文档库 最新最全的文档下载
当前位置:文档库 › 算法分析与设计实验报告之01背包问题

算法分析与设计实验报告之01背包问题

算法分析与设计实验报告之01背包问题
算法分析与设计实验报告之01背包问题

算法分析与设计实验报告[0/1背包问题]

0/1背包问题的不同算法解决方案

组员02黄希龙 09455321张育强05周麒

目录

一.问题描述 (1)

二.算法分析 (2)

1.穷举法: (2)

2.递归法: (4)

3.贪心法: (5)

4.动态规划法分析: (6)

5.回溯法分析: (7)

6.分支限界法: (9)

三.时空效率分析 (10)

1.穷举法: (10)

2.递归法: (11)

3.动态规划法: (11)

4.回溯法: (11)

5分支限界法: (11)

四.运行结果 (12)

1.穷举法输出结果: (12)

2.递归法输出结果: (13)

3.动态规划法输出结果: (14)

4.回溯法输出结果: (15)

5.分支限界法输出结果: (16)

五.分析输出结果 (17)

六.总结与反思 (18)

一.问题描述

0/1背包问题:

现有n 种物品,对1<=i<=n ,已知第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数W ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过W 且总价值尽量大。(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)

二.算法分析

根据问题描述,可以将其转化为如下的约束条件和目标函数:

)

2(max )1()1}(1,0{11

∑∑==?????≤≤∈≤n

i i i i

n

i i i x v n i x W

x w 于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量),......,,,(321n x x x x X =。

首先说明一下0-1背包问题拥有最优解。

假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的

一个最优解:∑∑==?????≤≤∈-≤n

i i i i

n

i i i x v n i x x w W x w 22

1

1max )

2}(1,0{。如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则

∑∑==>n i n

i i

i i

i x

v y v 2

2

,且∑=≤+

n

i i

i

W y

w x w 2

11。因此,

∑∑∑====+>+n

i i i n i n

i i i i i x v x v x v y v x v 1

2

2

1111,这说明),........,,,(321n y y y x 是所给的0-1背包问

题比),........,,,(321n x x x x 更优的解,从而与假设矛盾。

1.穷举法:

用穷举法解决0-1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。由于程序过于简单,在这里就不再给出,用实例说明求解过程。下面给出了4个物品和一个容量为10的背包,下图就是用穷举法求解0-1背包问题的过程。

背包

物品1

物品2

物品3物品4

(a ) 四个物品和一个容量为10的背包

穷举法代码如下:

2.递归法:

在利用递归法解决0-1背包问题时,我们可以先从第n 个物品看起。每次的递归调用都会判断两种情况:

(1) 背包可以放下第n 个物品,则x[n]=1,并继续递归调用物品重量为W-w[n],物

品数目为n-1的递归函数,并返回此递归函数值与v[n]的和作为背包问题的最优解;

(2) 背包放不下第n 个物品,则x[n]=0,并继续递归调用背包容量为W ,物品数目

为n-1的递归函数,并返回此递归函数值最为背包问题的最优解。

递归调用的终结条件是背包的容量为0或物品的数量为0.此时就得到了0-1背包问题的最优解。

用递归法解0-1背包问题可以归结为下函数:

??

?+---=][])[,1()

,1(),(n v n w m n KnapSack m n KnapSack m n KnapSack n

n 选择了物品没有选择物品

第一个式子表示选择物品n 后得到价值][])[,1(n v n w m n KnapSack +--比不选择物品n 情况下得到的价值),1(m n KnapSack -小,所以最终还是不选择物品n;第二个式子刚好相反,选择物品n 后的价值][])[,1(n v n w m n KnapSack +--不小于不选择物品n 情况下得到了价值),1(m n KnapSack -,所以最终选择物品n 。

在递归调用的过程中可以顺便求出所选择的物品。下面是标记物品被选情况的数组x[n]求解的具体函数表示:

?

??=10

][n x

][])[,1(),(),1(),(n v n w m n KnapSack m n KnapSack m n KnapSack m n KnapSack +--=-= 在函数中,递归调用的主体函数为KnapSack ,m 表示背包的容量,n 表示物品的数量,x[n]表示是否选择了第n 个物品(1—选,0—不选)。每个物品的重量和价值信息分别存放在数组w[n]和v[n]中。代码如下:

3.贪心法:

0-1背包问题与背包问题类似,所不同的是在选择物品)1(n i i ≤≤装入背包时,可以选择一部分,而不一定要全部装入背包。这两类问题都具有最优子结构性质,相当相似。但是背包问题可以用贪心法求解,而0-1背包问题却不能用贪心法求解。贪心法之所以得不到最优解,是由于物品不允许分割,因此,无法保证最终能将背包装满,部分闲置的背包容量使背包单位重量的价值降低了。事实上,在考虑0-1背包问题时,应比较选择物品和不选择物品所导致的方案,然后做出最优解。由此导出了许多相互重叠的子问题,所以,0-1背包问题可以用动态规划法得到最优解。在这里就不再用贪心法解0-1背包问题了。

