文档库 最新最全的文档下载
当前位置:文档库 › 传感器技术-实验指导书-24页word资料

传感器技术-实验指导书-24页word资料

传感器技术-实验指导书-24页word资料
传感器技术-实验指导书-24页word资料

《传感器技术实验》

实验指导书

庄肖波编写

适用专业:测控技术与仪器

江苏科技大学电子信息学院

2009年9月

前言

《传感器技术》课程,在高等理工科院校测控技术与仪器类各专业的教学计划中,是一门重要的专业基础课,而《传感器技术实验》课程是完成本课程教学的重要环节。其主要任务是通过实验巩固和消化课堂所讲授理论内容的理解,掌握常用传感器的工作原理和使用方法,提高学生的动手能力和学习兴趣。其目的是使学生掌握非电量检测的基本方法和选用传感器的原则,熟悉各种传感器与检测技术的关系,以及各类在工程中的实际应用,拓宽学生的知识领域,锻炼学生的实践技能,培养学生独立处理问题和解决问题的能力,培养学生科学的工作作风。本实验开设实验总学时数:16,开设实验总个数: 8 个,课内选做2个。实验内容有:金属箔式应变计性能——应变电桥、双孔应变传感器——称重实验、温度传感器——热电偶测温实验、温度传感器——铂热电阻、电感式传感器——差动变压器性能、电感传感器——差动螺管式传感器位移测量、霍尔式传感器——直流激励特性、电容式传感器性能等。其中双孔应变传感器——称重实验、电感传感器——差动螺管式传感器位移测量为综合性实验。课内选做实验有:差动变压器的应

用——电子秤、电涡流传感器——静态标定。其他仪器与仪表专业也选择其中的2个或3个较为典型的传感器实验作为课内实验。

目录

实验一金属箔式应变计性能——应变电桥 (3)

实验二双孔应变传感器——称重实验 (6)

实验三温度传感器——热电偶测温实验 (8)

实验四温度传感器——铂热电阻 (11)

实验五电感式传感器——差动变压器性能 (13)

实验六电感传感器——差动螺管式传感器位移测量 (15)

实验七霍尔式传感器——直流激励特性 (17)

实验八电容式传感器性能 (19)

实验九差动变压器的应用——电子秤 (21)

实验十电涡流传感器——静态标定 (23)

附录A 实验仪器简介 (25)

附录B 实验操作须知 (27)

实验一:金属箔式应变计性能——应变电桥

实验学时:2

实验类型:(验证)

实验要求:(必修)

一、实验目的

1、观察了解箔式应变片的结构及粘贴方式。

2、测试应变梁变形的应变输出。

3、比较各桥路间的输出关系。

二、实验内容

本实验主要了解和掌握箔式应变片及直流电桥的原理和工作情况。三、实验原理、方法和手段

应变片是最常用的测力传感元件。当用应变片测试时,应变片要牢固地粘贴在测试体表面,测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。通过测量电路,转换成电信号输出显示。

电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R1、R2、R3、R4中,电阻的相对变化率分别为△R1/ R1、△R2/ R2、△R3/ R3、△R4/ R4 ,当

使用一个应变片时,∑

?

=

R

R

R

;当二个应变片组成差动状态工作,则有

?

=

R

R

2

R

;用四个应变片组成二个差动对工作,且R1= R2= R3= R4=R,

?

=

R

R

4

R

四、实验组织运行要求

本实验采用以学生自主训练为主的开放模式组织教学。

五、实验条件

直流稳压电源+4V、公共电路模块(一){公共电路模块}、贴于主机工作台悬臂梁上的箔式应变计、螺旋测微仪、数字电压表。

六、实验步骤

1、连接主机与模块电路电源连接线,差动放大器增益置于最大位置(顺时针方向旋到底),差动放大器“+”“—”输入端对地用实验线短路。输出端接电压表2V档。开启主机电源,用调零电位器调整差动放大器输出电压为零,然后拔掉实验线,调零后模块上的“增益、调零”电位器均不应再变动。

(图1)

2、观察贴于悬臂梁根部的应变计的位置与方向,按图(1)将所需实验部件连接成测试桥路,图中R1、R2、R3分别为固定标准电阻,R 为应变计(可任选上梁或下梁中的一个工作片),图中每两个节之间可理解为一根实验连接线,注意连接方式,勿使直流激励电源短路。

将螺旋测微仪装于应变悬臂梁前端永久磁钢上,并调节测微仪使悬臂梁基本处于水平位置。

3、确认接线无误后开启主机,并预热数分钟,使电路工作趋于稳定。调节模块上的WD 电位器,使桥路输出为零。

4、用螺旋测微仪带动悬臂梁分别向上和向下位移各5mm ,每位移1mm 记录一个输出电压值,并记入下表:

根据表中所测数据在坐标图上做出V —X 曲线,计算灵敏度S : S=X /V ?? 七、思考题

比较各桥路间的输出关系。 八、实验报告

实验报告簿应事先准备好,用来做预习报告、实验记录和实验报告,要求这三个过程在一个实验报告中完成。 九、其它说明

1、实验前应检查实验连接线是否完好,学会正确插拔连接线,这是顺

利完成实验的基本保证。

2、由于悬臂梁弹性恢复的滞后及应变片本身的机械滞后,所以当螺旋测微仪回到初始位置后桥路电压输出值并不能马上回到零,此时可一次或几次将螺旋测微仪反方向旋动一个较大位移,使电压值回到零后再进行反向采集实验。

3、实验中实验者用螺旋测微仪进行位移后应将手离开仪器后方能读取测试系统输出电压数,否则虽然没有改变刻度值也会造成微小位移或人体感应使电压信号出现偏差。

4、因为是小信号测试,所以调零后电压表应置2V档,用计算机数据采集时应选用200mv量程。

实验二:双孔应变传感器——称重实验

实验学时:2

实验类型:(综合)

实验要求:(必修)

一、实验目的

1、比较各桥路间的输出关系

2、几种桥路的性能比较

3、桥路电路的实际应用

二、实验内容

本实验主要是在实验1的基础上进一步了解和掌握几种桥路的性能,以及桥路的实际应用。知识点:应变电桥差动的概念几种电桥的输出比较电桥的实际应用

三、实验原理、方法和手段

本实验选用的是标准商用双孔悬臂梁式称重传感器,四个特性相同的应变片贴在如图所示位置,弹性体的结构决定了R1和R3、R2 和R4的受力方向分别相同,因此将它们串接就形成差动电桥。

当弹性体受力时,根据电桥的加减特性其输出电压为:

四、实验组织运行要求

本实验采用以学生自主训练为主的开放模式组织教学。

五、实验条件

直流稳压电源、双孔悬臂梁称重传感器、公共电路模块(一){公共电路模块},称重砝码(20克/个)、数字电压表。

(图2)

六、实验步骤

1、观察称重传感器弹性体结构及贴片位置,连接主机与实验模块的电源连接线,开启主机电源,调节放大器调零电位器使无负载时的称重传感器输出为零。

2、接好传感器测试系统线路,称重传感器工作电压选用+4V,差动放大器增益为最大(100倍),输出端接电压表。调节电桥WD调零电位器使无负载时的称重传感器输出为零。

