文档库 最新最全的文档下载
当前位置:文档库 › 高一函数练习题集和答案解析

高一函数练习题集和答案解析

高一函数练习题集和答案解析
高一函数练习题集和答案解析

函数练习1 函数(一)

1. 下列各组函数中,表示相同函数的是 ( )

A f(x)=x 与 g(x)=x

x 2

B f(x)=|x| 与 g(x)=2x

C f(x)=12-x 与g(x)=1-x ? 1+x

D f(x)=x 0与g(x)=1

1. 函数y=x --113

的定义域为 ( )

A (-∞,1]

B (-∞,0) (0,1]

C (-∞,0) (0,1)

D [1,+ ∞)

2. 下列函数中值域是R +的是 ( )

A y=2x+1 (x>0)

B y=x 2

C y=11

2-x D y=x

2 3. 函数y=22++-x x 的定义域为__________,值域为_____________.

4. 已知f(x)=x 2+1,则f[f(-1)]=______________________

5. 求下列函数的定义域;

(1)y=x 1

11

+; (2)y=x x x -+||)1(0

7.用可围成32m 墙的砖头,沿一面旧墙围猪舍四间(其平面图为連成一排大小相同的四个长方形,如图),应怎样围,才能使猪舍的总面积最大?最大面积是多少?

函数练习2 函数(二)

1. 下面四个函数:(1)y=1-x (2) y=2x-1 (3) y=x 2-1 (4) y=

x

5,其中定义域与值域相同的函数有 ( )

A 1个

B 2个

C 3个

D 4个

2. 下列图象能作为函数图象的是 ( )

A B C D

3. (1)数集{x|4≤x<16}用区间表示为_________;(2)数集{x||x|≤3}用区间表示为_______;(3)数集{x|x ∈R ,

且x ≠0}用区间表示为_______;

4. 已知f(x)=??

???--3210x )0()0()0(<=>x x x ,求f{f[f(5)]}的值。

5. 已知f(x)的定义域为(0,1)求f(x 2)的定义域

6.若2f(x)+f(-x)=3x+1,求f(x)的解析式。

函数练习3 函数的单调性

1.若函数y=(2k+1)x+6在(-∞,+∞)上是减函数,则 ( )

A k>21

B k<21

C k>-21

D k <-2

1 2.函数y=-x 2+4x-7在区间(-1,3)上是 ( )

A 增函数

B 减函数

C 先是增函数后是减函数

D 先是减函数后是函数

3.函数y=x

1的单调区间是____________。 4.若函数y=-x 2+2px-1在(-∞,-1]上递增,则p 的取值围是________。

5.根据函数单调性的定义,证明函数f(x)=x 3

-1在(-∞,+∞)上是增函数。 6.函数f(x)=2x 2-mx+3,当x ∈[-2, +∞)时是增函数,当x ∈(-∞, -2)时是减函数,求f(1)的值。

7.画出函数y=|x 2-2x-3|的图象,并指出此函数的单调递增区间。

8.作出函数f(x)=962+-x x + 962++x x 的图像,并指出其单调区间。

9.如果二次函数f(x)=x 2-(a-1)x+5在区间(

21,1)上是增函数,求f(2)的取值围。 函数练习4 指数(一)

1.下列运算正确的是 ( )

A (-a 2)3=(-a 3)2

B (-a 2)3=-a 2+3

C (-a 2)3=a 2+3

D (-a 2)3=-a 6

1. 3334)2

1()21()2()2(---+-+---的值是 ( )

2. A -24 B -8 C 437

D 8 3. 如果27

13=x ,则x=__________. 4. 要使式子30)2|(|)1(--+-x x 有意义,则x 的取值围是_________。

5. 计算 (1) 220)51()

5()2(?-?-- (2) 3332)2(])2

1[(---÷ 6.化简 (1) 313

2)3(---a y x (2) )111)((2

211b ab a b a +-+-- 7.已知31=+a

a ,求33-+a a 的值。 函数练习5 指数(二)

