文档库 最新最全的文档下载
当前位置:文档库 › 基于遗传算法的轴流式水轮机叶片优化设计

基于遗传算法的轴流式水轮机叶片优化设计

基于遗传算法的轴流式水轮机叶片优化设计
基于遗传算法的轴流式水轮机叶片优化设计

0引言

轴流式水轮机转轮叶片的设计方法经历了从开始的二维

方法到准三维、全三维方法,从考虑水流无粘到有粘的发展过

程[1]

。20世纪50年代初,吴仲华教授提出了2类流面的概念,

建立起了求解三维流动的普遍理论[2],

基于S1/S22类流面的叶片现代设计方法包括奇点分布法、当量源法、积分方程法、正

反问题迭代法、流函数法等[3]。

1转轮叶片的参数化

由于Bezier 曲线具有保凸性好、高阶光滑、表达简单、使用方

便和曲线形状易控制、

修改的特点[4]

,因此将翼型骨线用Bezier 曲线参数化。将导叶直接加到初始叶片上,在优化过程中,仅需改变翼型骨线控制点即可修改截面上的翼型形状,进而修改转

轮叶片的形状[5]

Bezier 曲线的表达式如下:

P (t )=n

i =0

ΣP i B i ,n (t

)(0≤t ≤1)式中,P i (i =0,1,2,3……,n )为折线多边形的顶点;B i ,n (t )为伯恩斯坦基函数。本文利用工程上常用的四点三次Bezier 曲线对翼型骨线进行参数化,设四点三次Bezier 曲线的4个控制点分别为P 0,P 1,P 2,P 3,则Bezier 曲线上任一点p (t )的坐标为x p ,y p :x p (t )=(1-t )3a 0+3t (1-t )2a 1+3t 2(1-t )a 2+t 3

a 3y p (t )=(1-t )3

b 0+3t (1-t )2b 1+3t 2(1-t )b 2+t 3

b 3式中,t 为参数,t ∈[0,t ];a i ,b i 分别为控制点P i [a i ,b i ]的坐标,i =0,1,2,3。

叶片也是由4个截面上叶栅翼型组成的,而每个截面上的叶栅翼型由2个参数控制其变化,因此整个叶片就由8个参数c 1,c 2,c 3,c 4,c 5,c 6,c 7,c 8来控制其变化。这8个参数不能控制叶片进出口边的位置,只能控制叶片形状在叶片进出口边不变的前提下变化。

叶片参数化过程中加入了叶片进出口边的变化,考虑叶片进出口边分别在轴向和周向上变化,设计有c 1,c 2,c 3,c 4,c 5,c 6,c 7,c 8,c 9,tx ,ty ,wx ,wy 12个变量,最终用这12个变量对带导叶的转轮进行了优化,在最后对得出的带导叶的优化转轮与初始转轮进行性能对比。

2

遗传算法的优化模型

2.1

转轮叶片优化模型

min

ξ=f (β1

,β2

,β3

,β4

,β5

,β6

)σ=f (β1

,β2

,β3

,β4

,β5

,β6

β)

式中,

ξ是叶片的损失系数;σ是叶片的气蚀系数;β1,β2,β3,β4,β5,β6为选取叶片断面的骨线角。2.2

约束条件

平面叶栅优化设计时相应的约束条件有流动约束、几何约

束和能量约束等。在选择约束条件时,要在保证结果良好的情况下适当减少约束条件的个数,从而加快遗传算法的收敛速度。本文给出的约束条件如下:

2.2.1能量约束

确定了水轮机基本参数,水轮机能正常工作的基本条件就是要满足根据水轮机的基本方程计算出来的绕翼型的环量。环量约束条件如下:

0.995≤ΓBJS B

≤1.005

式中,ΓBJS 为流场计算所得到的环量;ΓB 为根据水轮机基本方程计算出的环量。2.2.2流速约束

流速约束条件包括2部分:

(1)翼型上的相对速度均为正。

(W Z )i >0(W B )i >0

式中,(W Z )i >0,(W B )i >0分别为正背面上的任一点的相对流速。(2)沿整个翼型正面的相对流速要大于对应点背面的相对流速,否则水轮机将处于水泵状态。速度分布的约束条件为

(W Z )i -(W B )i ≤0。

2.2.3骨线角约束

骨线的设计过程中,常利用奇点法。骨线角(该点的切线与水平方向的夹角)从出口到进口是逐渐增大的,因此有如下约束:

βi <βi +1(i =0,1,2……,5,6)

2.2.4边界层无分离约束

水流通过叶片时的流动分离将会显著增大水流的能量损失,降低水轮机的效率,同时,水流离开叶片产生脱流,导致空化对叶片产生损伤。因此,叶片的优化设计必须能够保证叶片表面流动无分离。国内外对水轮机内流动分离准则的相关研究还较少,对于平面叶栅,常采用如下边界层分离准则:

T =θR e 1

4

W ·d W d s

≥-0.006

式中,θ为动量损失厚度;R e 为雷诺数;d W /d s 为翼型上相对流

速沿其表面的变化。

3

数值算例

3.1

设计参数

本文的研究对象为ZZ440轴流式水轮机,优化变量为骨线

基于遗传算法的轴流式水轮机叶片优化设计

(中国水利电力物资有限公司,北京100045)

摘要:选取某轴流式转轮叶片作为优化设计的对象,以轴流式转轮叶片的形状参数为优化变量,在参数化实施中,用Bezier 曲线参

数化叶片翼型骨线,然后将导叶直接加到初始叶片进口前的流道上,保证了实际流动中转轮来流的真实条件。该方法结合了全三维反问题方法对有厚度叶片计算的准确性,以及遗传算法对解决多目标优化问题全局搜索的准确性,可以得到比较理想的转轮叶片。