4.动态规划法分析:

算法分析与设计实验指导书

《算法分析与设计》实验指导书本书是为配合《算法分析与设计实验教学大纲》而编写的上机指导,其目的是使学生消化理论知识,加深对讲授容的理解,尤其是一些算法的实现及其应用,培养学生独立编程和调试程序的能力,使学生对算法的分析与设计有更深刻的认识。 上机实验一般应包括以下几个步骤: (1)、准备好上机所需的程序。手编程序应书写整齐,并经人工检查无误后才能上机。(2)、上机输入和调试自己所编的程序。一人一组,独立上机调试,上机时出现的问题,最好独立解决。 (3)、上机结束后,整理出实验报告。 实验报告应包括: 1)问题分析 2)算法描述 3)运行结果、 4)算法性能分析。 实验一 实验名称:贪心算法应用及设计 实验学时:6学时 实验类型:验证 实验目的: 1.理解贪心算法的基本思想 2.掌握利用贪心算法求解问题的求解步骤 实验容 1.活动选择问题(2学时) 问题描述: 设有11个会议等待安排,用贪心法找出满足目标要求的会议集合,这些会议按结束时间的非减序排列如下表。 实验实现提示: 1)数据结构设计: 将会议开始时间存储在数组B中,结束时间存储在数组E中,数组下标为会议的代码。结果存储在数组A中,其元素A[i]==true,表示会议i被选中。 2)算法: void GreedySelect(int n, struct time B[], struct time E[], bool A[]) { int i,j;

A[1]=true; j=1; i=2; while( i<=n) if (B[i]>=E[j]) { A[i]=true; j=i;} else A[i]=false; } 思考题:证明所得的解是最优解? 2.单源点最短路径问题。(2学时) 问题描述 如图所示的有向带权图中,求源点0到其余顶点的最短路径及最短路径长度。并对算法进行性能分析。 实现提示 1)数据结构设计: 将图存储在邻接矩阵C中,结点个数为n,源点编号为u, 源点u到其余顶点的最短路径长度存储在dist[],最短路径存储在p[]。 2) 算法 void Dijkstra(int C[n][n], int n,int u,float dist[],int p[]) { bool s[n]; for( int i=1; i<=n; i++) { dist[i]=C[u][i]; s[i]=false; if (dist[i]=∞) p[i]=-1; else p[i]=u; } p[u]=-1; s[u]=true; for( i=1; i<=n; i++) { int temp= ∞; int t=u; for( int j=1;j<=n;j++)

算法设计背包问题

算法实验报告 ---背包问题 实验目的 1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优 值计算方法。 2.熟练掌握分阶段的和递推的最优子结构分析方法。 3.学会利用动态规划算法解决实际问题。 问题描述: 给定n种物品和一个背包。物品i的重量是wi,体积是bi,其价值为vi, 背包的容量为c,容积为d。问应如何选择装入背包中的物品,使得装入背包中 物品的总价值最大? 在选择装入背包的物品时,对每种物品只有两个选择:装入 或不装入,且不能重复装入。输入数据的第一行分别为:背包的容量c,背包的 容积d,物品的个数n。接下来的n行表示n个物品的重量、体积和价值。输出 为最大的总价值。 问题分析: 标准0-1背包问题,MaxV表示前i个物品装入容量为j的背包中时所能产生的最大价值,结构体objec表示每一个可装入物品,其中w表示物品的重量,v表示物品的价值。如果某物品超过了背包的容量,则该物品一定不能放入背包,问题就变成了剩余i-1个物品装入容量为j的背包中所能产生的最大价值;如果该物品能装入背包,问题就变成i-1个物品装入容量为j-objec[i].w的背包所能产生的最大价值加上物品i的价值objec[i].v. 复杂性分析 时间复杂度,最好情况下为0,最坏情况下为:(abc) 源程序 #include #include #include #include #include int V [200][200][200]; int max(int a,int b) {

算法分析与设计实验报告

算法设计与分析 学院:计算机科学与技术 学号:129074106 姓名:张淼淼 2014 11 14

1、 当问题规模100 N 时,快速排序和插入排序各需多少时间?写清机器配置,列出五种 快速排序所需时间(ms) 插入排序所需时间(ms ) 两者相差多少 N=100 0.00600 0.019000 -0.013000 N=1000 0.074000 0.724000 -0.650000 N=10000 0.032000 64.657000 -64.625000 N=100000 13.300000 50.900000 -37.600000 N=1000000 53.500000 117.700000 -64.200000 Window 7 32位 Cpu :Inter(R) Core(TM) i3-2120 cpu@3.30GHz AMD Radeon HD 6450 Graphics

程序: #include #include #include #include int a[1000000];

int b[1000000]; void QuickSort(int low ,int high) { long i,j; int x; i=low; j=high; x=a[i]; while(i=x&&i(j+1)) QuickSort(j+1,high); } void BinaryInsertSort(int length) { int low,high,mid; int i,j,m;//m为保存待插入的元素 for(i=1;i=b[mid]) low=mid+1; else high=mid-1; } for(j=i-1;j>=high+1;j--)//high为插入位置 b[j+1]=b[j];//后移元素,留出插入的空位b[high+1]=m;//将元素插入正确的位置 }