1.把213-化为根式是 ( ) A 3

3 B 3 C 33- D 3- 2.已知x x 21

21

-+=5,则x

x 12+的值是 ( ) A 5 B 23 C 25 D 27

3.下列各式中成立的是 ( )

A 322n m +=)(32n m +

B b a a b 551

5)(= C 2)2(2-=- D 3

1

324= 4. a>0,下列各式中不成立的是 ( )

5. A a n m n m a = B

a a n m n m 1=- C a n a n n n n n n a ===)()(1 D 2)(n m n m a a =-

6. 化简a

b

b a ab b a 3421412

23)(3(a ,b>0)的结果是 ( ) A a b B ab C b

a D a 2

b 7. 设x>1,y>0, x y +x -y =22,则x y -x -y = ( )

A 6

B 2或-2

C -2

D 2

8. (2

2

2a b )÷(-____________)()432

73=-?-a b a b 9. ________________2=++++x y y x xy

y x y

x

10. )21_(__________1212<≤=--+-+x x x x x

10.化简下列各式

(1)6113175.0231

729)95()27174(256)61(027.0------+-+--

(2)(a 3+a -3)(a 3-a -3)÷[(a 4+a -4+1)(a-a -1)]

11.若 x 21+ x 21-=3,求23222

323-+-+--x x x x 的值 函数练习6 指数函数(一)

1. 下列函数是指数函数的是 ( )

A y=(-3)x

B y=3x-1

C y=-3x

D y=3x

2. 下列函数中,值域为(0,+∞)的是 ( )

A y=3211

x + B y=1)21

(-x C y=x 21- D y=x -1)3

1

( 3. 某种细菌在培养过程中,每20分钟分裂一次(一个分裂为2个),经过3个小时,这种细菌由1个可繁殖成__________

个。

4. 根据下列关系式确定a (a>0 且a ≠1)的取值围:

(1) a 5>a ______; (2) a 32>1 ______; (3) a 35

5. 求下列函数的定义域和值域:

(1) y=||)2

1

(x (2) y=x 31- 6.如果函数f(x)=(a 2+a-1)x 在R 上是增函数,数a 的取值围。

7.求y=22x -2x-1 +1的最小值以及达到最小值时的x 的值。

函数练习7 指数函数(二)

1.下列五个命题:(1)任取x ∈R ,都有x x 23>;(2)当a>1时,任取x ∈R ,都有x x a a ->;(3)y=x -)3(是增函数

(4) y=||2x 的最小值为1;(5)在同一坐标系中,y=2x 与y=2-x 的图象关于y 轴对称。其中正确的是 ( ) A (1),(2),(4) B (4),(5) C (2),(3),(4) D

(1),(5)

2. 已知f(x)=4+a x-1的图象恒过定点P ,则点P 的坐标是 ( )

A (1,5)

B ( 1,4)

C (0,4)

D ( 4,0)

3. (1) y=4x 与y=-4x 的图象关于_______对称; (2) y=4x 与y=4-x 的图象关于_______对称;

(3) y=4x 与y=-4-x 的图象关于_______对称;

4. 函数y=2-x 的图象可以看成是由y=2-x+1+3的图象沿x 轴向____平移____个单位,再沿y 轴向____平移____个单位

而得到的。

5. 写出函数y=232+-x x a (a>1)的单调区间。

6. 函数y=5x+1+m 的图象不经过第二象限,求m 的取值围。

7. 已知函数y=2|x-2|:(1)作出函数的图象;(2)根据图象指出函数的单调区间。

函数练习8 指数函数(三)

1.当x ∈[-2,2)时,y=13--x 的值域是 ( )

A (98-

,8] B [98-,8) C (91,9] D [91,9) 2.31121

3,)3

2(,2-的大小顺序是 ( ) 1. A 313<212<1)32(- B 212<313<1)32(- C 1)32(-<212<313 D 212<1)3

2(-<31

3 2. 函数y=x )5

2(,当x____时,y<1;当x____时,y=1;当x____时,y>1; 4.函数0(32>-=+a a

y x ;且)1≠a 的图象过定点______。 5.比较下列各组数的大小: (1) 21.0)43(-和25.0)43(- (2)275.0-和21

)56(- 6. 求函数122+=x x y 的值域。 求函数x

x

y 421-=的值域。 函数练习9 对数(一)