关键词:轴流式叶片;几何参数化;遗传算法;优化设计

设计与分析◆Sheji yu Fenxi

122

轴流式水轮机转轮算例

题目:ZZ440水轮机转轮的水力设计 方法:奇点分布法 已知参数: ZZ440 —100转轮水力设计 一.确定计算工况 由模型综合特性曲线得到n110=115 (r/min ) ,Q110=820 ( l/s) zz440属于ns=325~875范围,为了使设计的转轮能在预期的最优工况下效 率最高,计算工况与最优工况的关系按下式确定: n1l=(1.2~1.4)n 110 =138~161 (r/min) n= n.,^ H / D1(1.2 ~ 1.4)n110寸百/ D r 721.3 ~ 841.5 ( r/min) 故选定n=750 ( r/min ) 则实际n11= ^D1143.49 V H Q11=(1.35~1.6)Q110=1.4 Q110=1148<1650 (l/s) Q Q11D2JH1.4Q110D W H 6.0 m3/s 二.确定各断面叶栅稠密度l/t 据P213页(-)pj ~ n s关系,当ns=440时,得t 综合考虑一下关系: (二」 t "pi3 取D1=1000mm,取6 个断面R1~R6 依次为255、303、351、399、447、495 水力设计内容: (1) (2) (3) (4) (5) (6) (7) 确定计算工况 确定各断面叶栅稠密度l/t 选定进出口轴面速度Cz沿半径的分布规律,确定各断面的选定 进出口环量r沿半径的分布规律,确定各断面的r 计算各断面进 出口速度三角形,求知、2 第一次近似计算及绘图 第二次近似计算 Cz1、Cz2 1、 n =91%, a om=18mm D1 a。 _ a0m 1m —18 39.13mm 0.46 (0.85~0.95片)Pj K 3(t)n (1.2 ~ 1.25 )n (\ K卩小的打

MATLAB实验遗传算法和优化设计

实验六 遗传算法与优化设计 一、实验目的 1. 了解遗传算法的基本原理和基本操作(选择、交叉、变异); 2. 学习使用Matlab 中的遗传算法工具箱(gatool)来解决优化设计问题; 二、实验原理及遗传算法工具箱介绍 1. 一个优化设计例子 图1所示是用于传输微波信号的微带线(电极)的横截面结构示意图,上下两根黑条分别代表上电极和下电极,一般下电极接地,上电极接输入信号,电极之间是介质(如空气,陶瓷等)。微带电极的结构参数如图所示,W 、t 分别是上电极的宽度和厚度,D 是上下电极间距。当微波信号在微带线中传输时,由于趋肤效应,微带线中的电流集中在电极的表面,会产生较大的欧姆损耗。根据微带传输线理论,高频工作状态下(假定信号频率1GHz ),电极的欧姆损耗可以写成(简单起见,不考虑电极厚度造成电极宽度的增加): 图1 微带线横截面结构以及场分布示意图 {} 28.6821ln 5020.942ln 20.942S W R W D D D t D W D D W W t D W W D e D D παπππ=+++-+++?????? ? ??? ??????????? ??????? (1) 其中πρμ0=S R 为金属的表面电阻率, ρ为电阻率。可见电极的结构参数影响着电极损耗,通过合理设计这些参数可以使电极的欧姆损耗做到最小,这就是所谓的最优化问题或者称为规划设计问题。此处设计变量有3个:W 、D 、t ,它们组成决策向量[W, D ,t ] T ,待优化函数(,,)W D t α称为目标函数。 上述优化设计问题可以抽象为数学描述: ()()min .. 0,1,2,...,j f X s t g X j p ????≤=? (2)

水轮机制动系统,毕业设计

课题名称水轮机制动系统 系别机电系 专业电气工程与自动化 班级 姓名 学号 指导教师 起讫时间:年月日~年月日(共周)

毕业设计(论文)开题报告

水轮机制动系统 引言:20世纪以来,水电机组一直向高参数、大容量方向发展。随着电力系统中火电容量的增加和核电的发展,为解决合理调峰问题,世界各国除在主要水系大力开发或扩建大型电站外,正在积极兴建抽水蓄能电站,水泵水轮机因而得到迅速发展。 摘要:水电站的有功调节通常是通过调速器实现的,但当水轮机组并入电网运行时,对于单台发电机来说转速反馈几乎不起作用。近年来,随着自动发电控制(AGC)的需要,有功功率在控制系统中的调节品质已成为当前电力系统自动化领域的突出问题。 关键词: 参考文献:200MW混流式水轮机的效率改进,水轮机原理与流体动力学计算基础, 系统工作原理:如图1所示:测量元件把机组转速N(频率F N)、功率、水头、流量等参量测量出来,与给定信号和反馈信号综合后,经放大校正元件控制执行机构,执行机构操纵水轮机导水机构和桨叶机构,同时经反馈元件送回反馈信号 到信号综合点。 图1水轮机调节系统结构图