算法设计与分析实验报告贪心算法

算法设计与分析实验报告 贪心算法 班级:2013156 学号:201315614 姓名:张春阳哈夫曼编码 代码 #include float small1,small2; int flag1,flag2,count; typedefstructHuffmanTree { float weight; intlchild,rchild,parent; }huffman; huffmanhuffmantree[100]; void CreatHuffmanTree(intn,int m) { inti; void select(); printf("请输入%d个节点的权值:",n); for(i=0;i

printf("\n"); for(i=0;i

计算机算法设计与分析

算法设计与分析 实 验 报 告 班级: 姓名: 学号: (备注:共给出5个参考实验案例,根据学号尾数做对应的实验,即如尾号为1,则模仿案例实验123;尾号2,则模仿案例实验234;尾号3,即345;尾号4,同1.)

目录 实验一分治与递归 (1) 1、基本递归算法 (1) 2、棋盘覆盖问题 (2) 3、二分搜索 (3) 4、实验小结 (5) 实验二动态规划算法 (5) 1、最长公共子序列问题 (5) 2、最大子段和问题 (7) 3、实验小结 (8) 实验三贪心算法 (8) 1、多机调度问题 (8) 2、用贪心算法求解最小生成树 (10) 3、实验小结 (12) 实验四回溯算法和分支限界法 (12) 1、符号三角形问题 (12) 2、0—1背包问题 (14) 3、实验小结 (18) 实验五多种排序算法效率比较 1、算法:起泡排序、选择排序、插入排序、shell排序,归并排序、快速排序等 (19) 2、实验小结 (18)

P art1:课程设计过程 设计选题--→题目分析---→系统设计--→系统实现--→结果分析---→撰写报告 P art2:课程设计撰写的主要规范 1.题目分析:主要阐述学生对题目的分析结果,包括题目描述、 分析得出的有关模型、相关定义及假设; 2.总体设计:系统的基本组成部分,各部分所完成的功能及相互 关系; 3.数据结构设计:主要功能模块所需的数据结构,集中在逻辑设 计上; 4.算法设计:在数据结构基础上,完成算法设计; 5.物理实现:主要有数据结构的物理存储,算法的物理实现,系 统相关的实现。具体在重要结果的截图,测试案例的结果数据,核心算法的实现结果等; 6.结果分析:对第五步的分析,包括定性分析和定量分析,正确 性分析,功能结构分析,复杂性分析等; 7.结论:学生需对自己的课程设计进行总结,给出评价,并写出 设计体会; 8.附录:带有注释的源代码,系统使用说明等; 9.参考文献:列出在撰写过程中所需要用到的参考文献。

算法分析与复杂性理论 实验报告 背包问题

深圳大学实验报告课程名称:算法分析与复杂性理论 实验名称:实验四动态规划 学院:计算机与软件学院专业:软件工程 报告人:文成学号:2150230509班级:学术型 同组人:无 指导教师:杨烜 实验时间:2015/11/5——2015/11/18 实验报告提交时间:2015/11/18 教务处制

一. 实验目的与实验内容 实验目的: (1) 掌握动态规划算法设计思想。 (2) 掌握背包问题的动态规划解法。 实验内容: 1.编写背包问题的动态规划求解代码。 2.背包容量为W ,物品个数为n ,随机产生n 个物品的体积(物品的体积不可大于W )与价值,求解该实例的最优解。 3. 分别针对以下情况求解 第一组:(n=10,W=10),(n=10,W=20),(n=10,W=30) 第二组:(n=20,W=10),(n=20,W=20),(n=20,W=30) 第三组:(n=30,W=10),(n=30,W=20),(n=30,W=30) 4. 画出三组实验的时间效率的折线图,其中x 轴是W 的值,y 轴是所花费的时间,用不同的颜色表示不同n 所花费的时间。 二.实验步骤与结果 背包问题的问题描述: 给定n 种物品和一个背包。物品i 的重量是 i w , 其价值为i v , 背包容量为C 。问应该如何选择装入背包的物品,使得装入背包中物品的总价值最大? 背包问题的算法思想: 考虑一个由前i 个物品(1<=i<=n )定义的实例,物品的重量分别为w1,…,w2、价值分别为v1,…,vi ,背包的承重量为j (1<=j<=w )。设v[i,j]为该实例的最优解的物品总价值,也就是说,是能够放进承重量为j 的背包中的前i 个物品中最有价值子集的总价值。可以把前i 个物品中能够放进承重量为j 的背包中的子集分成两个类别:包括第i 个物品的子集和不包括第i 个物品的子集。 1. 根据定义,在不包括第i 个物品的子集中,最优子集的价值是V[i-1,j]。 2. 在包括第i 个物品的子集中(因此,j-wi>=0),最优子集是由该物品和前i-1个物品中能够放进承重量为j-wi 的背包的最优子集组成。这种最优子集的总价值等于vi+V[i-1,j-wi]。 因此,在前i 个物品中最优解得总价值等于这两个价值中的最大值。当然,如果第i 个物品不能放进背包,从前i 个物品中选出的最优子集的总价值等于从前i-1个物品中选出的最优子集的总价值。这个结果导致了下面的这个递推关系式: 初始条件:

《算法分析与设计》实验指导书

《计算机算法设计与分析》实验指导书(第一版)

前言 计算机算法分析与设计是面向设计的,它是计算机科学的核心。无论是计算机系统、系统软件和解决计算机的各种应用问题都可归结为算法的设计。通过本课程的学习,使学生掌握计算机领域中许多常用的非数值的算法描述:分治法、贪心法、动态规划、回溯法、分枝限界等算法,并掌握算法分析的方法,从而把学生的分析问题和解决问题能力提高到理论的高度。 前期课程为程序设计语言、数据结构、高等数学,即学生应该具备一门高级语言程序设计编程基础,学习基本的数据结构知识,还要求学生掌握较好的数学基础。 开发环境不限,本书采用C/C++语言的集成开发环境等。 实验完成后书写实验报告,包含实验问题、基本思想、关键算法流程图、测试数据及运行结果(截图)、调试心得和源程序。 总实验学时为16学时。

目录 预备实验验证算法的方法 (4) 实验目的: (4) 实验课时: (4) 实验原理: (4) 实验题目: (6) 基本题: (6) 提高题: (6) 实验一递归与分治 (7) 实验目的: (7) 实验课时: (7) 实验原理: (7) 实验题目: (7) 基本题: (7) 提高题: (8) 思考问题: (8) 实验二动态规划算法 (9) 实验目的: (9) 实验课时: (9) 实验原理: (9) 实验题目: (9) 基本题: (9) 提高题: (10) 思考问题: (10) 实验三贪心选择算法 (11) 实验目的: (11) 实验课时: (11) 实验原理: (11) 实验题目: (11) 基本题: (11) 提高题: (12) 思考问题: (12) 实验四回溯算法 (13) 实验目的: (13) 实验课时: (13) 实验原理: (13) 实验题目: (14) 基本题: (14) 提高题: (14) 思考问题: (14)

背包问题

课程设计报告 课程名称数据结构课程设计 课题名称背包问题 专业信息与计算科学 班级1001班 学号22 姓名王锐 指导教师刘洞波张晓清郭芳 2012年6月9日

课程设计任务书 课程名称数据结构课程设计课题背包问题 专业班级信科1001班 学生姓名王锐 学号22 指导老师刘洞波张晓清郭芳 审批刘洞波张晓清郭芳 任务书下达日期:2012年6月9日 任务完成日期:2012年6月16日

一、设计内容与设计要求 1.设计内容: 1)问题描述 假设有一个能装入总体积为T的背包和n件体积分别为W1,W2,···,Wn的物品,能否从n件物品中挑选若干件恰好装满背包,即使W1+W2+···+Wn=T,要求找出所有满足 上述条件的解。例如:当T=10,共6件物品,物品的体积为{1,2,3,4,5,8},那么 可找到下列4组解:(1,2,3,4)、(1,4,5)、(2,3,5)、(2、8)。 2)实现提示 可利用回溯法的设计思想来解决背包问题。首先,将物品排成一列,然后顺序选取物品装入背包,假设已选取了前i件物品之后背包还没有装满,则继续选取第i+1件物品, 若该件物品“太大”不能装入,则丢弃而继续选取下一件,直至背包装满为止。但如果在 剩余的物品中找不到合适的物品以填满背包,则说明“刚刚”装入背包的那件物品“不合 适”,应将它取出“丢弃一边”,继续再从“它之后”的物品中选取,如此重复,直至求得 满足条件的解,或者无解。 由于回溯求解的规则是“后进先出”,因此要用到栈。 2.设计要求: 课程设计报告规范 1)需求分析 a.程序的功能。 b.输入输出的要求。 2)概要设计 a.程序由哪些模块组成以及模块之间的层次结构、各模块的调用关系;每个模块的功能。 b.课题涉及的数据结构和数据库结构;即要存储什么数据,这些数据是什么样的结构, 它们之间有什么关系等。 3)详细设计 a.采用C语言定义相关的数据类型。 b.写出各模块的类C码算法。 c.画出各函数的调用关系图、主要函数的流程图。

分支界限法解0-1背包问题实验报告

实验5 分支界限法解0-1背包问题 一、实验要求 1.要求用分支界限法求解0-1背包问题; 2.要求交互输入背包容量,物品重量数组,物品价值数组; 3.要求显示结果。 二、实验仪器和软件平台 仪器:带usb接口微机 软件平台:WIN-XP + VC++6.0 三、源程序 #include "stdafx.h" #include #include #include #include using namespace std; int *x; struct node //结点表结点数据结构 { node *parent;//父结点指针 node *next; //后继结点指针 int level;//结点的层 int bag;//节点的解 int cw;//当前背包装载量 int cp;//当前背包价值 float ub; //结点的上界值 }; //类Knap中的数据记录解空间树中的结点信息,以减少参数传递及递归调用所需的栈空间class Knap { private: struct node *front, //队列队首 *bestp,*first; //解结点、根结点 int *p,*w,n,c,*M;//背包价值、重量、物品数、背包容量、记录大小顺序关系long lbestp;//背包容量最优解 public: void Sort(); Knap(int *pp,int *ww,int cc,int nn);

