文档库 最新最全的文档下载
当前位置:文档库 › (新)放电等离子烧结技术的发展和应用_

(新)放电等离子烧结技术的发展和应用_

(新)放电等离子烧结技术的发展和应用_
(新)放电等离子烧结技术的发展和应用_

放电等离子烧结技术的发展和应用

1前言

随着高新技术产业的发展,新型材料特别是新型功能材料的种类和需求量不断增加,材料新的功能呼唤新的制备技术。放电等离子烧结(SparkPlasmaSintering,简称SPS)是制备功能材料的一种全新技术,它具有升温速度快、烧结时间短、组织结构可控、节能环保等鲜明特点,可用来制备金属材料、陶瓷材料、复合材料,也可用来制备纳米块体材料、非晶块体材料、梯度材料等。

2国内外SPS的发展与应用状况

SPS技术是在粉末颗粒间直接通入脉冲电流进行加热烧结,因此在有的文献上也被称为等离子活化烧结或等离子辅助烧结(plasmaactivatedsintering-PAS或plasma-assistedsintering-PAS)[1,2]。早在1930年,美国科学家就提出了脉冲电流烧结原理,但是直到1965年,脉冲电流烧结技术才在美、日等国得到应用。日本获得了SPS技术的专利,但当时未能解决该技术存在的生产效率低等问题,因此SPS

技术没有得到推广应用。

1988年日本研制出第一台工业型SPS装置,并在新材料研究领域内推广应用。1990年以后,日本推出了可用于工业生产的SPS第三代产品,具有10~100t的烧结压力和脉冲电流5000~8000A。最近又研制出压力达500t,脉冲电流为25000A的大型SPS装置。由于SPS技术具有快速、低温、高效率等优点,近几年国外许多大学和科研机构都相继配备了SPS烧结系统,并利用SPS进行新材料的研究和开发[3]。1998年瑞典购进SPS烧结系统,对碳化物、氧化物、生物陶瓷等材料进行了较多的研究工作[4]。

国内近三年也开展了用SPS技术制备新材料的研究工作[1,3],引进了数台SPS烧结系统,主要用来烧结纳米材料和陶瓷材料[5~8]。SPS作为一种材料制备的全新技术,已引起了国内外的广泛重视。

3SPS的烧结原理

31等离子体和等离子加工技术[9,10]

SPS是利用放电等离子体进行烧结的。等离子体是物质在高温或特定激励下的一种物质状态,是除固态、液态和气态以外,物质的第四种状态。等离子体是电离气体,由大量正负带电粒子和中性粒子组成,并表现出集体行为的一种准中性气体。

等离子体是解离的高温导电气体,可提供反应活性高的状态。等离子体温度4000~10999℃,其气态分子和原子处在高度活化状态,而且等离子气体内离子化程度很高,这些性质使得等离子体成为一种非常重要的材料制备和加工技术。

等离子体加工技术已得到较多的应用,例如等离子体CVD、低温等离子体PVD以及等离子体和离子束刻蚀等。目前等离子体多用于氧化物涂层、等离子刻蚀方面,在制备高纯碳化物和氮化物粉体上也有一定应用。而等离子体的另一个很有潜力的应用领域是在陶瓷材料的烧结方面[1]。

产生等离子体的方法包括加热、放电和光激励等。放电产生的等离子体包括直流放电、射频放电和微波放电等离子体。SPS利用的是直流放电等离子体。

32SPS装置和烧结基本原理

SPS装置主要包括以下几个部分:轴向压力装置;水冷冲头电极;真空腔体;气氛控制系统(真空、氩气);直流脉冲电源及冷却水、位移测量、温度测量和安全等控制单元。SPS的基本结构如图1所示。

SPS与热压(HP)有相似之处,但加热方式完全不同,它是一种

利用通-断直流脉冲电流直接通电烧结的加压烧结法。通-断式直流脉冲电流的主要作用是产生放电等离子体、放电冲击压力、焦耳热和电场扩散作用[11]。SPS烧结时脉冲电流通过粉末颗粒如图2所示。在SPS烧结过程中,电极通入直流脉冲电流时瞬间产生的放电等离子体,使烧结体内部各个颗粒均匀地自身产生焦耳热并使颗粒表面活化。与自身加热反应合成法(SHS)和微波烧结法类似,SPS是有效利用粉末内部的自身发热作用而进行烧结的。这种放电直接加热法,热效率极高,放电点的弥散分布能够实现均匀加热,因而容易制备出均质、致密、高质量的烧结体。SPS烧结过程可以看作是颗粒放电、导电加热和加压综合作用的结果。除加热和加压这两个促进烧结的因素外,在SPS技术中,颗粒间的有效放电可产生局部高温,可以使表面局部熔化、表面物质剥落;高温等离子的溅射和放电冲击清除了粉末颗粒表面杂质(如去除表层氧化物等)和吸附的气体。电场的作用是加快扩散过程[1,9,12]。

4SPS的工艺优势

SPS的工艺优势十分明显:加热均匀,升温速度快,烧结温度低,烧结时间短,生产效率高,产品组织细小均匀,能保持原材料的自然状态,可以得到高致密度的材料,可以烧结梯度材料以及复杂工件等[3,11]。与HP和HIP相比,SPS装置操作简单、不需要专门的熟练技术。文献[11]报道,生产一块直径100mm、厚17mm的ZrO2(3Y)/不锈钢梯度材料(FGM)用的总时间是58min,其中升温时

间28min、保温时间5min和冷却时间25min。与HP相比,SPS技术的烧结温度可降低100~200℃[13]。

5SPS在材料制备中的应用

目前在国外,尤其在日本开展了较多用SPS制备新材料的研究,部分产品已投入生产。SPS可加工的材料种类如表1所示。除了制备材料外,SPS还可进行材料连接,如连接MoSi2与石墨[14],ZrO2/Cermet/Ni等[15]。

近几年,国内外用SPS制备新材料的研究主要集中在:陶瓷、金属陶瓷、金属间化合物,复合材料纳米材料和功能材料等方面。其中研究最多的是功能材料,它包括热电材料[16]、磁性材料[17],功能梯度材料[18],复合功能材料[19]和纳米功能材料[20]等。对SPS制备非晶合金、形状记忆合金[21]、金刚石等也作了尝试,取得了较好的结果。

51功能梯度材料

功能梯度材料(FGM)的成分是梯度变化的,各层的烧结温度不同,利用传统的烧结方法难以一次烧成。利用CVD、PVD等方法制备梯度材料,成本很高,也很难实现工业化。采用阶梯状的石墨模具,由于模具上、下两端的电流密度不同,因此可以产生温度梯度。利用SPS在石墨模具中产生的梯度温度场,只需要几分钟就可烧结好成

分配比不同的梯度材料。目前SPS成功制备的梯度材料有:不锈钢/ZrO2;Ni/ZrO2;Al/高聚物;Al/植物纤维;PSZ/Ti等梯度材料。

在自蔓延燃烧合成(SHS)中,电场具有较大激活效应和作用,特别是场激活效应可以使以前不能合成的材料也能成功合成,扩大了成分范围,并能控制相的成分,不过得到的是多孔材料,还需要进一步加工提高致密度。利用类似于SHS电场激活作用的SPS技术,对陶瓷、复合材料和梯度材料的合成和致密化同时进行,可得到65nm的纳米晶,比SHS少了一道致密化工序[22]。

利用SPS可制备大尺寸的FGM,目前SPS制备的尺寸较大的FGM体系是ZrO2(3Y)/不锈钢圆盘,尺寸已达到 100mm×17mm[23]。

用普通烧结和热压WC粉末时必须加入添加剂,而SPS使烧结纯WC成为可能。用SPS制备的WC/Mo梯度材料的维氏硬度(HV)和断裂韧度分别达到了24GPa和6MPa·m1/2,大大减轻由于WC和Mo的热膨胀不匹配而导致热应力引起的开裂[24]。