高一数学函数练习题及答案

数学高一函数练习题(高一升高二衔接) 一、 求函数的定义域 1、求下列函数的定义域: ⑴33y x =+- ⑵y = ⑶01(21)111 y x x = +-+ - 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -= + ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = ⑹ 22 5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y =⑽ 4y = ⑾y x =6、已知函数22 2()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y = ⑶ 2 61y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236x y x -= +的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x ; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高中数学必修一函数难题

高中函数大题专练 2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。 ① 对任意的[0,1]x ∈,总有()0f x ≥; ② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。 已知函数2()g x x =与()21x h x a =?-是定义在[0,1]上的函数。 (1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值; (3)在(2)的条件下,讨论方程(21)()x g h x m -+=()m R ∈解的个数情况。 3.已知函数| |212)(x x x f - =. (1)若2)(=x f ,求x 的值; (2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围. 4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x ?-?=??? 0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式. (2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件. 5.已知函数()(0)|| b f x a x x =-≠。 (1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围; (2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围; (3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是 [,]m n ,则称()g x 是[,]m n 上的闭函数。若函数()f x 是某区间上的闭函数,试探求,a b 应满足的条件。 6、设bx ax x f += 2)(,求满足下列条件的实数a 的值:至少有一个正实数b ,使函数)(x f 的定义域和值域相同。 7.对于函数)(x f ,若存在R x ∈0 ,使00)(x x f =成立,则称点00(,)x x 为函数的不动点。

高中数学函数解析式求法

函数解析式的表示形式及五种确定方式 函数的解析式是函数的最常用的一种表示方法,本文重点研究函数的解析式的表达形式与解析式的求法。 一、解析式的表达形式 解析式的表达形式有一般式、分段式、复合式等。 1、一般式是大部分函数的表达形式,例 一次函数:b kx y += )0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、分段式 若函数在定义域的不同子集上对应法则不同,可用n 个式子来表示函数,这种形式的函数叫做分段函数。 例1、设函数(]() ???+∞∈∞-∈=-,1,log 1,,2)(81x x x x f x ,则满足41)(=x f 的x 的值为 。 解:当(]1,∞-∈x 时,由4 12= -x 得,2=x ,与1≤x 矛盾; 当()+∞∈,1x 时,由4 1log 81=x 得,3=x 。 ∴ 3=x 3、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例2、已知3)(,12)(2 +=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。 解:[]721)3(21)(2)(2 2+=++=+=x x x g x g f [][]4443)12(3)()(222 ++=++=+=x x x x f x f g 二、解析式的求法 根据已知条件求函数的解析式,常用待定系数法、换元法、配凑法、赋值(式)法、方程法等。 1待定系数法 若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求出系数。

高一数学函数习题(练习题以及答案

一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01 (21)111 y x x =+-++ - 2、 _ _ _; ________; 3、若函数(1)f x +(21)f x -的定义域是 ;函数1 (2)f x +的定义域为 。 4、 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -= + ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = ⑹ 22 5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y ⑽ 4y = ⑾y x =- 6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4 、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+ ,则当(,0)x ∈-∞时()f x =____ _

()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1 ()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y = ⑶ 2 61y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236 x y x -= +的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸2 1)52()(-=x x f , 52)(2-=x x f 。 A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3 44 2 ++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4 3 ) 11、若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 12、对于11a -≤≤,不等式2 (2)10x a x a +-+->恒成立的x 的取值范围是( ) (A) 02x << (B) 0x <或2x > (C) 1x <或3x > (D) 11x -<< 13、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞U D 、{2,2}- 14、函数1 ()(0)f x x x x =+ ≠是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数

