文档库 最新最全的文档下载
当前位置:文档库 › 矩阵理论知识点整理

矩阵理论知识点整理

矩阵理论知识点整理
矩阵理论知识点整理

三、矩阵的若方标准型及分解

λ-矩阵及其标准型定理1

λ-矩阵()λ

A可逆的充分必要条件是行列式()λ

A是非零常数

引理2 λ-矩阵()λ

A=()

()

n

m

ij?

λ

a的左上角元素()λ

11

a不为0,并且()λ

A中至少有一个元素不

能被它整除,那么一定可以找到一个与()λ

A等价的()()

()

n

m

ij?

λb

B使得()0

b

11

λ且

()λ

11

b的次数小于()λ

11

a的次数。

引理3

任何非零的λ-矩阵()λ

A=()

()

n

m

ij?

λ

a等价于对角阵

()

()

()

?

?

?

?

?

?

?

?

?

?

?

?

...

.....

d

2

1

λ

λ

λ

r

d

d

()()()λ

λ

λ

r

2

1

d

,....

d,

d是首项系数为1的多项式,且

()()1

......

3,2,,1

,

/

d

1

-

=

+

r

i

d

i

i

λ

λ

引理4 等价的λ-矩阵有相同的秩和相同的各阶行列式因子

推论5 λ-矩阵的施密斯标准型是唯一的由施密斯标准型可以得到行列式因子推论6 两个λ-矩阵等价,当且仅当它们有相同的行列式因子,或者相同的不变因子

推论7

λ-矩阵()λ

A可逆,当且仅当它可以表示为初等矩阵的乘积

推论8

两个()()λ

λ

λB

A

m与

矩阵

的-

?n等价当且仅当存在一个m阶的可逆λ-矩阵()λ

P和

一个n阶的λ-矩阵()λ

Q使得()()()()λ

λ

λ

λQ

A

P

=

B

推论9 两个λ-矩阵等价,当且仅当它们有相同的初等因子和相同的秩

定理10

设λ-矩阵()λA 等价于对角型λ-矩阵()()

()()?

?????

???

????????

?=λλλλn h h .

.

..

.21h B ,若将()λB 的次数大于1的对角线元素分解为不同的一次因式的方幂的乘积,则所有这些一次因式的方幂(相同

的按照重复的次数计算)就是()λA 的全部初等因子。

行行行行行

不变因子

初等因子

初等因子被不变因子唯一确定但,只要λ-矩阵()λA 化为对角阵,再将次数大于等于1的对角线元素分解为不同的一次方幂的乘积,则

所有这些一次因式的方幂(相同的必须重复计算)就为()λA 的全部初等因子,即不必事先知道不变因子,可以直接求得初等因子。

矩阵的若当

标准型 定理1

两个n ?m 阶数字矩阵A 和B 相似,当且仅当它们的特征矩阵B -E A -E λλ与等价

N 阶数字矩阵的特征矩阵A -E λ的秩一定是n 因此它的不变因子有n 个,且乘积是A 的特征多项式 推论3 两个同阶矩阵相似,当且仅当它们有相同的行列式因子,或相同的不变因子,或相同的初等因子。

定理4

每个n 阶复矩阵A 都与一个若当标准型矩阵相似,这个若当标准型矩阵除去其中若当块的排列次序外是被矩阵A 唯一确定的。 求解若当标准型及可逆矩阵P:根据数字矩阵写出特征矩阵,化为对角阵后,得出初等因子,

根据初等因子,写出若当标准型J,设P(X1X2X3),然后根据

J

X X X X X X A PJ AP J AP P 321321-1),,(),,(,即

得到===得到

P (X1X2X3)方阵

矩阵的最小

多项式 定理1 矩阵A 的最小多项式整除A 的任何零化多项式,且最小多项式唯一。

N 阶数字矩阵可以相似对角化,当且仅当最小多项式无重根。

定理2

矩阵A 的最小多项式的根一定是A 的特征值,反之,矩阵A的特征值一定是最小多项式的根。

求最小多项式:根据数字矩阵写出特征多项式()A E f -=λλ,

根据特征多项式得到最小多

项式的形式,然后根据

()()0E -A E -A E -A r 21=??λλλ)

(确定最小多项式。

矩阵的若干

分解

分解QR

设A为n阶复矩阵,则存在酉矩阵Q和上三角阵R使得A=QR

方法:根据数字矩阵()321A ααα=列出

321ααα,正交化单位化后,得到321εεε,即

()321Q εεε=根据A Q R QR A 1-==得得R 。

奇异值分解

设A是n ?m 阶复矩阵,0d d d d r 321≥??≥≥是A的所有的非零奇异值,则存在m阶酉矩阵P、n阶酉矩阵Q,使得[]0

D 0H AQ P =

其中,[

]

r d ...D 1

d =是对角阵,等式

[]

H

00D 0Q P A =是A的奇异值分解

对于一个n ?m 阶复矩阵A来说,n阶方阵

A A H 是半正定的,及特征值是全部大于或者

等于0,这些特征值的平方根便是A的奇异值。

求A的奇异值分解:根据数字矩阵A得到A A B H

=,根据特征矩阵得到特征值,

n 1r r 21λλλλλ????+,并计算出每个特征值对应的特征向量,()

[

]

(构造和然后根据)(正交化后,,2121H

21-110

2112r 2111r 21n 1r r 21n

1r r 21P P P P 1P 0P P D AQ P D Q ...)..,(...,..,=====

=??=??=????????????++++λ

λεεεεεεεεεεαααααλλλλλQ Q Q Q n r n r 则[]H

D 0Q

P

A =

第二章 内积空间

实内积空间(欧氏空间)

()()()()()

T

n n n n y y y A x x x y y y ......x x x 2121n 1211n 2211=?+++?++=εεεεεεαβA 为过渡矩阵(对称且正定)

????