52热电材料

由于热电转换的高可靠性、无污染等特点,最近热电转换器引起

了人们极大的兴趣,并研究了许多热电转换材料。经文献检索发现,在SPS制备功能材料的研究中,对热电材料的研究较多。

(1)热电材料的成分梯度化是目前提高热电效率的有效途径之一。例如,成分梯度的βFeSi2就是一种比较有前途的热电材料,可用于200~900℃之间进行热电转换。βFeSi2没有毒性,在空气中有很好的抗氧化性,并且有较高的电导率和热电功率。热电材料的品质因数越高(Z=α2/kρ,其中Z是品质因数,α为Seebeck系数,k为导热系数,ρ为材料的电阻率),其热电转换效率也越高。实验表明,采用SPS制备的成分梯度的βFeSix(Si含量可变),比βFeSi2的热电性能大为提高[25]。这方面的例子还有Cu/Al2O3/Cu[26],MgFeSi2[27],βZn4Sb3[28],钨硅化物[29]等。

(2)用于热电致冷的传统半导体材料不仅强度和耐久性差,而且主要采用单向生长法制备,生产周期长、成本高。近年来有些厂家为了解决这个问题,采用烧结法生产半导体致冷材料,虽改善了机械强度和提高了材料使用率,但是热电性能远远达不到单晶半导体的性能。现在采用SPS生产半导体致冷材料,在几分钟内就可制备出完整的半导体材料,而晶体生长法却要十几个小时。SPS制备半导体热电材料的优点是,可直接加工成圆片,不需要单向生长法那样的切割加工,节约了材料,提高了生产效率。

热压和冷压-烧结的半导体性能低于晶体生长法制备的性能。现用于热电致冷的半导体材料的主要成分是Bi,Sb,Te和Se,目前最高的Z值为30×10-3/K,而用SPS制备的热电半导体的Z值已达到29~30×10-3/K,几乎等于单晶半导体的性能[30]。表2是SPS和其它方法生产BiTe材料的比较。

53铁电材料

用SPS烧结铁电陶瓷PbTiO3时,在900℃~1000℃下烧结1~3min,烧结后平均颗粒尺寸<1μm,相对密度超过98%。由于陶瓷中孔洞较少[31],因此在101~106Hz之间介电常数基本不随频率而变化。

用SPS制备铁电材料Bi4Ti3O12陶瓷时,在烧结体晶粒伸长和粗化的同时,陶瓷迅速致密化。用SPS容易得到晶粒取向度好的试样,可观察到晶粒择优取向的Bi4Ti3O12陶瓷的电性能有强烈的各向异性[32]。

用SPS在900℃烧结制备的BaTiO3陶瓷,其晶粒尺寸接近200nm[33]。用SPS制备铁电Li置换IIVI半导体ZnO陶瓷,使铁电相变温度Tc提高到470K,而以前冷压烧结陶瓷只有330K[34]。

54磁性材料

用SPS烧结NdFeB磁性合金,若在较高温度下烧结,可以得到高的致密度,但烧结温度过高会导致出现α相和晶粒长大,磁性能恶化。若在较低温度下烧结,虽能保持良好的磁性能,但粉末却不能被完全压实,因此要详细研究密度与性能的关系[35]。

SPS在烧结磁性材料时具有烧结温度低、保温时间短的工艺优点。NdFeCoVB在650℃下保温5min,即可烧结成接近完全密实的块状磁体,没有发现晶粒长大[36]。用SPS制备的865Fe6Si4Al35Ni和MgFe2O4的复合材料(850℃,130MPa),具有高的饱和磁化强度Bs=12T和高的电阻率ρ=1×10-2Ω·m[37]。以前用快速凝固法制备的软磁合金薄带,虽已达到几十纳米的细小晶粒组织,但是不能制备成合金块体,应用受到限制。而现在采用SPS制备的块体磁性合金的磁性能已达到非晶和纳米晶组织带材的软磁性能[3]。

55纳米材料

致密纳米材料的制备越来越受到重视。利用传统的热压烧结和热等静压烧结等方法来制备纳米材料时,很难保证能同时达到纳米尺寸的晶粒和完全致密的要求。利用SPS技术,由于加热速度快,烧结时间短,可显著抑制晶粒粗化。例如:用平均粒度为5μm的TiN粉经S

PS烧结(1963K,196~382MPa,烧结5min),可得到平均晶粒65nm的TiN密实体[3]。文献[3]中引用有关实例说明了SPS烧结中晶粒长大受到最大限度的抑制,所制得烧结体无疏松和明显的晶粒长大。

SPS烧结时,虽然所加压力较小,但是除了压力的作用会导致活化能Q降低外,由于存在放电的作用,也会使晶粒得到活化而使Q值进一步减小,从而会促进晶粒长大,因此从这方面来说,用SPS烧结制备纳米材料有一定的困难。

但是实际上已有成功制备平均晶粒度为65nm的TiN密实体的实例。在文献[38]中,非晶粉末用SPS烧结制备出20~30nm的Fe90Zr7B3纳米磁性材料。另外,还已发现晶粒随SPS烧结温度变化比较缓慢[7],因此SPS制备纳米材料的机理和对晶粒长大的影响还需要作进一步的研究。

56非晶合金的制备

在非晶合金的制备中,要选择合金成分以保证合金具有极低的非晶形成临界冷却速度,从而获得极高的非晶形成能力。在制备工艺方面主要有金属模浇铸法和水淬法,其关键是快速冷却和控制非均匀形核。由于制备非晶合金粉末的技术相对成熟,因此多年来,采用非晶粉末在低于其晶化温度下进行温挤压、温轧、冲击(爆炸)固化和等静压烧结等方法来制备大块非晶合金,但存在不少技术难题,如非晶粉末的硬度总高于晶态粉末,因而压制性能欠佳,其综合性能与旋淬法制备的

非晶薄带相近,难以作为高强度结构材料使用[39]。可见用普通粉末冶金法制备大块非晶材料存在不少技术难题。

SPS作为新一代烧结技术有望在这方面取得进展,文献[40]中利用SPS烧结由机械合金化制取的非晶Al基粉末得到了块状圆片试样( 10mm×2mm),此非晶合金是在375MPa下503K时保温20min制备的,含有非晶相和结晶相以及残余的Sn相。其非晶相的结晶温度是533K。文献[41]中用脉冲电流在423K和500MPa下制备了Mg80Ni10Y5B5块状非晶合金,经分析其中主要是非晶相。非晶Mg合金比A291D合金和纯镁有较高的腐蚀电位和较低的腐蚀电流密度,非晶化改善了镁合金的抗腐蚀抗力。从实践来看,可以采用SPS烧结法制备块状非晶合金。因此利用先进的SPS技术进行大块非晶合金的制备研究很有必要。

6总结与展望

放电等离子烧结(SPS)是一种低温、短时的快速烧结法,可用来制备金属、陶瓷、纳米材料、非晶材料、复合材料、梯度材料等。SPS的推广应用将在新材料的研究和生产领域中发挥重要作用。

SPS的基础理论目前尚不完全清楚,需要进行大量实践与理论研究来完善;SPS需要增加设备的多功能性和脉冲电流的容量,以便做尺寸更大的产品;特别需要发展全自动化的SPS生产系统,以满足复杂形状、高性能的产品和三维梯度功能材料的生产需要[42]。

对实际生产来说,需要发展适合SPS技术的粉末材料;也需要研制比目前使用的模具材料(石墨)强度更高、重复使用率更好的新型模具材料,以提高模具的承载能力和降低模具费用。在工艺方面,需要建立模具温度和工件实际温度的温差关系,以便更好地控制产品质量。在SPS产品的性能测试方面,需要建立与之相适应的标准和方法。

