旋开热电偶保护外套),了解温控电加热器工作原理。 温控器:作为热源的温度指示、控制、定温之用。温度调节方式为时间比例式,绿灯亮时表示继电器吸合电炉加热,红灯亮时加热炉断电。

温度设定:拨动开关拨向“设定”位,调节设定电位器,仪表显示的温度值℃随之变化,调节至实验所需的温度时停止。然后将拨动开关扳向“测量”侧,(注:首次设定温度不应过高,以免热惯性造成加热炉温度过冲)。

2、首先将温度设定在50℃左右,打开加热开关,{加热电炉电源插头插入主机加热电源出插座},热电偶插入电加热炉内,K 分度热电偶为标准热电偶,冷端接“测试”端,E 分度热电偶接“温控”端,注意热电偶极性不能接反,而且不能断偶,2

14位万用表置200mv 档,当钮子开关倒向“温控”时测E 分度热电偶的

热电势,并记录电炉温度与热电势E 的关系。

3、因为热电偶冷端温度不为0℃,则需对所测的热电势值进行修正

E (T ,To )=E(T,t 1)+E(T 1,T 0)

实际电动势= 测量所得电势 + 温度修正电势 查阅热电偶分度表,上述测量与计算结果对照。

4、继续将炉温提高到70℃、90℃、110℃和130℃,重复上述实验,观察热电偶的测温性能。 七、思考题

热电偶温度的大小与实际电动势与分度表值误差的关系? 八、实验报告

实验报告簿应事先准备好,用来做预习报告、实验记录和实验报告,要求这三个过程在一个实验报告中完成。 九、其它说明

加热炉温度请勿超过150℃,当加热开始,热电偶一定要插入炉内,否则炉温会失控,同样做其它温度实验时也需用热电偶来控制加热炉温度。

因为温控仪表为E分度,所以当钮子开关倒向“测试”方接入K分度热电偶时,数字温度表显示的温度并非为加热炉内的温度。

实验四:温度传感器——铂热电阻

实验学时:2

实验类型:(验证)

实验要求:(必修)

一、实验目的

了解和掌握温度传感器-铂热电阻的测温原理和方法。

二、实验内容

1、观察铂热电阻的结构

2、铂热电阻测温回路的连接。

3、铂热电阻的测量温度和输出电压的关系

三、实验原理、方法和手段

铂热电阻测温范围一般为-200~650 ℃,铂热电阻的阻值与温度的关系近

似线性,当温度在0℃≤T≤650℃时,R

T =R

(1+A

T

+BT2)

式中R

T

——铂热电阻T℃时的电阻值

R

O

——铂热电阻在0℃时的电阻值

A——系数(=3.96847×10-31/℃)

B——系数(=-5.847×10-71/℃2)

将铂热电阻作为桥路中的一部分在温度变化时电桥失衡便可测得相应电路的输出电压变化值。

四、实验组织运行要求

本实验采用以采用集中授课形式模式组织教学。

五、实验条件

铂热电阻(Pt

100

)、加热炉、温控器、温度传感器实验模块(一)、{温度传感器实验模块}、数字电压表、水银温度计或半导体点温计。

六、实验步骤

1、观察已置于加热炉顶部的铂热电阻,连接主机与实验模块的电源线及传感

器与模块处理电路接口,铂热电阻电路输出端V

O

接电压表,温度计置于热电阻旁

感受相同的温度。

2、开启主机电源,调节热电阻电路调零旋钮,使输出电压为零,电路增益适中,由于铂电阻通过电流时其电阻值要发生变化,因此电路有一个稳定过程。

3、开启加热开关,设定加热炉温度为≤100℃,观察随炉温上升铂电阻的阻值变化及输出电压变化,(温度表上显示的温度值是炉内温度,并非是加热炉顶端传感器感受到的温度)。并记录数据填入下表:

做出V-T曲线,观察其工作线性范围。

七、思考题

热电偶和铂热电阻的测温方法比较。

八、实验报告

实验报告簿应事先准备好,用来做预习报告、实验记录和实验报告,要求这三个过程在一个实验报告中完成。

九、其它说明

加热器温度一定不能过高,以免损坏传感器的包装。

实验五:电感式传感器——差动变压器性能

实验学时:2

实验类型:(验证)

实验要求:(必修)

一、实验目的

了解差动变压器的基本结构及原理,通过实验验证差动变压器的基本特性。

二、实验内容

1、观察差动变压器的基本结构

2、验证差动变压器的基本特性

三、实验原理、方法和手段

电感传感器是一种将位置量的变化转为电感量变化的传感器,差动变压器由衔铁、初级线圈和次级线圈组成,初级线圈做为差动变压器激励用,相当于变压器原边。次级线圈由两个结构尺寸和参数相同的线圈反相串接而成,相当于变压器副边。差动变压器是开磁路,工作是建立在互感基础上的,其原理及输出特性见图(4)。

(图4)

(图5)

四、实验组织运行要求

本实验采用以学生自主训练为主的开放模式组织教学。

五、实验条件

差动变压器、电感传感器实验模块、音频信号源、螺旋测微仪、示波器。

六、实验步骤

1、按图(13)接线,差动变压器初级线圈必须从音频信号源LV功率输出端接入,双线示波器第一通道灵敏度500mv/格,第二通道10mv/格。

2、打开主机电源,调整音频输出信号频率,输出V

值2V,以示波器第二通

p-p

道观察到波形不失真为好。

3、用手上下提压{左右移动}改变变压器磁芯在线圈中位置,观察示波器第二通道所示波形能否过零翻转,否则改接次级二个线圈的串接端。

4、用螺旋测微仪带动铁芯在线圈中移动,从示波器中读出次级输出电压V

p-p 值,同时注意初次级线圈波形相位。

根据表格所列结果,作出V-X曲线,指出线性工作范围。

5、仔细调节测微仪使次级输出波形无法再小时,即为差动变压器零点残余电压,提高示波器第二通道灵敏度,观察残余电压波形,分析其频率成分。

七、思考题

为什么差动变压器性能试验中有些测量的数据点不符合线形的规律?