一、水轮机电气控制设备系统 水轮机制动系统是由水轮机电气控制设备系统和被控制系统(流体控制和PLC 控制)组成的闭环系统。水轮机、引水和泄水系统、装有电压调节的发电机及其所并入的电网称为水轮机调节系统中的被控制系统;用来检测被控参量与给定量的偏差,并将其按一定特性转换成主接力器行程偏差的一些装置组合,称为水轮机控制设备。水轮机调速器则是由实现水轮机调节及相应控制的机构和指示仪表等组成的一个或几个装置的总称。 (一)水轮机的选型: 水轮机按工作原理可分为冲击式水轮机和反击式水轮机两大类。冲击式水轮机的转轮受到水流的冲击而旋转,工作过程中水流的压力不变,主要是动能的转换;反击式水轮机的转轮在水中受到水流的反作用力而旋转,工作过程中水流的压力能和动能均有改变,但主要是压力能的转换。通过查找资料;反击式水轮机中,水流充满整个转轮流道,全部叶片同时受到水流的作用,所以在同样的水头下,转轮直径小于冲击式水轮机。它们的最高效率也高于冲击式水轮机,但当负荷变化时,水轮机的效率受到不同程度的影响,我选择较先进地反冲击式水轮机HLX180转轮,其模型额定点效率ηM=0.94。较通常转轮高出2个百分点,最高效率圈相对扁平,额定和加权平均水头下Q1′跨度达120L/m3,n1r′非常接近最优单位转速,运行区域包括了整个最优效率区,依据效率加权因子,求得的模型加权平均效率达88.4%,额定水头下具有8.3%的超发能力,因此该转轮能量指标较高,水能利用率高。 图2 HLX180型水轮机 (二)控制原理说明: 1.本系统采用分层分布式布局,配置如图3所示。主要由2个机组监控屏、 发 电机保护屏、公用监控屏、主编线路保护屏和电量屏构成。通讯采用高速以太网与上级调度、操作员工作站进行通讯。其中公用监控屏由可编程控制器(由三菱FX2N-80MR和2个FX0N-16EX扩展模块组成)、自动准同期装置、触摸屏、电力测控仪和逆变电源组成,在公用监控屏中实现对发电机的有功调节。

遗传算法与优化问题(重要,有代码)

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: 序号遗传学概念遗传算法概念数学概念 1 个体要处理的基本对象、结构也就是可行解 2 群体个体的集合被选定的一组可行解 3 染色体个体的表现形式可行解的编码 4 基因染色体中的元素编码中的元素 5 基因位某一基因在染色体中的位置元素在编码中的位置 6 适应值个体对于环境的适应程度, 或在环境压力下的生存能力可行解所对应的适应函数值 7 种群被选定的一组染色体或个体根据入选概率定出的一组 可行解 8 选择从群体中选择优胜的个体, 淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解 9 交叉一组染色体上对应基因段的 交换根据交叉原则产生的一组新解 10 交叉概率染色体对应基因段交换的概 率(可能性大小)闭区间[0,1]上的一个值,一般为0.65~0.90 11 变异染色体水平上基因变化编码的某些元素被改变

冲击式水轮机“毕业设计”

冲击式水轮机毕业设计任务书、基本资料和指示书 河海大学水电学院动力系 二○○六年三月

冲击式水轮机毕业设计 任务书 一、设计内容 根据给定的原始资料,对指定的电站、指定的原始参数进行该电站的机电初步设计,包括:电站装机机型的比较设计和参数选择,调节保证计算及调速设备选择,该电站的辅助系统设计和电气一次系统初步设计。 二、时间安排 1、电站装机机型比较设计4周 2、调节保证系统1周 3、辅助系统2周 4、专题 1.0周 5、电气部分2周 6、成果整理1周 7、评阅答辩1周 8、机动0.5周 总计12.5周 三、成果要求 1、设计说明书:说明设计思想,方案比较,参考资料及最终结果。 2、设计计算书:设计计算过程,计算公式,参数选取的依据,计算结果。 3、图纸:主机部分厂房纵剖图,配水环管装配图,水系统图,气系统图和油系统图,电气主接线图及专题部分图纸,规格为1号图,其中主机部分厂房纵剖图及配水环管图要求既要画出手工图纸又要CAD图,其他全部CAD图。 冲击式水轮机毕业设计 资本资料 一、田湾河电站 田湾河位于四川甘孜州康定县、雅安市石棉县境内,为大渡河中游的一级支流,发源于贡嘎山西侧,主源莫溪沟由北向南流,在魏石达先后有贡嘎沟和腾增沟分别自左、右岸汇入后始称田湾河。下行至界碑石进入石棉县境内并有环河自右岸汇入,经草科、田湾在两河口注入大渡河。 整个田湾河开发方案规划为干、支流“两库四级”开发。整个梯级从上至下依次由巴王海、仁宗海、金窝和大发四级水电站组成。业主提出整体开发田湾河的思想,计划在2007年内完成仁宗海、金窝、大发三个梯级水电站的建设。 仁宗海水库水电站位于康定县和石棉县交界处,工程为混合式开发。电站龙头水库坝址位于仁宗海口上游约400m处,水库正常蓄水位2930m,总库容1.09亿m3,调节库容0.91亿m3,水库具有年调节性能;引水隧洞长约7.5km;地下厂房厂址位于界碑石下游约650m,距田湾河河口约30km。仁宗海水库电站工程已于2003年开工,第一台机组计划投产日期2007

毕业设计水电站的水轮机设计

1前言 (4) 2水电站的水轮机选型设计 (5) 2.1水轮机的选型设计概述 (5) 2.2 水轮机选型的任务 (6) 2.3水轮机选型的原则 (6) 2.4水轮机选型设计的条件及主要参数 (7) 2.5确定电站装机台数及单机功率 (7) 2.6选择机组类型及模型转轮型号 (8) 2.7初选设计(额定)工况点 (11) 2.8 确定转轮直径D1 (12) 2.9 确定额定转速 n (12) 2.10效率及单位参数的修正 (13) 2.11核对所选择的真机转轮直径D1 (14) 2.12确定水轮机导叶的最大开度、最大可能开度、最优开度 (18) 2.13计算水轮机额定流量q v,r (19) 2.14确定水轮机允许吸出高度H s (20) 2.15计算水轮机的飞逸转速 (25) 2.16计算轴向水推力P oc (25) 2.17估算水轮机的质量 (26) 2.18绘制水轮机运转综合特性曲线 (26) 3水轮机导水机构运动图的绘制 (35) 3.1导水机构的基本类型 (35) 3.2导水机构的作用 (36) 3.3导水机构结构设计的基本要求 (36)