??????=))()(())()(())()((331313322212312111A εεεεεεεεεεεεεεεεεε N 维欧氏空间V 中两组不同基的度量矩阵是合同的。

正交基及正交补

①由欧氏空间V 的任意一组基n ααα...21都可以构造出V 的一组标准正交基。

②两两正交的单位向量

的行列向量均是A A A E

A A 是正交阵A T 1-T ?=?=?

③设V1V2是欧氏空间V 的两个正交基子空间,则V1+V2是直和,两个子空间互为正交补

满秩分解

设()0C A m >=∈?r A R n 且则存在列满秩矩阵r

m C C ?∈和行满秩矩阵n

r C

D ?∈使得A

=CD

求A的满秩分解:根据数字矩阵A写出分块矩阵(A E)进行初等行变换得(B P)其中B=

[]D 0

,根据求得的P 求出1

-P

然后对

(??=211-P αα进行列分块,得到C=r 1αα??。则A=CD

正交变换

),(),(βαβα=A A

正交变换的等价条件

()()矩阵是正交阵

在任一标准正交基下的也是标准正交基

,是标准正交基则

,,若保持向量长度不变

(是正交变换

T )4(T ...T T ...)3(T )2(1)T 2121???n n εεεεεε

证明:

对称变换

()()βαβαA A ,,=

复内积空间(酉空间) 酉空间两组标准正交基的过渡矩阵一定是酉矩阵

E AA A A H H ==

酉空间V 的线性变换T满足

()()βαβα,,=A

酉空间内变换的等价条件

()()矩阵是酉矩阵

在任一标准正交基下的也是标准正交基

,是标准正交基则

,,若保持向量长度不变

(是酉变换

T )4(T ...T T ...)3(T )2(1)T 2121???n n εεεεεε

酉对称变换(Hermite 变换):()()βαβαA ,A =,

()

A A AA E A A AA E A A AA -A A Hermite A A Hermite -A A A

A H H H

H T T H

H T T =??

?

??

???

?

??

========正规矩阵酉矩阵:正交矩阵:矩阵反矩阵:反对称矩阵:实对称矩阵:

定理:若A 是n 阶方阵

(1)若A 是复矩阵,则A 是正规阵,当且仅当A

酉相似于对角阵。即∧=AP P P H

使得存在酉矩阵

证明:1.必要性:设存在酉矩阵P 使得∧=AP P H

H P P A ∧=

(2)若A 是实矩阵,且A 的特征值全是实数,则A 是正规阵,当且仅当A正交相似于对角阵,即

∧=AP P P T 使得存在正交矩阵

H H P A P ∧=,A A P P P AA H H H H =∧∧=))((P 即为

正规阵 2.充分性:若A 是正规阵,则满足H

H

AA A A =则。。。。。。。。。。。

推论:任一Hermite 矩阵A 酉相似于对角阵,

∧=AP P P H 使得存在酉矩阵

任一实对称矩阵A 酉相似于对角阵,

∧=AP P P T 使得存在酉矩阵

推论:设A 是n 阶正规阵 (1)A是Hermite 矩阵,当且仅当A 的特征值全是实数

(2)A是反Hermite 矩阵,当且仅当A 的特征值全是0或者纯虚数

(3)A 是酉矩阵,当且仅当A 的每个特征值的模长是1 。

证明:

定理:设A是n 阶Hermite 矩阵(实对称矩阵)则

E

AC C P B B A P A A H H =?=??使存在实可逆矩阵使存在可逆矩阵的特征值全是正数是正定的

证明:

一线性空间与线性变换

数域及多项式 数域:关于加减乘除全部封闭,如有理数集Q,实数集R,复数集C 线性空间 零元唯一,负元唯一

基变换与坐标变换

由基'

'

2'

121......n n εεεεεε到的过渡矩阵A是可逆的。

线性子空间(关于加法和数乘封闭) 平凡子空间:零子空间和线性空间本身

{}一般不是

但的子空间是的和与)(的子空间

是的交与)(的两个子空间

是212121212121V V V V V V V 2V V V V V 1V V V ?+=+?βα

()()