3、逐步将砝码放上称重平台,调节增益电位器,使V0端输出电压与所称重量成一比例关系,记录W(克)与V(mv)的对应值,并填入下表:

W(克)

V(mv)

4、记录W与V值,并做出W-V曲线,进行灵敏度、线性度与重复性的比较。

5、与双平行悬臂梁组成的全桥进行性能比较。

七、思考题

比较三种桥路的灵敏度。

八、实验报告

实验报告簿应事先准备好,用来做预习报告、实验记录和实验报告,要求这三个过程在一个实验报告中完成。 九、其它说明

称重传感器的激励电压请勿随意提高。

注意保护传感器的引线及应变片使之不受损伤。

实验三:温度传感器——热电偶测温实验

实验学时:2 实验类型:(验证) 实验要求:(必修) 一、实验目的

了解和掌握温度传感器-热电偶的测温原理和方法。 二、实验内容

1、观察热电偶的结构

2、热电偶测温回路的连接。

3、热电偶的测量温度和输出电压的关系

三、实验原理、方法和手段

由两根不同质的导体熔接而成的闭合回路叫做热电回路,当其两端处于不同温度时则回路中产生一定的电流,这表明电路中有电势产生,此电势即为热电势。

(图3)

图(3)中T 为热端,To 为冷端,热电势Et=)T ()T (o AB AB λλ- 本实验中选用两种热电偶镍铬—镍硅(K )和镍铬—铜镍(E )。 四、实验组织运行要求

本实验采用以采用集中授课形式模式组织教学。

五、实验条件

K 、E 分度热电偶、温控电加热炉、{温度传感器实验模块}、214位数字电压表。 六、实验步骤

1、观察热电偶结构(可旋开热电偶保护外套),了解温控电加热器工作原理。

温控器:作为热源的温度指示、控制、定温之用。温度调节方式为时间比例式,绿灯亮时表示继电器吸合电炉加热,红灯亮时加热炉断电。

温度设定:拨动开关拨向“设定”位,调节设定电位器,仪表显示的温度值℃随之变化,调节至实验所需的温度时停止。然后将拨动开关扳向“测量”侧,(注:首次设定温度不应过高,以免热惯性造成加热炉温度过冲)。

2、首先将温度设定在50℃左右,打开加热开关,{加热电炉电源插头插入主机加热电源出插座},热电偶插入电加热炉内,K 分度热电偶为标准热电偶,冷端接“测试”端,E 分度热电偶接“温控”端,注意热电偶极性不能接反,而且不能断偶,214位万用表置200mv 档,当钮子开关倒向“温控”时测E 分度热电偶的热电势,并记录电炉温度与热电势E 的关系。

3、因为热电偶冷端温度不为0℃,则需对所测的热电势值进行修正

E (T ,To )=E(T,t 1)+E(T 1,T 0)

实际电动势= 测量所得电势 + 温度修正电势 查阅热电偶分度表,上述测量与计算结果对照。

4、继续将炉温提高到70℃、90℃、110℃和130℃,重复上述实验,观察热电偶的测温性能。 七、思考题

热电偶温度的大小与实际电动势与分度表值误差的关系? 八、实验报告

实验报告簿应事先准备好,用来做预习报告、实验记录和实验报告,要

求这三个过程在一个实验报告中完成。

九、其它说明

加热炉温度请勿超过150℃,当加热开始,热电偶一定要插入炉内,否则炉温会失控,同样做其它温度实验时也需用热电偶来控制加热炉温度。

因为温控仪表为E分度,所以当钮子开关倒向“测试”方接入K分度热电偶时,数字温度表显示的温度并非为加热炉内的温度。

实验四:温度传感器——铂热电阻

实验学时:2

实验类型:(验证)

实验要求:(必修)

一、实验目的

了解和掌握温度传感器-铂热电阻的测温原理和方法。

二、实验内容

1、观察铂热电阻的结构

2、铂热电阻测温回路的连接。

3、铂热电阻的测量温度和输出电压的关系

三、实验原理、方法和手段

铂热电阻测温范围一般为-200~650 ℃,铂热电阻的阻值与温度的关

系近似线性,当温度在0℃≤T≤650℃时,R

T =R

(1+A

T

+BT2)

式中R

T

——铂热电阻T℃时的电阻值

R

O

——铂热电阻在0℃时的电阻值

A——系数(=3.96847×10-31/℃)

B——系数(=-5.847×10-71/℃2)

将铂热电阻作为桥路中的一部分在温度变化时电桥失衡便可测得相应电路的输出电压变化值。

四、实验组织运行要求

本实验采用以采用集中授课形式模式组织教学。

五、实验条件

铂热电阻(Pt

)、加热炉、温控器、温度传感器实验模块(一)、{温度100

传感器实验模块}、数字电压表、水银温度计或半导体点温计。

六、实验步骤

1、观察已置于加热炉顶部的铂热电阻,连接主机与实验模块的电源线

接电压表,温度计置及传感器与模块处理电路接口,铂热电阻电路输出端V

O

于热电阻旁感受相同的温度。

2、开启主机电源,调节热电阻电路调零旋钮,使输出电压为零,电路增益适中,由于铂电阻通过电流时其电阻值要发生变化,因此电路有一个稳定过程。

3、开启加热开关,设定加热炉温度为≤100℃,观察随炉温上升铂电阻的阻值变化及输出电压变化,(温度表上显示的温度值是炉内温度,并非是加热炉顶端传感器感受到的温度)。并记录数据填入下表:

做出V-T曲线,观察其工作线性范围。

七、思考题

热电偶和铂热电阻的测温方法比较。

八、实验报告

实验报告簿应事先准备好,用来做预习报告、实验记录和实验报告,要

求这三个过程在一个实验报告中完成。

九、其它说明

加热器温度一定不能过高,以免损坏传感器的包装。

实验五:电感式传感器——差动变压器性能

实验学时:2

实验类型:(验证)

实验要求:(必修)

一、实验目的

了解差动变压器的基本结构及原理,通过实验验证差动变压器的基本特性。

二、实验内容

1、观察差动变压器的基本结构

2、验证差动变压器的基本特性

三、实验原理、方法和手段

电感传感器是一种将位置量的变化转为电感量变化的传感器,差动变压器由衔铁、初级线圈和次级线圈组成,初级线圈做为差动变压器激励用,相当于变压器原边。次级线圈由两个结构尺寸和参数相同的线圈反相串接而成,相当于变压器副边。差动变压器是开磁路,工作是建立在互感基础上的,其原理及输出特性见图(4)。

(图4)

(图5)

四、实验组织运行要求

本实验采用以学生自主训练为主的开放模式组织教学。

五、实验条件

差动变压器、电感传感器实验模块、音频信号源、螺旋测微仪、示波器。

六、实验步骤

1、按图(13)接线,差动变压器初级线圈必须从音频信号源LV功率输

出端接入,双线示波器第一通道灵敏度500mv/格,第二通道10mv/格。

2、打开主机电源,调整音频输出信号频率,输出V

值2V,以示波器

p-p

第二通道观察到波形不失真为好。

3、用手上下提压{左右移动}改变变压器磁芯在线圈中位置,观察示波器第二通道所示波形能否过零翻转,否则改接次级二个线圈的串接端。

4、用螺旋测微仪带动铁芯在线圈中移动,从示波器中读出次级输出电压V

值,同时注意初次级线圈波形相位。

p-p

根据表格所列结果,作出V-X曲线,指出线性工作范围。

5、仔细调节测微仪使次级输出波形无法再小时,即为差动变压器零点残余电压,提高示波器第二通道灵敏度,观察残余电压波形,分析其频率成分。

七、思考题

为什么差动变压器性能试验中有些测量的数据点不符合线形的规律?

