文档库 最新最全的文档下载
当前位置:文档库 › 泛函分析习题标准答案

泛函分析习题标准答案

泛函分析习题标准答案
泛函分析习题标准答案

第二章 度量空间

作业题答案提示 1、

试问在R 上,()()2,x y x y ρ=-

能定义度量吗?

答:不能,因为三角不等式不成立。如取

则有(),4x y ρ=,而(),1x z ρ=,(),1z x ρ= 2、

试证明:(1)()1

2

,x y x y ρ=-;(2)(),1x y x y x y

ρ-=

+-在R 上都定

义了度量。

证:(1)仅证明三角不等式。注意到

2

11

22x y x z z y x z z y ??

-≤-+-≤-+- ?

??

故有1

11222

x y x z z y -≤-+-

(2)仅证明三角不等式 易证函数()1x

x x

?=+在R +上是单调增加的, 所

()()

a b a b ??+≤+,

从而有

1111a b a b a b

a b a b

a

b

++≤

≤+++

++

+

+

令,,x y z R ?∈,令,a z x b y z =-=- 即111y x z x y z y x

z x

y z

---≤

+

+-+-+-

4.试证明在[]b a C ,1

上,)12.3.2()()(),(?-=b

a dt t y t x y x ρ

定义了度量。

证:(1)0)()(0),(≡-?=t y t x y x ρ(因为x,y 是连续函数) 0),(≥y x ρ及),(),(x y y x ρρ=显然成立。

[])

,(),()()()()()()()()()()(),()2(y z z x dt

t y t z dt t z t x dt

t y t z dt t z t x dt

t y t x y x b

a

b a

b a

b

a ρρρ+≤-+-≤-+-≤-=????

5.试由Cauchy-Schwarz 不等式证明

∑∑==≤??

?

??n

i i

n i i x n x 12

2

1

证:∑∑∑∑=====?≤??

? ??n

i i

n i n i i n i i x n x x 12

12

122

11

8.试证明下列各式都在度量空间()11,ρR 和()21,R R 的Descartes 积

21R R R ?=上定义了度量

{}2

12/1222121,max ~~)3(;)(~)2(;)1(ρρρρρρρρρ=+=+= 证:仅证三角不等式。(1)略。 (2) 设12(,)x x x =,12(,)y y y =12R R ∈?,则

{

}

1222

1112

2212

22

2222

111111222222112

2222

2

1111

112222

2211222211(,)[(,)(,)](,)(,)(,)(,)(,)(,)(,)(,)(,)(,)

n n i i i i i i x y x y x y x z z y x z z y x z z y x z z y x z z y ρρρρρρρρρρρρρξηξη===+????≤+++????

????≤+++????????=++≤+ ? ?????∑∑1

221n i =???? ? ? ??? ???

(3)111222(,)max{(,),(,)}x y x y x y ρρρ=

111111222222111111222222max{(,)(,),(,)(,)}max[(,)(,)]max[(,)(,)](,)(,)

x z z y x z x z x z z y x z x z x z z y ρρρρρρρρρρ≤++≤+++=+

9、试问在[,]C a b 上的0(;1)B x 是什么?

[,]C a b 上图像以0x 为中心铅直高为

2的开带中的连续函数的集

合。

10、试考虑[0,2]C π并确定使得(,)y B x r ∈的最小r ,其中

sin ,cos x t y t ==。

[0,2]

[0,2(,)sup sin cos sup

)4

t t x y t t t πππ

ρ∈∈=-=-=

11.试证明在离散度量空间中,每个子集既是开的又是闭的。 设A 是离散度量空间X 的任一子集。

a A ?∈,开球1

(,){}2

B a a A =?,故A 事开集。

同样道理,知C A 是开的,故()C C A A =又是闭集。

12.设0x 是M R ?的聚点,试证明0x 的任何邻域都含有M

的无限

多个点。 证:略。

13.(1)若度量空间R 中的序列{}n x 是收敛的,并且有极限x ,试证明{}n x 的每个子序列{}k

n x 都是收敛的,并且有同一极限。

(2)若{}n x 是Cauchy 序列,并且存在收敛的子序列{}k

n x ,

k n x x →,试证明{}n x 也是收敛的,并且有同一极限。

(1) 略

(2) ε?,N ?,当,k m n N >时,有

(,)2

kl

m n x x ε

ρ<

,(,)2

kl

n

x x ε

ρ<({}n x 是Cauchy 序列且k

n x x →)

因此,当m N >时,(,)(,)(,)2

2

kl

kl m m n

n x x x x x x ε

ε

ρρρε≤+≤+

=

18.试证明:Cauchy 序列是有界的.

证明:若{}n x 是Cauchy

序列,则存在,使得对于一切0n n >,有()0

,1n n

x x ρ<,因此,对于一切n ,有

()()(){}0

11,max 1,,,...,,n n n n n x x x x x x ρρρ-≤

19.若{}n x 和{}n y 都是度量空间x 中的Cauchy 列,试证明: (),n n n x y ρρ=是收敛的。

证:根据三角不等式,有

()()()()

()()

,,,,,,n n n n m m m m n n m m m n x y x x x y y y x x y y ρρρρρρρρ=≤++=++

故,()(),,n m n m m n x x y y ρρρρ-≤+ 同样有:()(),,m n n m m n x x y y ρρρρ-≤+

即:()(),,0n m n m m n x x y y ρρρρ-≤+→ 而R 是完备的,则{}n ρ是收敛的。

34.若X 是紧度量空间,并且M X ?是闭的,试证明M 也是紧的。

证明:因为X 是紧的,故M 中任一序列{}n x 有一个在n X 中收敛的子序列{}nk x 。不妨设{}nk x x X →∈,则有x M ∈。又因M 是闭的,所以x M ∈,因此M 是紧的。

第三章 线性空间和赋范线性空间

10.试证明下列都是n R 上的范数 (1)

11n

i

i x x ==∑; (2)

1

2

2

21n i i x x =??= ?

???

∑ ; (3)

max i

i

x x ∞=;

2

12

1n

i

i x x =?? ?= ??

?

∑是范数吗?

(1)、(2)和(3)的证明略

2

12

1n

i

i x x =?? ?= ??

?