放电等离子烧结技术详解

放电等离子烧结技术详解 [导读]放电等离子烧结(SPS),又称等离子活化烧结或等离子辅助烧结,是近年发展起来的一种快速、节能、环保的材料制备加工新技术,可广泛用于磁性材料、梯度功能材料、纳米陶瓷、纤维增强陶瓷和金属间复合材料等一系列新型材料的烧结。 一、放电等离子烧结技术的特点 SPS的主要特点是利用加热和表面活化实现材料的超快速致密化烧结,其具有升温速度快、烧结时间短、烧结温度低、加热均匀、生产效率高、节约能源等优点,除此之外由于等离子体的活化和快速升温烧结的综合作用,抑制了晶粒的长大,保持了原始颗粒的微观结构,从而在本质上提高了烧结体的性能,并使得最终的产品具有组织细小均匀、能保持原材料的自然状态、致密度高等特点,与热压烧结和热等静压烧结相比,SPS装置操作简单。 二、放电等离子烧结技术的烧结机理 SPS是集等离子活化、热压和电阻加热为一体的烧结技术。对于SPS的烧结机理,一般认为,SPS过程除具有热压烧结的焦耳热和加压造成的塑性变形促进烧结过程外,还在粉末颗粒间产生直流脉冲电压,并有效利用了粉体颗粒间放电产生的表面活化作用和自发热作用,因而产生了SPS过程所特有的有益于烧结的现象。

施加直流开关脉冲电流的作用 SPS烧结系统主要由轴向压力装置、水冷冲头电极、真空腔体、气氛控制系统、直流脉冲及冷却水、位移测量、温度测量和安全控制单元等几部分组成;其中最主要的是通-断脉冲电源,通过通-断脉冲电源可以产生放电等离子体、焦耳热、放电冲击压和电场辅助扩散效应。

离子烧结设备结构示意图 三、放电等离子烧结技术的应用 SPS烧结升温速度快,烧结时间短,既可以用于低温、高压(500~1000MPa),又可以用于低压(20~30MPa)、高温(1000~2000℃)的烧结,因此可广泛的应用于金属、陶瓷和各种复合材料的烧结。

放电等离子烧结系统(SPS)

粉末冶金研究先进设备-放电等离子烧结系统(SPS) 随着高新技术产业的发展, 放电等离子烧结系统(SPS) 新型材料特别是新型功能材料的种类和需求量不断增加,材料新的功能呼唤新的制备技术。放电等离子烧结(Spark Plasma Sintering,简称SPS)是制备功能材料的一种全新技术,它具有升温速度快、烧结时间短、组织结构可控、节能环保等鲜明特点,可用来制备金属材料、陶瓷材料、复合材料,也可用来制备纳米块体材料、非晶块体材料、梯度材料等。 国内外SPS的发展与应用状况 SPS技术是在粉末颗粒间直接通入脉冲电流进行加热烧结,因此在有的文献上也被称为等离子活化烧结或等离子辅助烧结(plasmaactivatedsintering-PAS或plasma-assistedsintering-PAS)[1,2]。早在1930年,美国科学家就提出了脉冲电流烧结原理,但是直到1965年,脉冲电流烧结技术才在美、日等国得到应用。日本获得了SPS技术的专利,但当时未能解决该技术存在的生产效率低等问题,因此SPS技术没有得到推广应用。 1988年日本研制出第一台工业型SPS装置,并在新材料研究领域内推广使用。1990年以后,日本推出了可用于工业生产的SPS第三代产品,具有10~100t 的烧结压力和脉冲电流5000~8000A。最近又研制出压力达500t,脉冲电流为25000A的大型SPS装置。由于SPS技术具有快速、低温、高效率等优点,近几年国外许多大学和科研机构都相继配备了SPS烧结系统,并利用SPS进行新材料的研究和开发[3]。1998年瑞典购进SPS烧结系统,对碳化物、氧化物、生物陶瓷等材料进行了较多的研究工作[4]。 国内近三年也开展了用SPS技术制备新材料的研究工作[1,3],引进了数台SPS 烧结系统,主要用来烧结纳米材料和陶瓷材料[5~8]。SPS作为一种材料制备的全新技术,已引起了国内外的广泛重视。 SPS的烧结原理

sps放电等离子烧结炉

小型放电等离子烧结设备SPS-211Lx由富士电波工机株式会社(该公司2010年收购了世界上最早研发出SPS技术的住友石炭公司)生产(型号: SPS-211Lx),该放电等离子烧结设备首次进入中国,广泛用于各种新材料研究,尤其适合低温纳米烧结,梯度材料烧结以及各种高分子,树脂,金属,半导体,绝缘体的混合真空或气氛烧结。烧结速度快,密度高,烧结过程中晶粒不长大。该款设备以其物美价廉经济适用的特点,特别适合大专院校开展初期实验研究,一经推出,立即受到日本欧美科学家用户欢迎。相信首台SPS-211Lx的导入将为中国在新材料研发领域赶超世界先进水平贡献独特的力量。 富士电波工机株式会社目前是SPS技术的龙头企业,已经具有20多年制造经验,世界范围内拥有多达300多名的用户(从小型试验设备到大批生产型设备)。 该公司不仅生产实验室专用的小型设备如,SPS-211Lx,331Lx,630Lx等,还生产SPS-925这样兼顾实验和生产的中型设备以及大型批量生产型SPS30300T 等烧结设备。在日本已经有10余家公司使用该公司设备生产各种过去难以制造的产品,该公司在SPS烧结技术方面日趋成熟已为工业界所接受,进入了新的发展阶段。希望国内广大用户根据自己需求选择自己喜欢的SPS装置,期待您的咨询与联系!注:该公司主要SPS产品如下,供您参考:中国北京中科棣控 1.SPS-211Lx, 20KN, 1000A 研究型 2.SPS-331Lx, 30KN, 3000A 研究型 3.SPS-630Kx, 60KN, 3000A 研究型 4.SPS-515s, 50KN, 1500A 研究型 5.SPS-615, 100KN, 3000A 研究型 6. SPS-625, 100KN, 5000A 研究型 7.SPS-725, 250KN, 5000A 研究型 8.SPS-825, 250KN, 8000A 研究型 9.SPS-925, 250KN, 1000A 半研究半生产型 10.SPS-3. 0MK-Ⅳ, 200KN,8000A半研究半生产型

放电等离子体烧结技术(SPS)

放电等离子体烧结技术(SPS) 一、S PS合成技术的发展 ?最初实现放电产生“等离子体”的人是以发现电磁感应法则而知名的法拉第(M.Farady),他最早发现在低压气体中放电可以分别观测到相当大的发光区域和不发光的暗区。 ?https://www.wendangku.net/doc/ca15880952.html,ngmuir又进一步对低压气体放电形成的发光区,即阳光柱深入研究,发现其中电子和正离子的电荷密度差不多相等,是电中性的,电子、离子基团作与其能量状态对应的振动。他在其发表的论文中,首次称这种阳光柱的状态为“等离子体”。 等离子体特效图 ?1930年,美国科学家提出利用等离子体脉冲电流烧结原理,但是直到1965年,脉冲电流烧结技术才在美、日等国得到应用。日本获得了SPS技术的专利,但当时未能解决该技术存在的生产效率低等问题,因此SPS技术没有得到推广应用。 ?SPS技术的推广应用是从上个世纪80年代末期开始的。 ?1988年日本研制出第一台工业型SPS装置,并在新材料研究领域内推广应用。 ?1990年以后,日本推出了可用于工业生产的SPS第三代产品,具有10~100t 的烧结压力和5000~8000A脉冲电流,其优良的烧结特性,大大促进了新材料的开发。 ?1996年,日本组织了产学官联合的SPS研讨会,并每年召开一次。 ?由于SPS技术具有快速、低温、高效率等优点,近几年国外许多大学和科研机构都相继配备了SPS烧结系统,应用金属、陶瓷、复合材料及功能材料的制备,并利用SPS进行新材料的开发和研究。 ?1998年瑞典购进SPS烧结系统,对碳化物、氧化物、生物陶瓷登材料进行了较多的研究工作。 ?目前全世界共有SPS装置100多台。如日本东北大学、大阪大学、美国加利福尼亚大学、瑞典斯德哥尔摩大学、新加坡南洋理工大学等大学及科研机构相继购置了SPS系统。 ?我国近几年也开展了利用SPS技术制备新材料的研究工作,引进了数台SPS烧结系统,主要用于纳米材料和陶瓷材料的烧结合成。 ?最早在1979年,我国钢铁研究总院自主研发制造了国内第一台电火花烧结机,用以批量生产金属陶瓷模具,产生了良好的社会经济效益。 ?2000年6月武汉理工大学购置了国内首台SPS装置(日本住友石炭矿业株式会社生产,SPS-1050)。 ?随后上海硅酸盐研究所、清华大学、北京工业大学和武汉大学等高校及科研机构也相继引进了SPS装置,用来进行相关的科学研究。 ?SPS作为一种材料制备的全新技术,已引起了国内外的广泛重视。 ?2006年,国内真空电炉生产企业开始研制国产SPS烧结系统。经过我国科研人员,国产SPS于2009年研制出第一台国产SPS烧结系统,在我国高校和科研机构得到应用且取得了较好的效果。 二、S PS合成技术原理 1、等离子体