八、实验报告

实验报告簿应事先准备好,用来做预习报告、实验记录和实验报告,要求这三个过程在一个实验报告中完成。

九、其它说明

示波器第二通道为悬浮工作状态(即示波器探头二根线都不接地)。

实验六:电感传感器——差动螺管式传感器位移测量

实验学时:2

实验类型:(综合)

实验要求:(必修)

最新传感器原理与应用实验指导书

传感器原理与应用实 验指导书

实验一压力测量实验 实验目的: 1.了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 2.比较半桥与单臂电桥的不同性能,了解其特点,了解全桥测量电路的优点。 3.了解应变片直流全桥的应用及电路标定。 二、基本原理: 1.电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: ΔR/R=Kε 式中ΔR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,对单臂电桥而言,电桥输出电压,U01=EKε/4。(E为供桥电压)。 2.不同受力方向的两片应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当两片应变片阻值和应变量相同时,其桥路输出电压 U02=EK/ε2,比单臂电桥灵敏度提高一倍。 3.全桥测量电路中,将受力状态相同的两片应变片接入电桥对边,不同的接入邻边,应变片初始阻值是R1= R2= R3=R4,当其变化值ΔR1=ΔR2=ΔR3=ΔR4

时,桥路输出电压U03=KEε,比半桥灵敏度又提高了一倍,非线性误差进一步得到改善。 4. 电子秤实验原理为实验三的全桥测量原理,通过对电路调节使电路输出的电压值为重量对应值,将电压量纲(V)改为重量量纲(g)即成为一台原始电子秤。 三、实验所需部件:应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源、±4V电源、万用表(自备)、自备测试物。 四、实验步骤: 1、根据图(1-1),应变式传感器已装于应变传感器模板上。传感器中各应变片已接入模板左上方的R1、R 2、R 3、R4标志端。加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。 2、实验模板差动放大器调零,方法为:①接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置,②将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。 3、参考图(1-2)接入传感器,将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、 R6、R7在模块内已连接好),接好电桥调零电位器Rw1,接上桥路电源±4V(从主控箱引入),检查接线无误后,合上主控箱电源开关,先粗调节Rw1,再细调RW4使数显表显示为零。

传感器与检测技术课后答案

第一章课后习题答案 1.什么是传感器?它由哪几个部分组成?分别起到什么作用? 解:传感器是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置,能完成检测任务;传感器由敏感元件,转换元件,转换电路组成。敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输入,转换成电路参量;上述电路参数接入基本转换电路,便可转换成电量输出。2.传感器技术的发展动向表现在哪几个方面? 解:(1)开发新的敏感、传感材料:在发现力、热、光、磁、气体等物理量都会使半导体硅材料的性能改变,从而制成力敏、热敏、光敏、磁敏和气敏等敏感元件后,寻找发现具有新原理、新效应的敏感元件和传感元件。 (2)开发研制新型传感器及组成新型测试系统 ①MEMS技术要求研制微型传感器。如用于微型侦察机的CCD传感器、用于管道爬壁机器人的力敏、视觉传感器。 ②研制仿生传感器 ③研制海洋探测用传感器 ④研制成分分析用传感器 ⑤研制微弱信号检测传感器 (3)研究新一代的智能化传感器及测试系统:如电子血压计,智能水、电、煤气、热量表。它们的特点是传感器与微型计算机有机结合,构成智能传感器。系统功能最大程度地用软件实现。 (4)传感器发展集成化:固体功能材料的进一步开发和集成技术的不断发展,为传感器集成化开辟了广阔的前景。 (5)多功能与多参数传感器的研究:如同时检测压力、温度和液位的传感器已逐步走向市场。 3.传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意义?动态参数有那些?应如何选择? 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。 1)传感器的线性度是指传感器的输出与输入之间数量关系的线性程度; 2)传感器的灵敏度S是指传感器的输出量增量Δy与引起输出量增量Δy的输入量增量Δx 的比值; 3)传感器的迟滞是指传感器在正(输入量增大)反(输入量减小)行程期间其输出-输入特性曲线不重合的现象;

现代传感器检测技术实验-实验指导书doc

现代(传感器)检测技术实验 实验指导书 目录 1、THSRZ-2型传感器系统综合实验装置简介 2、实验一金属箔式应变片——电子秤实验 3、实验二交流全桥振幅测量实验 4、实验三霍尔传感器转速测量实验 5、实验四光电传感器转速测量实验 6、实验五 E型热电偶测温实验 7、实验六 E型热电偶冷端温度补偿实验 西安交通大学自动化系 2008.11

THSRZ-2型传感器系统综合实验装置简介 一、概述 “THSRZ-2 型传感器系统综合实验装置”是将传感器、检测技术及计算机控制技术有机的结合,开发成功的新一代传感器系统实验设备。 实验装置由主控台、检测源模块、传感器及调理(模块)、数据采集卡组成。 1.主控台 (1)信号发生器:1k~10kHz 音频信号,Vp-p=0~17V连续可调; (2)1~30Hz低频信号,Vp-p=0~17V连续可调,有短路保护功能; (3)四组直流稳压电源:+24V,±15V、+5V、±2~±10V分五档输出、0~5V可调,有短路保护功能; (4)恒流源:0~20mA连续可调,最大输出电压12V; (5)数字式电压表:量程0~20V,分为200mV、2V、20V三档、精度0.5级; (6)数字式毫安表:量程0~20mA,三位半数字显示、精度0.5级,有内侧外测功能; (7)频率/转速表:频率测量范围1~9999Hz,转速测量范围1~9999rpm; (8)计时器:0~9999s,精确到0.1s; (9)高精度温度调节仪:多种输入输出规格,人工智能调节以及参数自整定功能,先进控制算法,温度控制精度±0.50C。 2.检测源 加热源:0~220V交流电源加热,温度可控制在室温~1200C; 转动源:0~24V直流电源驱动,转速可调在0~3000rpm; 振动源:振动频率1Hz~30Hz(可调),共振频率12Hz左右。 3.各种传感器 包括应变传感器:金属应变传感器、差动变压器、差动电容传感器、霍尔位移传感器、扩散硅压力传感器、光纤位移传感器、电涡流传感器、压电加速度传感器、磁电传感器、PT100、AD590、K型热电偶、E型热电偶、Cu50、PN结温度传感器、NTC、PTC、气敏传感器(酒精敏感,可燃气体敏感)、湿敏传感器、光敏电阻、光敏二极管、红外传感器、磁阻传感器、光电开关传感器、霍尔开关传感器。包括扭矩传感器、光纤压力传感器、超声位移传感器、PSD位移传感器、CCD电荷耦合传感器:、圆光栅传感器、长光栅传感器、液位传感器、涡轮式流量传感器。 4.处理电路 包括电桥、电压放大器、差动放大器、电荷放大器、电容放大器、低通滤波器、涡流变换器、相敏检波器、移相器、V/I、F/V转换电路、直流电机驱动等 5.数据采集 高速USB数据采集卡:含4路模拟量输入,2路模拟量输出,8路开关量输入输出,14位A/D 转换,A/D采样速率最大400kHz。 上位机软件:本软件配合USB数据采集卡使用,实时采集实验数据,对数据进行动态或静态处理和分析,双通道虚拟示波器、虚拟函数信号发生器、脚本编辑器功能。