∑不是范数,不满足三角不等式。

为例,令()()1,0,0,1x y ==则1,4x y x y ==+=

13.试证明(1)C 、0C 和0l 都是l ∞的线性空间,其中C 是收敛数列集;0C 是收敛数列0的数列集;0l 是只有有限个元素的数列集。 (2)0C 还是l ∞的闭子空间,从而是完备的。 (3)0l 不是l ∞的闭子空间。 证明:

(2)设()12,0,...x x x C =∈,()()

()12

,,...n n n x x x =,使得 ()n n x x →∞→.则有任意的0ε>,N ?使得对于一切j ,

当,时有

,又因为,所以当时

从而有

于是,故

14.试证在赋范线性空间中,级数的收敛性,并不蕴含

级数的收敛性。

令,则,且

于是,收敛

15.设是赋范线性空间,若级数的绝对收敛性蕴含着级数的收敛性,则是完备的。

证:设{X

n }是X中任一Cauchy列,则?k∈N,?n

k

,s.t.当m,

n≥n

k 时,k-

<2

S-

S

m

n

而且对一切的k,可选取n

1

k+>n

k

,从而{S

nk

}是{S

n

}的一个子列,

并且令X 1=S 1n ,X k =S n -S nk ,则{S nk }是级数k X ∑的部分和序列,从而

12X 12

)1(112

1k +=+=+-=∑∑∑∞

=--∞

=-X X X S S k k k k k

于是k X ∑绝对收敛,故k X ∑收敛。

不妨设S nk →S ∈X ,由于{X n }是Cauchy 列,故

0S n →-+-≤-S S S S S nk nk n

又由于{S n }是任意的,故证明X 是完备的。

17.设(X ,1?)和(X ,2?)是赋范线性空间,试证明其Descarts 积X=X 1*X 2在定义范数X =max{11X ,22X }后也成为赋范线性空间。

证:(1)X =0?11X =22X =0?X=(0,0)=Θ

(2)X α=max{11X α,22X α}=αmax{11X ,22X }=αX (3)设X=(X 1,X 2),y=(y 1,y 2),则 }y x y x max{y x 222111++=+,

y

+=+≤++≤x }y ,y max{}x ,x max{}y x ,y x max{2211221122221111

20.(1)若?和?0是X 上任意两个等价范数,试证明(X ,?)和(X ,?0)中的Cauthy 序列相同 (2)试证明习题10中的三个范数等价 证:设{X n }是(X ,?)中的任一Cauthy 序列,即 0>?ε,∈?N N ,当n ,m>N 时,ε

由于?和?0是X 上任意两个等价范数,所以存在正数a ,b 使a ?≤?0≤b ? (*) 于是当n ≥m>N 时,有

εb x b x m m <-≤-n 0n x x

即x n 是(X ,?0)中的Cauthy 序列。

反之,若{x n }是(X ,?0)中的Cauthy 序列,则由(*)左边不等式,可证{x n }

是(X ,?)中的Cauthy 序列。

(2)R n 是有限维赋范线性空间,其上的范数都是等价的。

20 (2)的直接证明:

证明在中,范数1?、2?和∞?等价,其中

11n

i

i x x ==∑;12221

()n

i

i x x ==∑;max i

x i x ∞=

证 1

2

2

max

i i

x i x ≤,

∴2x x ∞∞≤≤, 故2?和∞?等价。

2 由Cauchy-Schwart 不等式,得,

1112

2

2

2

2

1

1

1

1

()(1))n n

n

n

i i i i i i i x x x ====≤=∑∑∑∑

故有

12x ≤

再有 112222

211

1

()[()]n

n

i

i i i x x x x ===≤=∑∑

我们得

121x x ≤≤ 故1?与2?等价

29. 若T :()D T Y →是可逆的线性算子,x 1,...,x n 是线性无关的,试正明1Tx ,...,n Tx 也是线性无关的.

证:若存在λ1,...,λn ∈Ф且不全为零,使得 11...0n n Tx Tx λλ++=,

则由于1T -存在且为线性的,故

1T -()1111......0n n n n Tx Tx x Tx λλλλ++=++=,

与x 1,...,x n 线性无关矛盾。

32.若T θ≠是有界性算子,试证明对满足1x <的任意()x D T ∈,都有Tx T <.

思路:由Tx T x ≤即证结论。

33.设Τ:

使得21,

,...2x Tx x ??

= ???

,试证明(),.T B l l ∞∞∈ 证:设()12,,...,,...n x x x x =,()12,,...,,...n y y y y =,则

()

()1211211222122211211212221121,,...,,...,,...,,...22,,...,,...22n n n n T x y T x y x y x y x y x y x y n n x y x y αααααααααααααααα+=+++??

=+++ ?

??????

=+ ? ?

????

=2211χαχαT +T 从而T 是线性算子.

χ

χχχ=≤=T n n

n

n

n

sup sup

,

所以()1,,≤T B ∈T ∞∞且l l . 进一步可以证明1=T .

37.设[][]1

1

:0,10,1,T C C →使得()()[]0,0,1.t

Tx t x d t ττ=∈?

(1)试求()R T 和()[]11:0,1;T R T C -→ (2)试问()[]()11,0,1T B R T C -∈吗?

(1)()R T 是满足()00y =且在[]0,1上连续可微分的函数构成的

[]10,1C 的子空间,且()[]1',0,1T y y t t -=∈。

(2)1T -是线性的,但是无界的。 事实上,()1'n n t n t -=,蕴含着1

T n -≥

38.在C[0,1]上分别定义10

()()Sx t t x s ds =?和()()Tx t tx t = (1)试问S 和T 是可交换的吗? (2)试求Sx ,Tx ,STx 和TSx 修改S ,T ,ST ,TS

(1)1

0()(())()ST x S tx t t sx s ds ==?, 1

1

2

00

()(())()TS x T t x s ds t x s ds ==??