放电等离子烧结技术的发展和应用

放电等离子烧结技术的发展和应用 1 前言 随着高新技术产业的发展, 新型材料特别是新型功能材料的种类和需求量不断增加,材料新的功能呼唤新的制备技术。放电等离子烧结(Spark PlasmaSintering ,简称SPS )是制备功能材料的一种全新技术,它具有升温速度快、烧结时间短、组织结构可控、节能环保等鲜明特点可用来制备金属材料、陶瓷材料、复合材料,也可用来制备纳米块体材料、非晶块体材料、梯度材料等。 2国内外SPS的发展与应用状况 SPS技术是在粉末颗粒间直接通入脉冲电流进行加热烧结,因此在有的文献上也被称为等离子活化烧结或等离子辅助烧结(plasmaact ivatedsintering - PAS 或plasma -assiste dsintering - PAS )[1,2]。早在1930年,美国科学家就提出了脉冲电流烧结原理,但是直到1965 年,脉冲电流烧结技术才在美、日等国得到应用。日本获得了SPS技术的专利,但当时未能解决该技术存在的生产效率低等问题,因此SPS技术没有得到推广应用1988年日本研制出第一台工业型SPS装置,并在新材料研究领域内推

广应用。1990年以后,日本推出了可用于工业生产的SPS第三代产品,具有10?100 t的烧结压力和脉冲电流5000?8000 A。最近又研制出压力达500 t,脉冲电流为25000 A的大型SPS装置。由于SPS技术具有快速、低温、高效率等优点,近几年国外许多大学和科研机构都相继配备了SPS烧结系统,并利用SPS进行新材料的研究和开发[3]。1998年瑞典购进SPS烧结系统,对碳化物、氧化物、生物陶瓷等材料进行了较多的研究工作[4]。 国内近三年也开展了用SPS技术制备新材料的研究工作[1,3],引进了数台SPS烧结系统,主要用来烧结纳米材料和陶瓷材料[5?8]。SPS作为一种材料制备的全新技术,已引起了国内外的广泛重视。 3SPS的烧结原理 31 等离子体和等离子加工技术[9,10] SPS是利用放电等离子体进行烧结的。等离子体是物质在高温或特定激励下的一种物质状态,是除固态、液态和气态以外,物质的第四种状态。等离子体是电离气体,由大量正负带电粒子和中性粒子组成,并表现出集体行为的一种准中性气体。 等离子体是解离的高温导电气体,可提供反应活性高的状态。等离子体温度4000?10999 C,其气态分子和原子处在高度活化状态,而且等离子气体内 离子化程度很高,这些性质使得等离子体成为一种非常重要的材料制备和加 工技术。

放电等离子烧结

放电等离子烧结的机理与应用 李崴20080403B013 海南大学材料与化工学院 摘要:放电等离子体烧结(SPS)一种用于材料烧结致密化的新技术,作为一种快速烧结方式,近年来被广泛研究与应用。本文针对SPS的发展概况,工作机理以及研究应用进行了简单介绍。 关键词:放电等离子烧结,发展,机理,应用 0引言 放电等离子烧结(SPS)是近年来发展起来的一种新型的快速烧结技术。由于等离子活化烧结技术融等离子活化、热压、电阻加热为一体,因而具有升温速度快、烧结时间短、晶粒均匀、有利于控制烧结体的细微结构、获得的材料致密度高、性能好等特点。该技术利用脉冲能、放电脉冲压力和焦耳热产生的瞬时高温场来实现烧结过程,对于实现优质高效、低耗低成本的材料制备具有重要意义,在纳米材料、复合材料等的制备中显示了极大的优越性,现已应用于金属、陶瓷、复合材料以及功能材料的制备。目前国内外许多大学和科研机构利用SPS进行新材料的研究与开发,并对其烧结机理与特点进行深入研究与探索,尤其是其快速升温的特点,可作为制备纳米块体材料的有效手段,因而引起材料学界的特别关注。本文将对SPS技术有关的机理和部分应用予以介绍和讨论。 1.SPS的发展概况 放电等离子烧结技术,20世纪30年代美国科学家就提出了脉冲电流烧结原理。1965年,脉冲电流烧结技术在美、日等国得到应用。1968年该技术被称为电火花烧结技术日本获得了专利,但未能解决该技术存在的生产效率低等问题,并没有得到推广应用。1979年我国钢铁研究总院高一平等自主开发研制了国内第一台电火花烧结机,用以批量生产金属陶瓷模具,产生了显著的社会经济效益,并出版了《电火花烧结技术》一书。1988年日本研制出第一台工业型SPS装置,并推广应用于新材料研究领域。1990年以后,日本推出了可用于工业生产的SPS 第三代产品,具有10-100t的烧结压力和5000-8000A的脉冲电流。1998年瑞典购进SPS烧结系统,对碳化物、氧化物、生物陶瓷等材料进行了较多的研究工作。我国从2000年起,武汉理工大学、北京工业大学、清华大学、北京科技大学、中科院上海硅酸盐所等单位也相继引进了日本制造的SPS设备,开展了用SPS技术制备新材料的研究工作,主要用来烧结纳米材料和陶瓷材料。SPS作为一种材料制备的全新技术,已引起了国内外材料界的特别关注。 2.SPS系统的结构 目前使用的SPS系统主要是日本制造的由3部分组成(图1):①产生单轴向压力的装置和烧结模,压力装置可根据烧结材料的不同施加不同的压力;②脉冲电流发生器,用来产生等离子体对材料进行活化处理;③电阻加热设备。SPS与热压(HP)烧结有相似之处,但加热方式完全不同,它是利用直流脉冲电流直接通电烧结的加压烧结方法,通过调节脉冲直流电的大小控制升温速率和烧结温度。整个烧结过程可在真空环境下进行,也可在保护气氛中进行,烧结过程中,脉冲

放电等离子烧结(sps)