高一函数经典难题讲解

高一经典难题讲解 1.已知函数f(x)=(x+1-a)/(a-x),x∈R且x≠a,当f(x)的定义域为[a-1,a-1/2]时,求f(x)值 解:由题知,已知函数f(x)=(x+1-a)/(a-x), 所以,f(x)= -1+1/(a-x), 当f(x)的定义域为[a-1,a-1/2]时 x∈[a-1,a-1/2] (a-x)∈[1/2,1] 1/(a-x)∈[1,2] f(x)=-1+1/(a-x)∈[0,1] 2.设a为非负数,函数f(x)=x|x-a|-a. (1)当a=2时,求函数的单调区间 (2)讨论函数y=f(x)的零点个数 解析:(1)∵函数f(x)=x|x-2|-2 当x<2时,f(x)=-x^2+2x-2,为开口向下抛物线,对称轴为x=1 当x>=2时,f(x)=x^2-2x-2,为开口向上抛物线,对称轴为x=1 ∴当x∈(-∞,1)时,f(x)单调增;当x∈[1,2]时,f(x)单调减;当x∈(2,+∞)时,f(x)单调增; (2).f(x)=x|x-a|-a=0, x|x-a|=a,① a=0时x=0,零点个数为1; a>0时x>0,由①,x>=a,x^2-ax-a=0,x1=[a+√(a^2+4a)]/2; 04时,②无实根,零点个数为1。 a<0时,x<0,由①,x>=a>-4,x^2-ax-a=0③,x1,2=[a土√(a^2+4a)]/2; x4时零点个数为1; a=土4时,零点个数为2; -4

高一数学(人教版必修一)教案:《函数的最大(小)值》

§1.3.1函数的最大(小)值 一.教学目标 1.知识与技能: 理解函数的最大(小)值及其几何意义. 学会运用函数图象理解和研究函数的性质. 2.过程与方法: 通过实例,使学生体会到函数的最大(小)值,实际上是函数图象的最高(低)点的纵坐标,因而借助函数图象的直观性可得出函数的最值,有利于培养以形识数的解题意识. 3.情态与价值 利用函数的单调性和图象求函数的最大(小)值,解决日常生活中的实际问题,激发学生学习的积极性. 二.教学重点和难点 教学重点:函数的最大(小)值及其几何意义 教学难点:利用函数的单调性求函数的最大(小)值. 三.学法与教学用具 1.学法:学生通过画图、观察、思考、讨论,从而归纳出求函数的最大(小)值的方法和步骤. 2.教学用具:多媒体手段 四.教学思路 (一)创设情景,揭示课题. 画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①()3f x x =-+ ②()3 [1,2]f x x x =-+∈- ③2 ()21f x x x =++ ④2 ()21[2,2]f x x x x =++∈- (二)研探新知 1.函数最大(小)值定义 最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =. 那么,称M 是函数()y f x =的最大值. 思考:依照函数最大值的定义,结出函数()y f x =的最小值的定义. 注意:

①函数最大(小)首先应该是某一个函数值,即存在0x I ∈,使得0()f x M =; ②函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x I ∈,都有 ()(())f x M f x m ≤≥. 2.利用函数单调性来判断函数最大(小)值的方法. ①配方法 ②换元法 ③数形结合法 (三)质疑答辩,排难解惑. 例1.(教材P 30例3)利用二次函数的性质确定函数的最大(小)值. 解(略) 例2.将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个涨价1元,其销售量减少10个,为了赚到最大利润,售价应定为多少? 解:设利润为y 元,每个售价为x 元,则每个涨(x -50)元,从而销售量减少 10(50),x -个共售出500-10(x-50)=100-10x(个) ∴y=(x-40)(1000-10x) 9000(50x +≤2=-10(x-70)<100) ∴max 709000x y ==时 答:为了赚取最大利润,售价应定为70元. 例3.求函数2 1 y x = -在区间 上的最大值和最小值. 解:(略) 例4.求函数y x =+ 解:令201t x t =≥=-+有则 2215 1()024 y t t t t =-++=--+ ≥Q 21()02t ∴--≤ 2155 ()244 t ∴--+≤ .∴5 原函数的最大值为4

高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可. 例1 已知f (x x 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2 x ,求f (x )的解析式. 解: f (x +1)= 2)(x +2 x +1-1=2)1(+x -1, ∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x , 则有 f (x )= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ???==. 7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.