八、实验报告

实验报告簿应事先准备好,用来做预习报告、实验记录和实验报告,要求这三个过程在一个实验报告中完成。

九、其它说明

示波器第二通道为悬浮工作状态(即示波器探头二根线都不接地)。

实验六:电感传感器——差动螺管式传感器位移测量

实验学时:2

实验类型:(综合)

实验要求:(必修)

一、实验目的

了解差动差动螺管式传感器的基本结构及原理,通过实验掌握差动螺管式传感器位移测量的方法。

二、实验内容

1、观察差动螺管式传感器的基本结构

2、差动螺管式传感器位移测量

知识点:电感传感器的性能差动螺管式传感器的原理差动螺管式传感器的实际应用

三、实验原理、方法和手段

差动螺管式电感传感器由电感线圈的二个次级线圈反相串接而成,工作在自感基础上,由于衔铁在线圈中位置的变化使二个线圈的电感量发生变化,包括两个线圈在内组成的电桥电路的输出电压信号因而发生相应变化

四、实验组织运行要求

本实验采用以以采用集中授课形式组织教学。

五、实验条件

差动变压器二组次级线圈、音频信号源、公共电路模块(一)(二)、{公共电路实验模块}、电感传感器实验模块、电压表、示波器、测微仪

(图6)。

六、实验步骤

1、连接主机与实验模块电源线,按图(16)组成测试系统,两个次级线圈必须接成差动状态,差动放大器增益不要太大,具体调节注意点可参照实验二十三。

2、旋动测微仪使衔铁居中线圈,此时L

O ′=L

O

″,系统输出为零。

3、当衔铁在线圈中上{左}、下{右}位移时,L

O ′≠L

O

″,电桥失衡,输出电

压信号的大小与衔铁位移量成比例,相位则与衔铁位移方向有关,衔铁向上{左}和向下{右}移动时输出波形相差约1800,(可用示波器观察相敏检波器①、②端),因此必须经过相敏检波器才能判断电压极性。

以衔铁位置居中为起点,分别向上{左}、向下{右}各位移5mm,记录V、X值并填入下表(每位移0.5mm记录一个数值):

依此做出V-X曲线,求出灵敏度S,指出线性工作范围。

七、思考题

差动螺管式传感器位移测量的特点,以及和差动变压器电感传感器的比较?

八、实验报告

实验报告簿应事先准备好,用来做预习报告、实验记录和实验报告,要求这三个过程在一个实验报告中完成。

九、其它说明

实验七:霍尔式传感器——直流激励特性

实验学时:2

实验类型:(验证)

实验要求:(必修)

一、实验目的

了解霍尔传感器的基本结构及原理,通过实验掌握霍尔传感器直流激励特性。

二、实验内容

1、观察霍尔传感器的基本结构

2、掌握霍尔传感器直流激励特性

三、实验原理、方法和手段

霍尔元件是根据霍尔效应原理制成的磁电转换元件,当霍尔元件位于由两个环形磁钢组成的梯度磁场中时就成了霍尔位移传感器。

霍尔元件通以恒定电流时,就有霍尔电势输出,霍尔电势的大小正比于磁场强度(磁场位置),当所处的磁场方向改变时,霍尔电势的方向也随之改变。

(图7)

四、实验组织运行要求

本实验采用以以学生自主训练为主的开放模式组织教学。

五、实验条件

霍尔传感器、直流稳压电源(2V)、公共电路模块(一)、{霍尔传感器实验模块}、电压表、测微仪。

六、实验步骤

1、{安装好梯度磁场及霍尔传感器}连接主机与实验模块电源及传感器接口,确认霍尔元件直流激励电压为2V,另一激励端接地,实验接线按图(23)所示,差动放大器增益10倍左右。

2、用螺旋测微仪调节振动平台{精密位移装置}使霍尔元件置于梯度磁场中

间,并调节电桥直流电位器W

D ,使输出为零。

W D

3、从中点开始,调节螺旋测微仪,上下{左右}移动霍尔元件各3.5mm,每变化0.5mm读取相应的电压值,并记入下表:

作出V-X曲线,求得灵敏度和线性工作范围。如出现非线性情况,请查找原因。

七、思考题

霍尔传感器测位移的特点以及同其他位移传感器的比较。

八、实验报告

实验报告簿应事先准备好,用来做预习报告、实验记录和实验报告,要求这三个过程在一个实验报告中完成。

九、其它说明

直流激励电压只能是2V,不能接+2V(4V)否则锑化铟霍尔元件会烧坏。

实验八:电容式传感器性能

实验学时:2

实验类型:(验证)

实验要求:(必修)

一、实验目的

了解电容式传感器的基本结构及原理,通过实验掌握电容式传感器的性能。

二、实验内容

1、观察电容式传感器的基本结构

2、掌握电容式传感器性能

三、实验原理、方法和手段

差动式平行{同轴}变面积电容的两组电容片C

x1与C

x2

作为双T电桥的两臂,

当电容量发生变化时,桥路输出电压发生变化。

(图8)

四、实验组织运行要求

本实验采用以以学生自主训练为主的开放模式组织教学。

五、实验条件

电容传感器、电容传感器实验模块、激振器I、测微仪。

六、实验步骤

1、观察电容传感器结构:传感器由一组动片和两组定片组成,{一个动极与两个定级组成},连接主机与实验模块的电源线及传感器接口,按图(29)接好实验线路,增益不宜太大。

2、打开主机电源,用测微仪带动传感器动片{极}位移至两组定片{极}中间,{调整调零电位器},此时模块电路输出为零。

最新传感器原理与应用实验指导书

传感器原理与应用实 验指导书

实验一压力测量实验 实验目的: 1.了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 2.比较半桥与单臂电桥的不同性能,了解其特点,了解全桥测量电路的优点。 3.了解应变片直流全桥的应用及电路标定。 二、基本原理: 1.电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: ΔR/R=Kε 式中ΔR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,对单臂电桥而言,电桥输出电压,U01=EKε/4。(E为供桥电压)。 2.不同受力方向的两片应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当两片应变片阻值和应变量相同时,其桥路输出电压 U02=EK/ε2,比单臂电桥灵敏度提高一倍。 3.全桥测量电路中,将受力状态相同的两片应变片接入电桥对边,不同的接入邻边,应变片初始阻值是R1= R2= R3=R4,当其变化值ΔR1=ΔR2=ΔR3=ΔR4