3.4导水机构运动图绘制的目的 (37) 3.5导水机构运动图的绘制步骤 (37) 4水轮机金属蜗壳水力设计 (41) 4.1蜗壳类型的选择 (41) 4.2金属蜗壳的水力设计计算 (41) 5尾水管设计 (49) 5.1 尾水管概述 (49) 5.2尾水管的基本类型 (49) 5.3弯肘形尾水管中的水流运动 (49) 6水轮机结构设计 (50) 6.1概述 (50) 6.2水轮机主轴的设计 (50) 6.3水轮机金属蜗壳的设计 (51) 6.4水轮机转轮的设计 (52) 6.5导水机构设计 (55) 6.6水轮机导轴承结构设计 (58) 6.7水轮机的辅助装置 (61) 7金属蜗壳强度计算 (63) 7.1金属蜗壳受力分析 (63) 7.2蜗壳强度计算 (63) 7.3计算程序及结果 (66) 8结论 (71)

TSP问题的遗传算法求解 优化设计小论文

TSP问题的遗传算法求解 摘要:遗传算法是模拟生物进化过程的一种新的全局优化搜索算法,本文简单介绍了遗传算法,并应用标准遗传算法对旅行包问题进行求解。 关键词:遗传算法、旅行包问题 一、旅行包问题描述: 旅行商问题,即TSP问题(Traveling Saleman Problem)是数学领域的一个著名问题,也称作货郎担问题,简单描述为:一个旅行商需要拜访n个城市(1,2,…,n),他必须选择所走的路径,每个城市只能拜访一次,最后回到原来出发的城市,使得所走的路径最短。其最早的描述是1759年欧拉研究的骑士周游问题,对于国际象棋棋盘中的64个方格,走访64个方格一次且最终返回起始点。 用图论解释为有一个图G=(V,E),其中V是顶点集,E是边集,设D=(d ij)是有顶点i和顶点j之间的距离所组成的距离矩阵,旅行商问题就是求出一条通过所有顶点且每个顶点只能通过一次的具有最短距离的回路。若对于城市V={v1,v2,v3,...,vn}的一个访问顺序为T=(t1,t2,t3,…,ti,…,tn),其中ti∈V(i=1,2,3,…,n),且记tn+1= t1,则旅行商问题的数学模型为:min L=Σd(t(i),t(i+1)) (i=1,…,n) 旅行商问题是一个典型组合优化的问题,是一个NP难问题,其可能的路径数为(n-1)!,随着城市数目的增加,路径数急剧增加,对与小规模的旅行商问题,可以采取穷举法得到最优路径,但对于大型旅行商问题,则很难采用穷举法进行计算。 在生活中TSP有着广泛的应用,在交通方面,如何规划合理高效的道路交通,以减少拥堵;在物流方面,更好的规划物流,减少运营成本;在互联网中,如何设置节点,更好的让信息流动。许多实际工程问题属于大规模TSP,Korte于1988年提出的VLSI芯片加工问题可以对应于1.2e6的城市TSP,Bland于1989年提出X-ray衍射问题对应于14000城市TSP,Litke于1984年提出电路板设计中钻孔问题对应于17000城市TSP,以及Grotschel1991年提出的对应于442城市TSP的PCB442问题。

水轮机叶片毕业设计资料

一、工程背景及水轮机叶片简介 图1、为某型水轮机叶片的CAD模型。在发电工作工程中水流由进水口流向出水口,叶片承受水流的冲刷从而开始运动,这种运动通过传动轴传递到发电机,从而带动发电机工作发电。但是水轮机在工作仅仅一年多时间以后,就有数片叶片发生了疲劳断裂事故,使得水轮机不能正常工作发电,造成了一定的经济损失,同时也说明水轮机叶片在结构的设计方面确实存在不完善之处。然而,由于水轮机在水下进行工作,很难通过测量得方法获得叶片上应力和位移的分布情况,也就无法知道叶片为何会断裂,无法有效的改善叶片的几何结构。在这种情况下,长江水利委员会陆水枢纽局的委托我们对LS591水轮机叶片的进行Ansys有限元模拟计算,获得叶片的应力场和位移场的分布,从而为叶片断裂事故分析提供技术支持,并对叶片结构的改进提供具体方案。 传动轴 进水口出水口 图1、CAD模型

二、ANSYS简介及解题步骤 1、ANSYS简介 对于大多数工程技术问题,由于物体的几何结构比较复杂或则问题的某些特征是非线性的,我们很难求得其解析解。这类问题的解决通常具有两种途径:一是引入简化假设,但这种方法只是在有限的情况下是可行的。也正是因为这样,有限元数值模拟的技术产生了。有限元方法通过计算机程序在工程中得到了广泛的应用。到80年代初期,国际上较大型的面向工程的有限元通用软件达到了几百种,其中著名的有:ANSYS,NASTRAN,ASKA, ADINA,SAP等。其中,以ANSYS为代表的工程数值模拟软件,即有限元分析软件,不断的吸取计算方法和计算机技术的最新进展,将有限元分析、计算机图形学和优化技术相结合,已成为解决现代工程问题必不可少的有力工具。尤其是在某些环境中,样机试验是不方便的或者不可能的,而利用ANSYS软件,对这个问题有了很好的解决。本文中水轮机叶片是在水下的环境进行工作,测量很难进行,利用有限元软件ANSYS这个问题得到了很好的解决。 2、ANSYS分析步骤 ANSYS分析可以分为三个步骤: a、创建有限元模型