~Knap(); float Bound(int i,int cw,int cp);//计算上界限 node *nnoder(node *pa,int ba,float uub);//生成一个结点ba=1生成左节点ba=0生成右节点 void addnode(node *nod);//向队列中添加活结点 void deletenode(node *nod);//将结点从队列中删除 struct node *nextnode(); //取下一个节点 void display(); //输出结果 void solvebag(); //背包问题求解 }; //按物品单位重量的价值排序 void Knap::Sort() { int i,j,k,kkl; float minl; for(i=1;i

算法分析与设计实验指导书

《算法分析与设计》实验指导书 《算法分析与设计》课程是计算机专业的一门必修课程。开设算法分析与设计实验,目的就是为了使学生消化理论知识,加深对讲授内容的理解,尤其是一些算法的实现及其应用,培养学生独立编程和调试程序的能力,使学生对算法的分析与设计有更深刻的认识。 《算法分析与设计》课程实验的目的:是为了使学生在课程学习的同时,通过实验环境中的实际操作,对部分算法的具体应用有一个初步的了解,使学生加深了解和更好地掌握《算法分析与设计》课程教学大纲要求的内容。 《算法分析与设计》课程实验的注意事项:在《算法分析与设计》的课程实验过程中,要求学生做到: (1)预习实验指导书有关部分,认真做好实验内容的准备,就实验可能出 现的情况提前作出思考和分析。 (2)认真书写实验报告。实验报告包括实验目的和要求,实验情况及其分 析。 (3)遵守机房纪律,服从辅导教师指挥,爱护实验设备。 (4)实验课程不迟到。如有事不能出席,所缺实验一般不补。 《算法分析与设计》课程实验的验收:实验的验收将分为两个部分。第一部分是上机操作,包括检查程序运行和即时提问。第二部分是提交电子的实验报告。

实验一算法实现一 一、实验目的与要求 熟悉C/C++语言的集成开发环境; 通过本实验加深对分治法、贪心算法的理解。 二、实验内容: 掌握分治法、贪心算法的概念和基本思想,并结合具体的问题学习如何用相应策略进行求解的方法。 三、实验题 1. 【伪造硬币问题】给你一个装有n个硬币的袋子。n个硬币中有一个是伪造的。你的 任务是找出这个伪造的硬币。为了帮助你完成这一任务,将提供一台可用来比较两组硬币重量的仪器,利用这台仪器,可以知道两组硬币的重量是否相同。试用分治法的思想写出解决问题的算法,并计算其时间复杂度。 2.【找零钱问题】一个小孩买了价值为33美分的糖,并将1美元的钱交给售货员。售 货员希望用数目最少的硬币找给小孩。假设提供了数目有限的面值为25美分、10美分、5美分、及1美分的硬币。给出一种找零钱的贪心算法。 a)实验步骤 理解算法思想和问题要求; 编程实现题目要求; 上机输入和调试自己所编的程序; 验证分析实验结果; 整理出实验报告。 四、实验程序 五、实验结果 六、实验分析

算法实验报告

《算法设计与分析》上机实验报告

一、分治与递归 1、问题描述 编写程序,实现线性时间内选择n个元素的中位数的算法。并对于不同的n,测试平均时间效率。 2、问题分析 本问题属于线性选择问题的一个特例,可以使用分治法进行求解。其基本思想是模仿快速排序方法,对输入的数组进行划分,求出中位数所在的子数组,然后用递归的方法进行求解,最终可以求得问题的解。 3、算法设计 将n个输入元素根据随机选择的基准划分成2个子数组,a[p:r]被划分成a[p:i]和a[i+1:r]两组,使得a[p:i]中每个元素都不大于a[i+1:r]中元素。接着算法计算子数组a[p:i]中元素个数j,如果k<=j,则a[p:r]中第k个小元素落在子数组a[p:i]中元素均小于要找的第k小元素,因此要找的a[p:r]中第k小元素是a[i+1:r]中的第k-j小元素。 按照上述的方法递归的执行,直到当前数组中只剩下一个元素,就可以得到问题的解。 4、算法实现 #include"iostream.h" #include"stdlib.h" #include"time.h" #include #include #include"windows.h" #include int randomizedSel(int *,int ,int ,int );

void main() { srand((unsigned int)time(NULL)); _timeb time0,time1; int n; cout << "请输入数组的长度:"; cin >> n; cout << "请输入数组的每一个数:" << endl; int *a=new int[n]; for(int i=0;i> a[i]; DWORD stime=GetTickCount(); _ftime(&time0); int result=randomizedSel(a,0,n-1,(n+1)/2); DWORD Etime=GetTickCount(); _ftime(&time1); cout << "结果为:" << result << endl; cout << https://www.wendangku.net/doc/ca7600497.html,litm*https://www.wendangku.net/doc/ca7600497.html,litm*1000<x); if(i>=j) break; swap(a,i,j); } a[p]=a[j]; a[j]=x; return j;

