文档库 最新最全的文档下载
当前位置:文档库 › 第2讲 空间中位置关系的判断与证明问题

第2讲 空间中位置关系的判断与证明问题

第2讲 空间中位置关系的判断与证明问题
第2讲 空间中位置关系的判断与证明问题

第2讲空间中位置关系的判断与证明

问题

高考定位 1.以几何体为载体考查空间点、线、面位置关系的判断,主要以选择、填空题的形式,题目难度较小;2.以解答题的形式考查空间平行、垂直的证明,并常与几何体的表面积、体积相渗透.

真题感悟

1.(2017·全国Ⅰ卷)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()

解析法一对于选项B,如图(1)所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB?平面MNQ,MQ?平面MNQ,所以AB∥平面MNQ.同理可证选项C,D中均有AB∥平面MNQ.因此A 项不正确.

图(1)图(2)

法二对于选项A,其中O为BC的中点(如图(2)所示),连接OQ,则OQ∥AB,

因为OQ与平面MNQ有交点,所以AB与平面MNQ有交点,即AB与平面MNQ 不平行.A项不正确.

答案 A

2.(2016·全国Ⅱ卷)α,β是两个平面,m,n是两条直线,有下列四个命题:

①如果m⊥n,m⊥α,n∥β,那么α⊥β.

②如果m⊥α,n∥α,那么m⊥n.

③如果α∥β,m?α,那么m∥β.

④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.

其中正确的命题有________(填写所有正确命题的编号).

解析当m⊥n,m⊥α,n∥β时,两个平面的位置关系不确定,故①错误,经判断知②③④均正确,故正确答案为②③④.

答案②③④

3.(2016·全国Ⅰ卷)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()

A.

3

2 B.

2

2

C.

3

3 D.

1

3

解析如图所示,设平面CB1D1∩平面ABCD=m1,因为α∥平面CB1D1,所以m1∥m,

又平面ABCD∥平面A1B1C1D1,

且平面B1D1C∩平面A1B1C1D1=B1D1,

所以B1D1∥m1,故B1D1∥m.

因为平面ABB1A1∥平面DCC1D1,

且平面CB1D1∩平面DCC1D1=CD1,

同理可证CD1∥n.

故m,n所成角即直线B1D1与CD1所成角,

在正方体ABCD -A 1B 1C 1D 1中,△CB 1D 1是正三角形,故直线B 1D 1与CD 1所成角为60°,其正弦值为3

2. 答案 A

4.(2017·全国Ⅰ卷)如图,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.

(1)证明:平面P AB ⊥平面P AD ;

(2)若P A =PD =AB =DC ,∠APD =90°,且四棱锥P -ABCD 的体积为83,求该四棱锥的侧面积.

(1)证明 ∵∠BAP =∠CDP =90°,∴AB ⊥P A ,CD ⊥PD . ∵AB ∥CD ,∴AB ⊥PD .

又∵P A ∩PD =P ,P A ,PD ?平面P AD ,∴AB ⊥平面P AD . ∵AB ?平面P AB ,∴平面P AB ⊥平面P AD . (2)解 取AD 的中点E , 连接PE .

∵P A =PD ,∴PE ⊥AD . 由(1)知,AB ⊥平面P AD ,

故AB ⊥PE ,AB ⊥AD ,可得PE ⊥平面ABCD . 设AB =x ,则由已知可得AD =2x ,PE =22x , 故四棱锥P -ABCD 的体积 V P -ABCD =13AB ·AD ·PE =1

3x 3. 由题设得13x 3=8

3,故x =2.

从而P A=PD=AB=DC=2,AD=BC=22,PB=PC=22,可得四棱锥P-ABCD的侧面积为

1

2P A·PD+1

2P A·AB+

1

2PD·DC+

1

2BC

2sin 60°=6+2 3.

考点整合

1.直线、平面平行的判定及其性质

(1)线面平行的判定定理:a?α,b?α,a∥b?a∥α.

(2)线面平行的性质定理:a∥α,a?β,α∩β=b?a∥b.

(3)面面平行的判定定理:a?β,b?β,a∩b=P,a∥α,b∥α?α∥β.

(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b?a∥b.

2.直线、平面垂直的判定及其性质

(1)线面垂直的判定定理:m?α,n?α,m∩n=P,l⊥m,l⊥n?l⊥α.

(2)线面垂直的性质定理:a⊥α,b⊥α?a∥b.

(3)面面垂直的判定定理:a?β,a⊥α?α⊥β.

(4)面面垂直的性质定理:α⊥β,α∩β=l,a?α,a⊥l?a⊥β.

热点一空间点、线、面位置关系的判定

【例1】(2017·成都诊断)已知m,n是空间中两条不同的直线,α,β是两个不同的平面,且m?α,n?β.有下列命题:

①若α∥β,则m∥n;

②若α∥β,则m∥β;

③若α∩β=l,且m⊥l,n⊥l,则α⊥β;

④若α∩β=l,且m⊥l,m⊥n,则α⊥β.