SPS 放电等离子烧结(Spark Plasma Sintering,简称SPS)是制备功能材料的一种全新技术,它具有升温速度快、烧结时间短、组织结构可控、节能环保等鲜明特点,可用来制备金属材料、陶瓷材料、复合材料,也可用来制备纳米块体材料、非晶块体材料、梯度材料等。 1 前言 随着高新技术产业的发展,新型材料特别是新型功能材料的种类和需求量不断增加,材料新的功能呼唤新的制备技术。放电等离子烧结(Spark Plasma Sintering,简称SPS)是制备功能材料的一种全新技术,它具有升温速度快、烧结时间短、组织结构可控、节能环保等鲜明特点,可用来制备金属材料、陶瓷材料、复合材料,也可用来制备纳米块体材料、非晶块体材料、梯度材料等。 2 国内外SPS的发展与应用状况 SPS技术是在粉末颗粒间直接通入脉冲电流进行加热烧结,因此在有的文献上也被称为等离子活化烧结或等离子辅助烧结(plasmaactivatedsintering-PAS或plasma-assistedsintering-PAS)[1,2]。早在1930年,美国科学家就提出了脉冲电流烧结原理,但是直到1965年,脉冲电流烧结技术才在美、日等国得到应用。日本获得了SPS技术的专利,但当时未能解决该技术存在的生产效率低等问题,因此SPS技术没有得到推广应用。 1988年日本研制出第一台工业型SPS装置,并在新材料研究领域内推广使用。1990年以后,日本推出了可用于工业生产的SPS第三代产品,具有10~100t 的烧结压力和脉冲电流5000~8000A。最近又研制出压力达500t,脉冲电流为25000A的大型SPS装置。由于SPS技术具有快速、低温、高效率等优点,近几年国外许多大学和科研机构都相继配备了SPS烧结系统,并利用SPS进行新材料的研究和开发[3]。1998年瑞典购进SPS烧结系统,对碳化物、氧化物、生物陶瓷等材料进行了较多的研究工作[4]。 国内近三年也开展了用SPS技术制备新材料的研究工作[1,3],引进了数台SPS烧结系统,主要用来烧结纳米材料和陶瓷材料[5~8]。SPS作为一种材料制备的全新技术,已引起了国内外的广泛重视。 3 SPS的烧结原理 3.1 等离子体和等离子加工技术[9,10] SPS是利用放电等离子体进行烧结的。等离子体是物质在高温或特定激励下的一种物质状态,是除固态、液态和气态以外,物质的第四种状态。等离子体是电离气体,由大量正负带电粒子和中性粒子组成,并表现出集体性为的一种准中性气体。

SPS放电等离子体烧结系统

SPS放电等离子体烧结系统 技术要求: 1.工作条件 1.1湿度:80%; 1.2温度:15-30℃; 1.3电源:3相380V50/60Hz±10%; 2.主要要求和功能 SPS放电等离子体烧结系统要求完全一箱式结构,将烧结主机、特殊直流脉冲变频电源、真空系统、数字伺服加压系统、操作控制柜等一体集成,各部件间无线路裸露连接确保操作安全;其功能是对装在烧结模具(以石墨模具为主)内的粉末材料直接通入脉冲直流强电流,利用粉末自身的电阻发热,磁场与电场效应,达到激活材料粉体并升温烧结的效果,被广泛应用于各种金属材料、陶瓷材料、纳米材料、梯度功能材料、复合材料、非晶材料、金属间化合物、金属玻璃、电子材料等新材料和尖端材料的研发; 3.技术参数 3.1SPS放电等离子体烧结炉主机及加压系统; 3.1.1结构:一箱式结构,将烧结主机、特殊直流脉冲变频电源、真空系统、数字伺服加压系统、操作控制柜等一体集成,各部件间无线路裸露连接确保操作安全;; 3.1.2压力系统:交流伺服电机高精度单向纵一轴加压; 3.1.3最大烧结压力:30KN; 3.1.4加压压力可调范围:0~30KN(手动和自动控制下,精度均为0.1kN); 3.1.5加压控制方式:可实现手动和可编程自动控制加压,并配备电极手动定位脉冲飞轮; 3.1.6电极加压行程:80mm; 3.1.7电极全开高度:200mm; 3.1.8压力显示方式:触控显示屏上动态数显,分辨率:0.1kN; 3.1.9试料台规格:Φ90mm; 3.1.10加压电极:内部水冷结构;

3.1.11轴位移显示:AC伺服电机信号动态数显; 3.2烧结电源及与通电系统 3.2.1DC脉冲变频烧结电源:采用直流脉冲控制方式; 3.2.2最大脉冲直流输出:8V,2500A; 3.2.3电流可调范围:0~2500A(手动和自动控制下,精度均为1A); 3.2.4控制方式:可实现手动和可编程自动电流输出控制,并可实现可编程温控程序PID控制; 3.2.5通电连接:采用高导电特殊铜排连接主机电极与脉冲电源; 3.2.6脉冲占空比设定范围:ON:1~999ms,OFF:1~999ms,最小单位1ms;3.3真空烧结腔及抽真空系统 3.3.1形式:前开门圆筒卧式水冷腔体; 3.3.2尺寸规格:内径Φ320mm×进深310mm操作口径Φ260mm; 3.3.3抽真空速度:大气环境下→6Pa/15分钟以内(腔体内空载状态下,极限真空度为6Pa); 3.3.4真空泵:旋片式机械泵; 3.3.5观察窗大小:内窥窗:Φ70mm1个; 3.3.6真空仪表:布登管真空刻度表、皮拉真空计; 3.3.7适应烧结气氛:大气、真空、保护气氛(预装即插式进气阀组); 3.3.8烧结测温:1000℃以下低温区间采用铠装热电偶;3000℃以下高温区间采用红外测温仪。可通过触控屏一键切换,实际使用时低于烧结腔体的最高耐热温度; 3.3.9真空腔最高耐热温度:石墨模具测温2500℃(常用温度2200℃)(模具大小不同时最高温度可以有变化); 3.3.10冷却水监控及流量传感器:可通过动态流量栓确认真空腔体、上电极、下电极等部位的通水状况。流量传感器检测到冷却水流量过低时,为确保设备安全,将自动停机并报警; 3.4仪器仪表显示方式 3.4.1Z轴数显:烧结位移单位数显精确到1微米,1微米与10微米可一键切换,显示范围在加压行程以内;

放电等离子烧结工艺制备Ti_2AlC材料的研究

·科学实验· 文章编号:1005-0639(2004)02-0007-04 放电等离子烧结工艺制备Ti 2AlC 材料的研究 周卫兵,梅炳初,朱教群,洪小林 (武汉理工大学材料复合新技术国家重点实验室,武汉 430070) 摘要:以元素粉钛、铝、碳为原料,采用放电等离子烧结工艺在1100℃的温度下成功地制备了高纯、致密Ti 2AlC 材料。合成材料的X -射线衍射(XRD )和扫描电镜(SE M )分析的结果表明:多晶体Ti 2AlC 形貌为板状结晶,晶粒大小平均约为20μm ,厚度在3~5μm 。 关键词:放电等离子烧结;制备;Ti 2AlC 中图分类号:TB286 文献标识码A 收稿日期:2004-01-11 基金项目:国家自然科学基金(50172037),教育部博士点基金(2000049702) 新型层状陶瓷材料Ti 2AlC 以其优异性能成为近年来国内外众多材料学者研究的热点 [1~8] 。 在常温下,它具有金属的性能,有很好的导热性能和导电性能,有较低的Vickers 硬度,像金属一样可进行机械加工,同时又具有陶瓷的性能,高熔点,高热稳定性和良好的抗氧化性能。但在Ti -Al -C 三元相图中[9],高温下单一Ti 2AlC 相区狭窄,使得制备高纯、致密Ti 2AlC 块体材料非常困难,传统制备方法[2~5]所合成的材料工艺复杂,条件苛刻,成本太高,且合成的产物中很容易含有TiC 或钛铝金属间化合物等杂质相。 从目前的研究现状来看,如果想获得纯净致密的块体Ti 2AlC 材料,解决杂质相存在的问题,则必须在制备工艺方面获得突破性进展。放电等离子烧结是最近几年从日本发展起来的材料制备新技术 [10] 。其主要特点是通过瞬时产生的放电 等离子使粉末颗粒均匀发热和表面活化,与材料的传统烧结方法(真空或气氛烧结、热压烧结、热等静压烧结等)相比,其主要优点表现在:(1)可大大缩短烧结时间和降低烧结温度;(2)制备的材料晶粒细小,性能优异。本研究以Ti /Al /C 元素粉为原料,利用这一新型的烧结技术超快速制备致密、高纯Ti 2AlC 材料。 1 实验方法 研究中所用原料的特征是:Ti 粉(99.0%, 10.6μm )、Al 粉(99.8%,12.8μm )、C 粉(99.0%,13.2μm )。其中C 粉为商品活性碳。按设定的配 合比例进行称量后,在塑料混料瓶中混合24h ,再放入直径为20mm 的石墨模具中,在日本Sumitomo 公司的SPS -1050型装置上进行烧结,采用红外温度计测温。工艺制度是:升温速率为80℃/min ,在设定合成温度下保温8min ,然后在3min 内冷却至600℃以下,Z 轴压力为30MPa 。每隔30s 记录一次各项参数,包括电压、电流、烧结温度、Z 轴位移、真空室气压Pa 和Z 轴施加的压力。 合成的样品分别用Archimedes 法测定密度,采用转靶X -射线衍射仪分析材料的相组成,用扫描电镜(SE M )结合能谱仪(EDS )观察矿物形貌和颗粒尺寸。 2 结果与讨论 2.1 配比对相组成的影响 图1为原料配比为n (Ti )∶n (Al )∶n (C )=2∶1∶1在不同温度下烧结试样的X -射线衍射谱。试样(a )的主晶相为Ti 2AlC 和TiC ,在其X -射线衍射谱上还存在一个属于TiAl 的衍射峰。试样(b )主晶相仍为Ti 2AlC 和TiC ,TiC 的峰强明显高于(a )样,说明其含量更高。而试样(c )中的主晶相已变为TiC 。Ti 2AlC 的峰强已降低很多,说明在1300℃,对合成Ti 2AlC 极为不利,所合成的Ti 2AlC 第27卷 第2期2004年4月山东陶瓷 SHANDONG CER AMICS Vol .27 No .2Apr .2004