人工智能之遗传算法求解01背包问题实验报告

人工智能之遗传算法求解0/1背包问题实验报告 Pb03000982 王皓棉 一、问题描述: 背包问题是著名的NP完备类困难问题, 在网络资源分配中有着广泛的应用,已经有很多人运用了各种不同的传统优化算法来解决这一问题,这些方法在求解较大规模的背包问题时,都存在着计算量大,迭代时间长的弱点。而将遗传算法应用到背包问题的求解,则克服了传统优化方法的缺点,遗传算法是借助了大自然的演化过程,是多线索而非单线索的全局优化方法,采用的是种群和随机搜索机制。 遗传算法(GA)是一类借鉴生物界自然选择和自然遗传机制的随机化的搜索算法,由美国J.Holland教授提出,其主要特点是群体搜索策略、群体中个体之间的信息交换和搜索不依赖于梯度信息。因此它尤其适用于处理传统搜索方法难于解决的复杂和非线性问题,可广泛应用于组合优化,机器学习,自适应控制,规划设计和人工生命领域。 GA是一种群体型操作,该操作以群体中的所有个体为对象。选择,交叉和变异是遗传算法的三个主要算子,他们构成了遗传算法的主要操作,使遗传算法具有了其它传统方法所没有的特性。遗传算法中包含了如下五个基本要素:1 .参数编码,2.初始群体的设置,3.适应度函数的设计, 4.遗传操作设计,5.控制参数设定,这个五个要素构成可遗传算法的核心内容。 遗传算法的搜索能力是由选择算子和交叉算子决定,变异算子则保证了算法能够搜索到问题空间的每一个点,从而使其具有搜索全局最优的能力.而遗传算法的高效性和强壮性可由Holland提出的模式定理和隐式并行性得以解释。 二、实验目的: 通过本实验,可以深入理解遗传算法,以及遗传算法对解决NP问题的作用。 三、算法设计: 1、确定种群规模M、惩罚系数 、杂交概率c p、变异概率m P、染色体长度n及最大 max. 进化代数gen x=1表 2、采用二进制n维解矢量X作为解空间参数的遗传编码,串T的长度等于n, i x=0表示不装入背包。例如X={0,1,0,1,0,0,1}表示第2,4,7示该物件装入背包, i 这三个物件被选入包中。

算法设计与分析实验报告

算法设计与分析实验报告 教师: 学号: 姓名:

实验一:串匹配问题 实验目的:(1) 深刻理解并掌握蛮力法的设计思想; (2) 提高应用蛮力法设计算法的技能; (3) 理解这样一个观点: 用蛮力法设计的算法, 一般来说, 经过适度的努力后, 都可以对算法的第一个版本进行一定程度的改良, 改进其时间性能。 三、实验要求:( 1) 实现BF 算法; (2 ) 实现BF 算法的改进算法: KMP 算法和BM 算法; (3 ) 对上述 3 个算法进行时间复杂性分析, 并设计实验程序验证 分析结果。 #include "stdio.h" #include "conio.h" #include //BF算法 int BF(char s[],char t[]) { int i; int a; int b; int m,n; m=strlen(s); //主串长度 n=strlen(t); //子串长度 printf("\n*****BF*****算法\n"); for(i=0;i

0-1背包问题

课程设计说明书 设计题目: 0-1背包问题的动态规划算法设计 专业:班级: 设计人: 山东科技大学 2013年12月5日

课程设计任务书 学院:专业:班级:姓名: 一、课程设计题目: 二、课程设计主要参考资料 (1)计算机算法设计与分析(第3版)王晓东著 (2) 三、课程设计应解决的主要问题 (1) 0-1背包问题的动态规划算法设计 (2) (3) 四、课程设计相关附件(如:图纸、软件等): (1) (2) 五、任务发出日期: 2013-11-21 课程设计完成日期: 2013-12-5 指导教师签字:系主任签字:

指导教师对课程设计的评语 成绩: 指导教师签字: 年月日

0-1背包问题的实现 一、设计目的 1.运用动态规划思想,设计解决上述问题的算法,找出最大背包价值的装法。 2.掌握动态规划的应用。 二、设计要求 给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 在选择装入背包的物品时,对每种物品i只有两种选择,即装入背包或不装入背包。不能将物品装入背包多次,也不能只装入部分的物品。0-1背包问题是一个特殊的整数规划问题。 三、设计说明 (一)、需求分析 1、问题描述: 形式化描述:给定c >0, w i>0, v i>0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ?∑w i x i≤c,且∑v i x i达最大.即一个特殊的整数规划问题。 2、最优子结构性质: 设(y1,y2,…,y n)是(3.4.1)的一个最优解.则(y2,y3,…,y n)是下面相应子问题的一个最优解: 证明:使用反证法。若不然,设(z2,z3,…,z n)是上述子问题的一个最优解,而(y2,y3,…,y n)不是它的最优解。显然有 ∑v i z i> ∑v i y i(i=2,…,n) 且w1y1+ ∑w i z i<= c