高中数学函数测试题(含答案)

高中数学函数测试题 学生: 用时: 分数: 一、选择题和填空题(3x28=84分) 1、若372log πlog 6log 0.8a b c ===,,,则( ) A .a b c >> B .b a c >> C .c a b >> D .b c a >> 【答案】A 【解析】利用中间值0和1来比较: 372log π>1log 61log 0.80a b c =<=<=<,0, 2、函数2 ()(1)1(1)f x x x =-+<的反函数为( ) A .1 ()11)f x x -=+> B .1 ()11)f x x -=-> C .1()11)f x x -=≥ D .1 ()11)f x x -=-≥ 【答案】B 【解析】 221(1)1,(1)11x y x x y x 3、已知函数2 ()cos f x x x =-,对于ππ22 ??-???? ,上的任意12x x ,,有如下条件: ①12x x >; ②22 12x x >; ③12x x >. 其中能使12()()f x f x >恒成立的条件序号是 . 【答案】② 【解析】函数2 ()cos f x x x =-为偶函数,则1212()()(||)(||).f x f x f x f x >?> 在区间π02?? ???? ,上, 函数2 ()cos f x x x =-为增函数, 22121212(||)(||)||||f x f x x x x x ∴>?>?> 4、已知函数3log ,0()2,0 x x x f x x >?=?≤?,则1 (())9f f =( )

高一数学函数经典难题讲解

- 1 - 高一函数经典难题讲解 1.已知函数f(x)=(x+1-a)/(a-x),x∈R 且x≠a,当f(x)的定义域为 [a-1,a-1/2]时,求f(x)值 解:由题知,已知函数f(x)=(x+1-a)/(a-x), 所以,f(x)= -1+1/(a-x), 当f(x)的定义域为[a-1,a-1/2]时 x∈[a -1,a-1/2] (a-x)∈[1/2,1] 1/(a-x)∈[1,2] f(x)=-1+1/(a-x)∈[0,1] 2.设a 为非负数,函数f(x)=x|x-a|-a. (1)当a=2时,求函数的单调区间 (2)讨论函数y=f(x)的零点个数 解析:(1)∵函数f(x)=x|x-2|-2 当x<2时,f(x)=-x^2+2x-2,为开口向下抛物线,对称轴为x=1 当x>=2时,f(x)=x^2-2x-2,为开口向上抛物线,对称轴为x=1 ∴当x∈(-∞,1)时,f(x)单调增;当x∈[1,2]时,f(x)单调减;当x∈(2,+∞)时,f(x)单调增; (2).f(x)=x|x-a|-a=0, x|x-a|=a,① a=0时x=0,零点个数为1; a>0时x>0,由①,x>=a,x^2-ax-a=0,x1=[a+√(a^2+4a)]/2; 04时,②无实根,零点个数为1。 a<0时,x<0,由①,x>=a>-4,x^2-ax-a=0③,x1,2=[a 土√(a^2+4a)]/2; x4时零点个数为1; a=土4时,零点个数为2; -4