其中真命题的个数是()

A.0

B.1

C.2

D.3

解析①若α∥β,则m∥n或m,n异面,不正确;

②若α∥β,根据平面与平面平行的性质,可得m∥β,正确;

③若α∩β=l,且m⊥l,n⊥l,则α与β不一定垂直,不正确;

④若α∩β=l,且m⊥l,m⊥n,l与n不一定相交,不能推出α⊥β,不正确.

答案 B

探究提高判断与空间位置关系有关的命题真假的方法

(1)借助空间线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行判断.

(2)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理,进行肯定或否定.

(3)借助于反证法,当从正面入手较难时,可利用反证法,推出与题设或公认的结论相矛盾的命题,进而作出判断.

【训练1】(2017·广东省际名校联考)已知α,β为平面,a,b,c为直线,下列命题正确的是()

A.a?α,若b∥a,则b∥α

B.α⊥β,α∩β=c,b⊥c,则b⊥β

C.a⊥b,b⊥c,则a∥c

D.a∩b=A,a?α,b?α,a∥β,b∥β,则α∥β

解析选项A中,b?α或b∥α,不正确.

B中b与β可能斜交,B错误.

C中a∥c,a与c异面,或a与c相交,C错误.

利用面面平行的判定定理,易知D正确.

答案 D

热点二空间平行、垂直关系的证明

【例2】如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD,E和F分别是CD和PC的中点,求证:

(1)P A⊥底面ABCD;

(2)BE∥平面P AD;

(3)平面BEF⊥平面PCD.

证明(1)∵平面P AD⊥底面ABCD,

且P A 垂直于这两个平面的交线AD ,P A ?平面P AD , ∴P A ⊥底面ABCD .

(2)∵AB ∥CD ,CD =2AB ,E 为CD 的中点, ∴AB ∥DE ,且AB =DE . ∴四边形ABED 为平行四边形. ∴BE ∥AD .

又∵BE ?平面P AD ,AD ?平面P AD , ∴BE ∥平面P AD .

(3)∵AB ⊥AD ,而且ABED 为平行四边形. ∴BE ⊥CD ,AD ⊥CD , 由(1)知P A ⊥底面ABCD .

∴P A ⊥CD ,且P A ∩AD =A ,P A ,AD ?平面P AD , ∴CD ⊥平面P AD ,又PD ?平面P AD , ∴CD ⊥PD .

∵E 和F 分别是CD 和PC 的中点, ∴PD ∥EF .

∴CD ⊥EF ,又BE ⊥CD 且EF ∩BE =E , ∴CD ⊥平面BEF ,又CD ?平面PCD , ∴平面BEF ⊥平面PCD .

【迁移探究1】 在本例条件下,证明平面BEF ⊥平面ABCD . 证明 如图,连接AC ,设AC ∩BE =O ,连接FO ,AE .

∵AB ∥CD ,AB ⊥AD ,CD =2AB ,CE =1

2CD , ∴AB 綉CE .

∴四边形ABCE 为平行四边形.

∴O 为AC 的中点,则FO 綉1

2P A ,又P A ⊥平面ABCD ,

∴FO ⊥平面ABCD .又FO ?平面BEF , ∴平面BEF ⊥平面ABCD .

【迁移探究2】 在本例条件下,若AB =BC ,求证:BE ⊥平面P AC . 证明 连接AC ,AC ∩BE =O .

AB ∥CD ,CD =2AB ,且E 为CD 的中点. ∴AB 綉CE . 又∵AB =BC ,

∴四边形ABCE 为菱形,∴BE ⊥AC . 又∵P A ⊥平面ABCD ,又BE ?平面ABCD , ∴P A ⊥BE ,又P A ∩AC =A ,P A ,AC ?平面P AC , ∴BE ⊥平面P AC .

探究提高 垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.

(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直. 热点三 平面图形中的折叠问题

【例3】 (2016·全国Ⅱ卷)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置.

(1)证明:AC ⊥HD ′;

(2)若AB =5,AC =6,AE =5

4,OD ′=22,求五棱锥D ′-ABCFE 的体积. (1)证明 由已知得AC ⊥BD ,AD =CD , 又由AE =CF 得AE AD =CF

CD ,故AC ∥EF , 由此得EF ⊥HD ,故EF ⊥HD ′,所以AC ⊥HD ′.

(2)解由EF∥AC得OH

DO=

AE

AD=

1

4.

由AB=5,AC=6得DO=BO=AB2-AO2=4,所以OH=1,D′H=DH=3,

于是OD′2+OH2=(22)2+12=9=D′H2,

故OD′⊥OH.

由(1)知AC⊥HD′,又AC⊥BD,BD∩HD′=H,所以AC⊥平面BHD′,于是AC⊥OD′,

又由OD′⊥OH,AC∩OH=O,

所以OD′⊥平面ABC.

又由EF

AC=DH

DO得EF=

9

2.

五边形ABCFE的面积S=1

2×6×8-

1

9

2×3=

69

4.

所以五棱锥D′-ABCFE的体积V=1

69

4×22=

232

2.

探究提高 1.解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.一般地翻折后还在同一个平面上的图形的性质不发生变化,不在同一个平面上的图形的性质发生变化.