粉体工程 实验三 放电等离子烧结粉体

实验三放电等离子烧结粉体实验指导书 一、实验目的 通过利用放电等离子烧结样品,使学生系统了解和熟悉放电等离子产生的原理、制备的方式和方法,掌握等放电离子体设备的结构及使用方法,深入地理解所学理论知识,掌握粉体烧结的过程,提高学生的实验应用能力。 二、实验仪器及原料 等离子烧结设备电子天平、WC-Co粉 三、实验原理 放电等离子烧结(SPS)是近年来发展起来的一种新型的快速烧结技术。由于等离子活化烧结技术融等离子活化、热压、电阻加热为一体,因而具有升温速度快、烧结时间短、晶粒均匀、有利于控制烧结体的细微结构、获得的材料致密度高、性能好等特点。该技术利用脉冲能、放电脉冲压力和焦耳热产生的瞬时高温场来实现烧结过程,对于实现优质高效、低耗低成本的材料制备具有重要意义,在纳米材料、复合材料等的制备中显示了极大的优越性,现已应用于金属、陶瓷、复合材料以及功能材料的制备。目前国内外许多大学和科研机构利用SPS进行新材料的研究与开发,并对其烧结机理与特点进行深入研究与探索,尤其是其快速升温的特点,可作为制备纳米块体材料的有效手段,因而引起材料学界的特别关注。 目前使用的SPS系统主要是由3部分组成(图1):①产生单轴向压力的装置和烧结模,压力

装置可根据烧结材料的不同施加不同的压力;②脉冲电流发生器,用来产生等离子体对材料进行活化处理;③电阻加热设备。SPS与热压(HP)烧结有相似之处,但加热方式完全不同,它是利用直流脉冲电流直接通电烧结的加压烧结方法,通过调节脉冲直流电的大小控制升温速率和烧结温度。整个烧结过程可在真空环境下进行,也可在保护气氛中进行,烧结过程中,电流直接通过上下压头和烧结粉体或石墨模具,因此加热系统的热容很小,升温和传热速度快,从而使快速升温烧结成为可能。SPS系统可用于短时间、低温、高压(500-1000MPa)烧结,也可用于低压(20-30MPa)、高温(1000-2000℃)烧结,因此广泛应用于金属、陶瓷和各种复合材料的烧结,包括一些用通常方法难以烧结的材料,如表面容易生成硬的氧化层的金属钛和铝,用SPS技术可在短时间内烧结到90%-100%致密。 SPS的烧结有两个非常重要的步骤,首先由特殊电源产生的直流脉冲电压,在粉体的空隙产生放电等离子,由放电产生的高能粒子撞击颗粒间的接触部分,使物质产生蒸发作用而起到净化和活化作用,电能贮存在颗粒团的介电层中,介电层发生间歇式快速放电,如图4所示。 图2 放电过程中粉末粒子对的模型 等离子体的产生可以净化金属颗粒表面,提高烧结活性,降低金属原子的扩散自由能,有助于加速原子的扩散。当脉冲电压达到一定值时,粉体间的绝缘层被击穿而放电,使粉体颗粒产生自发热,进而使其高速升温。粉体颗粒高速升温后,晶粒间结合处通过扩散迅速冷却,电场的作用因离子高速迁移而高速扩散,通过重复施加开关电压,放电点在压实颗粒间移动而布满整个粉体,使脉冲集中在晶粒结合处是SPS过程的一个特点。颗粒之间放电时会产生局部高温,在颗粒表面引起蒸发和熔化,在颗粒接触点形成颈部,由于热量立即从发热中心传递到颗粒表面和向四周扩散,颈部快速冷却而使蒸气压低于其他部位。气相物质凝聚在颈部形成高于普通烧结方法的蒸发-凝固传递是SPS过程的另一个重要特点。晶粒受脉

放电等离子烧结(SPS)简介

放电等离子烧结(SPS)是一种快速、低温、节能、环保的材料制备新技术,可用来制备金属、陶瓷、纳米材料、非晶材料、复合材料、梯度材料等。 目前,国内外用SPS制备新材料的研究主要集中在:陶瓷、金属陶瓷、金属间化合物,复合材料纳米材料和功能材料等方面。其中研究最多的是功能材料,它包括热电材料、磁性材料,功能梯度材料,复合功能材料和纳米功能材料等。对SPS制备非晶合金、形状记忆合金、金刚石等也作了尝试,取得了较好的结果。 随着高新技术产业的发展,新型材料特别是新型功能材料的种类和需求量不断增加,材料新的功能呼唤新的制备技术。放电等离子烧结(Spark Plasma Sintering,简称SPS)是制备功能材料的一种全新技术,它具有升温速度快、烧结时间短、组织结构可控、节能环保等鲜明特点,可用来制备金属材料、陶瓷材料、复合材料,也可用来制备纳米块体材料、非晶块体材料、梯度材料等。 SPS是利用放电等离子体进行烧结的。等离子体是物质在高温或特定激励下的一种物质状态,是除固态、液态和气态以外,物质的第四种状态。等离子体是电离气体,由大量正负带电粒子和中性粒子组成,并表现出集体行为的一种准中性气体 产生等离子体的方法包括加热、放电和光激励等。放电产生的等离子体包括直流放电、射频放电和微波放电等离子体。SPS利用的是直流放电等离子体。 SPS装置主要包括:轴向压力装置;水冷冲头电极;真空腔体;气氛控制系统(真空、氩气);直流脉冲电源及冷却水、位移测量、温度测量和安全装置等控制单元。 SPS与热压(HP)有相似之处,但加热方式完全不同,它是一种利用通-断直流脉冲电流直接通电烧结的加压烧结法。通-断式直流脉冲电流的主要作用是产生放电等离子体、放电冲击压力、焦耳热和电场扩散作用。SPS烧结时脉冲电流通过粉末颗粒。在SPS烧结过程中,电极通入直流脉冲电流时瞬间产生的放电等离子体,使烧结体内部各个颗粒均匀地自身产生焦耳热并使颗粒表面活化。与自身加热反应合成法(SHS)和微波烧结法类似,SPS是有效利用粉末内部的自身发热作用而进行烧结的。这种放电直接加热法,热效率极高,放电点的弥散分布能够实现均匀加热,因而容易制备出均质、致密、高质量的烧结体。SPS烧结过程可以看作是颗粒放电、导电加热和加压综合作用的结果。除加热和加压这两个促进烧结的因素外,在SPS技术中,颗粒间的有效放电可产生局部高温,可以使表面局部熔化、表面物质剥落;高温等离子的溅射和放电冲击清除了粉末颗粒表面杂质(如去除表层氧化物等)和吸附的气体。电场的作用是加快扩散过程。 SPS的工艺优势十分明显:加热均匀,升温速度快,烧结温度低,烧结时间短,生产效率高,产品组织细小均匀,能保持原材料的自然状态,可以得到高致密度的材料,可以烧结梯度材料以及复杂工件等。与HP和HIP相比,SPS装置操作简单、不需要专门的熟练技术。 SPS合成技术原理 1、等离子体