基于遗传算法的齿轮减速器优化设计

煤矿机械Coal Mine Machinery Vol.30No.12 Dec.2009 第30卷第12期2009年12月 0引言 工程机械中所用电动机的转速较高,为了满足工作机低转速的需要,一般在电动机和工作机之间安装减速器,用来降低电机的转速或增大转矩,减速器是一种机械传动装置,广泛地应用于运输机械、矿山机械和建筑机械等重型机械中。因此,减速器的设计非常重要。 遗传算法(GA)是模拟生物在自然界中优胜劣汰的自然进化过程而形成的一种具有全局范围内优化的启发式搜索算法。这种方法已在很多学科得到广泛的应用,为减速器的优化设计提供有力的保证。因此,本文采用遗传算法对两级齿轮减速器进行优化设计,并通过与惩罚函数法和模拟退火算法等优化方法计算结果进行比较,来探讨适合于减速器的优化设计方法。 1建立数学模型 两级齿轮传动减速器结构如图1所示。该减速器的总中心距 a∑=[m n1z1(1+i1)+m n2z3(1+i2)]/2cosβ(1)式中m n1、m n2—— —高速级与低速级的齿轮法面模 数; i1、i2—— —高速级与低速级传动比; z1、z3—— —高速级与低速级的小齿轮齿数: β—— —2组齿轮组的螺旋角。 1.1设计变量的确定 在进行两级齿轮传动减速器设计时,一般选择齿轮传动独立的基本参数或性能参数,如齿轮的齿数、模数、传动比、螺旋角等为设计变量。两级齿轮传动由4个齿轮组成,分别用z1、z2、z3、z4表示,高速级的传动比由i1表示,低速级传动比由i2表示,两组齿轮组的法面模数分别由m n1和m n2表示,2组齿轮的螺旋角用β表示,由于两级齿轮传动减速器的总传动比i0,在设计时会给出具体数据,并且满足i0=i1i2,可以得出i2=i0/i1,可以确定独立的参数有z1、z3、m n1、m n2、i1和β。因此,可以确定该设计变量X=[z1,z3,m n1,m n2,i1,β]T=[x1,x2,x3,x4,x5,x6]T。 图1减速器结构简图 1.2目标函数的建立 在对减速器进行优化设计时,首先要确定目标函数。确定目标函数的原则是在满足各种性能要求的前提下,使减速器的体积最小,这样设计的减速器既经济又实用,从而达到了优化的目的。要使减速器的体积最小,必须使减速器的总中心距最小。因此,以减速器的中心距最小建立目标函数为 a∑=[x3x1(1+x5)+x4x2(1+i0/x5)] 6 (2)1.3约束条件的确定 为使两级齿轮传动减速器满足强度、设计变量 基于遗传算法的齿轮减速器优化设计* 吴婷,张礼兵,黄磊 (安徽建筑工业学院机电学院,合肥230601) 摘要:对两级齿轮减速器优化设计进行了分析,建立了其优化设计的数学模型,确定了优化设计的约束条件,采用遗传算法对两级齿轮减速器进行优化设计,并通过实例说明,采用遗传算法对减速器进行优化,可以得到更加优化的设计结果。 关键词:减速器;遗传算法;优化设计 中图分类号:TH132文献标志码:A文章编号:1003-0794(2009)12-0009-03 Gear Reducer Optimal Design Based on Genetic Algorithm WU Ting,ZHANG Li-bing,HUANG Lei (School of Mechanical and Electrical Engineering,Anhui University of Architecture,Hefei230601,China)Abstract:T he optimal design of a gear reducer was analyzed,the mathematic model was established, and the restriction condition was confirmed.Design of the gear reducer was optimized with genetic algorithm and the examples showed that design of the gear reducer based on genetic algorithm can gain more optimized result. Key words:reducer;genetic algorithm;optimal design *安徽省教育厅自然基金项目(2006KJ015C) 轴1轴2轴3 z1z2 z3z4 9

水轮机毕业设计 开题报告

毕业设计(论文) 开题报告 题目电站水轮机结构设计 专业热能与动力工程 班级 学生 指导教师

一、毕业设计(论文)课题来源、类型 本课题来源于越南DongNai5 水电项目,设计类型为水轮机结构设计。DongNai5电站,位于越南DongNai 省的DongNai 河。它配备了两台75MW混流式水轮发电机组,总装机容量150MW。电站预计2015年投入商业运行,年发电量达616万kW·h。该题目属于工程设计类题目。 二、选题的目的及意义 水轮机对于电站而言,是重中之重。它配合发电机组实现了,机械能转化为电能这一核心任务。因此,使水轮机最优化,对提高电站的效率至关重要。它的性能优劣,结构完善与否,直接涉及到水电事业发展的程度。进行水轮机的结构设计,综合考虑水轮机性能、效率、成本等,对学生个人也是一种总结和学习的过程的。通过水轮机结构设计,使得自己对大学所学的专业知识进一步掌握并运用,将书本知识实用化,为自己以后继续学习专业知识或者就业,有很大的帮助。 三、本课题在国内外的研究状况及发展趋势 电力是现代化工业生产和生活不可或缺的动力能量,水力发电是电力工业的一个门类。建国50多年来,我国的水电事业有了长足的发展,取得了令人瞩目的成绩。水电在我国的兴起是有其深刻的背景的。 我国河流众多,径流丰沛,落差巨大,蕴藏着丰富的水能资源。2000~2004年, 中国水电工程顾问集团公司组织了全国水力资源复查, 水电资源理论蕴藏量为6.94亿kW,年发电量6.08万亿kW·h, 其中技术可开发容量为5.42亿kW, 年发电量2.47万亿kW·h; 经