人教版高中数学《函数的单调性与最值》教学设计全国一等奖

1.3.1函数的单调性与最大(小)值(第一课时) 教学设计 一、教学内容解析: (1)教学内容的内涵、数学思想方法、核心与教学重点; 本课教学内容出自人教版《普通高中课程标准实验教科书必修数学1》(以下简称“新教材”)第一章节。 函数的单调性是研究当自变量x不断增大时,它的函数y增大还是减小的性质.如增函数表现为“随着x增大,y也增大”这一特征.与函数的奇偶性不同,函数的奇偶性是研究x成为相反数时,y是否也成为相反数,即函数的对称性质. 函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质. 函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法:加强“数”与“形”的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画. 函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位. 教学的重点是:引导学生对函数定义域I的给定区间D上“随着x增大,y也增大(或减小)”这一特征进行抽象的符号描述:在区间D上任意取x1,x2,当x1<x2时,有f(x1)<f(x2)(或f(x1)>f(x2)),则称函数f(x)在区间D上是增函数(或减函数). (2)教学内容的知识类型; 在本课教学内容中,包含了四种知识类型。函数单调性的相关概念属于概念性知识,函数单调性的符号语言表述属于事实性知识,利用函数单调性的定义证明函数单调性的步骤属于程序性知识,发现问题----提出问题----解决问题的研究模式,以及从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明等研究问题的一般方法,属于元认知知识. (3)教学内容的上位知识与下位知识; 在本课教学内容中,函数的单调性,是文字语言、图形语言、符号语言的上位知识.图象法、作差法是判断证明函数单调性的下位知识. (4)思维教学资源与价值观教育资源; 生活常见数据曲线图例子,能引发观察发现思维;函数f(x)= +1和函数 1 y x x =+,能引发 提出问题---分析问题----解决问题的研究思维,不等关系等价转化为作差定号,是转化化归思维的好资源,是树立辩证唯物主义价值观的好契机;创设熟悉的二次函数探究背景,是引发从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明思维的好材料,树立了“事物是普遍联系的”价值观. 二、教学目标设置: 本课教学以《普通高中数学课程标准(实验)》(以下统称为“课标”)为基本依据,以“数学育人”作为根本目标设置。 “课标”数学1模块内容要求是:不仅把函数看成变量之间的依赖关系,还要用集合与对应的语言刻画函数,体会函数的思想方法与研究方法,结合实际问题,体会函数在数学和其他学科中的重要性。 “课标”对本课课堂教学内容要求是:通过已学过的函数特别是二次函数,理解函数的单调性.(第一课时) 为尽好达到以上要求,结合学生实际,本课课堂教学目标设置如下: (1)知识与技能: 理解函数单调性的概念,让学生能清晰表述函数单调性的定义与相关概念; 能利用图象法直观判断函数的单调性;

(完整版)高一数学函数试题及答案

(数学1必修)函数及其表示 一、选择题 1.判断下列各组中的两个函数是同一函数的为( ) ⑴3 ) 5)(3(1+-+= x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或2 3.已知集合{}{} 421,2,3,,4,7,,3A k B a a a ==+,且* ,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,5 4.已知2 2(1)()(12)2(2)x x f x x x x x +≤-??=-<

(推荐)高一数学必修一函数练习习题及答案

高中数学必修一函数试题(一) 一、选择题: 1 、若()f x = (3)f = ( ) A 、2 B 、4 C 、 D 、10 2、对于函数()y f x =,以下说法正确的有 ( ) ①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。 A 、1个 B 、2个 C 、3个 D 、4个 3、下列各组函数是同一函数的是( ) ①()f x = 与()g x =;②()f x x = 与2 ()g x =;③0 ()f x x =与01()g x x = ;④2 ()21f x x x =--与2 ()21g t t t =--。 A 、①② B 、①③ C 、③④ D 、①④ 4、二次函数2 45y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5 、函数y =的值域为 ( ) A 、[]0,2 B 、[]0,4 C 、(],4-∞ D 、[)0,+∞ 6、下列四个图像中,是函数图像的是 ( ) A 、(1) B 、(1)、(3)、(4) C 、(1)、(2)、(3) D 、(3)、(4) (1) (2) (3) (4)

7、若:f A B →能构成映射,下列说法正确的有 ( ) (1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B 中的元素可以在A 中无原像;(4)像的集合就是集合B 。 A 、4个 B 、3个 C 、2个 D 、1个 8、)(x f 是定义在R 上的奇函数,下列结论中,不正确... 的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -≤ D 、 () 1() f x f x =-- 9、如果函数2 ()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 10、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( ) A 、12a > B 、12a < C 、12a ≥ D 、12 a ≤ 11、定义在R 上的函数()f x 对任意两个不相等实数,a b ,总有()() 0f a f b a b ->-成立,则必有( ) A 、函数()f x 是先增加后减少 B 、函数()f x 是先减少后增加 C 、()f x 在R 上是增函数 D 、()f x 在R 上是减函数 12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( ) (1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。 A 、(1)(2)(4) B 、(4)(2)(3) C 、(4)(1)(3) D 、(4)(1)(2) (1) (2) (3) (4)