212121V V dim dimV dimV V V dim ?-+=+

线性空间的等价条件

2

1212121V dim dimV V V (dim }

0{V V V V +=+?=???+)零向量的分解唯一是直和

线性代数知识点总结

线性代数知识点总结 第一章 行列式 1. n 阶行列式()() 12 1212 11121212221212 1= = -∑ n n n n t p p p n p p np p p p n n nn a a a a a a D a a a a a a 2.特殊行列式 () () 1112 11222211221122010 n t n n nn nn nn a a a a a D a a a a a a a = =-= 1 2 12 n n λλλλλλ=, () ()1 12 2 121n n n n λλλλλλ-=- 3.行列式的性质 定义 记 11121212221 2 n n n n nn a a a a a a D a a a =,11211 1222212n n T n n nn a a a a a a D a a a = ,行列式T D 称为行列式D 的转置行列式。 性质1 行列式与它的转置行列式相等。 性质2 互换行列式的两行() ?i j r r 或列() ?i j c c ,行列式变号。 推论 如果行列式有两行(列)完全相同(成比例),则此行列式为零。 性质3 行列式某一行(列)中所有的元素都乘以同一数()?j k r k ,等于用数k 乘此行列式; 推论1 D 的某一行(列)中所有元素的公因子可以提到D 的外面; 推论2 D 中某一行(列)所有元素为零,则=0D 。 性质4 若行列式的某一列(行)的元素都是两数之和,则 1112111212222212 () ()()i i n i i n n n ni ni nn a a a a a a a a a a D a a a a a '+'+='+11121111121121222221222212 12 i n i n i n i n n n ni nn n n ni nn a a a a a a a a a a a a a a a a a a a a a a a a ''=+ ' 性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,

线性代数知识点归纳同济第五版

线性代数复习要点 第一部分 行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 1. 行列式的计算: ① (定义法)12 1212 11 12121222() 121 2 ()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ 1 ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.

④ 若A B 与都是方阵(不必同阶),则 ==()mn A O A A O A B O B O B B O A A A B B O B O *==**=-1 例 计算 2-100-1 300001100-25 解 2-100 -1 30000110 -2 5 =2-1115735-13-25?=?= ⑤ 关于副对角线: (1) 2 1121 21 1211 1()n n n n n n n n n n n a O a a a a a a a O a O ---* = =-1 ⑥ 范德蒙德行列式:()1 2 2 22 12 11 1112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏111 例 计算行列式

⑦ a b - 型公式:1 [(1)]()n a b b b b a b b a n b a b b b a b b b b a -=+-- ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算. ⑩ (数学归纳法) 2. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλ λ-=-=+-∑,其中k S 为k 阶主子式; 3. 证明 0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-

苏教版高中数学高二选修4-2 矩阵乘法的概念

选修4-2矩阵与变换 2.3.1 矩阵乘法的概念 编写人: 编号:008 学习目标 1、 熟练掌握二阶矩阵与二阶矩阵的乘法。 2、 理解两个二阶矩阵相乘的结果仍然是一个二阶矩阵,从几何变换的角度来看,它表 示的是原来两个矩阵对应的连续两次变换。 学习过程: 一、预习: (一)阅读教材,解决下列问题: 问题:如果我们对一个平面向量连续实施两次几何变换,结果会是怎样?举例说明。 归纳1:矩阵乘法法则: 归纳2:矩阵乘法的几何意义: (二)初等变换:在数学中,一一对应的平面几何变换都可看做是伸压、反射、旋转、切变变换的一次或多次复合,而伸压、反射、切变变换通常叫做初等变换,对应的矩阵叫做初等变换矩阵。 练习 、.?? ??????????10110110=( ) A 、???? ??1110 B 、??????1011 C 、? ? ? ???0111 D 、??????0110 、已知矩阵X 、M 、N,若M =?? ? ???--1111, N =??????--3322,则下列X 中不满足:XM=N ,的一个 是( ) A 、X =???? ??--2120 B 、X =??????--1211 C 、X =??????--3031 D 、X =? ? ? ???-3053

二、课堂训练: 例1.(1)已知A= 11 22 11 22 ?? ? ? ? ? ?? ,B= 11 22 11 22 ?? - ? ? ? - ? ?? ,计算AB (2)已知A= 10 02 ?? ? ?? ,B= 14 23 ?? ? - ?? ,计算AB,BA (3)已知A= 10 00 ?? ? ?? ,B= 10 01 ?? ? ?? ,C= 10 02 ?? ? ?? 计算AB,AC 例2、已知梯形ABCD,其中A(0,0),B(3,0),C(2,2),D(1,2),先将梯形作关于x轴的反射变换,再将所得图形绕原点逆时针旋转0 90 (1)求连续两次变换所对应的变换矩阵M (2)求点A,B,C,D在 M T作用下所得到的结果 (3)在平面直角坐标系内画出两次变换对应的几何图形,并验证(2)中的结论。