,

故ST

TS ≠,S

和T 不是可交换的。

(2)1

0Sx xds x ≤=?, 所以1S ≤ 令1x ≡,[0,1]t ∈ 则1sx s x s =≤= 于是1S = 类似可求:1T =,1

2

ST =

,1TS =。

39.在()X B R =上定义范数

s u p ()

t R

x x t ∈=,并设T :

X X

→使得

()()

T x t x t τ=-,其中0τ>试证明(,)T B X X ∈。 证: X y x ∈?,,则

T (+x α1y α2)=x α1(t-τ)+α2y(t-τ)=Ty Tx αα21+, 即 T 是线性算子

Tx =sup R

t ∈)(τ-t x =sup R

t ∈)(t x =x ,

∴1=T

40、证明下列在C []b a ,上定义的泛函是有界线性泛函: (1)

dt t t x x b

a

o

y f

)()()(1

?=,[]b a C y ,0

∈固定;

(2)固定R b x a x x f ∈+=βαβα,),()()(2 证: (1)线性性略

令B=[]

max ,t b a ∈)(0t y =

y 0

则有 dx x B x b

a

f

?≤)(1

=B (b-a )x ,

故有

f

1

≤B (b-a )

(2)略

41、设[]11,1C -上的线性泛函f 定义为

??-=-1

1

)()()(dt t x dt t x x f ,试求f

解:[]11,1x C ?∈-, ()()0

1

1

2f x x

dt dt x -≤

+=??,

所以2f ≤,

取()1n

x t t =,n 为正奇数,[]1,1t ∈-则1x =, ()1110

1

1

1

1222

11

1n

n

n

n

f x t dt t dt t dt f n n

-=

-===

≤++?

??

由于2sup

21

n

n =+,故2f ≥. 综上所述,2f =。 44.

(1)在[]11,1C -上定义[]

()[]

()',,max max t a b t a b

x x t x t ∈∈=+, 试证明?是[]11,1C -中的范数。 (2)试证明()()'2a b f x x c c +??==

??

?

在[]1

,C a b 上定义了有界线性泛函。 (3)试证明视[]1,C a b 为[]1,C a b 的子空间时,上面定义的f 不再是

有界的。

证:(1)仅证三角不等式

''

''≤≤∣x +y ∣=max ∣x(t)+y(t)∣+max ∣x(t)+y(t)∣

max ∣x(t)∣+max ∣y(t)∣+max ∣x(t)∣+max ∣y(t)∣ ∣x ∣+∣y ∣

(2)仅证有界性

''()max max c ≤≤∣f(x)∣=x ∣x(t)∣+∣x(t)∣=∣x ∣,

∣f ∣1

(3)当1[,]c a b 视为[],c a b 的子空间时,(2)中的f 不再是有界的,此时[]1,,sup ().x c a b x x t ?∈=对每个n N ∈,都存在[]1,n x c a b ∈,使得

'()1n x c =且1

max ()n x t n

<

于是,便有

'()()()

sup max ()

n n n t

x c f x f x n x x x t ≥=>

泛函分析答案

泛函分析答案: 1、 所有元素均为0的n ×n 矩阵 2、 设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。 3、 设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。 4、 设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的 λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。 5、 设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件: (1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x) (3) 三角不等式:d(x,y)≤d(x,z)+d(y,z) for every x,y,z ∈E n 维欧几里德空间常用距离定义: 】 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }T d 2(x,y)=( 21 ||n i i i x y =-∑)1/2 d 1(x,y)=1 ||n i i i x y =-∑ d p (x,y) = ( 1 ||n p i i i x y =-∑ )1/p d ∞(x,y)=1max ||i i i n x y ≤≤- 6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)0(n ∞),这时记作 0lim n n x x -->∞ =,或 简单地记作x n x 0 7、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iff x=0 (2)||λx||=λ||x||,λ为常数 (3)||x+y||≤||x||+||y||,for every x,y ∈E 8、设E 为线性赋范空间,{x n }∞ n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。若E 的基本列的收敛元仍属于E ,则称E 为完备的线性赋范空间,即为Banach 空间。线性赋范空间中的基本列不一定收敛。 9、有限维的线性赋范空间必然完备,所以它必定是Banach 空间。 $ 10、如果内积空间能在由内积诱导的赋范空间完备,则此内积空间称为Hilbert 空间。 11、L 2(a,b )为定义在(a,b)上平方可积函数空间,即设f(t)∈L 2(a,b ), 2|()|b a f t dt ? <∞。 当 L 2(a,b )中内积的定义为(f,g )= _____ ()()b a f t g t dt ? (其中f(t),g(t)∈L 2(a,b ))时其为Hilbert 空间。 ★ 12、算子表示一种作用,一种映射。设X 和Y 是给定的两个线性赋范空间,集合D ?X , 若对D 中的每一个x ,均有Y 中的一个确定的变量y 与其对应,则说这种对应关系确定

(完整word版)泛函分析习题标准答案

第二章 度量空间 作业题答案提示 1、 试问在R 上,()()2,x y x y ρ=- 能定义度量吗? 答:不能,因为三角不等式不成立。如取 则有(),4x y ρ=,而(),1x z ρ=,(),1z x ρ= 2、 试证明:(1)()1 2 ,x y x y ρ= -;(2)(),1x y x y x y ρ-= +-在R 上都定 义了度量。 证:(1)仅证明三角不等式。注意到 2 11 22x y x z z y x z z y ?? -≤-+-≤-+- ? ?? 故有1 112 22 x y x z z y -≤-+- (2)仅证明三角不等式 易证函数()1x x x ?=+在R +上是单调增加的, 所 以 有 ()() a b a b ??+≤+,从而有 1111a b a b a b a b a b a b ++≤≤+ ++++++ 令,,x y z R ?∈,令,a z x b y z =-=- 即111y x z x y z y x z x y z ---≤+ +-+-+-

4.试证明在[]b a C ,1 上,)12.3.2()()(),(?-=b a dt t y t x y x ρ 定义了度量。 证:(1)0)()(0),(≡-?=t y t x y x ρ(因为x,y 是连续函数) 0),(≥y x ρ及),(),(x y y x ρρ=显然成立。 []) ,(),()()()()()()()()()()(),()2(y z z x dt t y t z dt t z t x dt t y t z dt t z t x dt t y t x y x b a b a b a b a ρρρ+≤-+-≤-+-≤-=???? 5.试由Cauchy-Schwarz 不等式证明 ∑∑==≤?? ? ??n i i n i i x n x 12 2 1 证:∑∑∑∑=====?≤?? ? ??n i i n i n i i n i i x n x x 12 12 122 11 8.试证明下列各式都在度量空间()11,ρR 和()21,R R 的Descartes 积 21R R R ?=上定义了度量 {}2 12/1222121,max ~~)3(;)(~)2(;)1(ρρρρρρρρρ=+=+= 证:仅证三角不等式。(1)略。 (2) 设12(,)x x x =,12(,)y y y =12R R ∈?,则