时,桥路输出电压U03=KEε,比半桥灵敏度又提高了一倍,非线性误差进一步得到改善。 4. 电子秤实验原理为实验三的全桥测量原理,通过对电路调节使电路输出的电压值为重量对应值,将电压量纲(V)改为重量量纲(g)即成为一台原始电子秤。 三、实验所需部件:应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源、±4V电源、万用表(自备)、自备测试物。 四、实验步骤: 1、根据图(1-1),应变式传感器已装于应变传感器模板上。传感器中各应变片已接入模板左上方的R1、R 2、R 3、R4标志端。加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。 2、实验模板差动放大器调零,方法为:①接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置,②将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。 3、参考图(1-2)接入传感器,将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、 R6、R7在模块内已连接好),接好电桥调零电位器Rw1,接上桥路电源±4V(从主控箱引入),检查接线无误后,合上主控箱电源开关,先粗调节Rw1,再细调RW4使数显表显示为零。

现代传感器检测技术实验-实验指导书doc

现代(传感器)检测技术实验 实验指导书 目录 1、THSRZ-2型传感器系统综合实验装置简介 2、实验一金属箔式应变片——电子秤实验 3、实验二交流全桥振幅测量实验 4、实验三霍尔传感器转速测量实验 5、实验四光电传感器转速测量实验 6、实验五 E型热电偶测温实验 7、实验六 E型热电偶冷端温度补偿实验 西安交通大学自动化系 2008.11

THSRZ-2型传感器系统综合实验装置简介 一、概述 “THSRZ-2 型传感器系统综合实验装置”是将传感器、检测技术及计算机控制技术有机的结合,开发成功的新一代传感器系统实验设备。 实验装置由主控台、检测源模块、传感器及调理(模块)、数据采集卡组成。 1.主控台 (1)信号发生器:1k~10kHz 音频信号,Vp-p=0~17V连续可调; (2)1~30Hz低频信号,Vp-p=0~17V连续可调,有短路保护功能; (3)四组直流稳压电源:+24V,±15V、+5V、±2~±10V分五档输出、0~5V可调,有短路保护功能; (4)恒流源:0~20mA连续可调,最大输出电压12V; (5)数字式电压表:量程0~20V,分为200mV、2V、20V三档、精度0.5级; (6)数字式毫安表:量程0~20mA,三位半数字显示、精度0.5级,有内侧外测功能; (7)频率/转速表:频率测量范围1~9999Hz,转速测量范围1~9999rpm; (8)计时器:0~9999s,精确到0.1s; (9)高精度温度调节仪:多种输入输出规格,人工智能调节以及参数自整定功能,先进控制算法,温度控制精度±0.50C。 2.检测源 加热源:0~220V交流电源加热,温度可控制在室温~1200C; 转动源:0~24V直流电源驱动,转速可调在0~3000rpm; 振动源:振动频率1Hz~30Hz(可调),共振频率12Hz左右。 3.各种传感器 包括应变传感器:金属应变传感器、差动变压器、差动电容传感器、霍尔位移传感器、扩散硅压力传感器、光纤位移传感器、电涡流传感器、压电加速度传感器、磁电传感器、PT100、AD590、K型热电偶、E型热电偶、Cu50、PN结温度传感器、NTC、PTC、气敏传感器(酒精敏感,可燃气体敏感)、湿敏传感器、光敏电阻、光敏二极管、红外传感器、磁阻传感器、光电开关传感器、霍尔开关传感器。包括扭矩传感器、光纤压力传感器、超声位移传感器、PSD位移传感器、CCD电荷耦合传感器:、圆光栅传感器、长光栅传感器、液位传感器、涡轮式流量传感器。 4.处理电路 包括电桥、电压放大器、差动放大器、电荷放大器、电容放大器、低通滤波器、涡流变换器、相敏检波器、移相器、V/I、F/V转换电路、直流电机驱动等 5.数据采集 高速USB数据采集卡:含4路模拟量输入,2路模拟量输出,8路开关量输入输出,14位A/D 转换,A/D采样速率最大400kHz。 上位机软件:本软件配合USB数据采集卡使用,实时采集实验数据,对数据进行动态或静态处理和分析,双通道虚拟示波器、虚拟函数信号发生器、脚本编辑器功能。

传感器实验指导书(实际版).

实验一 金属箔式应变片性能实验 (一)金属箔式应变片——单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: εK R R =? 式中R R ?为电阻丝电阻相对变化, K 为应变灵敏系数, l l ?=ε为电阻丝长度相对变化, 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受 力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。对单臂电桥输出电压4 1ε EK U O =。 三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码、数显表、士15V 电源、土4V 电源、万用表(自备)。 四、实验步骤: 1.应变式传感器已装于应变传感器模板上。传感器中各应变片已接入模板的左上方的1R 、2R 、3R 、4R 。加热丝也接于模板上,可用万用表进行测量判别, Ω====3504321R R R R ,加热丝阻值为Ω50左右。 2.接入模板电源上15V (从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板调节增益电位器3W R 顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上数显表电压输入端i V 相连,调节实验模板上调零电位器4W R ,使数显表显示为零(数显表的切换开关打到2V 档)。关闭主控箱电源。 3.将应变式传感器的其中一个应变片1R (模板左上方的1R )接入电桥作为一个桥臂与5R 、6R 、7R 接成直流电桥(5R 、6R 、7R 模块内已连接好) ,接好电桥调零电位器4W R ,接上桥路电源上4V (从主控箱引入)如图1—2所示。检查接线无误后,合上主控箱电源

传感器实验指导书11

实验平台介绍 传感器教学实验系列nextsense是针对传感器教学,虚拟仪器教学等基础课程设计的教学实验模块。nextsense系列配合泛华通用工程教学实验平台nextboard使用,可以完成热电偶、热敏电阻、RTD热电阻、光敏电阻、霍尔元件等传感器的课程教学。课程提供传感器以及调理电路,内容涵盖传感器特性描绘、电路模拟以及实际测量等。 图1 nextboard实验平台 nextboard具有6个实验模块插槽;提供两块标准尺寸的面包板,用户可自搭实验电路;为NI 数据采集卡提供信号路由,可完全替代NI数据采集卡接线盒功能,轻松使用数据采集卡资源;还为实验模块和自搭电路提供电源,既可用于有源电路供电,也可作为外接设备供电。 实验模块区共有6个插槽,分别为4个模拟插槽Analog Slot 1-4,2个数字插槽Digital Slot 1-2。数据采集卡的模拟通道和数字通道分配到实验模块区的Analog Slot 和Digital Slot 上。Analog Slot 模拟插槽用于那些需要使用模拟信号的实验模块。Digital Slot 数字插槽用于那些需要同时使用多个数字信号或脉冲信号的实验模块。 图2 模拟插槽和数字插槽