矩阵知识点归纳

矩阵知识点归纳 (一)二阶矩阵与变换 1.线性变换与二阶矩阵 在平面直角坐标系xOy 中,由? ?? ?? x ′=ax +by , y ′=cx +dy ,(其中a ,b ,c ,d 是常数)构成的变换 称为线性变换.由四个数a ,b ,c ,d 排成的正方形数表?? ?? ?? a b c d 称为二阶矩阵,其中a ,b ,c ,d 称为矩阵的元素,矩阵通常用大写字母A ,B ,C ,…或(a ij )表示(其中i ,j 分别为元素a ij 所在的行和列). 2.矩阵的乘法 行矩阵[a 11a 12]与列矩阵??????b 11b 21的乘法规则为[a 11a 12]??????b 11b 21=[a 11b 11+a 12b 21],二阶矩阵???? ? ? a b c d 与列矩阵??????x y 的乘法规则为??????a b c d ??????x y =???? ?? ax +by cx +dy .矩阵乘法满足结合律, 不满足交换律和消去律. 3.几种常见的线性变换 (1)恒等变换矩阵M =???? ?? 1 00 1; (2)旋转变换R θ对应的矩阵是M =?? ?? ?? cos θ -sin θsin θ cos θ; (3)反射变换要看关于哪条直线对称.例如若关于x 轴对称,则变换对应矩阵为M 1=??????1 00 -1;若关于y 轴对称,则变换对应矩阵为M 2=???? ?? -1 0 0 1;若关于坐标原点对称,则变 换对应矩阵M 3=???? ?? -1 0 0 -1; (4)伸压变换对应的二阶矩阵M =???? ?? k 1 00 k 2,表示将每个点的横坐标变为原来的k 1倍,纵 坐标变为原来的k 2倍,k 1,k 2均为非零常数; (5)投影变换要看投影在什么直线上,例如关于x 轴的投影变换的矩阵为M =?????? 1 00 0; (6)切变变换要看沿什么方向平移,若沿x 轴平移|ky |个单位,则对应矩阵M =???? ?? 1 k 0 1, 若沿y 轴平移|kx |个单位,则对应矩阵M =???? ?? 1 0k 1.(其中k 为非零常数). 4.线性变换的基本性质 设向量α=??????x y ,规定实数λ与向量α的乘积λα=??????λx λy ;设向量α=??????x 1y 1,β=???? ?? x 2y 2,规定 向量α与β的和α+β=???? ?? x 1+x 2y 1+y 2. (1)设M 是一个二阶矩阵,α、β是平面上的任意两个向量,λ是一个任意实数,则①M (λα)=λM α,②M (α+β)=M α+M β. (2)二阶矩阵对应的变换(线性变换)把平面上的直线变成直线(或一点).

高中数学必修和选修知识点归纳总结

高中数学必修+选修知识点归纳 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、 导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩 充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系 的扩充与复数选修2—3:计数原理、随机变量及其分布列, 统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数 难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻 辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、 值域与最值、反函数、三大性质、函 数图象、指数与指数函数、对数与对 数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数 列、数列求和、数列的应用

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

线性代数知识点总结汇总

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A| (5)(A T)T=A (二)矩阵的逆 3、逆的定义: AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1 注:A可逆的充要条件是|A|≠0 4、逆的性质:(5条) (1)(kA)-1=1/k·A-1 (k≠0) (2)(AB)-1=B-1·A-1 (3)|A-1|=|A|-1 (4)(A T)-1=(A-1)T (5)(A-1)-1=A

矩阵秩重要知识点总结_考研必看

一. 矩阵等价 行等价:矩阵A 经若干次初等行变换变为矩阵B 列等价:矩阵A 经若干次初等列变换变为矩阵B 矩阵等价:矩阵A 经若干次初等行变换可以变为矩阵B ,矩阵B 经若干次初等行变换可以变成矩阵A ,则成矩阵A 和B 等价 矩阵等价的充要条件 1. 存在可逆矩阵P 和Q,PAQ=B 2. R(A)=R(B) 二. 向量的线性表示 Case1:向量b r 能由向量组A 线 性表示: 充要条件: 1.线性方程组A x r =b 有解 (A)=R(A,b) Case2:向量组B 能由向量组A 线性表示 充要条件: R(A)=R(A,B) 推论 ∵R(A)=R(A,B),R(B) ≤R(A,B) ∴R(B) ≤R(A) Case3:向量组A 能由向量组B 线性表示 充要条件: R(B)=R(B,A) 推论 ∵R(B)=R(A,B),R(A) ≤R(A,B) ∴R(A) ≤R(B) Case4:向量组A 和B 能相互表示,即向量组A 和向量组B 等价 充要条件: R(A)=R(B)=R(A,B)=R(B,A) Case5:n 维单位坐标向量组能由矩阵A 的列向量组线性表示 充要条件是: R(A)=R(A,E)

n=R(E)<=R(A),又R(A)>=n ,所以R(A)=n=R(A,E) 三. 线性方程组的解 1. 非齐次线性方程组 (1) R(A)=R(A,B),方程有解. (2) R(A)=R(A,B)=n ,解唯一. (3) R(A)=R(A,B)

线性代数知识点总结

线性代数知识点总结 第一章行列式 (一)要点 1、 二阶、三阶行列式 2、 全排列和逆序数,奇偶排列(可以不介绍对换及有关定理) ,n 阶行列式的定义 3、 行列式的性质 4、 n 阶行列式 ^a i j ,元素a j 的余子式和代数余子式,行列式按行(列)展开定理 5、 克莱姆法则 (二)基本要求 1 、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3 、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 a 1i A Ij ' a 2i A 2 j ' a ni A nj ^ 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、 掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、 了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章矩阵 (一)要点 1、 矩阵的概念 m n 矩阵A =(a j )mn 是一个矩阵表。当 m =n 时,称A 为n 阶矩阵,此时由 A 的 元素按原来排列的形式构成的 n 阶行列式,称为矩阵 A 的行列式,记为 A . 注:矩阵和行列式是两个完全不同的两个概念。 2、 几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 a i 1A j 1 ■ a i2A j 2 ? a in A jn = 〔 D '