2.在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形,善于将折叠后的量放在原平面图形中进行分析求解.

【训练3】(2017·成都诊断)如图1,在正方形ABCD中,点E,F分别是AB,

BC的中点,BD与EF交于点H,点G,R分别在线段DH,HB上,且DG

GH=

BR

RH.

将△AED,△CFD,△BEF分别沿DE,DF,EF折起,使点A,B,C重合于点P,如图2所示.

图1图2

(1)求证:GR ⊥平面PEF ;

(2)若正方形ABCD 的边长为4,求三棱锥P -DEF 的内切球的半径. (1)证明 在正方形ABCD 中,∠A ,∠B ,∠C 为直角. ∴在三棱锥P -DEF 中,PE ,PF ,PD 两两垂直. 又PE ∩PF =P ,∴PD ⊥平面PEF . ∵DG GH =BR RH ,即DG GH =PR RH , ∴在△PDH 中,RG ∥PD . ∴GR ⊥平面PEF .

(2)解 正方形ABCD 边长为4.

由题意知,PE =PF =2,PD =4,EF =22,DF =2 5. ∴S △PEF =2,S △DPF =S △DPE =4.

S △DEF =1

2×22×(25)2-(2)2=6. 设三棱锥P -DEF 内切球的半径为r , 则三棱锥的体积为V P -DEF =1

3×PD ·S △PEF =13(S △PEF +2S △DPF +S △DEF )·r ,解得r =12. ∴三棱锥P -DEF 的内切球的半径为12.

1.空间中点、线、面的位置关系的判定

(1)可以从线、面的概念、定理出发,学会找特例、反例.(2)可以借助长方体,在理解空间点、线、面位置关系的基础上,抽象出空间线、面的位置关系的定义. 2.垂直、平行关系的基础是线线垂直和线线平行,常用方法如下:

(1)证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换:三是利用三角形的中位线定理证线线平行;四是利用线面平行、面面平行的性质定理进行平行转换.

(2)证明线线垂直常用的方法:①利用等腰三角形底边中线即高线的性质;②勾股定理;③线面垂直的性质:即要证两线垂直,只需证明一线垂直于另一线所在的平面即可,l ⊥α,a ?α?l ⊥a .

3.解决平面图形的翻折问题,关键是抓住平面图形翻折前后的不变“性”与“量”,即两条直线的平行与垂直关系以及相关线段的长度、角度等.

一、选择题

1.(2016·浙江卷)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则()

A.m∥l

B.m∥n

C.n⊥l

D.m⊥n

解析由已知,α∩β=l,∴l?β,又∵n⊥β,∴n⊥l,C正确.故选C.

答案 C

2.(2017·全国Ⅲ卷)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则()

A.A1E⊥DC1

B.A1E⊥BD

C.A1E⊥BC1

D.A1E⊥AC

解析如图,由题设知,A1B1⊥平面BCC1B1,从而A1B1⊥BC1.

又B1C⊥BC1,且A1B1∩B1C=B1,所以BC1⊥平面A1B1CD,又A1E?平面A1B1CD,所以A1E⊥BC1.

答案 C

3.(2017·梅州质检)已知α,β是两个不同的平面,m,n是两条不重合的直线,则下列命题中正确的是()

A.若m∥α,α∩β=n,则m∥n

B.若m⊥α,n⊥m,则n∥α

C.若m⊥α,n⊥β,α⊥β,则m⊥n

D.若α⊥β,α∩β=n,m⊥n,则m⊥β

解析对于A,m∥α,α∩β=n,则m∥n或m,n异面,故A错误;对于B,若m⊥α,n⊥m,则n∥α或n?α,故B错误;对于C,若n⊥β,α⊥β,则n∥α或n?α,又m⊥α,∴m⊥n,故C正确;对于D,若α⊥β,α∩β=n,m⊥n,

则m可能与β相交,也可能与β平行,也可能在β内,故D错误.故选C.

答案 C

4.如图,在三棱锥D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列正确的是()

A.平面ABC⊥平面ABD

B.平面ABD⊥平面BDC

C.平面ABC⊥平面BDE,且平面ADC⊥平面BDE

D.平面ABC⊥平面ADC,且平面ADC⊥平面BDE

解析因为AB=CB,且E是AC的中点,所以BE⊥AC,同理有DE⊥AC,又BE∩DE=E,于是AC⊥平面BDE.因为AC?平面ABC,所以平面ABC⊥平面BDE.又AC?平面ACD,所以平面ACD⊥平面BDE,所以选C.

答案 C

5.(2017·石家庄质检)设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:

①若m?α,n∥α,则m∥n;

②若α∥β,β∥γ,m⊥α,则m⊥γ;

③若α∩β=n,m∥n,m∥α,则m∥β;

④若α⊥γ,β⊥γ,则α∥β

其中真命题的个数是()

A.0

B.1

C.2

D.3

解析①m∥n或m,n异面,故①错误;易知②正确;③m∥β或m?β,故③错误;④α∥β或α与β相交,故④错误.