特别需要注意的是: (1)在使用所有模块之前,都要先区分模块的类型:带有正弦波标记的为模拟实验模块,需要插在Analog Slot 上使用;带有方波标记的为数字模块,需要查在Digital Slot 上使用。如果插错插槽,会导致模块工作不正常,甚至损坏模块。 (2)插拔实验模块前关闭nextboard电源。 (3)开始实验前,认真检查模块跳线连接,避免连接错误而导致的输出电压超量程,否则会损坏数据采集卡。 Nextboard的连线: (1)电源线,把220V的电源通过一个15V的直流变压器,送到实验台上。 (2)数据采集卡,将数据采集卡的插头与实验台可靠连接。

传感器与检测实验指导书2013.

传感器与检测技术实验指导书电气工程学院自动化专业 专业名称 班级 学生姓名 学号 实验成绩 辽宁工业大学 2013年9月

目录 实验一电阻应变式传感器特性实验 (1) 实验二电容传感器特性实验 (5) 实验三电涡流式传感器特性实验 (8) 实验四压电式传感器特性实验 (12) 实验五光电式传感器特性实验 (15) 实验六热电式传感器特性实验 (20) 附录一CSY2000系列传感器实验台说明书 (26) 附录二CSY-V8.1软件操作说明书 (27)

实验一电阻应变式传感器特性实验 一、实验目的 1.熟悉电阻应变式传感器的结构。 2.了解单臂、半桥和全桥测量电路工作原理和性能。 3.比较单臂与半桥、全桥的不同性能,了解各自特点及全桥测量电路的优点。二、基本原理 1.电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K 为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态,对单臂电桥输出电压U O1= EKε/4。 2.对半桥测量电路而言,不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当应变片阻值和应变量相同时,其桥路输出电压U O2=EKε/2。 3.全桥测量电路中,将受力性质相同的两应变片接入电桥对边,当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U O3=EKε。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。 三、实验仪器及材料 1.应变式传感器实验模板(应变式传感器-电子秤)、砝码盘、砝码;

无线传感网智能组网设计实践_实验指导书

无线传感网智能组网设计实验指导书(实验类)实验 1.Zigbee基本通信实验 1.1实验目的 ?了解实Zigbee的原理及在软件上如何方便使用; ?掌握在Windows CE 6.0下进行UART编程的方法。 1.2实验设备 ?硬件:EduKit-IV嵌入式教学实验平台、Mini270核心子板、Zigbee模块、PC 机; ?软件:Windows 2000/NT/XP 以及Windows 平台下的VS2005开发环境。 1.3实验容 ?利用Microsoft Visual Studio 2005编写一个可运行于EduKit-IV型实验箱Windows CE 6.0操作系统上的应用程序; ?学习和掌握EduKit-IV教学实验平台过UART与Zigbee模块通信,实现对Zigbee 模块的配置和对等网模式下的通信。 1.4实验原理 1.4.1Zigbee起源 无线网络系统源自美国军方的“电子尘埃(eMote)”技术,是目前国、外研究的热点技术之一。该系统基于IEEE802.15.4规的无线技术,工作在2.4 GHz或868/928 MHz,用于个人区域网和对等网状网络。ZigBee是一种新兴的近距离、低复杂度、低功耗、低数据速率、低成本的无线网络技术。它是一种介于红外无线技术和蓝牙之间的技术提案。主要用于近距离无线连接。它依据802.15.4标准。在数千个微小的传感器之间相互协调实现通信。这些传感器只需要很少的能量,以接力的方式通过无线电波将数据从一个传感器传到另一个传感器,所以它们的通信效率非常高。相对于现有的各种无线通信技术,无线ZigBee网络技术将是近距离通信最低功耗和成本的技术。这一技术目前正向工业、民用方向推广和发展,

物联网实验指导书

物联网 实验指导书 四川理工学院通信教研室 2014年11月

目录 前言 (1) 实验一走马灯IAR工程建立实验 (5) 实验二串口通信实验 (14) 实验三点对点通信实验 (18) 实验四 Mesh自动组网实验 (21) 附录 (25) 实验一代码 (25) 实验二代码 (26) 实验三代码 (28) 实验四代码 (29)

前言 1、ZigBee基础创新套件概述 无线传感器网络技术被评为是未来四大高科技产业之一,可以预见无线传感器网络将会是继互联网之后一个巨大的新兴产业,同时由于无线传感网络的广泛应用,必然会对传统行业起到巨大的拉动作用。 无线传感器网络技术,主要是针对短距离、低功耗、低速的数据传输。数据节点之间的数据传输强调网络特性。数据节点之间通过特有无线传输芯片进行连接和转发形成大范围的覆盖容纳大量的节点。传感器节点之间的网络能够自由和智能的组成,网络具有自组织的特征,即网络的节点可以智能的形成网络连接,连接根据不同的需要采用不同的拓扑结构。网络具有自维护特征,即当某些节点发生问题的时候,不影响网络的其它传感器节点的数据传输。正是因为有了如此高级灵活的网络特征,传感器网络设备的安装和维护非常简便,可以在不增加单个节点成本同时进行大规模的布设。 无线传感器网络技术在节能、环境监测、工业控制等领域拥有非常巨大的潜力。目前无线传感器网络技术尚属一个新兴技术,正在高速发展,学习和掌握新技术发展方向和技术理念是现代化高等教育的核心理念。 “ZigBee基础创新套件”产品正是针对这一新技术的发展需要,使这种新技术能够得到快速的推广,让高校师生能够学习和了解这项潜力巨大的新技术。“ZigBee基础创新套件”是由多个传感器节点组成的无线传感器网络。该套件综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等多种技术领域,用户可以根据所需的应用在该套件上进行自由开发。 2、ZigBee基础创新套件的组成 CITE 创新型无线节点(CITE-N01 )4个 物联网创新型超声波传感器(CITE-S063)1个 物联网创新型红外传感器(CITE-S073)1个 物联网便携型加速度传感器(CITE-S082)1个 物联网便携型温湿度传感器(CITE-S121 )1个 电源6个 天线8根 CC Debugger 1套(调试器,带MINI USB接口的USB线,10PIN排线)物联网实验软件一套