3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。如果两矩阵A与B相乘,有AB = BA ,则称矩阵A与B可换。注:矩阵乘积不一定符合交换 (2)方阵的幕:对于n阶矩阵A及自然数k, A k=A A A , 1 k个 规定A° = I ,其中I为单位阵. (3) 设多项式函数(J^a^ k?a1?k^l Z-心律??a k,A为方阵,矩阵A的 多项式(A) = a0A k?a1A k' …-?-a k jA ■ a k I ,其中I 为单位阵。 (4)n阶矩阵A和B ,贝U AB=IAB . (5)n 阶矩阵A ,则∣∕Λ =λn A 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A可逆,则其逆矩阵是唯一的);矩阵A的伴随矩阵记 * 为A , AA* = A*A = AE 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价 意义下的标准形;矩阵A可逆的又一充分必要条件:A可以表示成一些初等矩阵的乘积; 用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如A m n, B nl,将矩

矩阵理论知识点整理资料

三、矩阵的若方标准型及分解 λ-矩阵及其标准型定理1 λ-矩阵()λ A可逆的充分必要条件是行列式()λ A是非零常数 引理2 λ-矩阵()λ A=() () n m ij? λ a的左上角元素()λ 11 a不为0,并且()λ A中至少有一个元素不 能被它整除,那么一定可以找到一个与()λ A等价的()() () n m ij? =λ λb B使得()0 b 11 ≠ λ且 ()λ 11 b的次数小于()λ 11 a的次数。 引理3 任何非零的λ-矩阵()λ A=() () n m ij? λ a等价于对角阵 () () () ? ? ? ? ? ? ? ? ? ? ? ? ... ..... d 2 1 λ λ λ r d d ()()()λ λ λ r 2 1 d ,.... d, d是首项系数为1的多项式,且 ()()1 ...... 3,2,,1 , / d 1 - = + r i d i i λ λ 引理4 等价的λ-矩阵有相同的秩和相同的各阶行列式因子 推论5 λ-矩阵的施密斯标准型是唯一的由施密斯标准型可以得到行列式因子推论6 两个λ-矩阵等价,当且仅当它们有相同的行列式因子,或者相同的不变因子 推论7 λ-矩阵()λ A可逆,当且仅当它可以表示为初等矩阵的乘积 推论8 两个()()λ λ λB A m与 矩阵 的- ?n等价当且仅当存在一个m阶的可逆λ-矩阵()λ P和 一个n阶的λ-矩阵()λ Q使得()()()()λ λ λ λQ A P = B 推论9 两个λ-矩阵等价,当且仅当它们有相同的初等因子和相同的秩

定理10 设λ-矩阵()λA 等价于对角型λ-矩阵()() ()()?????? ?? ? ???????? ?=λλλλn h h . . . ..21h B ,若将()λB 的次数大于1的对角线元素分解为不同的一次因式的方幂的乘积,则所有这些一次因式的方幂(相同 的按照重复的次数计算)就是()λA 的全部初等因子。 行列式因子 不变因子 初等因子 初等因子被不变因子唯一确定但,只要λ-矩阵()λA 化为对角阵,再将次数大于等于1的对角线元素分解为不同的一次方幂的乘积,则 所有这些一次因式的方幂(相同的必须重复计算)就为()λA 的全部初等因子,即不必事先知道不变因子,可以直接求得初等因子。 矩阵的若当 标准型 定理1 两个n ?m 阶数字矩阵A 和B 相似,当且仅当它们的特征矩阵B -E A -E λλ与等价 N 阶数字矩阵的特征矩阵A -E λ的秩一定是n 因此它的不变因子有n 个,且乘积是A 的特征多项式 推论3 两个同阶矩阵相似,当且仅当它们有相同的行列式因子,或相同的不变因子,或相同的初等因子。 定理4 每个n 阶复矩阵A 都与一个若当标准型矩阵相似,这个若当标准型矩阵除去其中若当块的排列次序外是被矩阵A 唯一确定的。 求解若当标准型及可逆矩阵P:根据数字矩阵写出特征矩阵,化为对角阵后,得出初等因子, 根据初等因子,写出若当标准型J,设P(X1X2X3),然后根据 J X X X X X X A PJ AP J AP P 321321-1),,(),,(,即得到===得到 P (X1X2X3)方阵 矩阵的最小 多项式 定理1 矩阵A 的最小多项式整除A 的任何零化多项式,且最小多项式唯一。 N 阶数字矩阵可以相似对角化,当且仅当最小多项式无重根。 定理2 矩阵A 的最小多项式的根一定是A 的特征值,反之,矩阵A的特征值一定是最小多项式的根。 求最小多项式:根据数字矩阵写出特征多项式()A E f -=λλ, 根据特征多项式得到最小多