泛函分析答案

泛函分析答案: 1、所有元素均为0的n ×n 矩阵 2、设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。 3、设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。 4、设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。 5、设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件: (1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x) (3) 三角不等式:d(x,y)≤d(x,z)+d(y,z)foreveryx,y,z ∈E n 维欧几里德空间常用距离定义: 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }T d 2(x,y)=(21 ||n i i i x y =-∑)1/2 d 1(x,y)=1 ||n i i i x y =-∑ d p (x,y)=(1 ||n p i i i x y =-∑)1/p d ∞(x,y)=1max ||i i i n x y ≤≤- 6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)?0(n ?∞),这时记作 0lim n n x x -->∞ =,或简单地记作x n ?x 0 7、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iffx=0 (2)||λx||=λ||x||,λ为常数 (3)||x+y||≤||x||+||y||,foreveryx,y ∈E 8、设E 为线性赋范空间,{x n }∞n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。若E 的基本列的收敛元仍属于E ,则称E 为完备的线性赋范空间,即为Banach 空间。线性赋范空间中的基本列不一定收敛。 9、有限维的线性赋范空间必然完备,所以它必定是Banach 空间。 10、如果内积空间能在由内积诱导的赋范空间完备,则此内积空间称为Hilbert 空间。 11、L 2 (a,b )为定义在(a,b)上平方可积函数空间,即设f(t)∈L 2 (a,b ),2|()|b a f t dt ?<∞。

应用泛函分析相关习题.doc

泛函分析练习题 一?名词解释: 1.范数与线性赋范空间 2.无处稠密子集与第一纲集 3.紧集与相对紧集 4.开映射 5.共貌算子 6.内点、内部: 7.线性算子、线性范函: 8.自然嵌入算子 9.共貌算子 10.内积与内积空间: 11.弱有界集: 12.紧算子: 13.凸集 14.有界集 15.距离 16.可分 17.Cauchy 列 18.自反空间 二、定理叙述 1、压缩映射原理 2.共鸣定理 3.逆算子定理 4.闭图像定理 5.实空间上的Hahn-Banach延拓定理 6、Bai re纲定理 7、开映射定理 8、Riesz表现定理 三证明题: 1.若(x,p)是度量空间,则d = d也使X成为度量空间。 1 + Q 证明:Vx,y,zcX 显然有(1)d(x, y) > 0 ,日3,),)= 0当且仅当x = (2) d(x9y) = d(y,x) (3)由/(/) = — = !一一, (/>0)关于,单调递增,得 1+,1+r d(x, z) = PE < Q(x,.y)+Q(y,z)

' 1 + Q(x, z) 一1 + p(x, y) + Q(y, z) 匕Q(x,)') | Q()',z) 一1 + Q(3)1+ /?(),, z) = d(x,y) + d(y,z) 故』也是X上的度量。 2,设H是内积空间,天则当尤〃—尤,乂T y时"(七,月)t (寻),),即内积关于两变元连续。 证明:| (% X,)一(x, y) I2 =| (x/t - x, >; - y)\2<\\x n-x\\-\\y tt-y\\ 己知即II七一尤II—0,|| 乂一>||—0。 故有I ,以)一(x, y)『—。 即Cw〃)T(x,y)。 5.设7x(r) = 若T是从心[0,1]-匕[0,1]的算子,计算||T||;若T是从 ZJ0,1]T ZJ0,1]的算子再求1171。 解:(1)当T是从ZJ0,l]—匕[0,1]的算子。 取x&)=同,贝j]||x()||2=1>||片)川=[后广出=*. 所以||T||>-^e 故有11『11=±? (2)当T是从ZJ0,1]T ZJ0,1]的算子时 ||八||2=(。誓⑴力度严=nxii2 Vn,(!--

泛函分析习题解答

第七章 习题解答 1.设(X ,d )为一度量空间,令 }),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U 问),(0εx U 的闭包是否等于),(0εx S ? 解 不一定。例如离散空间(X ,d )。)1,(0x U ={0x },而)1,(0x S =X 。 因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。 2. 设 ],[b a C ∞是区间],[b a 上无限次可微函数的全体,定义 证明],[b a C ∞按),(g f d 成度量空间。 证明 (1)若),(g f d =0,则) ()(1)()(max ) () ()()(t g t f t g t f r r r r b t a -+-≤≤=0,即f=g (2))()(1)()(max 2 1 ),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞ =∑ =d (f ,g )+d (g ,h ) 因此],[b a C ∞按),(g f d 成度量空间。 3. 设B 是度量空间X 中的闭集,证明必有一列开集ΛΛn o o o 21,包含B ,而且B o n n =?∞ =1 。 证明 令n n n o n n B x d Bo o .2,1},1 ),({K =<==是开集:设n o x ∈0,则存在B x ∈1,使 n x x d 1),(10<。设,0),(1 10>-=x x d n δ则易验证n o x U ?),(0δ,这就证明了n o 是 开集 显然B o n n ??∞=1 。若n n o x ∞ =?∈1 则对每一个n ,有B x n ∈使n x x d 1 ),(1< ,因此

泛函分析习题解答

第一章 练习题 1. 记([,])C a b 是闭区间[,]a b 上连续函数全体构成的集合, 在([,])C a b 上定义距离如下: (,)|()()|,,([,])b a f g f x g x dx f g C a b ρ=-?∈?, (1)([,])C a b 按ρ是否完备? (2)(([,]),)C a b ρ的完备化空间是什么? 答:(1) 不完备, 例如对于[,][0,2]a b =以及1,2, n =,定义 ,01, ():1,1 2. n n x x f x x ?≤<=? ≤≤? 则{()}([0,2])n f x C ?在本题所定义的距离的意义下是Cauchy 列, 因为 1 11 (,)|()()|110,(,).11 n m n m n m f f f x f x dx x dx x dx m n n m ρ=-≤+= +→→∞++??? 另一方面, 点列{()}n f x 并不能在本题所定义的距离的意义下收敛到([0,2])C 中的某个元. 事实上, 在几乎处处收敛的意义下, 我们有 0,[0,1) ()()1,[1,2].n x f x g x x ∈?→=? ∈? 因此, 根据Lebesgue 有界收敛定理, 可以得到 1 1 1 00(,)|()()|1 |0|0.1 n n n n f g f x g x dx x dx x dx n ρ=-=-==→+??? 但()([0,2])g x C ?. (2) ([,])C a b 的完备化空间是1 ([,])L a b . 因为 (i) 在距离ρ的意义下, ([,])C a b 是1 ([,])L a b 的稠密子集. 事实上, 任意取定一个 1()([,])f x L a b ∈, 需要证明: 对于任意的0ε>, 存在()[,]g x C a b ∈, 使得 [,] (,)|()()|a b f g f x g x dx ρε=-, 使得当[,]E a b ?, 只要mE δ<, 就有