济可开发容量为4.02亿kW,年发电量1.75万亿kW·h。 首先,我国有大规模利用水能资源的条件和必要性。我国水能资源丰富,不论是水能资源蕴藏量,还是可能开发的水能资源,在世界各国中均居第一位。但是目前我国水能的利用率仅为13%,水力发电前景广阔。随着我国经济的快速增长,能源消耗总量也大幅度增长,煤炭、石油和天然气这些常规能源的消耗量越来越大,甚至需要依靠进口。 水力发电经过一个多世纪的发展,其工程建设技术、水轮发电机组制造技术和输电技术趋于完善,单机容量也不断增大。并且水力发电成本低廉,运行的可靠性高,故其发展极为迅速。近一个世纪,特别是建国以来,经过几代水电建设者的艰苦努力,中国的水电建设从小到大、从弱到强不断发展壮大。改革开放以来,水电建设更是迅猛发展,工程规模不断扩大。 据电工行业统计数据表明,2009年我国发电设备和大中型电机的产量分别为:水轮发电机组2303万kW,汽轮发电机8654万kW,成套发电设备11993万kW,大中型电机约为7500万kW,其中大型电机约为3000万kW(含风电1380万kw的70% )。 调查表明,全世界发电设备市场的订货量从1991年的70GW 增加到了1996年的100GW,其中水电只占16%。在水电设备订货量方面,亚洲国家的订货量要占一半以上,如1996年的总订货量为18GW,其中中国占23%。 水轮机是一种流体机械。所谓流体机械就是以流体作为工作介质的机器。它是实现流体功能和热能转换的机械。( 热能转换的流体机械在此不作介绍) 。对于功和能转换的流体机械主要分为两大类,一类是流体能量对流体机械作功而提供动力; 另一类则是通过流体机械将原动力传递给流体, 使流体的能量得以提高。当然还有一种液力传动功能的机械( 如液力变矩器、液力耦合器以及流体与流体、流体与固体分离的机械) 也称为流体机械。 水力发电用的水轮机有着100 年以上的历史,一般认为是已

水轮机选型结构设计毕业论文

水轮机选型结构设计毕业论文 目录 前言 (1) 概述 (1) 设计容与要求 (2) 1 越南DongNai5电站基本资料 (3) 2 轴面流道图 (4) 3 水轮机真机运转特性曲线 (6) 3.1 等效率线的绘制 (6) 3.2 等开度线的绘制 (10) 3.3 真机运转特性曲线的绘制 (12) 4 埋入部件结构设计 (13) 4.1 座环 (13) 4.1.1 结构型式 (13) 4.1.2 尺寸系列 (13) 4.2 基础环 (13) 4.3 尾水管里衬 (14)

5 导水机构结构设计 (16) 5.1 导水机构总体结构设计 (16) 5.2 导叶布置图的绘制 (16) 5.2.1 导叶翼型的确定 (16) 5.2.2 导叶开度的确定 (18) 5.2.3 导叶布置图以及相关曲线的绘制 (19) 5.3 导叶装置结构设计 (20) 5.3.1 导叶的结构 (20) 5.3.2 导叶轴套结构 (21) 5.3.3 导叶轴颈的密封 (23) 5.3.4 导叶的止推装置 (24) 5.3.5 导叶套筒结构 (25) 5.4 导叶传动机构设计 (26) 5.4.1 导叶臂 (26) 5.4.2 连接板 (27) 5.4.3 叉头 (28) 5.4.4 连接螺杆 (29) 5.4.5 分半键 (29) 5.4.6 剪断销 (30)

5.4.7 叉头销 (31) 5.4.8 端盖 (32) 5.5 导水机构环形部件结构设计 (32) 5.5.1 底环 (33) 5.5.2 控制环 (33) 5.5.3 顶盖 (36) 6 转动部件结构设计 (37) 6.1 转轮结构 (37) 6.2 泄水锥 (37) 6.3 止漏装置 (38) 6.4 主轴结构设计 (39) 7 轴承、主轴密封及其它部件设计 (42) 7.1 轴承 (42) 7.2 主轴密封 (42) 7.3 补气装置 (43) 7.4 其他部件设计 (44) 结论、讨论和建议 (46) 致谢 (47) 参考文献 (48)

ZZ560轴流式水轮机结构设计_毕业设计设计说明书

2013届热能与动力工程专业毕业设计(论文) 毕业设计(论文) 题目ZZ560轴流式水轮机 结构设计 专业热能与动力工程 1

摘要 葛洲坝电站是我国代表性的低水头大流量、径流式水电站,兼具发电、改善航道等综合效益。本次设计主要是通过查阅相关设计手册,对葛洲坝电站型号为ZZ560-LH-1130的轴流转桨式水轮机结构进行设计,主要内容包括水轮机总体结构设计、导水机构及其传动系统设计,水轮机部分零部件,例如主轴,导叶等零件的设计。 通过使用CAD绘图,本次设计过程更加便捷,设计成果更加精确。关键词:葛洲坝水电站,轴流式水轮机,转轮设计,结构设计, ABSTRACT

2013届热能与动力工程专业毕业设计(论文) Gezhouba Dam power plant is China's representative low head and largeDischarge,runoff hydropower stations,power generation,wita comprehensive benefits improve navigation etc.This design is mainly through access to relevant design manual,design of the Kaplan turbine structure of Gezhouba Dam power plant model for ZZ560-LH-1130,The main contents include design of water mechanism and its transmission system overall structure design of hydraulic turbine,guide,some parts of hydraulic turbine,such as the spindle,the design of guide vane and other parts. Using the CAD,the process of design is more convenient and the result is more accurate. KEY WORDS:GeZhouBa hydropower station,Kaplan turbine, station,runner,Structural design. 3