分支界限法解0-1背包问题实验报告

实验5 分支界限法解0-1背包问题一、实验要求 1.要求用分支界限法求解0-1背包问题; 2.要求交互输入背包容量,物品重量数组,物品价值数组; 3.要求显示结果。 二、实验仪器和软件平台 仪器:带usb接口微机 软件平台:WIN-XP + VC++ 三、源程序 #include "" #include #include #include<> #include using namespace std; int *x; struct node //结点表结点数据结构 { node *parent;//父结点指针 node *next; //后继结点指针 int level;//结点的层 int bag;//节点的解 int cw;//当前背包装载量 int cp;//当前背包价值

float ub; //结点的上界值 }; //类Knap中的数据记录解空间树中的结点信息,以减少参数传递及递归调用所需的栈空间class Knap { private: struct node *front, //队列队首 *bestp,*first; //解结点、根结点 int *p,*w,n,c,*M;//背包价值、重量、物品数、背包容量、记录大小顺序关系 long lbestp;//背包容量最优解 public: void Sort(); Knap(int *pp,int *ww,int cc,int nn); ~Knap(); float Bound(int i,int cw,int cp);//计算上界限 node *nnoder(node *pa,int ba,float uub);//生成一个结点 ba=1生成左节点 ba=0生成右节点 void addnode(node *nod);//向队列中添加活结点 void deletenode(node *nod);//将结点从队列中删除 struct node *nextnode(); //取下一个节点 void display(); //输出结果 void solvebag(); //背包问题求解 }; //按物品单位重量的价值排序 void Knap::Sort() {

算法分析与设计实验报告

实验一、归并排序及各种排序算法性能比较 一、实验实习目的及要求 了解归并排序等各种排序算法,并能独立在计算机上实现,同时并能够计算它们的时间复杂度,并用计算机来验证。 二、实验实习设备(环境)及要求(软硬件条件) 计算机eclipse软件,执行环境JavaSE-1.8. 三、实验实习项目、内容与步骤(注意是主要关键步骤,适当文字+代码+截图说明) 项目:对10 4 6 3 8 2 5 7进行从小到大排序,采用几种排序方法,并统计这几种方法的运行时间,与归并排序比较。 内容及步骤: (1)归并排序:将序列每次分成两组,再进行合并,直到递归完成; 1、递归调用mergeSort对数组排序 2、merge将两个有序数组合并为一个有序数组

3、主函数调用mergeSort对数组排序 4、统计时间 (2) 选择排序:每次选择一个当前最小的并和当前的相对的第一个元素交换,直到最后 只有一个元素时结束;也可选择当前最大的并与当前的相对的最后一个 元素交换,直到最后只有一个元素时结束。

1、数组长度为n,需要选择n-1次;每次选择完成后,将数组中的最大值与最后一 个元素互换,调用java.util包中Arrays类。 2、主函数调用ChooseSort对数组排序。 3、统计运行时间。 (3)插入排序:从第二个元素开始,每次插入一个到当前有序序列中,使得有序,当 所有的元素插入完毕时,就排好序了; 1、从第二个元素开始,与之前序列比较,插入到合适的位置。

2、主函数调用sort对数组排序。 3、统计运行时间 (4) 快速排序:每次选择一个中间元素,并进行交换,使得中间元素的左边比它小,右 边比它大,然后对左右两边进行递归; 1、选取一个基准位,从右边向左边看,找比基准位小的元素,再从左边向右边看, 找比基准位大的元素,若两者均存在则交换;若两者相遇,则相遇元素与基准位元素交换,然后递归排序左右半数组。

算法分析与设计实验报告

计算机算法设计与分析实验报告

目录 实验一 (1) [实验题目] (1) [问题描述] (1) [算法设计] (1) [算法分析] (1) [源代码] (1) [运行结果] (2) 实验二 (2) [实验题目] (2) [问题描述] (2) [算法设计] (2) [算法分析] (2) [源代码] (2) [运行结果] (4) 实验三 (5) [实验题目] (5) [问题描述] (5) [算法设计] (5) [算法分析] (5) [源代码] (5) [运行结果] (6)