应用泛函分析相关习题

泛函分析练习题 一名词解释: 1.范数与线性赋范空间 2.无处稠密子集与第一纲集 3.紧集与相对紧集 4.开映射 5.共轭算子 6. 内点、内部: 7. 线性算子、线性范函: 8. 自然嵌入算子 9. 共轭算子 10. 内积与内积空间: 11. 弱有界集: 12. 紧算子: 13. 凸集 14. 有界集 15. 距离 16. 可分 17. Cauchy 列 18.自反空间 二、定理叙述 1、 压缩映射原理 2. 共鸣定理 3.逆算子定理 4. 闭图像定理 5.实空间上的Hahn-Banach 延拓定理 6、Baire 纲定理 7、开映射定理 8、Riesz 表现定理 三证明题: 1.若(,)x ρ是度量空间,则1d ρρ= +也使X 成为度量空间。 证明:,,x y z X ?∈ 显然有 (1)(,)0d x y ≥,(,)0d x y =当且仅当x y =。 (2)(,)(,)d x y d y x = (3)由1()111t f t t t = =-++,(0)t >关于t 单调递增,得 (,)(,)(,)(,)1(,)1(,)(,) x z x y y z d x z x z x y y z ρρρρρρ+=≤+++

(,)(,)1(,)1(,) x y y z x y y z ρρρρ≤+++ (,)(,)d x y d y z =+ 故d 也是X 上的度量。 2, 设H 是内积空间,,,,n n x x y y H ∈,则当,n n x x y y →→时,(,)(,)n n x y x y →,即内积关于两变元连续。 证明:22|(,)(,)||(,)|||||||||n n n n n n x y x y x x y y x x y y -=--≤-?- 已知 ,n n x x y y →→,即||||0,||||0n n x x y y -→-→。 故有 2|(,)(,)|0n n x y x y -→ 即 (,)(,)n n x y x y →。 5.设2()(),Tx t t x t =若T 是从21[0,1][0,1]L L →的算子,计算||||;T 若T 是从 22[0,1][0,1]L L →的算子再求||||T 。 解:(1)当T 是从21[0,1][0,1]L L →的算子。 1 2 10|||||()|Tx t x t dt =?≤? 所以 |||| T ≤。 取2 0()x t =,则02|||| 1.x = 4010||||Tx dt ==? 所以 |||| T ≥。 故有 |||. T = (2)当T 是从22[0,1][0,1]L L →的算子时 11 421/221/22200||||(())(())||||Tx t x t dt x t dt x =≤=?? 所以 |||| 1.T ≤

电子科技大学 泛函分析(江泽坚) 作业题答案

P46: 第一章习题: 1.验证(),()d m 满足距离定义。 解:设{}i x ξ=,{}i y η=属于X ,α是数,()1 ,sup .j j j d x y ξη≥=- (1)对j ?,有0j j ξη-≥,所以1 sup j j j ξη≥-,(),0d x y ≥, 且1 sup 00j j j j j j j ξηξηξη≥-=? -=?=,即(),0d x y =当且仅当.x y = (2) ()()1 1 ,sup sup ,j j j j j j d x y d y x ξηηξ≥≥=-=-=; (3)设{}i z ζ= ()()1 1 1 1 ,sup sup ()()sup sup ,(,) j j j j j j j j j j j j j j d x z d x y d y z ξζηξξζηξξζ≥≥≥≥=-≤-+-≤-+-=+综上(1),(2),(3),(),d 满足距离定义。 3.试证明:在空间()s 中的收敛等价于坐标收敛。 证:设{}()(),1,2, n n j x s n ξ= ∈=,{}()(0)0j x s ξ= ∈, ()?若0n x x →,则必有()(0)lim ,1,2,n j j n j ξξ→∞ ==, 否则,j N + ?∈,00ε>,与正整数列的子序列{}1k k n ∞ =,使()(0) 0,1,2, k n j j k ξξε-≥=, 因为()1t f t t = +是单调递增, 所以() ()(0)0 0()(0)011,,1,2,2211k k k n j j n j j n j j d x x k ξξεεξξ-≥?≥?=++-, 这与() 0,0k n d x x →矛盾, 故()s 中的收敛可推出坐标收敛。 ()?若()(0)lim ,1,2,n j j n j ξξ→∞==,则对j ?,0ε?>,0N N + ?∈,0n N ?>, ()(0)2 n j j ε ξξ-<, ()() (0) 0()(0) 1111,,1,2,22 11n j j n j j n j j j j d x x k ξξε εξξ∞ ∞==-=?

最新泛函分析考试题集与答案

泛函分析复习题2012 1.在实数轴R 上,令p y x y x d ||),(-=,当p 为何值时,R 是度量 空间,p 为何值时,R 是赋范空间。 解:若R 是度量空间,所以R z y x ∈?,,,必须有: ),(),(),(z y d y x d z x d +≤成立 即p p p z y y x z x ||||||-+-≤-,取1,0,1-===z y x , 有2112=+≤p p p ,所以,1≤p 若R 是赋范空间,p x x x d ||||||)0,(==,所以R k x ∈?,, 必须有:||||||||||x k kx ?=成立,即p p x k kx ||||||=,1=p , 当1≤p 时,若R 是度量空间,1=p 时,若R 是赋范空间。 2.若),(d X 是度量空间,则)1,m in(1d d =,d d d +=12也是使X 成为度量空间。 解:由于),(d X 是度量空间,所以X z y x ∈?,,有: 1)0),(≥y x d ,因此0)1),,(m in(),(1≥=y x d y x d 和0) ,(1) ,(),(2≥+= y x d y x d y x d 且当y x =时0),(=y x d , 于是0)1),,(m in(),(1==y x d y x d 和0) ,(1) ,(),(2=+=y x d y x d y x d 以及若