高一数学函数经典题目及答案

1函数解析式的特殊求法 例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式 例2 若x x x f 21 (+=+),求f(x) 例3 已知x x x f 2)1(+=+,求)1(+x f 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式 例5 已知f(x)满足x x f x f 3)1()(2=+,求)(x f 2函数值域的特殊求法 例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。 例2. 求函数 22 x 1x x 1y +++=的值域。 例3求函数y=(x+1)/(x+2)的值域 例4. 求函数1e 1e y x x +-=的值域。 例1下列各组中的两个函数是否为相同的函数? ①3 )5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y ③21)52()(-=x x f 52)(2-=x x f

2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点 (A))1,4(- (B))4,1(-- (C))1,4(-- (D))4,1(- 例3 已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+- 0,()6a f a ><当时;(2)12f -=。 (1)求:(2)f 的值; (2)求证:()f x 是R 上的减函数; (3)若(2)(2)3f k f k -<-,求实数k 的取值范围。 例4已知{(,)|,,A x y x n y an b n ===+∈Z }, 2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得 (1)A B ≠?,(2)(,)a b C ∈同时成立. 证明题 1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时 12()()f x f x ≠,求证:方程()f x =121[()()]2 f x f x +有不等实根,且必有一根属于区间(x 1,x 2).

高一数学函数测试题

x y o 高一数学第一章《函数》测验(9月23日) 时间:40分钟 满分:100分 班级 姓名 座号 一、判断题:每小题5分,共20分.下列结论中,正确的在后面的括号中打“∨”,错误的在后面的括号中打“╳” . 1. 已知A={}Z k k x x ∈-=,23|,则5∈A. ( ╳ ) 2. 函数)(x f y =的图象有可能是如图所示的曲线. (╳ ) 3.对于定义域为R 的奇函数)(x f ,一定有0)2()2(=+-f f 成立. (∨ ) 4.函数x x f 1)(=在),0()0,(+∞-∞Y 上为减函数. ( ╳ ) 二、选择题.每小题5分.每题都有且只有一个正确选项. 5.已知集合A ≠Φ,且A {2,3,4},则这样的集合A 共有( )个 ( B ) A.5 B.6 C.7 D.8 6.函数03()()2 2f x x x =-+的定义域是 ( D ) A . 3(2,)2- B . (2,)-+∞ C .3(,)2+∞ D . 33(2,)(,)22 -?+∞ 7.函数{}()1,1,1,2f x x x =+∈-的值域是 ( C ) A.0,2,3 B.30≤≤y C.}3,2,0{ D.]3,0[ 8.由函数])5,0[(4)(2 ∈-=x x x x f 的最大值与最小值可以得其值域为 ( C ) A .),4[+∞- B . ]5,0[ C .]5,4[- D .]0,4[- 9.函数()f x 是定义域为R 的奇函数,当0>x 时,1)(+-=x x f ,则当0

2018高中数学(函数难题)

难点突破 一.选择题(共18小题) 1.已知奇函数f(x)是定义在R上的连续可导函数,其导函数是f'(x),当x >0时,f'(x)<2f(x)恒成立,则下列不等关系一定正确的是()A.e2f(1)>﹣f(2)B.e2f(﹣1)>﹣f(2) C.e2f(﹣1)<﹣f(2)D.f(﹣2)<﹣e2f(﹣1) 2.当x>0时,不等式恒成立,则a的取值范围是() A.[0,1)∪(1,+∞)B.(0,+∞) C.(﹣∞,0]∪(1,+∞) D.(﹣∞,1)∪(1,+∞) 3.设n∈N*,函数f1(x)=xe x,f2(x)=f1′(x),f3(x)=f2′(x),…,f n+1(x)=f n′(x),曲线y=f n(x)的最低点为P n,△P n P n+1P n+2的面积为S n,则()A.{S n}是常数列B.{S n}不是单调数列 C.{S n}是递增数列D.{S n}是递减数列 4.中国古代十进制的算筹计数法,在世界数学史上是一个伟大的创造,算筹实际上是一根根同样长短的小木棍,如图,算筹表示数1~9的方法的一种. 例如:163可表示为“”27可表示为“”问现有8根算筹可以表示三位数的个数(算筹不能剩余)为() A.48 B.60 C.96 D.120 5.已知函数f(x)是定义在(0,+∞)上的可导函数,f'(x)是f(x)的导函数,若,且f'(2)=2,那么f(2)=()A.0 B.﹣2 C.﹣4 D.﹣6 6.函数f(x)=x﹣ln(x+2)+e x﹣a+4e a﹣x,其中e为自然对数的底数,若存在实数x0使f(x0)=3成立,则实数a的值为() A.ln2 B.ln2﹣1 C.﹣ln2 D.﹣ln2﹣1