放电等离子体烧结技术(SPS)教学教材

放电等离子体烧结技 术(S P S)

放电等离子体烧结技术(SPS) 一、S PS合成技术的发展 ?最初实现放电产生“等离子体”的人是以发现电磁感应法则而知名的法拉第(M.Farady),他最早发现在低压气体中放电可以分别观测到相当大的发光区域和不发光的暗区。 ?https://www.wendangku.net/doc/ca15880952.html,ngmuir又进一步对低压气体放电形成的发光区,即阳光柱深入研究,发现其中电子和正离子的电荷密度差不多相等,是电中性的,电 子、离子基团作与其能量状态对应的振动。他在其发表的论文中,首次称这种阳光柱的状态为“等离子体”。 等离子体特效图 ?1930年,美国科学家提出利用等离子体脉冲电流烧结原理,但是直到1965年,脉冲电流烧结技术才在美、日等国得到应用。日本获得了SPS 技术的专利,但当时未能解决该技术存在的生产效率低等问题,因此 SPS技术没有得到推广应用。 ?SPS技术的推广应用是从上个世纪80年代末期开始的。 ?1988年日本研制出第一台工业型SPS装置,并在新材料研究领域内推广应用。 ?1990年以后,日本推出了可用于工业生产的SPS第三代产品,具有10~100t的烧结压力和5000~8000A脉冲电流,其优良的烧结特性,大大促进了新材料的开发。 ?1996年,日本组织了产学官联合的SPS研讨会,并每年召开一次。

?由于SPS技术具有快速、低温、高效率等优点,近几年国外许多大学和科研机构都相继配备了SPS烧结系统,应用金属、陶瓷、复合材料及功能材料的制备,并利用SPS进行新材料的开发和研究。 ?1998年瑞典购进SPS烧结系统,对碳化物、氧化物、生物陶瓷登材料进行了较多的研究工作。 ?目前全世界共有SPS装置100多台。如日本东北大学、大阪大学、美国加利福尼亚大学、瑞典斯德哥尔摩大学、新加坡南洋理工大学等大学及 科研机构相继购置了SPS系统。 ?我国近几年也开展了利用SPS技术制备新材料的研究工作,引进了数台SPS烧结系统,主要用于纳米材料和陶瓷材料的烧结合成。 ?最早在1979年,我国钢铁研究总院自主研发制造了国内第一台电火花烧结机,用以批量生产金属陶瓷模具,产生了良好的社会经济效益。 ?2000年6月武汉理工大学购置了国内首台SPS装置(日本住友石炭矿业株式会社生产,SPS-1050)。 ?随后上海硅酸盐研究所、清华大学、北京工业大学和武汉大学等高校及科研机构也相继引进了SPS装置,用来进行相关的科学研究。 ?SPS作为一种材料制备的全新技术,已引起了国内外的广泛重视。 ?2006年,国内真空电炉生产企业开始研制国产SPS烧结系统。经过我国科研人员,国产SPS于2009年研制出第一台国产SPS烧结系统,在我 国高校和科研机构得到应用且取得了较好的效果。 二、S PS合成技术原理 1、等离子体

放电等离子烧结技术的发展和应用(doc 14页)

放电等离子烧结技术的发展和应用(doc 14页)

放电等离子烧结技术的发展和应用 1前言 随着高新技术产业的发展,新型材料特别是新型功能材料的种类和需求量不断增加,材料新的功能呼唤新的制备技术。放电等离子烧结(SparkPlasmaSintering,简称SPS)是制备功能材料的一种全新技术,它具有升温速度快、烧结时间短、组织结构可控、节能环保等鲜明特点,可用来制备金属材料、陶瓷材料、复合材料,也可用来制备纳米块体材料、非晶块体材料、梯度材料等。 2国内外SPS的发展与应用状况 SPS技术是在粉末颗粒间直接通入脉冲电流进行加热烧结,因此在有的文献上也被称为等离子活化烧结或等离子辅助烧结(plasmaactivatedsintering-PAS或plasma-assistedsintering-PA

S)[1,2]。早在1930年,美国科学家就提出了脉冲电流烧结原理,但是直到1965年,脉冲电流烧结技术才在美、日等国得到应用。日本获得了SPS技术的专利,但当时未能解决该技术存在的生产效率低等问题,因此SPS技术没有得到推广应用。 1988年日本研制出第一台工业型SPS装置,并在新材料研究领域内推广应用。1990年以后,日本推出了可用于工业生产的SPS第三代产品,具有10~100t的烧结压力和脉冲电流5000~8000A。最近又研制出压力达500t,脉冲电流为25000A的大型SPS装置。由于SPS技术具有快速、低温、高效率等优点,近几年国外许多大学和科研机构都相继配备了SPS烧结系统,并利用SPS进行新材料的研究和开发[3]。1998年瑞典购进SPS烧结系统,对碳化物、氧化物、生物陶瓷等材料进行了较多的研究工作[4]。 国内近三年也开展了用SPS技术制备新材料的研究工作[1,3],引进了数台SPS烧结系统,主要用来烧结纳米材料和陶瓷材料[5~8]。SPS作为一种材料制备的全新技术,已引起了国内外的广泛重视。

放电等离子烧结技术的发展和应用

放电等离子烧结技术的发展和应用 1前言 随着高新技术产业的发展,新型材料特别是新型功能材料的种类和需求量不断增加,材料新的功能呼唤新的制备技术。放电等离子烧结(SparkPlasmaSintering,简称SPS)是制备功能材料的一种全新技术,它具有升温速度快、烧结时间短、组织结构可控、节能环保等鲜明特点,可用来制备金属材料、陶瓷材料、复合材料,也可用来制备纳米块体材料、非晶块体材料、梯度材料等。 2国内外SPS的发展与应用状况 SPS技术是在粉末颗粒间直接通入脉冲电流进行加热烧结,因此在有的文献上也被称为等离子活化烧结或等离子辅助烧结(plasmaactivatedsintering-PAS或plasma-assistedsintering-PAS)[1,2]。早在1930年,美国科学家就提出了脉冲电流烧结原理,但是直到1965年,脉冲电流烧结技术才在美、日等国得到应用。日本获得了SPS技术的专利,但当时未能解决该技术存在的生产效率低等问题,因此SPS技术没有得到推广应用。