传感器实验指导书11

实验平台介绍 传感器教学实验系列nextsense是针对传感器教学,虚拟仪器教学等基础课程设计的教学实验模块。nextsense系列配合泛华通用工程教学实验平台nextboard使用,可以完成热电偶、热敏电阻、RTD热电阻、光敏电阻、霍尔元件等传感器的课程教学。课程提供传感器以及调理电路,内容涵盖传感器特性描绘、电路模拟以及实际测量等。 图1 nextboard实验平台 nextboard具有6个实验模块插槽;提供两块标准尺寸的面包板,用户可自搭实验电路;为NI 数据采集卡提供信号路由,可完全替代NI数据采集卡接线盒功能,轻松使用数据采集卡资源;还为实验模块和自搭电路提供电源,既可用于有源电路供电,也可作为外接设备供电。 实验模块区共有6个插槽,分别为4个模拟插槽Analog Slot 1-4,2个数字插槽Digital Slot 1-2。数据采集卡的模拟通道和数字通道分配到实验模块区的Analog Slot 和Digital Slot 上。Analog Slot 模拟插槽用于那些需要使用模拟信号的实验模块。Digital Slot 数字插槽用于那些需要同时使用多个数字信号或脉冲信号的实验模块。 图2 模拟插槽和数字插槽

特别需要注意的是: (1)在使用所有模块之前,都要先区分模块的类型:带有正弦波标记的为模拟实验模块,需要插在Analog Slot 上使用;带有方波标记的为数字模块,需要查在Digital Slot 上使用。如果插错插槽,会导致模块工作不正常,甚至损坏模块。 (2)插拔实验模块前关闭nextboard电源。 (3)开始实验前,认真检查模块跳线连接,避免连接错误而导致的输出电压超量程,否则会损坏数据采集卡。 Nextboard的连线: (1)电源线,把220V的电源通过一个15V的直流变压器,送到实验台上。 (2)数据采集卡,将数据采集卡的插头与实验台可靠连接。

传感器及检测技术教案

传感器及检测技术

项目一 传感器误差与特性分析 任务1 检测结果的数据整理 1.1.1 测量与测量方法 1.检测 2.测量方法 (1)电测法和非电测法 (2)直接测量和间接测量 (3)静态测量和动态测量 (4)接触性测量和非接触性测量 (5)模拟式测量和数字式测量 1.1.2 测量误差及其表示方法 测量误差:测量值与其真值之间的差值 例:某温度计的量程范围为0-500oC ,校验时该表的最大绝对误差为6oC ,试确定其精度等级? 查表1.1,精度等级应定为1.5级 任务1: 现有0.5级的0~300oC 和1.0级0~100oC 的两个温度计,欲测量80oC 的温度,试问选用哪一个温度计好?为什么?在选用仪器时应考虑哪些方面? 实施: 0.5级的0~300oC 的温度计测量时可能出现的最大绝对误差为: 用其测量80oC 可能出现的最大示值相对误差为: ?? ? ? ? ???? ?引用误差示值(标称)相对误差实际相对误差相对误差绝对误差x γγ%.21%100500 6 %100=?= ??= m m m A x γ5 .1)0300(%5.0111=-?==?m m m A x γ

1.0级的0~100oC 的温度计测量时可能出现的最大绝对误差为: 用其测量80oC 可能出现的最大示值相对误差为: 结论:选用1.0级的0~100oC 的温度计较好。选用仪器时,不能单纯追求精度,而是要兼顾精度和量程 1.1.3 测量误差的分类及来源 1.系统误差 2.随机误差 3.粗大误差(疏忽误差、过失误差) 4.缓变误差 任务2 传感器特性分析与传感器选用 1.2.1 传感器的组成及其分类 1.2.2 传感器的静态特性与指标 传感器的静态特性指标 1.精密度、准确度和精确度 2.稳定性 1 )0100(%.01222=-?==?m m m A x γ%25.1%10080 1 %10022=?= ??= x x m x γ?? ?动态特性 静态特性

传感器与检测实验指导书2013.

传感器与检测技术实验指导书电气工程学院自动化专业 专业名称 班级 学生姓名 学号 实验成绩 辽宁工业大学 2013年9月

目录 实验一电阻应变式传感器特性实验 (1) 实验二电容传感器特性实验 (5) 实验三电涡流式传感器特性实验 (8) 实验四压电式传感器特性实验 (12) 实验五光电式传感器特性实验 (15) 实验六热电式传感器特性实验 (20) 附录一CSY2000系列传感器实验台说明书 (26) 附录二CSY-V8.1软件操作说明书 (27)

实验一电阻应变式传感器特性实验 一、实验目的 1.熟悉电阻应变式传感器的结构。 2.了解单臂、半桥和全桥测量电路工作原理和性能。 3.比较单臂与半桥、全桥的不同性能,了解各自特点及全桥测量电路的优点。二、基本原理 1.电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K 为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态,对单臂电桥输出电压U O1= EKε/4。 2.对半桥测量电路而言,不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当应变片阻值和应变量相同时,其桥路输出电压U O2=EKε/2。 3.全桥测量电路中,将受力性质相同的两应变片接入电桥对边,当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U O3=EKε。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。 三、实验仪器及材料 1.应变式传感器实验模板(应变式传感器-电子秤)、砝码盘、砝码;

物联网实验指导书

物联网 实验指导书 四川理工学院通信教研室 2014年11月

目录 前言 (1) 实验一走马灯IAR工程建立实验 (5) 实验二串口通信实验 (14) 实验三点对点通信实验 (18) 实验四 Mesh自动组网实验 (21) 附录 (25) 实验一代码 (25) 实验二代码 (26) 实验三代码 (28) 实验四代码 (29)