答案 B

二、填空题

6.如图,在空间四边形ABCD中,点M∈AB,点N∈AD,若AM

MB=

AN

ND,则直线

MN 与平面BDC 的位置关系是______.

解析 由AM MB =AN

ND ,得MN ∥BD . 而BD ?平面BDC ,MN ?平面BDC , 所以MN ∥平面BDC . 答案 平行

7.正方体ABCD -A 1B 1C 1D 1中,E 为线段B 1D 1上的一个动点,则下列结论中正确的是________(填序号). ①AC ⊥BE ; ②B 1E ∥平面ABCD ;

③三棱锥E -ABC 的体积为定值; ④直线B 1E ⊥直线BC 1.

解析 因AC ⊥平面BDD 1B 1,故①正确;因B 1D 1∥平面ABCD ,故②正确;记正方体的体积为V ,则V E -ABC =1

6V ,为定值,故③正确;B 1E 与BC 1不垂直,故④错误. 答案 ①②③

8.如图,在四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,将△ADB 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A -BCD ,则在三棱锥A -BCD 中,下列命题正确的命题序号是________.

①平面ABD ⊥平面ABC ②平面ADC ⊥平面BDC ③平面ABC ⊥平面BDC ④平面ADC ⊥平面ABC 解析 因为在四边形ABCD 中,AD ∥BC ,AD =AB , ∠BCD =45°,∠BAD =90°,所以BD ⊥CD ,

又平面ABD ⊥平面BCD ,且平面ABD ∩平面BCD =BD ,CD ?平面BCD ,

所以CD⊥平面ABD,又AB?平面ABD,则CD⊥AB,

又AD⊥AB,AD∩CD=D,

所以AB⊥平面ADC,又AB?平面ABC,

所以平面ABC⊥平面ADC.

答案④

三、解答题

9.(2017·江苏卷)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.

求证:(1)EF∥平面ABC;

(2)AD⊥AC.

证明(1)在平面ABD内,AB⊥AD,EF⊥AD,

则AB∥EF.

∵AB?平面ABC,EF?平面ABC,

∴EF∥平面ABC.

(2)∵BC⊥BD,平面ABD∩平面BCD=BD,平面ABD⊥平面BCD,BC?平面BCD,

∴BC⊥平面ABD.

∵AD?平面ABD,∴BC⊥AD.

又AB⊥AD,BC,AB?平面ABC,BC∩AB=B,

∴AD⊥平面ABC,

又因为AC?平面ABC,∴AD⊥AC.

10.(2016·全国Ⅲ卷)如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD∥BC,AB =AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.

(1)证明:MN ∥平面P AB ; (2)求四面体NBCM 的体积.

(1)证明 由已知得AM =2

3AD =2.

如图,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =1

2BC =2.

又AD ∥BC ,故TN 綉AM ,

所以四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ?平面P AB ,MN ?平面P AB , 所以MN ∥平面P AB .

(2)解 因为P A ⊥平面ABCD ,N 为PC 的中点, 所以N 到平面ABCD 的距离为1

2P A . 如图,取BC 的中点E ,连接AE .

由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5. 由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =1

2×4×5=2 5.

所以四面体NBCM 的体积V NBCM =13×S △BCM ×P A 2=45

3.

11.(2017·石家庄模拟)在如图所示的几何体中,四边形CDEF 为正方形,四边形ABCD 为等腰梯形,AB ∥CD ,AC =3,AB =2BC =2,AC ⊥FB .

(1)求证:AC ⊥平面FBC . (2)求四面体FBCD 的体积.

(3)线段AC 上是否存在点M ,使EA ∥平面FDM ?若存在,请说明其位置,并加以证明;若不存在,请说明理由. (1)证明 在△ABC 中,

因为AC =3,AB =2,BC =1,所以AC 2+BC 2=AB 2, 所以AC ⊥BC .

又因为AC ⊥FB ,BC ∩FB =B ,BC ,FB ?平面FBC , 所以AC ⊥平面FBC .

(2)解 因为AC ⊥平面FBC ,FC ?平面FBC , 所以AC ⊥FC .

因为CD ⊥FC ,AC ∩CD =C ,所以FC ⊥平面ABCD . 在等腰梯形ABCD 中可得CB =DC =1,所以FC =1. 所以△BCD 的面积为S =3

4.

所以四面体FBCD 的体积为V F -BCD =13S ·FC =3

12.

(3)解 线段AC 上存在点M ,且点M 为AC 中点时,有EA ∥平面FDM .证明如下:

连接CE ,与DF 交于点N ,取AC 的中点M ,连接MN . 因为四边形CDEF 是正方形,所以点N 为CE 的中点. 所以EA ∥MN .因为MN ?平面FDM ,EA ?平面FDM , 所以EA ∥平面FDM .

所以线段AC 上存在点M ,且M 为AC 的中点,使得EA ∥平面FDM 成立.