0)1),,(m in(),(1==y x d y x d 或0) ,(1) ,(),(2=+= y x d y x d y x d 均有0),(=y x d 成立,于是y x =成立 2)),(),(y x d x y d =, 因此),()1),,(m in()1),,(m in(),(11y x d y x d x y d x y d === 和),() ,(1) ,(),(1),(),(22y x d y x d y x d x y d x y d x y d =+=+= 3)),(),(),(z y d y x d z x d +≤,因此 }1),,(),(m in{)1),,(m in(),(1z y d y x d z x d z x d +≤= ),(),()1),,(m in()1),,(m in(11z y d y x d z y d y x d +=+≤ 以及设x x x f += 1)(,0)1(1)(2 >+='x x f ,所以)(x f 单增, 所以) ,(),(1),(),(),(1),(),(2z y d y x d z y d y x d z x d z x d z x d +++≤+= ),(),(1) ,(),(),(1),(z y d y x d z y d z y d y x d y x d +++++= ),(),() ,(1) ,(),(1),(22z y d y x d z y d z y d y x d y x d +=+++≤ 综上所述)1,m in(1d d =和d d d += 12均满足度量空间的三条件, 故),(1y x d 和),(2y x d 均使X 成为度量空间。

泛函分析试题一

泛函分析试题一 一、叙述问答题(第1小题18分,第小题20分,共38分) 1 叙述赋范线性空间的定义并回答下列问题. 设)||||,(11?E 和)||||,(22?E 是赋范线性空间, E 是1E 和2E 的直接和. 对任意E x ∈,定义 2211||||||||||||x x x +=, 其中),(21x x x =,11E x ∈, 22E x ∈. 验证||)||,(?E 为一个赋范线性空间. 2 叙述共鸣定理并回答下列问题. 设}{n T ),2,1( =n 是从Banach 空间E 到Banach 空间1E 上的有界线性算子列, 如果对E x ∈?, }{x T n 是1E 中的基本点列. 问: 是否存在),(1E E T β∈, 使得}{n T 按强算子拓扑收敛于T ? 如果存在, 给出证明, 如果不存在, 试举出反例. 二、证明题 (第1小题10分,第2小题15分,第3小题17分,共42分) 1. 设)(x f 是从距离空间X 到距离空间1X 中的连续映射,A 在X 中稠密,证明)(A f 在1X 中稠密. 2. 设),(ρX 为完备距离空间, A 是从X 到X 中的映射. 记 ),(),(sup 111 x x x A x A n n x x n ρρα≠=, 若级数+∞<∑+∞ =n n α1, 则A 在X 中存在唯一不动点. 3. 设H 是内积空间, H N M ?,, L 是M 和N 张成的线性子空间, 证明: ⊥⊥⊥=N M L . 三、应用题 (20分) 设),(t s K 在b s a b t a ≤≤≤≤,上连续, 试证明由ds t x s t K t Tx b a )(),())((?=定义的

泛函分析试题

1. 对于积分方程 ()()() 1 t s x t e x t ds y t λ--=?为一给定的函数,λ为 常数,1λ<,求证存在唯一解()[]0,1x t ∈。 2. 设s 为一切实(或复)数列组成的集合,在s 中定义距离为 ()11,21+k k k k k k x y ξηρξη=-=-∑,其中, ()() 11,,,=,,n n x y ξξηη=??????。求证s 为 一完备的距离空间。 3. 在完备的度量空间(),x ρ中给定点列{}n x ,如果任意的0ε>, 存在基本列{}n y ,使(),0n n x y ρ<。求证{}n x 收敛。 4. 证明内积空间()(),,x 是严格凸的* B 空间 5. 为了()F C M ?使一个列紧集,必须且仅需F 是一致有界的 且等度连续的函数族。 6. 设 () ,A x y ?∈,求证(1). 1 sup x A AX ≤=,(2 ) 1 sup x A AX <=。 7. 设X 是一个Hilbert 空间,(),a x y 是X 上的共轭双线性函数, 并存在0M >,使得( ),a x y M x y ≤,则存在唯一的()A x ?∈, 使得 ()() ,,a x y x Ay =且 ()(),0,0 ,sup x y X X x y a x y A x y ∈?≠≠=。 8. 求证()2f L ?∈Ω,方程() 0u f u ?Ω?-?=Ω?? =??在内若解存在唯一。 9. 设X 是复线性空间,P 是X 上的半模,()00,0x X x ρ?∈≠。求 证存在X 上的线性泛函f 满足()()01.1f x =,()()() ()02.x f x x ρρ≤ 。 10. 叙述开映象定理并给出证明。 11. 叙述共鸣定理并给出证明。

泛函分析答案2:

泛函分析期末复习题(2005-2006年度) (1)所有矩阵可以构成一个线性空间。试问这个线性空间中的零元素是什么? (2)什么是线性空间的子空间?子空间是否一定包含零元素?为什么? (3)什么是线性流形? (4)什么是线性空间中的凸集? (5)如果一个度量能够成为一个线性空间上定义的距离,那么这个度量必须满足什么条件?试给出几个在维欧几里德空间上常用的距离定义 (6)距离空间上的收敛是如何定义的? (7)线性空间上定义的范数必须满足哪些条件? (8)什么是巴拿赫空间?赋范空间中的基本列一定收敛吗? (9)有限维的线性赋范空间都是巴拿赫空间吗? (10)什么是希尔伯特空间? (11)空间是如何构成的?在怎样的内积定义下其可以成为一个希尔伯特空间?(12)什么是算子?为什么要求算子的定义域是一个子空间? (13)算子的范数是如何定义的?从直观角度谈谈对算子范数定义的理解。 (14)线性算子的零空间一定是值域空间中的子空间吗? (15)什么是有界算子?举一个无界算子的例子。 (16)算子的强收敛是如何定义的? (17)设为一个线性赋范空间,而为一个Banach空间。那么从到的线性算子所构成的空间是否构成一个Banach空间? (18)什么是压缩映像原理?它在力学中有什么重要应用? (19)什么是泛函?什么是泛函的范数? (20)什么是线性赋泛空间的共轭空间?线性赋泛空间的共轭空间是否总是完备的?(21)什么是弱收敛?弱收敛与强收敛之间是什么关系? (22)什么是的Gateaux微分? (23)什么是泛函的(一阶)变分?它是如何定义的? (24)形如的泛函,其对应的Euler-Lagrange方程是什么? (25)什么是结构的应变能密度?什么是余能密度?二者关系如何?试画图说明。(26)有限元方法的本质是什么?瑞兹+具有局部紧支集的分片插值函数 (27)什么是最小势能原理?最小势能原理中的基本未知函数是什么?对这些基本未知函数有什么要求?推导并证明使得势能泛函取最小值的位移函数对应结构真实的位移场。(28)什么是最小余能原理?最小余能原理中的基本未知函数是什么?对这些基本未知函数有什么要求?推导并证明使得余能泛函取最小值的位移函数对应结构真实的应力场。(29)什么是Hellinger-Reissner混合变分原理?推导并证明使得余能泛函取最小值的位移函数和应力函数对应结构真实的位移场和应力场。