前言 1、ZigBee基础创新套件概述 无线传感器网络技术被评为是未来四大高科技产业之一,可以预见无线传感器网络将会是继互联网之后一个巨大的新兴产业,同时由于无线传感网络的广泛应用,必然会对传统行业起到巨大的拉动作用。 无线传感器网络技术,主要是针对短距离、低功耗、低速的数据传输。数据节点之间的数据传输强调网络特性。数据节点之间通过特有无线传输芯片进行连接和转发形成大范围的覆盖容纳大量的节点。传感器节点之间的网络能够自由和智能的组成,网络具有自组织的特征,即网络的节点可以智能的形成网络连接,连接根据不同的需要采用不同的拓扑结构。网络具有自维护特征,即当某些节点发生问题的时候,不影响网络的其它传感器节点的数据传输。正是因为有了如此高级灵活的网络特征,传感器网络设备的安装和维护非常简便,可以在不增加单个节点成本同时进行大规模的布设。 无线传感器网络技术在节能、环境监测、工业控制等领域拥有非常巨大的潜力。目前无线传感器网络技术尚属一个新兴技术,正在高速发展,学习和掌握新技术发展方向和技术理念是现代化高等教育的核心理念。 “ZigBee基础创新套件”产品正是针对这一新技术的发展需要,使这种新技术能够得到快速的推广,让高校师生能够学习和了解这项潜力巨大的新技术。“ZigBee基础创新套件”是由多个传感器节点组成的无线传感器网络。该套件综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等多种技术领域,用户可以根据所需的应用在该套件上进行自由开发。 2、ZigBee基础创新套件的组成 CITE 创新型无线节点(CITE-N01 )4个 物联网创新型超声波传感器(CITE-S063)1个 物联网创新型红外传感器(CITE-S073)1个 物联网便携型加速度传感器(CITE-S082)1个 物联网便携型温湿度传感器(CITE-S121 )1个 电源6个 天线8根 CC Debugger 1套(调试器,带MINI USB接口的USB线,10PIN排线)物联网实验软件一套

传感器及检测技术

习题一概论p16 1.测试系统一般是怎样构成的? ①传感器将被测物理量转换成以电量为主要形式的电信号; ②信号变换部分是对传感器所送出的信号进行加工; ③显示与记录部分将所测信号变为一种能为人们所理解的形式,以供人们观测和分析。 2.什么是测量误差?测量误差有几种表示方法? 测量误差:人们在进行各种实际测量时,尽管被测量在理论上存在真值,但由于客观实验条件的限制,被测量的真值实际上是测不到的,因而测量结果只能是真值的近似值,这就不可避免地存在着测量误差。 测量误差有:绝对误差、相对误差、引用误差。 3.测量误差按出现规律可分为几种?它们与准确度与精密度有什么关系? ①按出现规律可分为:系统误差、随机误差、粗大误差 ②准确度表示测量结果中系统误差的大小。系统误差越小,准确度越高,即真一民实际 值符合的程度越高。 精密度表示测量结果中随机误差大小的程度。随机误差越小,测量值越集中,表示精密度越高。 精确度是测量结果系统误差与随机误差的综合。表示测量结果与真值的一致程度。精确度用来反映系统误差和随机误差的综合影响。精确度越高,表示正确度和精密度越高,意味着系统误差和随机误差都小。 4.产生系统误差的常见原因有哪些?常用的减小系统误差的方法有哪些? ①产生系统误差的主要原因: ●仪器的制造、安装或使用方法不正确; ●环境因素影响(温度、湿度、电源等); ●测量原理中使用近似计算公式;

●测量人员不良读数习惯 ②减小系统误差的方法: ●发现判断:实验对比、残余误差观察、准则检测 ●减少消除:修正、特殊测量法(替代、差值、误差补偿、对称观察) 5.传感器有哪些几部分组成? 敏感元件、转换元件、转换电路 6.按传感器的工作机理、能量转换方式、输入量及测量原理四种方法,传感器分别是如何分 类的? ①按工作机理分: ●电参数式传感器(如电阻式、电感式和电容式); ●压电式传感器; ●光电式传感器; ●热电式传感器。 ②按能量转换方式分: ●能量控制型传感器(如电阻、电感、电容式) ●能量转换型传感器(如基于压电效应、热电效应传感器) ③按输入量分: 力传感器、位移传感器、温度传感器 ④按测量原理分: ●电路参量式传感器(包括电阻式、电感式、电容式) ●电动势式传感器(包括磁电感应式、霍尔式、压电式) ●光电式传感器(包括一般光电式、光栅式、激光式、光电码盘式、光导纤维式) ●半导体式传感器 习题二温度检测p35 7.温度检测主要有哪几种方法及它们是怎样分类的? 温度检测方法分为:接触测量法,非接触测量法。 接触式包括:热膨胀式(如水银、双金属、液体或气体压力); 热电偶; 热电阻(铂电阻、铜电阻、半导体热敏电阻)。

传感器实验指导书(实际版).

实验一 金属箔式应变片性能实验 (一)金属箔式应变片——单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: εK R R =? 式中R R ?为电阻丝电阻相对变化, K 为应变灵敏系数, l l ?=ε为电阻丝长度相对变化, 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受 力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。对单臂电桥输出电压4 1ε EK U O =。 三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码、数显表、士15V 电源、土4V 电源、万用表(自备)。 四、实验步骤: 1.应变式传感器已装于应变传感器模板上。传感器中各应变片已接入模板的左上方的1R 、2R 、3R 、4R 。加热丝也接于模板上,可用万用表进行测量判别, Ω====3504321R R R R ,加热丝阻值为Ω50左右。 2.接入模板电源上15V (从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板调节增益电位器3W R 顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上数显表电压输入端i V 相连,调节实验模板上调零电位器4W R ,使数显表显示为零(数显表的切换开关打到2V 档)。关闭主控箱电源。 3.将应变式传感器的其中一个应变片1R (模板左上方的1R )接入电桥作为一个桥臂与5R 、6R 、7R 接成直流电桥(5R 、6R 、7R 模块内已连接好) ,接好电桥调零电位器4W R ,接上桥路电源上4V (从主控箱引入)如图1—2所示。检查接线无误后,合上主控箱电源

传感器实验指导书修订稿

传感器实验指导书 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

传感器与检测技术实验 指导教师:陈劲松

实验一 金属箔式应变片——单臂电桥性能实验 一、 实验目的: 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、 基本原理: 金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。 金属的电阻表达式为: S l R ρ = (1) 当金属电阻丝受到轴向拉力F 作用时,将伸长l ?,横截面积相应减小S ?,电阻率因晶格变化等因素的影响而改变ρ?,故引起电阻值变化R ?。对式(1)全微分,并用相对变化量来表示,则有: ρ ρ ?+?-?=?S S l l R R (2) 式中的l l ?为电阻丝的轴向应变,用ε表示, 常用单位με(1με=1×mm mm 610-)。若径向应变为r r ?,电阻丝的纵向伸长和横 向收缩的关系用泊松比μ表示为)(l l r r ?-=?μ,因为S S ?=2(r r ?),则(2)式可以写成: l l k l l l l l l R R ?=???++=?++?=?02121)()(ρρμρρμ (3) 式(3)为“应变效应”的表达式。0k 称金属电阻的灵敏系数,从式(3)可见,0k 受两个因素影响,一个是(1+μ2),它是材料的几何尺寸变化引起的,另一个是 ) (ρερ?,是材料的电阻率ρ随应变引起的(称“压阻效应”)。对于金属材料而言,以前者为主,则μ210+≈k ,对半导体,0k 值主要是由电阻率相对变化所决定。实验也表明,在金属丝拉伸比例极限内,电阻相对变化与轴向应变成比例。通常金属丝的灵敏系数0k =2左右。