空间中直线与直线之间的位置关系

2.1.2 空间中直线与直线之间的位置关系 整体设计 教学分析 空间中直线与直线的位置关系是立体几何中最基本的位置关系,直线的异面关系是本节的重点和难点.异面直线的定义与其他概念的定义不同,它是以否定形式给出的,因此它的证明方法也就与众不同.公理4是空间等角定理的基础,而等角定理又是定义两异面直线所成角的基础,请注意知识之间的相互关系,准确把握两异面直线所成角的概念. 三维目标 1.正确理解空间中直线与直线的位置关系,特别是两直线的异面关系. 2.以公理4和等角定理为基础,正确理解两异面直线所成角的概念以及它们的应用. 3.进一步培养学生的空间想象能力,以及有根有据、实事求是等严肃的科学态度和品质. 重点难点 两直线异面的判定方法,以及两异面直线所成角的求法. 课时安排 1课时 教学过程 导入新课 思路1.(情境导入) 在浩瀚的夜空,两颗流星飞逝而过(假设它们的轨迹为直线),请同学们讨论这两直线的位置关系. 学生:有可能平行,有可能相交,还有一种位置关系不平行也不相交,就像教室内的日光灯管所在的直线与黑板的左右两侧所在的直线一样. 教师:回答得很好,像这样的两直线的位置关系还可以举出很多,又如学校的旗杆所在的直线与其旁边公路所在的直线,它们既不相交,也不平行,即不能处在同一平面内.今天我们讨论空间中直线与直线的位置关系. 思路2.(事例导入) 观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与线段C′C所在直线的位置关系如何? 图1 推进新课 新知探究 提出问题 ①什么叫做异面直线? ②总结空间中直线与直线的位置关系. ③两异面直线的画法. ④在同一平面内,如果两直线都与第三条直线平行,那么这两条直线互相平行.在空间这个结论成立吗? ⑤什么是空间等角定理? ⑥什么叫做两异面直线所成的角? ⑦什么叫做两条直线互相垂直?

空间位置关系的判断与证明

. . 空间中的线面关系 要求层次 重难点 空间线、面的位置关系 B ① 理解空间直线、平面位置关系的定 义,并了解如下可以作为推理依据的公 理和定理. ◆公理1:如果一条直线上的两点 在一个平面,那么这条直线上所有的点 在此平面. ◆公理2:过不在同一条直线上的 三点,有且只有一个平面. ◆公理3:如果两个不重合的平面 有一个公共点,那么它们有且只有一条 过该点的公共直线. ◆公理4:平行于同一条直线的两 条直线互相平行. ◆定理:空间中如果一个角的两边 与另一个角的两边分别平行,那么这两 个角相等或互补. ② 以立体几何的上述定义、公理和 定理为出发点,认识和理解空间中线面 平行、垂直的有关性质与判定. 公理1,公理2,公理3,公理4,定理* A 高考要求 模块框架 空间位置关系的判断与证明

. . 理解以下判定定理. ◆如果平面外一条直线与此平面的 一条直线平行,那么该直线与此平面平 行. ◆如果一个平面的两条相交直线与 另一个平面都平行,那么这两个平面平 行. ◆如果一条直线与一个平面的两条 相交直线都垂直,那么该直线与此平面 垂直. ◆如果一个平面经过另一个平面的 垂线,那么这两个平面互相垂直. 理解以下性质定理,并能够证明. ◆如果一条直线与一个平面平行, 经过该直线的任一个平面与此平面相 交,那么这条直线就和交线平行. ◆如果两个平行平面同时和第三个 平面相交,那么它们的交线相互平行. ◆垂直于同一个平面的两条直线平 行. ◆如果两个平面垂直,那么一个平 面垂直于它们交线的直线与另一个平面 垂直. ③ 能运用公理、定理和已获得的结 论证明一些空间位置关系的简单命题. *公理1:如果一条直线上的两点在一个平面,那么这条直线在此平面. 公理2:过不在一条直线上的三点,有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线平行. 定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补. 1.集合的语言: 我们把空间看做点的集合,即把点看成空间中的基本元素,将直线与平面看做空间的子集,这样便可以用集合的语言来描述点、直线和平面之间的关系: 点A 在直线l 上,记作:A l ∈;点A 不在直线l 上,记作A l ?; 点A 在平面α,记作:A α∈;点A 不在平面α,记作A α?; 直线l 在平面α(即直线上每一个点都在平面α),记作l α?; 直线l 不在平面α(即直线上存在不在平面α的点),记作l α?; 直线l 和m 相交于点A ,记作{}l m A =,简记为l m A =; 知识内容