遗传算法电机优化设计简介

收稿日期:20001225 综 述 遗传算法电机优化设计简介 李鲲鹏,胡虔生 (东南大学,南京210096) B rief I ntroduction of Motor Optimizing Design B ased on G enetic Algorithms L I Kun -peng ,HU Qian -sheng (S outheast University ,Nanjing 210096,China ) 摘 要:介绍了遗传算法的基本思想及其特点,实现了基于遗传算法的电机优化设计,讨论了保证其全局收敛性的方法,最后给出了基于遗传算法的电机优化设计实例。 关键词:电机优化设计;遗传算法;全局收敛性中图分类号:T M302 文献标识码:A 文章编号:1004-7018(2001)04-0032-02 Abstract :In this paper ,the essence and a pplications of genetic alg orithms are friendly introduced.Based on com paris ons between ge 2netic alg orithms and conventional methods ,the a pplication of genetic alg orithm to motor design is im plemented.In this process ,the meth 2ods to improve the global convergence of genetic alg orithm are dis 2cussed.Finally ,the results of the optimization of three -phase electri 2cal machine design based on genetic alg orithms are presented. K eyw ords :motor optimal design ;genetic alg orithms (G A );glob 2al convergence 1遗传算法的基本思想及其特点 遗传算法是模拟生物进化机制的一种现代优化计算方法。其基本思想是:首先通过编码操作将问题空间映射到编码空间(如[0,1]L ),然后在编码空间内进行选择、交叉、变异三种遗传操作及其循环迭代操作,模拟生物遗传进化机制,搜索编码空间的最优解,最后逆映射到原问题空间,从而得到原问题的最优解。选择操作模拟了个体之间和个体与环境之间的生存竞争,优良个体有更多的生存繁殖机会。在这种选择压力作用下,个体之间通过交叉、变异遗传操作进行基因重组,期望得到更优秀的后代个体,在这场竞争中胜出。选择、交叉、变异遗传操作都是以概率值进行的。这些概率值与当时生存环境和个体适应能力密切相关。从这里可以看出遗传算法是一种随机性搜索算法,但是它不同于传统的随机搜索算法。遗传算法通过交叉算子(Cross over operator )和变异算子(Mutation Operator )的协同作用确保状态空间([0,1]L )各点的概 率可达性,在选择算子(Selection Operator )的作用下保证迭代进程的方向性。 2电机优化设计的数学模型和一般优化方法 电机优化设计的一般数学模型: min/max :f (x ) g i (X )≤0,i =1,2,3,…,m X j ∈[a j ,b j ],j =1,2,3,…,n (1) 其中:X =[x 1,x 2,x 3,…,x n ]为设计参量即电磁系统的参数,如冲片尺寸、绕组参量等。g i (X )(i =1,2,3,…,m )为约束条件,如性能约束和一般约束。由于目标函数f (X )和约束条件g i (X )都是X 的高度非线性函数,因此电机优化设计问题是求解约束非线性最优化问题。 由于电机设计的目标函数f (X )不是一个单纯的数学表达式,而是一段电机设计分析计算程序,在计算目标函数值的同时还计算各个性能指标值,即约束条件函数值,因此利用目标函数的梯度确定搜索方向的优化方法在电机优化设计中是相当繁琐,直接利用目标函数值的优化方法在电机优化设计中具有优势,遗传算法通过选择、交叉、变异算子的协同作用,既保证了搜索的方向性,又满足了状态空间各点的概率可达性,具有概率意义下的全局收敛性。遗传算法继承了传统确定性算法和一般随机算法的优点,是一种新的启发式随机搜索算法。 遗传算法对约束的处理有两种思路:增加修正算子将约束条件反映在遗传算子的设计中;利用惩罚函数法将有约束优化问题转化为无约束优化问题。在电机优化设计中常采取后者。基于遗传算法的惩罚函数主要分为静态惩罚函数、动态惩罚函数和自适应惩罚函数三种[4]。自适应惩罚函数法效果较好,但较复杂; 静态、动态惩罚函数相对较简单,经常使用。约束条件 23 微特电机 2001年第4期

基于遗传算法和神经网络算法的吊车结构优化设计与实现

·制造业信息化· 图1吊车结构系统有限元模型 Fig.1The finite element model of a fixed crane Based on Genetic Algorithms and Artificial Neural Network Algorithms to Optimize the Structure Design and Implementation of Crane XUE Jia-Hai ,YU Xiao-Mo ,QING Ai-Ling ,ZHOU Wen-Jing ,YE Jun-Ke (College of Mechanical Engineering,Guangxi University,Nanning Guangxi 530004,China ) Abstract:This paper by using the finite element method,orthogonal test method,BP neural network and genetic algorithm to optimization of crane structure system.At last ,the neural network model will be optimized through the generic algorithm and the optimal parameters of the structure dynamic behavior will be obtained . Key words :finite element ;orthogonal experimental method ;BP-neural network ;genetic algorithm 0引言 随着吊车向大型化方向发展,结构在动载荷作用下的振动问题变得日益突出。因此,进行基于动态特性的优化设计,使产品在设计阶段就可以预测其动态特性,可有效减小系统的振动,提高整机工作性能。结构动力学建模方法主要有有限元法、试验模态法、混合建模法及基于人工神经网络的建模方法。基于人工神经网络的动态优化设计建模方法,是利用多层人工神经网络极强的非线性映射功能,来描述和处理动态系统中设计变量及其动态参数之间的关系。人工神经网络模型一旦建立,可取代有限元模型进行结构动态特性重分析,其分 析过程简单而直接,且远比有限元模型计算速度快,尤其适用于工程技术人员使用。由于吊车结构系统的动态特性很难用设计变量显式表达,因此用遗传算法对建立的神经网络模型寻优,计算出可行区域内动态特性最优时的设计变量及目标值。 1吊车结构系统动态特性分析 图1所示为某厂生产的固定式吊车的有限元模型。主要参数为:塔身高48.5m ,起重臂长70m ,最大起重力矩4400kN ·m 。吊车结构的弦杆、腹杆、钢丝绳及集中质量分别以空间梁单元、杆单元、弹簧单元及质量单元模拟。表1所示 为按最大起重力矩工况计算的系统前8阶固有频率。修稿日期:2012-12-21 作者简介:薛加海(1986-),男,云南彝族人,在读硕士研究生。主要研究方向:制造业管理信息化研究;于晓默(1982-),男,蒙古族人,在读博士研究生。主要研究方向:制造业管理信息化研究。 摘要:论文综合利用BP 神经网络、遗传算法有限元法以及正交试验法对吊车结构系统进行优化研究。利 用遗传算法和BP 神经网络建立复杂结构系统动态优化的计算模型,该模型可代替系统原来的有限元模型。首先对吊车起重机结构系统进行模态分析及谐响应动力学分析,找出对结构动态特性影响最大的模态频率,再利用灵敏度分析,确定对动态特性较敏感的设计变量作为神经网络的输入变量,并利用正交试验法确定神经网络训练样本,用有限元模型计算出样本点数据,建立反映结构振动特性的人工神经网络模型,最后利用遗传算法对所建立的神经网络模型寻优,得到使结构动态性能最优的设计参数。 关键词:有限元法;正交试验法;BP 神经网络;遗传算法中图分类号:TP18 文献标识码:A doi:10.3969/j.issn.1002-6673.2013.01.037 文章编号:1002-6673(2013)01-093-03 基于遗传算法和神经网络算法的吊车结构优化设计与实现 薛加海,于晓默,秦爱玲,周文景,叶俊科 (广西大学机械工程学院,广西南宁530004) 机电产品开发与创新 Development &Innovation of M achinery &E lectrical P roducts Vol.26,No.1Jan .,2013第26卷第1期2013年1月 93