1988年日本研制出第一台工业型SPS装置,并在新材料研究领域内推广应用。1990年以后,日本推出了可用于工业生产的SPS第三代产品,具有10~100t的烧结压力和脉冲电流5000~8000A。最近又研制出压力达500t,脉冲电流为25000A的大型SPS装置。由于SPS技术具有快速、低温、高效率等优点,近几年国外许多大学和科研机构都相继配备了SPS烧结系统,并利用SPS进行新材料的研究和开发[3]。1998年瑞典购进SPS烧结系统,对碳化物、氧化物、生物陶瓷等材料进行了较多的研究工作[4]。 国内近三年也开展了用SPS技术制备新材料的研究工作[1,3],引进了数台SPS烧结系统,主要用来烧结纳米材料和陶瓷材料[5~8]。SPS作为一种材料制备的全新技术,已引起了国内外的广泛重视。 3SPS的烧结原理 31等离子体和等离子加工技术[9,10] SPS是利用放电等离子体进行烧结的。等离子体是物质在高温或特定激励下的一种物质状态,是除固态、液态和气态以外,物质的第四种状态。等离子体是电离气体,由大量正负带电粒子和中性粒子组成,并表现出集体行为的一种准中性气体。 等离子体是解离的高温导电气体,可提供反应活性高的状态。等离子体温度4000~10999℃,其气态分子和原子处在高度活化状态,而且等离子气体内

最新多孔氧化铝陶瓷的放电等离子烧结技术制备

多孔氧化铝陶瓷的放电等离子烧结技术制 备

ScienceDirect 学科指南 Porous Alumina Ceramics Fabricated by Spark Plasma Sintering 多孔氧化铝陶瓷的放电等离子烧结技术制备WANG Kun, FU Zheng-yi*, PENG Yong, WANG Yu-cheng, ZHANG Jin-gong, ZHANG Qing-jie 王坤,福郑毅,彭勇,王宇城, 张晋宫,张庆街 State Key Lab ofAdvanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan, 430070, China 国家重点实验室先进的材料合成与加工技术,武汉理工大学,武汉,430070,中国 Received 10 August 2006; accepted 6 November 2006 2006年8月10收到; 2006年11月6日接受Abstract 摘要 Porous alumina of regular spherical particles was fabricated with the spark plasma sintering (SPS) and then compared to those obtamed

through conventional hot pressing (HP). The effects of the parameters of the heating process on porosity were also investigated. Microstructural studies suggest that porous ingots including regular pores be made out of regular spherical alumina particles due to the close sphere packages. A comparative study on the relative necks of the specimens produced by SPS and HP indicates an enhancement of neck growth with SPS. Contrasting the theoretical values to the experimental results over the relative necks indicates that a proper relationship between the relative necks and the porosity can be established by a sintering model. 多孔氧化铝为规则的球形颗粒与放电等离子烧结(SPS)制备,然后比较分析通过常规热压(惠普)。同时考察了加热过程的参数对孔隙率的影响。微观结构研究表明,多孔硅锭包括定期毛孔被制造出来的规则的球形氧化铝颗粒由于接近球包。在SPS和惠普生产的标本,相对的脖子比较研究表明SPS颈部生长的增强。对比理论值的实验结果表明,在相对的脖子相对的脖子和孔隙度之间的关系可以通过烧结模型的建立。 Keywords: spark plasma sintering (SPS); porous alumina ceramics; sintering neck 关键词:放电等离子烧结(SPS);多孔氧化铝陶瓷;烧结颈 1 Introduction 1引言

放电等离子烧结

放电等离子烧结(SPS)是一种快速、低温、节能、环保的材料制备新技术 放电等离子烧结(Spark Plasma Sintering,简称SPS)是制备功能材料的一种全新技术,它具有升 温速度快、烧结时间短、组织结构可控、节能环保等鲜明特点,可用来制备金属材料、陶瓷材料、复合材料,也可用来制备纳米块体材料、非晶块体材料、梯度材料等。 SPS技术是在粉末颗粒间直接通入脉冲电流进行加热烧结,因此在有的文献上也被称为等离子活 化烧结或等离子辅助烧结(plasmaactivatedsintering-PAS或plasma-assistedsintering-PAS)[1,2]。早 在1930年,美国科学家就提出了脉冲电流烧结原理,但是直到1965年,脉冲电流烧结技术才在美、日等国得到应用。日本获得了SPS技术的专利,但当时未能解决该技术存在的生产效率低等 问题,因此SPS技术没有得到推广应用。 1988年日本研制出第一台工业型SPS装置,并在新材料研究领域内推广使用。1990年以后,日本推出了可用于工业生产的SPS第三代产品,具有10~100t 的烧结压力和脉冲电流5000~8000A。 最近又研制出压力达500t,脉冲电流为25000A的大型SPS装置。由于SPS技术具有快速、低温、高效率等优点,近几年国外许多大学和科研机构都相继配备了SPS烧结系统,并利用SPS进行新 材料的研究和开发[3]。1998年瑞典购进SPS烧结系统,对碳化物、氧化物、生物陶瓷等材料进行 了较多的研究工作[4]。 国内近三年也开展了用SPS技术制备新材料的研究工作[1,3],引进了数台SPS烧结系统,主要用 来烧结纳米材料和陶瓷材料[5~8]。SPS作为一种材料制备的全新技术,已引起了国内外的广泛重视。

等离子体活化烧结技术

等离子体活化烧结技术简介及其应用 1、前言 烧结是粉末冶金及陶瓷生产过程中最基本的工序之一,也是最后一道及其重要的工序,对最终产品的性能起着决定性作用。所谓烧结,就是把压坯或松装粉末体加热到其基本组元熔点以下的温度,并在其温度下保温,从而使粉末颗粒相互结合起来,改善其性能的一种过程。 烧结是高温作用,一般要经过较长的时间,还要有适当的保护气氛。因此,从经济角度考虑,烧结工序的消耗是构成产品成本的重要部分,改进操作与烧结设备,减少物质与能量的消耗,如降低烧结温度、缩短烧结时间等,在经济上的意义是很大的。 目前所采用的烧结方法虽然很多,但均有不足之处。热压法和热等静压法虽采用了压力,但烧结过程中对样品的活化程度(即动力学过程)尚需进一步提高,而微波烧结法和等离子体烧结法在活化方面作了改进,缩短了烧结时间,抑制了材料颗粒的长大,但烧结过程中仍缺乏对样品施加压力,而温度等实验条件难以控制,特别是微波烧结过程中容易造成热失控效应,对烧结样品产生不均匀的加热,从而影响了烧结产品的各种性能。因而在材料处理中,尚需一种能改善上述烧结缺点的新方法[1 。 等离子体活化烧结是一种比较理想的烧结方法。1997年,彭金辉教授为负责人的课题组承担了云南省自然科学基金重点资助课题“等离子体活化烧结过程的机理与应用”的研究。本文以他们的研究为基础简要介绍等离子体活化烧结的方法。

2、等离子体活化烧结简介 等离子体活化烧结(Plasma Activated Sintering ,简称PAS法)是新发展起来的用于材料合成和加工的一项技术[1 ]。它利用开关直流脉冲电压在粉末颗粒间或空隙内产生瞬间的高温等离子体,而等离子体是一种高温、高活性离子化的电导气体,它能产生4000~10000K的高温,因此,等离子体能迅速消除粉末颗粒表面吸附的杂质和气体,促使物质产生高速度的扩散和迁移,从而有效地降低烧结温度,促使烧结过程加快,即能在较低温度下和较短时间内实现固结。 与自蔓燃高温合成和微波烧结相似,它是利用在粉末内部产生的热量而实现快速烧结的方法。等离子体活化烧结与热压法、热等静压法、无压常规烧结法相比,具有许多优点,如操作方便、可精确控制烧结能、烧结速度快、重现性好、安全可靠等。目前,等离子体活化烧结法在梯度功能材料、金属间化合物、微晶材料、纤维强化材料、超导材料、硬质合金等的制备中得到了广泛应用。而上述材料用常规烧结法是难以制备的。 PAS法实验装置如图1所示,加压系统在活化烧结中用于对样品施加同轴向压力,促进烧结的动力学过程;脉冲电源一方面在颗粒间产生等离子体,活化颗粒表面,降低烧结温度,另一方面对样品施加直流电以产生足够的焦耳热,实现样品固化;测温系统用于检测烧结温度并加以精确地控制;冷却系统用于冷却压头,避免压头温度过高而变形损坏。

相关文档
相关文档 最新文档