空间中的平行关系练习题

1.2.2空间中的平行关系 【目标要求】 1.理解并掌握公理4,能应用其证明简单的几何问题. 2.理解并掌握直线与平面平行的判定定理和性质定理,明确线线平行与面面平行的关系. 3.能够熟练的应用线面平行的性质定理和判定定理. 1.以下说法中正确的个数是(其中a,b表示直线,表示平面α) ( ) ①若a∥b,b∥α,则a∥α②若a∥α,b∥α,则a∥b ③若a∥b,b∥α,则a∥α④若a∥α,b∥α,则a∥b A. 0个 B. 1个 C. 2个 D. 3个 2.a∥α,b∥β,a∥b,则α与β的位置关系是() A.平行 B.相交 C.平行或相交 D.一定垂直 3.如果平面α外有两点A、B,它们到平面α的距离都是d,则直线AB和平面α的位置关系一定是() A.平行 B.相交 C.平行或相交 D. AB?α 4.当α∥β时,必须满足的条件() A.平面α内有无数条直线平行于平面β B.平面α与平面β同平行于一条直线 C.平面α内有两条直线平行于平面β D.平面α内有两条相交直线与β平面平行 5.已知a∥α,b∥α,则直线a,b的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且 不相交.;其中可能成立的有() A.2个 B.3个 C.4个 D.5个 6.直线a∥平面α,点A∈α,则过点A且平行于直线a的直线() A.只有一条,但不一定在平面α内 B.只有一条,且在平面α内 C.有无数条,但都不在平面α内 D.有无数条,且都在平面α内 7.已知直线a∥平面α,且它们的距离为d,则到直线a与到平面α的距离都等于d的点的集合是 () A.空集 B.两条平行直线 C.一条直线 D.一个平面 8. A、B是直线l外的两点,过A、B且和l平行的平面的个数是() A.0个 B.1个 C.无数个 D.以上都有可能 9.设α,β是不重合的两个平面,l和m是不重合的两条直线,则能得出α∥β的是() A.l?α,m?α,且l∥β,m∥β B.l?α,m?β,且l∥m C.l⊥α,m⊥β,且l∥m D.l∥α,m∥β,且l∥m 10.已知直线a、b,平面α、β,以下条件中能推出α∥β的是() ①a?α,b?β,a∥b;②a?α,b?α,a∥β,b∥β;③a∥b,a⊥α,b⊥β. A.① B.② C.③ D.均不能 11.若平面α∥平面β,直线a?α,直线b?β,那么直线a,b的位置关系是() A.垂直 B.平行 C.相交 D.不相交 12.梯形ABCD中AB∥CD,AB?平面α,则直线CD与平面α的位置关系是() A.平行 B.平行或相交 C.相交 D. CD平行平面α或CD?α 13.正方体AC1中,E、F、G分别为B1C1、A1D1、A1B1的中点 求证:平面EBD//平面FGA.

空间中点线面位置关系(经典)

第一讲:空间中的点线面 一,生活中的问题? 生活中课桌面、黑板面、教室墙壁、门的表面都给我们以“平面”形象.如果想把一个木棍钉在墙上,至少需要几个钉子?教室的门为什么可以随意开关?插上插销后为什么不能开启?房顶和墙壁有多少公共点?通过本节课学习,我们将从数学的角度解释以上现象. 二,概念明确 1,点构成线,线构成面,所以点线面是立体几何研究的主要对象。 所以:点与线的关系是_____________________,用符号______________。 线与面的关系是_____________________,用符号______________。 点与面的关系是_____________________,用符号______________。 2,高中立体几何主要研究内容:点,线,面的位置关系和几何量(距离,角) 3,直线是笔直,长度无限的;平面是光滑平整,向四周无限延伸,没有尽头的。点,线,面都是抽象的几何概念。不必计较于一个点的大小,直线的长度与粗细。 4,平面的画法与表示 描述几何里所说的“平面”是从生活中的一些物体抽象出来的,是无限的 画法通常把水平的平面画成一个,并且其锐角画成45°,且横边长等于其邻边长的倍,如图a所示,如果一个平面被另一个平面遮挡住,为了增强立体感,被遮挡部分用 画出来,如图b所示

记法 (1)用一个α,β,γ等来表示,如图a中的平面记为平面α (2) 用两个大字的(表示平面的平行四边形的对角线的顶 点)来表示,如图a中的平面记为平面AC或平面BD (3) 用三个大写的英文字母(表示平面的平行四边形的不共线的顶点)来表示,如图a 中的平面记为平面ABC或平面等 (4) 用四个大写的英文字母(表示平面的平行四边形的)来表示,如图a中的平面可记作平面ABCD 检验检验: 下列命题:(1)书桌面是平面;(2)8个平面重叠起来要比6个平面重叠起来厚;(3)有一 个平面的长是50m,度是20m;(4)平面是绝对的平、无厚度、可以无限延展的抽象的数学概念.其中正确命题的个数为() A.1B.2C.3D.4 三,点,线,面的位置关系和表示 A是点,l,m是直线,α,β是平面. 文字语言符号语言图形语言 A在l上 A在l外 A在α内 A在α外 文字语言符号语言图形语言 l在α内 l与α平行

最新空间位置关系的判断与证明

空间中的线面关系 要求层 次 重难点 空间线、面的位置关系 B ①理解空间直线、平面位置关系的定 义,并了解如下可以作为推理依据的公 理和定理. ◆公理1:如果一条直线上的两点 在一个平面内,那么这条直线上所有的 点在此平面内. ◆公理2:过不在同一条直线上的 三点,有且只有一个平面. ◆公理3:如果两个不重合的平面 有一个公共点,那么它们有且只有一条 过该点的公共直线. ◆公理4:平行于同一条直线的两 条直线互相平行. ◆定理:空间中如果一个角的两边 与另一个角的两边分别平行,那么这两 个角相等或互补. ②以立体几何的上述定义、公理和 定理为出发点,认识和理解空间中线面 平行、垂直的有关性质与判定. 理解以下判定定理. ◆如果平面外一条直线与此平面内 的一条直线平行,那么该直线与此平面公理1,公理2,公理3, 公理4,定理* A 高考要求 模块框架 空间位置关系的判断与证明