无线传感器网络实验指导书

无线传感器网络 实验指导书 信息工程学院

实验一 质心算法 一、实验目的 掌握合并质心算法的基本思想; 学会利用MATLAB 实现质心算法; 学会利用数学计算软件解决实际问题。 二、实验容和原理 无需测距的定位技术不需要直接测量距离和角度信息。定位精度相对较低,不过可以满足某些应用的需要。 在计算几何学里多边形的几何中心称为质心,多边形顶点坐标的平均值就是质心节点的坐标。 假设多边形定点位置的坐标向量表示为p i = (x i ,y i )T ,则这个多边形的质心坐标为: 例如,如果四边形 ABCD 的顶点坐标分别为 (x 1, y 1),(x 2, y 2), (x 3, y 3) 和(x 4,y 4),则它的质心坐标计算如下: 这种方法的计算与实现都非常简单,根据网络的连通性确定出目标节点周围的信标参考节点,直接求解信标参考节点构成的多边形的质心。 锚点周期性地向临近节点广播分组信息,该信息包含了锚点的标识和位置。当未知结点接收到来自不同锚点的分组信息数量超过某一门限或在一定接收时间之后,就可以计算这些锚点所组成的多边形的质心,作为确定出自身位置。由于质心算法完全基于网络连通性,无需锚点和未知结点之间的协作和交互式通信协调,因而易于实现。 三、实验容及步骤 该程序在Matlab 环境下完成无线传感器中的质心算法的实现。在长为100米的正方形区域,信标节点(锚点)为90个,随机生成50个网络节点。节点的通信距离为30米。 需完成: 分别画出不同通信半径,不同未知节点数目下的误差图,并讨论得到的结果 所用到的函数: 1. M = min(A)返回A 最小的元素. 如果A 是一个向量,然后min(A)返回A 的最小元素. 如果A 是一个矩阵,然后min(A)是一个包含每一列的最小值的行向量。 2. rand X = rand 返回一个单一均匀分布随机数在区间 (0,1)。 X = rand(n)返回n--n 矩阵的随机数字。 ()12341234,,44x x x x y y y y x y ++++++??= ???

传感器实验指导书修订稿

传感器实验指导书 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

传感器与检测技术实验 指导教师:陈劲松

实验一 金属箔式应变片——单臂电桥性能实验 一、 实验目的: 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、 基本原理: 金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。 金属的电阻表达式为: S l R ρ = (1) 当金属电阻丝受到轴向拉力F 作用时,将伸长l ?,横截面积相应减小S ?,电阻率因晶格变化等因素的影响而改变ρ?,故引起电阻值变化R ?。对式(1)全微分,并用相对变化量来表示,则有: ρ ρ ?+?-?=?S S l l R R (2) 式中的l l ?为电阻丝的轴向应变,用ε表示, 常用单位με(1με=1×mm mm 610-)。若径向应变为r r ?,电阻丝的纵向伸长和横 向收缩的关系用泊松比μ表示为)(l l r r ?-=?μ,因为S S ?=2(r r ?),则(2)式可以写成: l l k l l l l l l R R ?=???++=?++?=?02121)()(ρρμρρμ (3) 式(3)为“应变效应”的表达式。0k 称金属电阻的灵敏系数,从式(3)可见,0k 受两个因素影响,一个是(1+μ2),它是材料的几何尺寸变化引起的,另一个是 ) (ρερ?,是材料的电阻率ρ随应变引起的(称“压阻效应”)。对于金属材料而言,以前者为主,则μ210+≈k ,对半导体,0k 值主要是由电阻率相对变化所决定。实验也表明,在金属丝拉伸比例极限内,电阻相对变化与轴向应变成比例。通常金属丝的灵敏系数0k =2左右。

传感器原理实验指导书

《传感器原理及应用》实验指导书闻福三郭芸君编著 电子技术省级实验教学示范中心

实验一 金属箔式应变片——单臂电桥性能实验 一、 实验目的 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、 实验仪器 1、传感器特性综合实验仪 THQC-1型 1台 2、万用表 MY60 1个 三、 实验原理 金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。 金属的电阻表达式为: S l R ρ = (1) 当金属电阻丝受到轴向拉力F 作用时,将伸长l ?,横截面积相应减小S ?,电阻率因晶格变化等因素的影响而改变ρ?,故引起电阻值变化R ?。 用应变片测量受力时,将应变片粘贴于被测对象表面上。在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。通过转换电路转换为相应的电压或电流的变化,可以得到被测对象的应变值ε,而根据应力应变关系 εσE = (2) 式中:ζ——测试的应力; E ——材料弹性模量。 可以测得应力值ζ。通过弹性敏感元件,将位移、力、力矩、加速度、压力等物理量转换为应变,因此可以用应变片测量上述各量,从而做成各种应变式传感器。电阻应变片可分为金属丝式应变片,金属箔式应变片,金属薄膜应变片。 四、 实验内容与步骤 1、应变式传感器已装到应变传感器模块上。用万用表测量传感器中各应变片R1、R 2、R 3、R4,R1=R2=R3=R4=350Ω。 2、将主控箱与模板电源±15V 相对应连接,无误后,合上主控箱电源开关,按图1-1顺时针调节Rw2使之中间位置,再进行放大器调零,方法为:将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi 相连,调节实验模板上调零电位器Rw3,使数显表显示为零,(数显表的切换开关打到2V 档)。关闭主控箱电源。(注意:当Rw2的位置一旦确定,就不能改变。) 3、应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥,(如四根粗实线),把电桥调零电位器Rw1,电源±5V ,此时应将±5V 地与±15V 地短接(因为不共地)如图1-1所示。检查接线无误后,合上主控箱电源开关。调节Rw1,使数显表显示为零。 4、按表1-1中给出的砝码重量值,读取数显表数值填入表1-1中。

传感器与自动检测技术实验指导书.