传感器与检测技术总结材料

《传感器与检测技术》总结 :王婷婷 学号:14032329 班级:14-11

传感器与检测技术 这学期通过学习《传感器与检测技术》,懂得了很多,以下是我对这本书的总结。 第一章 概 述 传感器的作用是:传感器是各种信息的感知、采集、转换、传输和处理的功能器件,具有不可替代的重要作用。 传感器的定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 传感器的组成:被测量量---敏感元件---转换元件----基本转换电路----电量输出 传感器的分类:按被测量对象分类(部系统状态的部信息传感器{位置、速度、力、力矩、温度、导演变化}、外部环境状态的外部信息传感器{接触式[触觉、滑动觉、压觉]、非接触式[视觉、超声测距、激光测距);按工作机理分类(结构型{电容式、电感式}、物性型{霍尔式、压电式});按是否有能量转换分类(能量控制型[有源型]、能量转换型[无源型]);按输出信号的性质分类(开关型[二值型]{接触型[微动、行程、接触开关]、非接触式[光电、接近开关]}、模拟型{电阻型[电位器、电阻应变片],电压、电流型[热电偶、光电电池],电感、电容型[电感、电容式位置传感器]}、数字型{计数型[脉冲或方波信号+计数器]、代码型 [回转编码器、磁尺]})。 传感器的特性主要是指输出与输入之间的关系。当输入量为常量,或变化极慢时,称为静态特性;输出量对于随时间变化的输入量的响应特性,这一关系称为动态特性,这一特性取决于传感器本身及输入信号的形式。可以分为接触式环节(以刚性接触形式传递信息)、模拟环节(多数是非刚性传递信息)、数字环节。动态测量输入信号的形式通常采用正弦周期(在频域)信号和阶跃信号(在时域)。 传感器的静态特性:线性度(以一定的拟合直线作基准与校准曲线比较% 100max ??=Y L L δ)、迟滞、重复性、灵敏度(K0=△Y/△X=输出变化量/输入变化量 =k1k2···kn )和灵敏度误差(rs=△K0/K0×100%、稳定性、静态测量不确定性、其他性能参数:温度稳定性、抗干扰稳定性。 传感器的动态特性:传递函数、频率特性(幅频特性、相频特性)、过渡函数。 0阶系统:静态灵敏度;一阶系统:静态灵敏度,时间常数;二阶系统:静态灵敏度,时间常数,阻尼比。 传感器的标定:通过各种试验建立传感器的输入量与输出量之间的关系,确定传感器在不同使用条件下的误差关系。国家标准测力机允许误差±0.001%,省、部一级计量站允许误差±0.01%,市、企业计量站允许误差±0.1%,三等标准测力机、传感器允许误差±(0.3~0.5)%,工程测试、试验装置、测试用力传感器允许误差±1%。分为静态标定和动态标定。 第二章 位 移 检 测 传 感 器 测量位移常用的传感器有电阻式、电容式、涡流式、压电式、感应同步器式、磁栅式、光电式。参量位移传感器是将被测物理量转化为电参数,即电阻、电容或电感等。发电型位移传感器是将被测物理量转换为电源性参量,如电动势、电荷等。属于能量转换型传感器,这类传感器有磁电型、压电型等。 电位计的电阻元件通常有线绕电阻、薄膜电阻、导塑料(即有机实心电位计)等。电位计结构简单,输出信号大,性能稳定,并容易实现任意函数关系。其缺点是要求输入能量大,电刷与电阻元件之间有干摩擦,容易磨损,产生噪声干扰。 线性电位计的空载特性:x K x l R R R x == ,KR----电位计的电阻灵敏度(Ω/m )。电

传感器原理实验指导书

《传感器原理及应用》实验指导书闻福三郭芸君编著 电子技术省级实验教学示范中心

实验一 金属箔式应变片——单臂电桥性能实验 一、 实验目的 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、 实验仪器 1、传感器特性综合实验仪 THQC-1型 1台 2、万用表 MY60 1个 三、 实验原理 金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。 金属的电阻表达式为: S l R ρ = (1) 当金属电阻丝受到轴向拉力F 作用时,将伸长l ?,横截面积相应减小S ?,电阻率因晶格变化等因素的影响而改变ρ?,故引起电阻值变化R ?。 用应变片测量受力时,将应变片粘贴于被测对象表面上。在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。通过转换电路转换为相应的电压或电流的变化,可以得到被测对象的应变值ε,而根据应力应变关系 εσE = (2) 式中:ζ——测试的应力; E ——材料弹性模量。 可以测得应力值ζ。通过弹性敏感元件,将位移、力、力矩、加速度、压力等物理量转换为应变,因此可以用应变片测量上述各量,从而做成各种应变式传感器。电阻应变片可分为金属丝式应变片,金属箔式应变片,金属薄膜应变片。 四、 实验内容与步骤 1、应变式传感器已装到应变传感器模块上。用万用表测量传感器中各应变片R1、R 2、R 3、R4,R1=R2=R3=R4=350Ω。 2、将主控箱与模板电源±15V 相对应连接,无误后,合上主控箱电源开关,按图1-1顺时针调节Rw2使之中间位置,再进行放大器调零,方法为:将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi 相连,调节实验模板上调零电位器Rw3,使数显表显示为零,(数显表的切换开关打到2V 档)。关闭主控箱电源。(注意:当Rw2的位置一旦确定,就不能改变。) 3、应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥,(如四根粗实线),把电桥调零电位器Rw1,电源±5V ,此时应将±5V 地与±15V 地短接(因为不共地)如图1-1所示。检查接线无误后,合上主控箱电源开关。调节Rw1,使数显表显示为零。 4、按表1-1中给出的砝码重量值,读取数显表数值填入表1-1中。

传感器与自动检测技术实验指导书.