*公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线平行. 定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补. 1.集合的语言: 我们把空间看做点的集合,即把点看成空间中的基本元素,将直线与平面看做空间的子集,这样便可以用集合的语言来描述点、直线和平面之间的关系: 点A 在直线l 上,记作:A l ∈;点A 不在直线l 上,记作A l ?; 点A 在平面α内,记作:A α∈;点A 不在平面α内,记作A α?; 直线l 在平面α内(即直线上每一个点都在平面α内),记作l α?; 直线l 不在平面α内(即直线上存在不在平面α内的点),记作l α?; 直线l 和m 相交于点A ,记作{}l m A =,简记为l m A =; 平面α与平面β相交于直线a ,记作a αβ=. 2.平面的三个公理: ⑴ 公理一:如果一条直线上的两点在一个平面内,那么这条直线上所 有的点都在这个平面内. 图形语言表述:如右图: 知识内容

最新空间中的平行关系教案

课题:空间中的平行关系 授课人:杜仙梅 教学目标:1.掌握直线和平面平行的判定定理和性质定理,灵活运用线面平行的判定定理和性质定理实现“线线”“线面”平行的转化。 2.掌握两个平面平行的判定定理及性质定理,灵活运用面面平行的判定定理和性质定理实现“线面”“面面”平行的转化. 教学重点、难点:线面平行的判定定理和性质定理的证明及运用;两个平面平行的判定和性质及其灵活运用. 教学方法:探究、引导、讲练相结合 教学过程: 基础知识梳理 1.直线与平面平行的判定与性质 (1)判定定理: 平面外一条直线与_______________平行,则该直线与此平面平行.(此平面内的一条直线) (2)性质定理: 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线.(平行)2.平面与平面平行的判定与性质 (1)判定定理: 一个平面内的与另一个平面平行,则这两个平面平行.(两条相交直线) (2)性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线.(平行) 思考:能否由线线平行得到面面平行? 【思考·提示】可以.只要一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,这两个平面就平行. 三基能力强化 1.两条直线a、b满足a∥b,b?α,则a与平面α的关系是(C) A.a∥α B.a与α相交 C.a与α不相交 D.a?α 2.正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为_____.(平行) 课堂互动讲练 考点一 直线与平面平行的判定: 判定直线与平面平行,主要有三种方法: (1)利用定义(常用反证法). (2)利用判定定理:关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.(3)利用面面平行的性质定理:当两平面平行时,其中一个平面内的任一直线平行于另一平面. 特别提醒:线面平行关系没有传递性,即平行线中的一条平行于一平面,另一条不一定平行于该平面.例1正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一 点P、Q,且AP=DQ. 求证:PQ∥平面BCE. 【证明】法一:如图所示,作PM∥AB交BE于M,作QN∥AB交BC于N, 连结MN、PQ.

空间点线面之间位置关系知识点总结

高中空间点线面之间位置关系知识点总结 第一章空间几何体 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。 棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台. 球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.(二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。平行投影分为正投影和斜投影。 2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则:长对齐、高对齐、宽相等 3.直观图:直观图通常是在平行投影下画出的空间图形。 4.斜二测法:在坐标系''' x o y中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x轴(或在x轴上)的线段保持长度不变,平行于y轴(或在y轴上)的线段长度减半。重点记忆:直观图面积=原图形面积 (三)空间几何体的表面积与体积 1、空间几何体的表面积 ①棱柱、棱锥的表面积:各个面面积之和 ②圆柱的表面积③圆锥的表面积2 S rl r ππ =+ ④圆台的表面积22 S rl r Rl R ππππ =+++⑤球的表面积2 4 S R π = ⑥扇形的面积公式 21 3602 n R S lr π == 扇形 (其中l表示弧长,r表示半径) 2、空间几何体的体积 ①柱体的体积V S h =? 底 ②锥体的体积1 3 V S h =? 底 ③台体的体积1) 3 V S S S S h =+? 下下 上上 (④球体的体积3 4 3 V R π = 2 π 2 π 2r rl S+ =