泛函分析答案

泛函分析题1_3列紧集p19 1.3.1 在完备的度量空间中,求证:为了子集A是列紧的,其充分必要条件是对?ε > 0,存在A的列紧的ε网. 证明:(1) 若子集A是列紧的,由Hausdorff定理, ?ε > 0,存在A的有限ε网N. 而有限集是列紧的,故存在A的列紧的ε网N. (2) 若?ε > 0,存在A的列紧的ε/2网B. 因B列紧,由Hausdorff定理,存在B的有限ε/2网C. 因C ?B ?A,故C为A的有限ε网. 因空间是完备的,再用Hausdorff定理,知A是列紧的. 1.3.2 在度量空间中,求证:紧集上的连续函数必是有界的,并且能达到它的上、下确界. 证明:设(X, ρ)是度量空间,D是紧子集,f : D→ 是连续函数. (1) 若f无上界,则?n∈ +,存在x n∈D,使得f (x n) > 1/n. 因D是紧集,故D是自列紧的. 所以{x n}存在收敛子列x n(k) →x0∈D (k→∞). 由f的连续性,f (x n(k))→f (x0) (k→∞). 但由f (x n) > 1/n知f (x n)→ +∞(n→∞), 所以 f (x n(k))→ +∞ (k→∞),矛盾. 故f有上界.同理,故f有下界. (2) 设M = sup x∈D f(x),则?n∈ +,存在y n∈D,使得f (y n) > M- 1/n. {y n}存在子列y n(k) →y0∈D (k→∞). 因此f ( y0 ) ≥M. 而根据M的定义,又有f ( y0 ) ≤M. 所以f ( y0 ) = M.因此f能达到它的上确界. 同理,f能达到它的下确界. 1.3.3 在度量空间中,求证:完全有界的集合是有界的,并通过考虑l 2的子集E = {e k }k≥ 1,其中e k = { 0, 0, ..., 1, 0, ... } (只是第k个坐标为1,其余都是0 ),来说明一个集合可以是有界的但不完全有界的. 证明:(1) 若A是度量空间(X, ρ)中的完全有界集. 则存在A的有限1-网N = { x0, x1, x2, ..., x n }. 令R = ∑1 ≤j≤nρ(x0, x j) + 1. 则?x∈A,存在某个j使得0 ≤j≤n,且ρ(x, x j) < 1. 因此,ρ(x, x0) ≤ρ(x, x j) + ρ(x j, x0) ≤ 1 + ∑1 ≤j≤nρ(x0, x j) = R. 所以A是度量空间(X, ρ)中的有界集. (2) 注意到ρ(e k , e j) = 21/2 ( ?k ≠ j ), 故E中任意点列都不是Cauchy列. 所以,E中任意点列都没有收敛子列(否则,该收敛子列就是Cauchy列,矛盾).

应用泛函分析习题解答

1 泛函分析与应用-国防科技大学 第 一 章 第 一 节 3.设}{k x 是赋范空间E 中的Cauchy 列,证明}{k x 有界,即∞?ε,0N ?,当0,N n m >时,有εε<-?<-m n m n x x x x ,不妨设m n x x ≥,则0, ,N n m x x m n >+<ε。取0N m =,则有 0 ,0N n x x N n >+<ε, 令},,,,max{0021ε+=N N x x x x c ,则 1 ,≥?ε,总0N ?,当0,N p n ≥时,有 ε<-+n p n y y ,所以}{n y 是E 中的Cauchy 列,又因为E 是Banach 空间,则必 存在E ∈x ,使得∑∑∞ ==∞ →==1 1 lim k k n k k n x x x 。 9.(Hamel 基)设A 是线性空间E 的非空子集,若A 中任意多个元素都是线性无关的,则称A 是线性无关的。若A 是线性无关的,且E =A span ,则称A 是E 是的一个Hamel 基。此时若A 是无穷集,则称E 是无穷维的;若A 是有限集,则称E 是有限维的,并定义E 的维数为A 中所含有的元素个数。通常用E dim 表示 E 的维数, 并约定当}0{=E 时,0dim =E ,可以证明任何线性空间都存在Hamel 基。证明酉空间n C 的维数为n ,并问当视n C 为实线性空间时,其维数是多少? 证明:设n y x C ∈,,C ∈βα,, 则有n y x C ∈+βα。令)0,0,1,0,0( 项 共项 第n k k =e ,则对任意的),,(21n x x x x =,必有∑==n k k k x x 1 e ,因此},,,{21n e e e 是空间n C 的基,则n n =C dim 。 当视n C 为实线性空间时,可令基为},,,,,{11n n i i e e e e ,则对任意的 ) ,,(21n x x x x =,有 ∑∑==+=n k k k n k k k i x g x x 1 1 ) )((Im )Re(e e ,所以 n n 2dim =C 。 10.证明∞=],[dim b a C ,这里b a <。 证明:取],[,0,)(b a t k t t x k k ∈≥=,只需证},,{10 x x 线性无关。为此对 0≥?n ,令01 =∑=n k k k x c 。则00!01 =?=?=∑=n n n n k k k c c n x c 次求导 。因此必有 01 1 =∑-=n k k k x c ,求该式求1-n 导后有00)!1(11=?=---n n c c n 。依次类推,有 001====-c c c n n ,所以对任意的0≥n ,都有},,{10n x x x 线性无关,即∞=],[dim b a C 。 第 二 节 2.(点到集合的距离)设A 是E 的非空子集,E ∈x 。定义x 到A 的距离为: }|inf{),(A A ∈-=y x y x d 证明: 1) x 是A 的内点?0),(>c x d A ; 2) x 是A 的孤立点?A ∈x ,且0}){\,(>x x d A ; 3) x 是A 的外点?0),(>A x d 。 解: 1)必要性: x 是 A 的内点 内点的定义 ?ε ?,使得