传感器与自动检测技术验 指导书 张毅李学勤编著 重庆邮电学院自动化学院 2004年9月

目录 C S Y-2000型传感器系统实验仪介绍 (1) 实验一金属箔式应变片测力实验(单臂单桥) (3) 实验二金属箔式应变片测力实验(交流全桥) (6) 实验三差动式电容传感器实验 (9) 实验四热敏电阻测温实验 (12) 实验五差动变压器性能测试 (14) 实验六霍尔传感器的特性研究 (17) 实验七光纤位移传感器实验 (21)

CSY-2000型传感器系统实验仪介绍 本仪器是专为《传感器与自动检测技术》课程的实验而设计的,系统包括差动变压器、电涡流位移传感器、霍尔式传感器、热电偶、电容式传感器、热敏电阻、光纤传感器、压阻式压力传感器、压电加速度计、压变式传感器、PN结温度传感器、磁电式传感器等传感器件,以及低频振荡器、音频震荡器、差动放大器、相敏检波器、移相器、低通滤波器、涡流变换器等信号和变换器件,可根据需要自行组织大量的相关实验。 为了更好地使用本仪器,必须对实验中使用涉及到的传感器、处理电路、激励源有一定了解,并对仪器本身结构、功能有明确认识,做到心中有数。 在仪器使用过程中有以下注意事项: 1、必须在确保接线正确无误后才能开启电源。 2、迭插式插头使用中应注意避免拉扯,防止插头折断。 3、对从各电源、振荡器引出的线应特别注意,防止它们通过机壳造成短路,并 禁止将这些引出线到处乱插,否则很可能引起一起损坏。 4、使用激振器时注意低频振荡器的激励信号不要开得太大,尤其是在梁的自振 频率附近,以免梁振幅过大或发生共振,引起损坏。 5、尽管各电路单元都有保护措施,但也应避免长时间的短路。 6、仪器使用完毕后,应将双平行梁用附件支撑好,并将实验台上不用的附件撤 去。 7、本仪器如作为稳压电源使用时,±15V和0~±10V两组电源的输出电流之和 不能超过1.5A,否则内部保护电路将起作用,电源将不再稳定。 8、音频振荡器接小于100Ω的低阻负载时,应从LV插口输出,不能从另外两个 电压输出插口输出。

传感器与检测技术考题及答案

传感器与检测技术考试试题 一、填空:(20分) 1,测量系统的静态特性指标主要有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性等。(2分) 2.霍尔元件灵敏度的物理意义是表示在单位磁感应强度相单位控制电流时的霍尔电势大小。 4.热电偶所产生的热电势是两种导体的接触电势和单一导体的温差电势组成的,其表达式为Eab (T ,To )=T B A T T B A 0d )(N N ln )T T (e k 0σ-σ?+-。在热电偶温度补偿中补偿导线法(即冷端延长线法)是在连接导线和热电偶之间,接入延长线,它的作用是将热电偶的参考端移至离热源较远并且环境温度较稳定的地方,以减小冷端温度变化的影响。 5.压磁式传感器的工作原理是:某些铁磁物质在外界机械力作用下,其内部产生机械压力,从而引起极化现象,这种现象称为正压电效应。相反,某些铁磁物质在外界磁场的作用下会产生机械变形,这种现象称为负压电效应。(2分) 6. 变气隙式自感传感器,当街铁移动靠近铁芯时,铁芯上的线圈电感量(①增加②减小③不变)(2分) 7. 仪表的精度等级是用仪表的(① 相对误差 ② 绝对误差 ③ 引用误差)来表示的(2分) 8. 电容传感器的输入被测量与输出被测量间的关系,除(① 变面积型 ② 变极距型 ③ 变介电常数型)外是线性的。(2分) 1、变面积式自感传感器,当衔铁移动使磁路中空气缝隙的面积 增大时,铁心上线圈的电感量(①增大,②减小,③不变)。 2、在平行极板电容传感器的输入被测量与输出电容值之间的关 系中,(①变面积型,②变极距型,③变介电常数型)是线性的关系。 3、在变压器式传感器中,原方和副方互感M 的大小与原方线圈 的匝数成(①正比,②反比,③不成比例),与副方线圈的匝数成(①正比,②反比,③不成比例),与回路中磁阻成(①正比,②反比,③不成比例)。 4、传感器是能感受规定的被测量并按照一定规律转换成可用输

传感器实验指导书

传 感 器 实 验 指 导 书 实验一电位器传感器的负载特性的测试 一、实验目的: 1、了解电桥的工作原理及零点的补偿; 2、了解电位器传感器的负载特性; 3、利用电桥设计电位器传感器负载特性的测试电路,并验证其功能。 二、实验仪器与元件: 1、直流稳压电源、高频毫伏表、示波器、信号源、数字万用表; 2、电阻若干(1k, 100K);电位器(10k)传感器(多圈线绕); 3、运算放大器LM358;

4、电子工具一批(面包板、斜口钳、一字螺丝刀、导线)。 三、基本原理: ?电位器的转换原理 ?电位器的电压转换原理如图所示,设电阻体长度为L,触点滑动位移量为x,两端输入电压为U i,则滑动端输出电压为 电位器输出端接有负载电阻时,其特性称为负载特性。当电位器的负载系数发生变化时,其负载特性曲线也发生相应变化。 ?电位器输出端接有负载电阻时,其特性称为负载特性。 四、实验步骤: 1、在面包板上设计负载电路。 3、改进电路的负载电阻RL,用以测量的电位器的负载特性。 4、分别选用1k电阻和100k电阻,测试电位器的负载特性,要求每个负载至少有5个测试点,并计入所设计的表格1,如下表。 序号 1 2 3 4 5 6 7 8

五、实验报告 1、 画出电路图,并说明设计原理。 2、 列出数据测试表并画出负载特性曲线。电源电压5V ,测试表格1. 曲线图:画图说明,x 坐标是滑动电阻器不带负载时电压;y 坐标是对应1000欧姆(负载两端电压)或100k 欧姆(负载两端电压),100欧和100K 欧两电阻可以得到两条曲线。 O 1 2 3 4 5 UK UR1UR2 3、 说明本次设计的电路的不足之处,提出改进思路,并总结本次实验中遇到困 难及解决方法。

自动化检测实验指导

实验一应变片单臂、半桥、全桥特性比较 一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。 二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成,一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器,此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。 三、需用器件与单元:机头中的应变梁的应变片、测微头;显示面板中的F/V表(或电压表)、±2V~±10V步进可调直流稳压电源;调理电路面板中传感器输出单元中的箔式应 1位数显万用表(自备)。 变片、调理电路单元中的电桥、差动放大器; 4 2 五、实验步骤: 1位数显万用表2kΩ电阻档测量所 1、在应变梁自然状态(不受力)的情况下,用4 2 有 应变片阻值;在应变梁受力状态(用手压、提梁的自由端)的情况下,测应变片阻值,观察一下应变片阻值变化情况(标有上下箭头的4片应变片纵向受力阻值有变化;标有左右箭头的2片应变片横向不受力阻值无变化,是温度补偿片)。如下图1—7所示。 图1—7观察应变片阻值变化情况示意图 2、差动放大器调零点:按下图1—8示意接线。将F/V表(或电压表)的量程切换开 关 切换到2V档,合上主、副电源开关,将差动放大器的增益电位器按顺时针方向轻轻转到底