传感器与自动检测技术验 指导书 张毅李学勤编著 重庆邮电学院自动化学院 2004年9月

目录 C S Y-2000型传感器系统实验仪介绍 (1) 实验一金属箔式应变片测力实验(单臂单桥) (3) 实验二金属箔式应变片测力实验(交流全桥) (6) 实验三差动式电容传感器实验 (9) 实验四热敏电阻测温实验 (12) 实验五差动变压器性能测试 (14) 实验六霍尔传感器的特性研究 (17) 实验七光纤位移传感器实验 (21)

CSY-2000型传感器系统实验仪介绍 本仪器是专为《传感器与自动检测技术》课程的实验而设计的,系统包括差动变压器、电涡流位移传感器、霍尔式传感器、热电偶、电容式传感器、热敏电阻、光纤传感器、压阻式压力传感器、压电加速度计、压变式传感器、PN结温度传感器、磁电式传感器等传感器件,以及低频振荡器、音频震荡器、差动放大器、相敏检波器、移相器、低通滤波器、涡流变换器等信号和变换器件,可根据需要自行组织大量的相关实验。 为了更好地使用本仪器,必须对实验中使用涉及到的传感器、处理电路、激励源有一定了解,并对仪器本身结构、功能有明确认识,做到心中有数。 在仪器使用过程中有以下注意事项: 1、必须在确保接线正确无误后才能开启电源。 2、迭插式插头使用中应注意避免拉扯,防止插头折断。 3、对从各电源、振荡器引出的线应特别注意,防止它们通过机壳造成短路,并 禁止将这些引出线到处乱插,否则很可能引起一起损坏。 4、使用激振器时注意低频振荡器的激励信号不要开得太大,尤其是在梁的自振 频率附近,以免梁振幅过大或发生共振,引起损坏。 5、尽管各电路单元都有保护措施,但也应避免长时间的短路。 6、仪器使用完毕后,应将双平行梁用附件支撑好,并将实验台上不用的附件撤 去。 7、本仪器如作为稳压电源使用时,±15V和0~±10V两组电源的输出电流之和 不能超过1.5A,否则内部保护电路将起作用,电源将不再稳定。 8、音频振荡器接小于100Ω的低阻负载时,应从LV插口输出,不能从另外两个 电压输出插口输出。

传感器实验指导书

传 感 器 实 验 指 导 书 实验一电位器传感器的负载特性的测试 一、实验目的: 1、了解电桥的工作原理及零点的补偿; 2、了解电位器传感器的负载特性; 3、利用电桥设计电位器传感器负载特性的测试电路,并验证其功能。 二、实验仪器与元件: 1、直流稳压电源、高频毫伏表、示波器、信号源、数字万用表; 2、电阻若干(1k, 100K);电位器(10k)传感器(多圈线绕); 3、运算放大器LM358;

4、电子工具一批(面包板、斜口钳、一字螺丝刀、导线)。 三、基本原理: ?电位器的转换原理 ?电位器的电压转换原理如图所示,设电阻体长度为L,触点滑动位移量为x,两端输入电压为U i,则滑动端输出电压为 电位器输出端接有负载电阻时,其特性称为负载特性。当电位器的负载系数发生变化时,其负载特性曲线也发生相应变化。 ?电位器输出端接有负载电阻时,其特性称为负载特性。 四、实验步骤: 1、在面包板上设计负载电路。 3、改进电路的负载电阻RL,用以测量的电位器的负载特性。 4、分别选用1k电阻和100k电阻,测试电位器的负载特性,要求每个负载至少有5个测试点,并计入所设计的表格1,如下表。 序号 1 2 3 4 5 6 7 8

五、实验报告 1、 画出电路图,并说明设计原理。 2、 列出数据测试表并画出负载特性曲线。电源电压5V ,测试表格1. 曲线图:画图说明,x 坐标是滑动电阻器不带负载时电压;y 坐标是对应1000欧姆(负载两端电压)或100k 欧姆(负载两端电压),100欧和100K 欧两电阻可以得到两条曲线。 O 1 2 3 4 5 UK UR1UR2 3、 说明本次设计的电路的不足之处,提出改进思路,并总结本次实验中遇到困 难及解决方法。

自动化检测实验指导

实验一应变片单臂、半桥、全桥特性比较 一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。 二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成,一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器,此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。 三、需用器件与单元:机头中的应变梁的应变片、测微头;显示面板中的F/V表(或电压表)、±2V~±10V步进可调直流稳压电源;调理电路面板中传感器输出单元中的箔式应 1位数显万用表(自备)。 变片、调理电路单元中的电桥、差动放大器; 4 2 五、实验步骤: 1位数显万用表2kΩ电阻档测量所 1、在应变梁自然状态(不受力)的情况下,用4 2 有 应变片阻值;在应变梁受力状态(用手压、提梁的自由端)的情况下,测应变片阻值,观察一下应变片阻值变化情况(标有上下箭头的4片应变片纵向受力阻值有变化;标有左右箭头的2片应变片横向不受力阻值无变化,是温度补偿片)。如下图1—7所示。 图1—7观察应变片阻值变化情况示意图 2、差动放大器调零点:按下图1—8示意接线。将F/V表(或电压表)的量程切换开 关 切换到2V档,合上主、副电源开关,将差动放大器的增益电位器按顺时针方向轻轻转到底

后再逆向回转一点点(放大器的增益为最大,回转一点点的目的:电位器触点在根部估计会接触不良),调节差动放大器的调零电位器,使电压表显示电压为零。差动放大器的零点调节完成,关闭主电源。 图1—8 差放调零 接线图 3、应变 片单臂电 桥特性实 验: ⑴将±2V~±10V步进可调直流稳压电源切换到4V档,将主板上传感器输出单元中的箔式应变片(标有上下箭头的4片应变片中任意一片为工作片)与电桥单元中R1、R2、R3组成电桥电路,电桥的一对角接±4V直流电源,另一对角作为电桥的输出接差动放大器的二输入端,将W1电位器、r电阻直流调节平衡网络接入电桥中(W1电位器二固定端接电桥的±4V电源端、W1的活动端r电阻接电桥的输出端),如图1—9示意接线(粗细曲线为连接线)。 图1—9 应变片单臂电桥特性实验原理图与接线示意图 ⑵检查接线无误后合上主电源开关,当机头上应变梁自由端的测微头离开自由端(梁 处 于自然状态,图1—7机头所示)时调节电桥的直流调节平衡网络W1电位器,使电压表显示为0或接近0。 ⑶在测微头吸合梁的自由端前调节测微头的微分筒,使测微头的读数为10mm左右(测微头微分筒的0刻度线与测微头轴套的10mm刻度线对准);再松开测微头支架轴套的紧固