实验一 [实验题目] 2-7集合划分问题 [问题描述] n个元素的集合{1,2,…,n}可以划分为若干非空子集。例如,当n=4时,集合{1,2,3,4}可以划分为15个不同的非空子集。 [算法设计] 给定正整数n,计算出n个元素的集合{1,2,…,n}可以划分为多少个不同的非空子集。 [算法分析] 本算法实现采用分治法思想,F(n,m)=F(n-1,m-1)+m*F(n-1,m)。假设将m个元素分解到n 个集合中,首先考虑将(m – (n - 1))个元素分到第一个集合中,将余下的(n - 1)个元素分别分配到余下的(n - 1)个集合中,然后再考虑将(m – (n - 2))个元素分配到第一个集合中,将余下的(n - 2)个元素分别分配到余下的(n - 1)集合中,依此类推,直到后面的有一个集合中的元素个数比第一个集合中的元素个数多为止。 [源代码] #include using namespace std; int compute_bell(int row,int position) { if(row==1) return 1; if(row == 2 && position ==1) return 1; else { if(position == 1) return compute_bell(row-1,row-1); else return compute_bell(row,position-1)+ compute_bell(row-1,position-1); } } int main(){ int n=0; int m; cout<<"please input a number."<>n; m=compute_bell(n,n); cout<<"the resule is "<

01背包实验报告

算法设计与分析实验报告实验二 0-1背包 院系: 班级: 学号: 姓名: 任课教师: 成绩: 年月

实验二 0-1背包 一. 实验内容 分别用编程实现动态规划算法和贪心法求0-1背包问题的最优解,分析比较两种算法的时间复杂度并验证分析结果 二.实验目的 1、掌握动态规划算法和贪心法解决问题的一般步骤,学会使用动态规划和贪心法解决实际问题; 2、理解动态规划算法和贪心法的异同及各自的适用范围。 三. 算法描述 1、动态规划法 01背包问题的状态转换公式为: (1) V(i, 0)= V(0, j)=0 (2) 公式表明:把前面i 个物品装入容量为0的背包和把0个物品装入容量为j 的背包,得到的价值均为0。如果第i 个物品的重量大于背包的容量,则装入前i 个物品得到的最大价值和装入前i -1个物品得到的最大价值是相同的,即物品i 不能装入背包;如果第i 个物品的重量小于背包的容量,则会有以下两种情况: (1)如果把第i 个物品装入背包,则背包中物品的价值等于把前i -1个物品装入容量为j -wi 的背包中的价值加上第i 个物品的价值vi ; (2)如果第i 个物品没有装入背包,则背包中物品的价值就等于把前i -1个物品装入容量为j 的背包中所取得的价值。显然,取二者中价值较大者作为把前i 个物品装入容量为j 的背包中的最优解。 2、贪心法 背包问题至少有三种看似合理的贪心策略: (1)选择重量最轻的物品,因为这可以装入尽可能多的物品,从而增加背包的总价值。但是,虽然每一步选择使背包的容量消耗得慢了,但背包的价值却没能保证迅速增长,从而不能保证目标函数达到最大。 (2)选择价值最大的物品,因为这可以尽可能快地增加背包的总价值。但是,虽然每一步选择获得了背包价值的极大增长,但背包容量却可能消耗得太快,使得装入背包的物品个数减少,从而不能保证目标函数达到最大。 (3)选择单位重量价值最大的物品,在背包价值增长和背包容量消耗两者 ?? ?>+---<-=i i i i w j v w j i V j i V w j j i V j i V }),1(),,1(max{) ,1(),(

算法分析与设计 实验二 哈夫曼编码

昆明理工大学信息工程与自动化学院学生实验报告 (201 —201 学年第一学期) 课程名称:算法设计与分析开课实验室:年月日 一、上机目的及内容 1.上机内容 设需要编码的字符集为{d1, d2, …, dn},它们出现的频率为{w1, w2, …, wn},应用哈夫曼树构造最短的不等长编码方案。 2.上机目的 (1)了解前缀编码的概念,理解数据压缩的基本方法; (2)掌握最优子结构性质的证明方法; (3)掌握贪心法的设计思想并能熟练运用。 二、实验原理及基本技术路线图(方框原理图或程序流程图) (1)证明哈夫曼树满足最优子结构性质; (2)设计贪心算法求解哈夫曼编码方案; (3)设计测试数据,写出程序文档。 数据结构与算法: typedef char *HuffmanCode; //动态分配数组,存储哈夫曼编码 typedef struct { unsigned int weight; //用来存放各个结点的权值 unsigned int parent,LChild,RChild; //指向双亲、孩子结点的指针 } HTNode, *HuffmanTree; //动态分配数组,存储哈夫曼树

程序流程图:

三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC及VISUAL C++6.0软件 四、实验方法、步骤(或:程序代码或操作过程) 程序代码: #include #include #include typedef struct { unsigned int weight; unsigned int parent,LChild,RChild; } HTNode, *HuffmanTree; //动态分配数组,存储哈夫曼树 typedef char *HuffmanCode; //动态分配数组,存储哈夫曼编码 void Select(HuffmanTree *ht,int n,int *s1,int *s2) { int i,min; for(i=1; i<=n; i++) { if((*ht)[i].parent==0) { min=i; break; } } for(i=1; i<=n; i++) { if((*ht)[i].parent==0) { if((*ht)[i].weight<(*ht)[min].weight) min=i; } } *s1=min; for(i=1; i<=n; i++) { if((*ht)[i].parent==0 && i!=(*s1)) { min=i; break; }

相关文档
相关文档 最新文档