后再逆向回转一点点(放大器的增益为最大,回转一点点的目的:电位器触点在根部估计会接触不良),调节差动放大器的调零电位器,使电压表显示电压为零。差动放大器的零点调节完成,关闭主电源。 图1—8 差放调零 接线图 3、应变 片单臂电 桥特性实 验: ⑴将±2V~±10V步进可调直流稳压电源切换到4V档,将主板上传感器输出单元中的箔式应变片(标有上下箭头的4片应变片中任意一片为工作片)与电桥单元中R1、R2、R3组成电桥电路,电桥的一对角接±4V直流电源,另一对角作为电桥的输出接差动放大器的二输入端,将W1电位器、r电阻直流调节平衡网络接入电桥中(W1电位器二固定端接电桥的±4V电源端、W1的活动端r电阻接电桥的输出端),如图1—9示意接线(粗细曲线为连接线)。 图1—9 应变片单臂电桥特性实验原理图与接线示意图 ⑵检查接线无误后合上主电源开关,当机头上应变梁自由端的测微头离开自由端(梁 处 于自然状态,图1—7机头所示)时调节电桥的直流调节平衡网络W1电位器,使电压表显示为0或接近0。 ⑶在测微头吸合梁的自由端前调节测微头的微分筒,使测微头的读数为10mm左右(测微头微分筒的0刻度线与测微头轴套的10mm刻度线对准);再松开测微头支架轴套的紧固

《传感器与检测技术》试题及答案(已做)

《传感器与检测技术》试题 一、填空:(20分) 1,测量系统的静态特性指标主要有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性等。(2分) 2.霍尔元件灵敏度的物理意义是表示在单位磁感应强度相单位控制电流时的霍尔电势大小。 4.热电偶所产生的热电势是两种导体的接触电势和单一导体的温差电势组成的,其表达式为Eab (T ,To )=T B A T T B A 0d )(N N ln )T T (e k 0σ-σ?+-。在热电偶温度补偿中补偿导线法(即冷端延长线法)是在连接导线和热电偶之间,接入延长线,它的作用是将热电偶的参考端移至离热源较远并且环境温度较稳定的地方,以减小冷端温度变化的影响。 5.压磁式传感器的工作原理是:某些铁磁物质在外界机械力作用下,其内部产生机械压力,从而引起极化现象,这种现象称为正压电效应。相反,某些铁磁物质在外界磁场的作用下会产生机械变形,这种现象称为负压电效应。(2分) 6. 变气隙式自感传感器,当街铁移动靠近铁芯时,铁芯上的线圈电感量(①增加②减小③不变)(2分) 7. 仪表的精度等级是用仪表的(① 相对误差 ② 绝对误差 ③ 引用误差)来表示的(2分) 8. 电容传感器的输入被测量与输出被测量间的关系,除(① 变面积型 ② 变极距型 ③ 变介电常数型)外是线性的。(2分) 1、变面积式自感传感器,当衔铁移动使磁路中空气缝隙的面积 增大时,铁心上线圈的电感量(①增大,②减小,③不变)。 2、在平行极板电容传感器的输入被测量与输出电容值之间的关 系中,(①变面积型,②变极距型,③变介电常数型)是线性的关系。 3、在变压器式传感器中,原方和副方互感M 的大小与原方线圈 的匝数成(①正比,②反比,③不成比例),与副方线圈的匝数成(①正比,②反比,③不成比例),与回路中磁阻成(①正比,②反比,③不成比例)。 4、传感器是能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,传感器通常由直接响应于被测量的敏感元件

传感器技术实验指导书

《传感器技术》实验指导书 权义萍 南京工业大学自动化学院

目录 实验一金属箔式应变片单臂、半桥、全桥性能比较实验 (3) 实验二直流全桥的应用――电子秤实验 (7) 实验三电容式传感器的位移特性实验 (9) 实验四压电式传感器振动实验 (11) 实验五直流激励时霍尔式传感器位移特性实验 (13) 实验六电涡流传感器综合实验 (15) 实验七光纤传感器的位移特性实验 (18)

实验一金属箔式应变片单臂、半桥性能比较实验 一、实验目的: 了解金属箔式应变片的应变效应,电桥工作原理和性能。 二、基本原理: 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。,对单臂电桥输出电压U o1= EKε/4。 不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改 善。当应变片阻值和应变量相同时,其桥路输出电压U O2=EKε/2。 三、需用器件与单元: 应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V电源、万用表(自备)。 四、实验步骤: 1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。传感器中各应变片已 接入模板的左上方的R1、R2、R3、R4。可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右 图1-1 应变式传感器安装示意图

传感器实验指导书

传感器实验指导书 Revised at 2 pm on December 25, 2020.

传 感 器 实 验 指 导 书 实验一电位器传感器的负载特性的测试 一、实验目的: 1、了解电桥的工作原理及零点的补偿; 2、了解电位器传感器的负载特性; 3、利用电桥设计电位器传感器负载特性的测试电路,并验证其功能。 二、实验仪器与元件: 1、直流稳压电源、高频毫伏表、示波器、信号源、数字万用表; 2、电阻若干(1k, 100K);电位器(10k)传感器(多圈线绕); 3、运算放大器LM358; 4、电子工具一批(面包板、斜口钳、一字螺丝刀、导线)。 三、基本原理: ?电位器的转换原理 ?电位器的电压转换原理如图所示,设电阻体长度为L,触点滑动位移量为x,两端输入电压为U i,则滑动端输出电压为

电位器输出端接有负载电阻时,其特性称为负载特性。当电位器的负载系数发生变化时,其负载特性曲线也发生相应变化。 ?电位器输出端接有负载电阻时,其特性称为负载特性。 四、实验步骤: 1、在面包板上设计负载电路。 3、改进电路的负载电阻RL,用以测量的电位器的负载特性。 4、分别选用1k电阻和100k电阻,测试电位器的负载特性,要求每个负载至少有5个测试点,并计入所设计的表格1,如下表。 五、实验报告 1、画出电路图,并说明设计原理。 2、列出数据测试表并画出负载特性曲线。电源电压5V,测试表格1.

曲线图:画图说明,x坐标是滑动电阻器不带负载时电压;y坐标是对应1000欧姆(负载两端电压)或100k欧姆(负载两端电压),100欧和100K欧两电阻可以得到两条曲线。 3、说明本次设计的电路的不足之处,提出改进思路,并总结本次实验中遇到困难及 解决方法。 实验二声音传感器应用实验-声控LED旋律灯 一、实验目的: 1、了解声音传感器的工作原理及应用; 2、掌握声音传感器与三极管的组合电路调试。 二、实验仪器与元件: 1、直流稳压电源、数字万用表、电烙铁等; 2、电子元件有: 声音传感器(带脚咪头)1个;弯座1个;线1个;5MM白发蓝LED 5个;9014三极管 2个1M电阻 1个;10K电阻 1个;电阻 1个;1UF电解电容 1个;47UF电解电容1个;万能电路板一块。 三、基本原理: 声控LED旋律灯工作电压。其功能为:本电路制作成功后5只LED会随着音乐或是其它声音的节奏闪动起来,可放置于音响附近,让灯光为音乐伴舞!电路原理图如图1所示。 图1 声控LED旋律灯 当发出声音时,声音波传入声音传感器,声音传感器把声音波转换成电压波动。 这个电压波动可以通过电容C2,传到Q1三极管的基极。然后这个电压波变Q1和Q2两级放大之后,输出较大的电压波。最后这个电压波使得5只LED闪动起来。

相关文档
相关文档 最新文档