苏教版数学高二选修4-2矩阵与变换学案第09课时 逆矩阵的概念

第09课时 逆矩阵的概念 一、要点讲解 1.二阶逆矩阵的概念: 2.逆矩阵的求法: 二、知识梳理 1.对于二阶矩阵,若有______________________,则称A 是可逆的,B 称为A 的逆矩阵. 2.在六种变换中,__________变换一定不存在逆矩阵. 3.一般地,对于二阶可逆矩阵(0)a b A ad bc d c =-≠?????? ,它的逆矩阵为1A -=________________. 4.若二阶矩阵A 、B 均可逆,则AB 也可逆,且(AB )-1=____________. 5.已知A 、B 、C 为二阶矩阵,且AB = AC ,若矩阵A 存在逆矩阵,则___________. 三、例题讲解 例1. 对于下列给出的变换矩阵A ,是否存在变换矩阵B ,使得连续进行两次变换(先T A 后 T B )的结果与恒等变换的结果相同? (1)以x 为反射轴的反射变换; (2)绕原点逆时针旋转60o作旋转变换; (3)横坐标不变,沿y 轴方向将纵坐标拉伸为原来的2倍作伸压变换; (4)沿y 轴方向,向x 轴作投影变换; (5)纵坐标y 不变,横坐标依纵坐标的比例增加,且满足(x ,y )→(x + 2y ,y ). 例2. 用几何变换的观点判断下列矩阵是否存在逆矩阵,若存在,请求出逆矩阵;若不存在, 请说明理由. (1)0110??????=A ; (2)11210??????????=B ; (3)0110??-????=C ; (4)1010?????? =D ; 例3. 求矩阵3221??? ???=A 的逆矩阵. 四、巩固练习 1. 已知矩阵122301,,231210??????? ?????--??????===B C A ,求满足AXB = C 的矩阵X .

矩阵论课程教学大纲

《矩阵论》课程教学大纲 一、课程基本信息 课程编号: xxxxx 课程中文名称:矩阵论 课程英文名称:Matrix Theory 课程性质:学位课 考核方式:考试 开课专业:工科各专业 开课学期:1 总学时:36学时 总学分: 2学分 二、课程目的和任务 矩阵论是线性代数的后继课程。在线性代数的基础上,进一步介绍线性空间与线性变换、欧氏空间与酉空间以及在此空间上的线性变换,深刻地揭示有限维空间上的线性变换的本质与思想。为了拓展高等数学的分析领域,通过引入向量范数和矩阵范数在有限维空间上构建了矩阵分析理论。 从应用的角度,矩阵代数是数值分析的重要基础,矩阵分析是研究线性动力系统的重要工具。为了矩阵理论的实用性,对于矩阵代数与分析的计算问题,利用Matlab计算软件实现快捷的计算分析。 三、教学基本要求(含素质教育与创新能力培养的要求) 通过本课程的学习,使学生在已掌握本科阶段线性代数知识的基础上,进一步深化和提高矩阵理论的相关知识。并着重培养学生将所学的理论知识应用于本专业的实际问题和解决实际问题的能力。 本课程还要求学生从理论上掌握矩阵的相关理论,会证明简单的一些命题和结论,从而培养逻辑思维能力。要求掌握一些有关矩阵计算的方法,如各种标准型、矩阵函数等,为今后在相关专业中实际应用打好基础。 四、教学内容与学时分配 (一) 线性空间与线性变换 8学时 1. 理解线性空间的概念,掌握基变换与坐标变换的公式;

2. 掌握子空间与维数定理,了解线性空间同构的含义; 3. 理解线性变换的概念,掌握线性变换的矩阵表示。 (二) 内积空间 6学时 1. 理解内积空间的概念,掌握正交基及子空间的正交关系; 2. 了解内积空间的同构的含义,掌握判断正交变换的方法; 3. 理解酉空间的概念,会判定一个空间是否为酉空间 4. 掌握酉空间与实内积空间的异同; 5. 掌握正规矩阵的概念及判定定理和性质。 (三) 矩阵的对角化与若当标准形 6学时 1. 掌握矩阵相似对角化的判别方法; 2. 理解埃尔米特二次型的含义; 3. 会求史密斯标准形; 4. 会求若当标准型。 (四) 矩阵分解4学时 1. 会求矩阵的三角分解和UR分解; 2. 会求矩阵的满秩分解和单纯矩阵的谱分解; 3. 了解矩阵的奇异值和极分解。 (五) 向量与矩阵的重要数字特征4学时 1. 理解向量范数、矩阵范数; 2. 有限维线性空间上向量范数的等价性; 3. 向量范数与矩阵范数的相容性。 (六) 矩阵分析 4学时 1. 理解向量和矩阵的极限的概念; 2. 掌握矩阵幂级数收敛的判定方法; 3. 理解矩阵的克罗内克积; 4. 会求矩阵的微分与积分。 (七) 矩阵函数 4学时 1. 理解矩阵多项式的概念; 2. 掌握由解析函数确定的矩阵函数; 3. 掌握矩阵函数的计算方法。 五、教学方法及手段(含现代化教学手段) 本课程的所有授课内容,均使用多媒体教学方式,教案采用PowerPoint编写,教师使

线性代数知识点全归纳

线性代数知识点 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;