传感器技术实验指导书

《传感器技术》实验指导书 权义萍 南京工业大学自动化学院

目录 实验一金属箔式应变片单臂、半桥、全桥性能比较实验 (3) 实验二直流全桥的应用――电子秤实验 (7) 实验三电容式传感器的位移特性实验 (9) 实验四压电式传感器振动实验 (11) 实验五直流激励时霍尔式传感器位移特性实验 (13) 实验六电涡流传感器综合实验 (15) 实验七光纤传感器的位移特性实验 (18)

实验一金属箔式应变片单臂、半桥性能比较实验 一、实验目的: 了解金属箔式应变片的应变效应,电桥工作原理和性能。 二、基本原理: 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。,对单臂电桥输出电压U o1= EKε/4。 不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改 善。当应变片阻值和应变量相同时,其桥路输出电压U O2=EKε/2。 三、需用器件与单元: 应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V电源、万用表(自备)。 四、实验步骤: 1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。传感器中各应变片已 接入模板的左上方的R1、R2、R3、R4。可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右 图1-1 应变式传感器安装示意图

传感器实验指导书

传感器实验指导书 Revised at 2 pm on December 25, 2020.

传 感 器 实 验 指 导 书 实验一电位器传感器的负载特性的测试 一、实验目的: 1、了解电桥的工作原理及零点的补偿; 2、了解电位器传感器的负载特性; 3、利用电桥设计电位器传感器负载特性的测试电路,并验证其功能。 二、实验仪器与元件: 1、直流稳压电源、高频毫伏表、示波器、信号源、数字万用表; 2、电阻若干(1k, 100K);电位器(10k)传感器(多圈线绕); 3、运算放大器LM358; 4、电子工具一批(面包板、斜口钳、一字螺丝刀、导线)。 三、基本原理: ?电位器的转换原理 ?电位器的电压转换原理如图所示,设电阻体长度为L,触点滑动位移量为x,两端输入电压为U i,则滑动端输出电压为

电位器输出端接有负载电阻时,其特性称为负载特性。当电位器的负载系数发生变化时,其负载特性曲线也发生相应变化。 ?电位器输出端接有负载电阻时,其特性称为负载特性。 四、实验步骤: 1、在面包板上设计负载电路。 3、改进电路的负载电阻RL,用以测量的电位器的负载特性。 4、分别选用1k电阻和100k电阻,测试电位器的负载特性,要求每个负载至少有5个测试点,并计入所设计的表格1,如下表。 五、实验报告 1、画出电路图,并说明设计原理。 2、列出数据测试表并画出负载特性曲线。电源电压5V,测试表格1.

曲线图:画图说明,x坐标是滑动电阻器不带负载时电压;y坐标是对应1000欧姆(负载两端电压)或100k欧姆(负载两端电压),100欧和100K欧两电阻可以得到两条曲线。 3、说明本次设计的电路的不足之处,提出改进思路,并总结本次实验中遇到困难及 解决方法。 实验二声音传感器应用实验-声控LED旋律灯 一、实验目的: 1、了解声音传感器的工作原理及应用; 2、掌握声音传感器与三极管的组合电路调试。 二、实验仪器与元件: 1、直流稳压电源、数字万用表、电烙铁等; 2、电子元件有: 声音传感器(带脚咪头)1个;弯座1个;线1个;5MM白发蓝LED 5个;9014三极管 2个1M电阻 1个;10K电阻 1个;电阻 1个;1UF电解电容 1个;47UF电解电容1个;万能电路板一块。 三、基本原理: 声控LED旋律灯工作电压。其功能为:本电路制作成功后5只LED会随着音乐或是其它声音的节奏闪动起来,可放置于音响附近,让灯光为音乐伴舞!电路原理图如图1所示。 图1 声控LED旋律灯 当发出声音时,声音波传入声音传感器,声音传感器把声音波转换成电压波动。 这个电压波动可以通过电容C2,传到Q1三极管的基极。然后这个电压波变Q1和Q2两级放大之后,输出较大的电压波。最后这个电压波使得5只LED闪动起来。

传感器实验2012

实验三 电阻式传感器的全桥性能实验 一、实验目的 掌握全桥电路的工作原理和性能。 二、实验所用单元 同实验一。 三、实验原理及电路 将四个应变片电阻分别接入电桥的四个桥臂,两相邻的应变片电阻的受力方向不同,组成全桥形式的测量电路,转换电路的输出灵敏度进一步提高,非线性得到改善。实验电路图见图3-1,全桥的输出电压U O =4EK ε 四、实验步骤 1、按实验一的实验步骤1至3进行操作。 2、按图3-1接线,将四个应变片接入电桥中,注意相邻桥臂的应变片电阻受力方向必须相反。 +5V R r R R R 1R 2 R 4 RP 2 OP07R 3R 4 RP 1 R 5 +15V -15V 调零电桥 电 阻传感器 差动放大器 4 3 2 18 76 RP R V 图3-1 电阻式传感器全桥实验电路 3、调节平衡电位器RP ,使数字电压表指示接近零,然后旋动测微器使

表头指示为零,此时测微器的读数视为系统零位。分别上旋和下旋测微器,每次0.4mm,上下各2mm,将位移量X和对应的输出电压值U O记入下表中。 表3-1 X(mm) 0 U O(mV) 0 五、实验报告 1、根据表3-1,画出输入/输出特性曲线)X(f U ,并且计算灵敏度和 O 非线性误差。 2、全桥测量时,四个应变片电阻是否必须全部一样?