泛函分析第七章 习题解答125

第七章习题解答 1.设(X ,d )为一度量空间,令}),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U 问),(0εx U 的闭包是否等于),(0εx S ? 解不一定。例如离散空间(X ,d )。)1,(0x U ={0x },而)1,(0x S =X 。因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。 2.设],[b a C ∞ 是区间],[b a 上无限次可微函数的全体,定义 证明],[b a C ∞按),(g f d 成度量空间。 证明(1)若),(g f d =0,则) ()(1)()(max ) () ()()(t g t f t g t f r r r r b t a -+-≤≤=0,即f=g (2))()(1)()(max 21 ),()()()()(0 t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞ =∑ =d (f ,g )+d (g ,h ) 因此],[b a C ∞ 按),(g f d 成度量空间。 3. 设B 是度量空间X 中的闭集,证明必有一列开集 n o o o 21,包含B ,而且B o n n =?∞ =1。 证明令n n n o n n B x d Bo o .2,1},1 ),({ =<==是开集:设n o x ∈0,则存在B x ∈1,使n x x d 1 ),(10< 。设,0),(110>-=x x d n δ则易验证n o x U ?),(0δ,这就证明了n o 是开集 显然B o n n ??∞ =1 。若n n o x ∞ =?∈1则对每一个n ,有B x n ∈使n x x d 1 ),(1< ,因此)(∞?→??→? n x x n 。因B 是闭集,必有B x ∈,所以B o n n =?∞ =1 。 4.设d (x ,y )为空间X 上的距离,证明) ,(1) ,(),(___ y x d y x d y x d += 是X 上的距离。 证明(1)若0),(___ =y x d 则0),(=y x d ,必有x=y (2)因),(),(),(z y d z x d y x d +≤而 t t +1在),[∞o 上是单增函数,于是) ,(),(1) ,(),(),(),(1),(),(___ ___ z y d z x d z y d z x d y x d y x d y x d y x d +++=≤+=

泛函分析 曹广福版答案

21.试在2([1,1])L -中将函数231,,,,t t t L 进行正交化. 解: 根据Schmidt 正交化过程, 可取 0()1u t =, 01000(,)()()(,) t u u t t u t u u =- 1111 1111t dt t t dt --?=- =??? ; 2 2 2 102101100(,)(,)()()()(,) (,) t u t u u t t u t u t u u u u =- - 112 2 2 111 1 1 1 1111t tdt t dt t t t tdt dt ----??=- -??? ? ? ? 2 13 t =- ; L L 再单位化可得 000()()|||| u t e t u = = = ; 111()()|||| 2 u t e t u = = = ; 2 22221()1()|||| 43t u t e t t u - ? = = = -??? ; L L . 解二: 引入如下形式的Legendre 正交多项式: 2 1,0, ()(1),1,2,. k k k k k u t d t k dt =?? =?-=??L 我们断言{}0()k k u t ∞ =是2 ([1,1])L -中由2 3 1,,,,t t t L 直交 化所得到的直交函数列。 首先我们断言{}0()k k u t ∞ =是直交的. 事实上, 不失一 般性, 可设l k ≥. (i) 如果0k =, 显然有 1 001((),())2u t u t dt -= =?; 而对于1,2,l =L 1 201 ((),())(1)l l l l d u t u t t dt dt -= -? 1 12 1 1 (1) 0l l l d t dt ---= -=. (ii) 对于1k ≥, 根据定积分的分部积分法,可以得到 1 221 ((),())(1)(1)k l k l k l k l d d u t u t t t dt dt dt -= -? -? 1 12 21 1 (1)(1)k l k l k l d d t d t dt dt ---= -?-? 1 1221 1 (1) (1) l k l k l k d d t t dt dt ---=-- 1 1221 1 (1)(1)l k l k l k d d t d t dt dt -----?-? 1 222 222 2 1 (1) (1)(1)l k l k l k d d t t dt dt dt -+-+-=--? -? =L 1 221 (1) (1)(1)k l l l k k l d t t dt dt ++-=--? -? , (*) 当l k =时, 2222(1)(1)(2)!k l k k k k l k d d t t k dt dt ++-= -=, 因此 ((),())((),())k l k k u t u t u t u t = 12 1 (1) (1)(2)!k k t k dt -=--?? 1 20 (1)2(2)!(1)k k k t dt =--? /2 20 2(2)! (1sin )sin k k s d s π=-? /2 21 2(2)! cos k k sds π+=?

泛函分析习题解答

第 七 章 习 题 解 答 1.设(X ,d )为一度量空间,令 }),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U 问),(0εx U 的闭包是否等于),(0εx S ? 解 不一定。例如离散空间(X ,d )。)1,(0x U ={0x },而)1,(0x S =X 。 因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。 (23. n x 1)1<。设δ )∞。因B 4. 设d (x ,y )为空间X 上的距离,证明) ,(1) ,(),(___ y x d y x d y x d += 是X 上的距离。 证明 (1)若0),(___ =y x d 则0),(=y x d ,必有x=y (2)因),(),(),(z y d z x d y x d +≤而 t t +1在),[∞o 上是单增函数,于是) ,(),(1) ,(),(),(),(1),(),(___ ___ z y d z x d z y d z x d y x d y x d y x d y x d +++=≤+=

= ) ,(),(1) ,(),(),(1),(z y d z x d z y d z y d z x d z x d +++++ ) ,(1),(),(1),(z y d z y d z x d z x d +++≤=),(),(___ __z y d z x d +。 5. 证明点列{n f }按习题2中距离收敛与],[b a C f ∞ ∈的充要条件为n f 的各阶导数在 [a ,b]上一致收敛于f 的各阶导数。 证明 若{n f }按习题2中距离收敛与],[b a C f ∞ ∈,即 t a ≤ ∑∞ +=o r r 即d A={f|当t 上)(t f n 一致收敛于f (t )。设B t ∈,则0)(lim )(==∞ >-t f t f n n ,所以f ∈E ,这就证明了E 为闭集 充分性。当B 是闭集时,设f ∈A 。因f 在B 上连续而B 是有界闭集,必有B t ∈0,使 )(max )(0t f t f B t ∈=。设 0)(0>=-δt f a 。我们证明必有A f U ?),(δ。设),(δf U g ∈,则若B t ∈, 必有δ<-)()(t g t f ,于是a t f t f t g t f t g =+<+-≤)(||)(|)()(|)(|0δ,所以A g ∈,这样就证明了A 是开集 必要性。设A 是开集,要证明B 是闭集,只要证明对任意.....2,1,=∈n B t n 若0t t n >-)(∞?→? n ,

相关文档
相关文档 最新文档