42矩阵教案

§2.1.1矩阵的概念 教学目标: 知识与技能:1.掌握矩阵的概念以及基本组成的含义(行、列、元素) 2.掌握零矩阵、行矩阵、列矩阵、矩阵相等的概念. 3.尝试将矩阵与生活中的问题联系起来, 用矩阵表示丰富的问题, 体会矩阵的现实意义. 过程与方法: 从具体的实例开始,通过具体的实例让学生认识到,某些几何变换可以用矩阵来表示,丰富学生对矩阵几何意义的理解,并引导学生用映射的观点来认识矩阵、解线性方程组 情感、态度与价值观: 体会代数与几何的有机结合,突出数形结合的重要思想 教学重点:矩阵的概念以及基本组成的含义 教学难点:矩阵的概念以及基本组成的含义 教学过程: 一、问题情境: 设O (0, 0),P (2, 3),则向量OP → (2, 3),将OP →的坐标排成一列,并简记为???? ?? 2 3 2 (1)某电视台举办歌唱比赛,甲、乙两名选手初、复赛成绩如下: (2)某牛仔裤商店经销A 、B 、C 、D 、E 五种不同牌子的牛仔裤,其腰围大小分别有28英寸、30英寸、32英寸、34英寸四种,在一个星期内,该商店的销售情况可用下列矩阵形式表示: A B C D E 28英寸 1 3 0 1 2 30英寸 5 8 6 1 2 32英寸 2 3 5 6 0 34英寸 0 1 1 0 3 3.图——矩阵 2 3 2 3 ???? ??80 90 86 88

二、建构数学 矩阵: 记号:A ,B ,C ,…或(a ij ) (其中i,j 分别元素a ij 所在的行和列) 要素:行——列——元素 矩阵相等行列数目相等并且对应元素相等。 特别:(1)2×1矩阵,2× 2矩阵(二阶矩阵),2×3矩阵 (2)零矩阵 (3)行矩阵:[a 11,a 12] 列矩阵:???? ?? a 11 a 21 ,一般用,等表示。 (4)行向量与列向量 三、教学运用 例1、用矩阵表示图中的△ABC , 其中A(-1 , 0) , B(0 , 2) , C(2 , 0) . 思考: 如果用矩阵M=00??? 12 3 2 40? ?? 表示平面中的图形, 那么该图形有什么几何特征? 例2、某种水果的产地为A 1 , A 2 , 销地为B 1 , B 2 , 请用矩阵表示产地A i 运到销 地B j 的水果数量(a ij ), 其中i=1 , 2 , j=1 , 2 . 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 0 A B C 0 3 1 3 0 0 1 0 2

苏教版数学高二选修4-2矩阵与变换学案第01课时 矩阵的概念

第01课时 矩阵的概念 一、要点讲解 1.矩阵的概念: 2.矩阵的相等: 二、知识梳理 1.在数学中,将形如13?????? ,80908688??????,23324m ????-??这样的__________________称做矩阵._____________________________________叫做矩阵的行,______________________ ________________叫做矩阵的列.通常称具有i 行j 列的矩阵为i ×j 矩阵. 2.__________________称为零矩阵;______________________称为行矩阵;____________ _______________称为列矩阵. 3.平面上向量α = (x ,y )的坐标和平面上的点P (x ,y )看作行矩阵可记为________,看作列矩阵可记为_________. 4.当两个矩阵A ,B ,只有当A ,B 的_______________________,并且____________________也分别相等时,才有A = B . 三、例题讲解 例1. 用矩阵表示△ABC ,其中A (-1,0),B (0,2),C (2,0). 例2. 设31,422x y A B z ????==????--???? ,若A = B ,求x ,y ,z . 例3. 已知n 阶矩阵11221 21247712j n j n i i i j in n n n j nn a a a a A a a a a a a a a ????????=???????????? ,其中每行、每列都是等差数列,ij a 表示位于第i 行第j 列的数. (1)写出45a 的值; (2) 写出ij a 的计算公式. 四、巩固练习 1. 画出矩阵143111-????-?? 所表示的三角形,并求该三角形的面积.