高一数学函数的最值

第八课时 函数的最值 【学习导航】 知识网络 学习要求 1.了解函数的最大值与最小值概念; 2.理解函数的最大值和最小值的几何意义; 3.能求一些常见函数的最值和值域. 自学评价 1.函数最值的定义: 一般地,设函数()y f x =的定义域为A . 若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≤恒成立,则称0()f x 为()y f x =的最大值,记为max 0()y f x =; 若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≥恒成立,则称0()f x 为()y f x =的最小值,记为min 0()y f x =; 2.单调性与最值: 设函数()y f x =的定义域为[],a b , 若()y f x =是增函数,则max y = ()f a ,min y = ()f b ; 若()y f x =是减函数,则max y = ()f b ,min y = ()f a . 【精典范例】 一.根据函数图像写单调区间和最值: 例1:如图为函数()y f x =,[]4,7x ∈-的图象,指出它的最大值、最小值及单调区间.

【解】 由图可以知道: 当 1.5x =-时,该函数取得最小值2-; 当3x =时,函数取得最大值为3; 函数的单调递增区间有2个:( 1.5,3)-和(5,6); 该函数的单调递减区间有三个:(4, 1.5)--、(4,5)和(6,7) 二.求函数最值: 例2:求下列函数的最小值: (1)22y x x =-; (2)1()f x x = ,[]1,3x ∈. 【解】 (1)222(1)1y x x x =-=-- ∴当1x =时,min 1y =-; []1,3x ∈上是单调减函数,所以当3x =时函数1()f x x =取得1. 函数()4(0)f x x mx m =-+>在(,0]-∞上的最小值(A ) ()A 4 ()B 4- ()C 与m 的取值有关 ()D 不存在 2. 函数()f x =的最小值是 0 ,最大值是 32 . 3. 求下列函数的最值:

高一数学函数经典习题及答案

函 数 练 习 题 班级 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01 (21)111 y x x =+-++ - 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,数m 的取值围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y =⑹ 22 5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y ⑽ 4y = ⑾y x =-

6、已知函数22 2()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y =⑶ 2 61y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236 x y x -= +的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;

高一数学函数经典题目及答案

精选 1函数解析式的特殊求法 例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式 例2 若x x x f 21 (+=+),求f(x) 例3 已知x x x f 2)1(+=+,求)1(+x f 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式 例5 已知f(x)满足x x f x f 3)1()(2=+,求)(x f 2函数值域的特殊求法 例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。 例2. 求函数 22 x 1x x 1y +++=的值域。 例3求函数y=(x+1)/(x+2)的值域 例4. 求函数1e 1e y x x +-=的值域。 例1下列各组中的两个函数是否为相同的函数? ①3 )5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y ③21)52()(-=x x f 52)(2-=x x f

精选 2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点 (A))1,4(- (B))4,1(-- (C))1,4(-- (D))4,1(- 例3 已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+- 0,()6a f a ><当时;(2)12f -=。 (1)求:(2)f 的值; (2)求证:()f x 是R 上的减函数; (3)若(2)(2)3f k f k -<-,求实数k 的取值范围。 例4已知{(,)|,,A x y x n y an b n ===+∈Z }, 2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得 (1)A B ≠?I ,(2)(,)a b C ∈同时成立. 证明题 1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时 12()()f x f x ≠,求证:方程()f x =121[()()]2 f x f x +有不等实根,且必有一根属于区间(x 1,x 2).

相关文档
相关文档 最新文档