水轮发电机组选型设计_毕业设计

水轮发电机组选型设计 第1章 水轮发电机组选型设计 1.1、机组台数及型号选择 1.1.1、水轮机型式的选择 已知参数 6.25max =H , 8.22min =H , 3.23av =H , MW 200=N 保证出力:MW 35=b N ,利用小时数:h 2225 取设计水头3.23av r ==H H 按我国水轮机的型谱推荐的设计水头与比转速的关系, 混流式水轮机的比转速s n : )(kW m H n s ?=-=-= 394203 .232000 202000 轴流式水轮机的比转速s n : )(4773 .232300 2300kW m H n s ?=== 根据原始资料,适合此水头范围的水轮机类型有轴流式和混流式。 轴流式和混流式水轮机优点: (1)混流式结构紧凑,运行可靠,效率高,能适应很宽的水头范围,是目前应用最广泛的水轮机之一。 (2)轴流式水轮机s n 较高,具有较大的过流能力,轴流转桨式水轮机可在协联方式下运行,在水头、负荷变化时可实现高效率运行 根据表本电站水头变化范围m H 6.25~8.22=查《水电站机电设计手册—水力机械》 选择适合的水轮机有244/260A HL 、503JK 和500ZZ 。三个水轮机参数如下: 转轮型号 推荐使用水头 H(m) 模型转轮直径 1 D cm 最优工况 限制工况 ' 10 n r/mi n ' 10 Q s m /3 η % ' 10 Q s m /3 η % σ 模型试验水头 H(m) 单位飞逸转速' R n 1 (r/min) 水推力系数K HL260/A244 35~60 35 80 1.08 91.7 1.275 86.5 0.15 3 158.7 0.34~0.41 JK503 26 35 135 903 90.8 1800 87 0.63 10 340 0.87 ZZ500 18~30 46 128 0.98 89.5 1.65 86.7 0.585 3 352 0.87 1.1.2、拟订机组台数并确定单机容量 因为设计电站是无调节电站,所以工作容量等于保证出力MW 35=b N 选用混流式机组的单机容量不得超过 MW 8.7745.035 = 选用轴流式机组的单机容量不得超过 MW 10035 .035 = 确定机组台数4台和5台 方案列表如下: 水轮机组选型及台数汇总表

基于BP神经网络和遗传算法的结构优化设计

收稿日期:2002-11-13;修订日期:2003-02-12 作者简介:郭海丁(1958-) 男 山东潍坊人 南京航空航天大学能源与动力学院副教授 博士 主要从事工程结构强度~断裂~疲 劳损伤及结构优化设计方法等研究. 第18卷第2期2003年4月 航空动力学报 Journal of Aerospace Power Vol.18No.2 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E Apr.2003 文章编号:1000-8055(2003)02-0216-05 基于BP 神经网络和遗传算法 的结构优化设计 郭海丁1 路志峰2 (1.南京航空航天大学能源与动力学院 江苏南京210016; 2.北京运载火箭技术研究院 北京100076) 摘要:现代航空发动机不断追求提高推重比 优化其零部件的结构设计日益重要 传统结构优化方法耗时多且不易掌握 针对这一问题 本文提出了将BP 神经网络和遗传算法相结合用于结构优化设计的方法 并编制了相应的计算程序 实现了一个含9个设计变量的发动机盘模型的结构优化计算 计算证明 与传统结构优化方法相比 此方法计算速度快~精度良好 关 键 词:航空~航天推进系统;结构优化;神经网络;遗传算法;航空发动机 中图分类号:V 231 文献标识码:A Structure Design Optimization Based on BP -Neural Networks and Genetic Algorithms GUO -ai -ding 1 LU Zhi -feng 2 (1.Nanjing University of Aeronautics and Astronautics Nanjing 210016 China ; 2.Beijing institute of Astronautics Beijing 100076 China ) Abstract :Owing to the increasing demand for raising the thrust -weight ratio of modern aero -engine it is very important to optimize the structures of the components .Traditional optimization methods of structure design are time -consuming and hard to be put into practice .So in this paper a new method of structure design optimization is induced to which both BP neural networks and genetic algorithms (in short :BPN -GA )are applied .A program which contains 9variables is designed for the structure optimization of a disk model with the BPN -GA method which proves that it has better calculating rate and precision than those with traditional optimization methods . Key words :aerospace propulsion ;structure optimization ;neural network ; genetic algorithms ;aero -engine 1 引言 在航空~航天等领域 结构优化设计技术正在得到越来越广泛的应用 结构优化设计逐步进入工程实用阶段!1"3# 但从工程应用角度来看 结构优化设计方法的推广仍存不少障碍 主要表现为: (1)优化中靠经验调整的参数较多 掌握困难;(2)优化计算效率较低 应用现有的结构优化算法进

相关文档