实验二十二涡流式传感器的转速测量实验 一、实验目的 了解涡流式传感器用于测量转速的方法。 二、实验所用单元 涡流传感器探头(内附转换电路)、电机(光电传感器中)、电机调速装备(光电传感器转换电路中)、差动放大器、位移台架、直流稳压电源、数字电压表 三、实验原理及电路 利用涡流式传感器探头对旋转体材质的明显变化产生脉冲信号,经电路处理即可测量转速。 四、实验步骤 1、固定好位移台架,将涡流传感器探头装于传感器支架上,将电机放入位移台架的圆孔中,使探头对准电机转盘磁极。 2、将涡流传感器探头的两根输出信号线接至差动放大器的输入端,差动放大器的输出接至数字电压表的输入端。 3、将数字电压表切换开关拨到频率档,调节电机调速旋钮,使电机转动,观察实验现象。

无线传感器网络指导书-信息与控制学院

无线传感器网络(ZIGBEE)实验指导书 (CC2530) (适用于电子、通信等专业) 沈阳工学院 2012年12月

前言 本课程主要学习Zigbee无线传感器网络的特点,并且以CC2430为主要控制器介绍Zigbee网络中的编程情况,此芯片采用C语言进行编程,并且已经有了较成熟的发展,学生同学理论学习掌握了芯片的基本理论知识,以及在编程过程的相关寄存器的设置。 为了使学生更好地理解和深刻地把握这些知识,并在此基础上,训练和培养学生的动手能力,设置了五个实验项目,其中包括四个验证性实验,一个综合性实验。 这些实验需要学生了解实验器材,熟悉其使用方法,掌握编程软件的操作方法,并且重点掌握在如何编写程序以及程序中的寄存器的设计。 本实验指导书适用于通信专业,强调实际操作,注重基本仪器地使用方法及动手能力的培养。

目录 验证性实验 实验一IAR编程软件的使用与简单实例 实验二CC2530片内温度与1/3电压的测量实验三CC2530串口发/收数实验 实验四点对点无线数据通信实验 综合性实验 实验五Zigbee协议栈实验

实验一IAR编程软件的使用与简单实例 (一)实验目的 1、熟悉IAR软件的使用方法。 2、掌握编辑、下载、运行程序的方法 3、利用IAR软件会编写简单的程序 (二)实验设备 1、zigbee实验装置1套 2、安装有IAR软件的PC机1台 3、PC机与zigbee模块通讯电缆1根 (三)实验内容 一、会使用IAR软件 IAR编程软件简介 1、IAR软件的启动及建立一个新工程 首先安装IAR编程软件。安装之后,选择图标双击鼠标左键,出现如图1.1。 新建一个工程文件。

传感器技术实验指导书

实验一应变片式传感器特性实验 一、实验目的: 1、了解电阻应变片的工作原理与应用并掌握应变片测量电路。 2、了解应变片半桥(双臂)工作特点及性能。 3、了解应变片全桥工作特点及性能。 4、比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。 5、了解应变直流全桥的应用及电路的标定。 二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。一种利用电阻材料的应变效应,将工程结构件的内部变形转换为电阻变化的传感器,此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将变形转换成电阻的变化,再通过测量电路进一步将电阻的改变转换成电压或电流信号输出。可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。 1、应变片的电阻应变效应 所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。以圆柱形导体为例:设其长为:L、半径为r、材料的电阻率为ρ时,根据电阻的定义式得 (1-1) 当导体因某种原因产生应变时,其长度L、截面积A和电阻率ρ的变化为dL、dA、dρ相应的电阻变化为dR。对式(1-1)全微分得电阻变化率dR/R为: (1-2) 式中:dL/L为导体的轴向应变量εL; dr/r为导体的横向应变量εr 由材料力学得:εL= - μεr (1-3)式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3----0.5左右;负号表示两者的变化方向相反。将式(1-3)代入式(1-2)得:

传感器与检测技术指导书

传感器与检测技术实验指导书 学生姓名: 学号: 所在班级: 黑龙江八一农垦大学信息技术学院

实验一金属箔式应变片及电桥性能实验 一金属箔式应变片――单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR /R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。,对单臂电桥输出电压 U o1= EKε/4。 三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V电源、万用表(自备)。 四、实验步骤: 1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。传 感器中各应变片已接入模板的左上方的R1、R2、R3、R4。加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右

图1-1 应变式传感器安装示意图 2、接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源 开关,将实验模板调节增益电位器R W3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表输入端V i相连,调节实验模板上调零电位器R W4,使数显表显示为零(数显表的切换开关打到2V档)。关闭主控箱电源(注意:当R w3、R w4的位置一旦确定,就不能改变。一直到做完实验三为止)。 3、将应变式传感器的其中一个电阻应变片R1(即模板左上方的R1)接入电 桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已接好),接好电桥调零电位器R W1,接上桥路电源±4V(从主控台引入)如图1-2所示。检查接线无误后,合上主控台电源开关。调节R W1,使数显表显示为零。

实验指导书

目 录 实验一实验二 实验三 实验四 实验五 实验六 实验七 实验八 实验九 实验十 实验十一实验十二实验十三实验十四实验十五实验十六实验十七实验十八实验十九实验二十电阻式传感器的单臂电桥性能实验…………………… 电阻式传感器的半桥性能实验………………………… 电阻式传感器的全桥性能实验………………………… 电阻式传感器的单臂、半桥和全桥的比较实验……… 电阻式传感器的振动实验* ………………………… 电阻式传感器的电子秤实验* ……………………… 变面积式电容传感器特性实验………………………… 差动式电容传感器特性实验………………………… 电容传感器的振动实验* ………………………… 电容传感器的电子秤实验* ………………………… 差动变压器的特性实验………………………… 自感式差动变压器的特性实验……………………… 差动变压器的振动实验* ………………………… 差动变压器的电子秤实验* ………………………… 光电式传感器的转速测量实验………………………… 光电式传感器的旋转方向测量实验…………………… 接近式霍尔传感器实验………………………………… 霍尔传感器的转速测量实验…………………………… 涡流传感器的位移特性实验…………………………… 被测体材质对涡流传感器特性的影响实验…………… 1 3 5 6 7 8 9 11 13 14 15 16 18 19 20 22 23 25 25 27 实验二十一涡流式传感器的振动实验* ………………………… 实验二十二涡流式传感器的转速测量实验………………………… 实验二十三温度传感器及温度控制实验(AD590) ………………… 实验二十四K型热电偶的温度控制实验…………………………… 2 PDF 文件使用"pdfFactory Pro" 试用版本创建29 30 33

相关文档
相关文档 最新文档