矩阵知识点归纳讲课教案

第 i 页 共 4 页 矩阵知识点归纳 (一)二阶矩阵与变换 1.线性变换与二阶矩阵 b 称为二阶矩阵,其中 a , b , c , d d 称为矩阵的元素,矩阵通常用大写字母 A , B , C ,…或(a ij )表示(其中i , j 分别为元素a ij 所在的行和列 ). 2.矩阵的乘法 b ii 行矩阵[a ii a i2]与列矩阵 b 2i a b x 与列矩阵 的乘法规则为 c d y 和消去律. 3.几种常见的线性变换 1 (1)恒等变换矩阵 M = 0 —1 0 变换对应矩阵 M 3= 0 —1 ; x 1 + x 2 向量a 与3的和a+ 3= . y 1 + y 2 (1) 设M 是一个二阶矩阵,a 3是平面上的任意两个向量,入是一个任意实数,则①M (入a =?Ma ,② M ( a+ 3)= Ma + M3 . (2) 二阶矩阵对应的变换 (线性变换 )把平面上的直线变成直线 (或一点 ). 在平面直角坐标系 xOy 中,由 x '= ax + by , y '= cx + dy ,(其中 a , b , c , d 是常数 )构成的变换称 a 为线性变换.由四个数 a , b , c , d 排成的正方形数表 c 的乘法规则为 [a 11a 12] b 11 =[a ii b ii + a i2b 2i ],二阶矩阵 b 21 ax +by .矩阵乘法满足结合律,不满足交换律 cx +dy (2)旋转变换R 0对应的矩阵是 cos 0 —sin 0 sin 0 (3)反射变换要看关于哪条直线对称.例如若关于 i 0 ;若关于 y 轴对称,则变换对应矩阵为 0 —i cos 0 M 2= x 轴对称,则变换对应矩阵为 —1 M i = 若关于坐标原点对称,则 k 1 M = 0 (4)伸压变换对应的二阶矩阵 坐标变为原来的k 2倍,k i , k 2均为非零常数; 0, k 2 表示将每个点的横坐标变为原来的 k 1 倍,纵 (5)投影变换要看投影在什么直线上,例如关于 x 轴的投影变换的矩阵为 ⑹切变变换要看沿什么方向平移,若沿 x 轴平移|ky|个单位,则对应矩阵 1 M = 0 0 ; 0 k 1 若沿y 轴平移|kx|个单位,则对应矩阵 M = 1 k 0 1 ?(其中k 为非零常数 ). 4.线性变换的基本性质 x 设向量a=,规定实数入与向量a 的乘积Aa= y 入X ;设向量 入y x 1 a= y 1 ,3= x 2 2 ,规定 y 2

线性代数知识点归纳,超详细

线性代数复习要点 第一部分行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 行列式的定义 1.行列式的计算: ①(定义法) ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

③(化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④若都是方阵(不必同阶),则 ⑤关于副对角线: ⑥范德蒙德行列式: 证明用从第n行开始,自下而上依次的由下一行减去它上一行的倍,按第一列展开,重复上述操作即可。 ⑦型公式: ⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨(递推公式法) 对阶行列式找出与或,之间的一种关系——称为递推公式,其中 ,,等结构相同,再由递推公式求出的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算. ⑩(数学归纳法) 2. 对于阶行列式,恒有:,其中为阶主子式;

3. 证明的方法: ①、; ②、反证法; ③、构造齐次方程组,证明其有非零解; ④、利用秩,证明; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系: 第二部分矩阵 1.矩阵的运算性质 2.矩阵求逆 3.矩阵的秩的性质 4.矩阵方程的求解 1.矩阵的定义由个数排成的行列的表称为矩阵. 记作:或 ①同型矩阵:两个矩阵的行数相等、列数也相等. ②矩阵相等: 两个矩阵同型,且对应元素相等. ③矩阵运算 a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减). b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为. c. 矩阵与矩阵相乘:设, ,则, 其中 注:矩阵乘法不满足:交换律、消去律, 即公式不成立.

高等代数张禾瑞版教案第章矩阵

第五章矩阵教学目的: 1.掌握矩阵的加法,乘法及数与矩阵的乘法运算法则。及其基本性质,并熟练地对矩阵进行运算。 2.了解几种特殊矩阵的性质。 教学内容: 5.1矩阵的运算 1矩阵相等 我们将在一个数域上来讨论。令F是一个数域。用F的元素a ij作成的一个m行n列矩阵 叫做 (a ij 一个 F (a+b)A=Aa+Ba; a(bA)=(ab)A; 这里A,B和C表示任意m*n矩阵,而a和b表示F中的任意数。 利用负矩阵,我们如下定义矩阵的减法: A—B=A+(—B)。 于是有 A+B=C?A=C—B。 由于数列是矩阵的特例,以上运算规律对于数列也成立。 4乘法

定义3数域F 上的m*n 矩阵A=(a ij )与n*p 矩阵B=(b ij )的乘积AB 指的是这样的一个m*p 矩阵。这个矩阵的第I 行第j 列(I=1,2,…,m;j=1,2,…p )的元素c ij 等于A 的第I 行的元素与B 的第j 列的对应元素的乘积的和: c ij =a i1b 1j +a i2b 2j+…+a in b nj 。 注意,两个矩阵只有当第一个矩阵的列数等于第二个矩阵的行数时才能相乘。 我们看一个例子: =??? ? ???-+?+-?-?-+?+??+?-+-?-?+?-+?0)2(11)3(3)5()2(2113001)1()3(2)5(02)1(12 =???? ??--81570. 5 矩阵乘法的运算规律: B np 和B nm A nn 那么u il 因此(1)l (2)111l k k ===由于双重求和符号可以交换次序,所以(1)和(2)的又端相等.这就证明了结合律. 我们知道,数1乘任何数a 仍得a.对距阵的乘法来说,存在这样的距阵,他们有类似于数1的性质. 我们把主对角线上(从左上角到右下角的对角线)上的元素都是1,而其它元素都是0的n 阶正距阵 1 0 0 01 0 ………… 001 叫做n 阶单位距阵,记作I n ,有时简记作I. I n 显然有以下性质: I n A np =A np ;A mn I n =A mn . 距阵的乘法和加法满足分配律:

相关文档