空间位置关系的判断与证明.板块一.对平面的进一步认识.学生版

题型一 平面的基本性质 【例1】 在空间中,“两条直线没有公共点”是“这两条直线平行”的( ) A .充分不必要条件. B .必要不充分条件. C .充要条件. D .既不充分也不必要条件. 【例2】 判断下面说法是否正确: ①如果一条直线与两条直线都相交,那么这三条直线确定一个平面. ②经过一点的两条直线确定一个平面. ③经过空间任意三点有且只有一个平面. ④若四边形的两条对角线相交于一点,则该四边形是平面图形. ⑤两个平面的公共点的集合,可能是一条线段. ⑥空间中的四个点只可能确定一个平面或四个平面. 【例3】 若P 是正方体1111ABCD A B C D -上底面对角线AC 上一点,则B 、D 、P 三点可以确定平面( ) A .1个 B .2个 C .无数个 D .1个或无数个 【例4】 下列推理错误的是( ) A .,,,A l A B l B l ααα∈∈∈∈?? B .,,,A A B B AB αβαβαβ∈∈∈∈?= C .,,,,,A B C A B C αβ∈∈,且,,A B C 不共线?,αβ重合 D .,l A l A αα?∈?? 【例5】 已知点A ,直线l ,平面α, ①,A l l A αα∈??? ②,A l l A αα∈∈?∈ ③,A l l A αα???? ④,A l A l αα∈??? 以上命题表达正确,且是真命题的有________. 共线问题 【例6】 在正方体1111ABCD A B C D -中,O ,1O 分别是上,下底的中心,P 是1DB 的中点,则O 、P 、1 O 典例分析 板块一.对平面的进一步认识

空间几何——平行与垂直证明

c c ∥∥b a b a ∥?一、“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质 3) 利用空间平行线的传递性(即公理4): 平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那 么这条直线和交线平行。 5) 利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6) 利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行。 a b α β b a a =??βαβ α∥b a ∥? b a b a ////??? ? ?? ==γβγαβα β α ⊥⊥b a b a ∥?

7) 利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。 8) 利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明 1) 利用直线与平面平行的判定定理: 平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。 3) 利用定义:直线在平面外,且直线与平面没有公共点 (三)平面与平面平行的证明 常见证明方法: 1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 α b a β α a β αα∥?a β ∥a ?b ∥a b a αα??α ∥a ?

利用空间向量证明空间位置关系

利用空间向量证明立体几何中的平行与垂直问题 [考纲要求] 1.了解空间直角坐标系,会用空间直角坐标表示点的位置.会简单应用空间两点间的距离公式. 2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.掌握空间向量的数量积及其坐标表示.能用向量的数量积判断向量的共线和垂直. 4.理解直线的方向向量及平面的法向量.能用向量语言表述线线、线面、面面的平行和垂直关系. 5.能用向量方法证明立体几何中有关线面位置关系的一些简单定理(包括三垂线定理). 知识点一:空间向量及其运算 1.空间向量及其有关概念 (1)空间向量的有关概念 (2) 2. (1)非零向量a,b的数量积a·b=|a||b|cos〈a,b〉. (2)空间向量数量积的运算律 ①结合律:(λa)·b=λ(a·b); ②交换律:a·b=b·a; ③分配律:a·(b+c)=a·b+a·c. 3.空间向量的运算及其坐标表示 设a=(a1,a2,a3),b=(b1,b2,b3).

[基本能力] 1.如图,已知空间四边形ABCD ,则13AB ―→+13BC ―→+13CD ―→ 等于________. 答案:13 AD ―→ 2.已知i ,j ,k 为标准正交基底,a =i +2j +3k ,则a 在i 方向上的投影为________. 答案:1 3.若空间三点A (1,5,-2),B (2,4,1),C (p,3,q +2)共线,则p =________,q =________. 答案:3 2 4.已知向量a =(-1,0,1),b =(1,2,3),k ∈R ,若k a -b 与b 垂直,则k =________. 答案:7 考法一 空间向量的线性运算 [例1] 已知四边形ABCD 为正方形,P 是ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形的中心O .Q 是CD 的中点,求下列各题中x ,y 的值: (1)O Q ―→=P Q ―→+x PC ―→+y PA ―→; (2)PA ―→=x PO ―→+y P Q ―→+PD ―→. [解] (1)如图,∵O Q ―→=P Q ―→-PO ―→=P Q ―→-12(PA ―→+PC ―→)=P Q ―→- 1 2PA ―→-12 PC ―→, ∴x =y =-1 2 . (2)∵PA ―→+PC ―→=2PO ―→, ∴PA ―→=2PO ―→-PC ―→. 又∵PC ―→+PD ―→=2P Q ―→,∴PC ―→=2P Q ―→-PD ―→. 从而有PA ―→=2PO ―→-(2P Q ―→-PD ―→)=2PO ―→-2P Q ―→+PD ―→ . ∴x =2,y =-2. 考法二 共线、共面向量定理的应用 [例2] 已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点, 用向量方法求证: (1)E ,F ,G ,H 四点共面; (2)BD ∥平面EFGH . [证明] (1)如图,连接BG ,则EG ―→=EB ―→+BG ―→=EB ―→+12 (BC ―→+BD ―→ ) =EB ―→+BF ―→+

高中数学空间点线面之间的位置关系的知识点总结

高中空间点线面之间位置关系知识点总结 2.1空间点、直线、平面之间的位置关系 2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 D C B A α L A · α C · B · A · α

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为 简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; P · α L β 共面直线 =>a ∥c 2

空间位置关系与距离专题

1 C _ A _ B _ M _ D _ E O _ C 空间位置关系与距离专题 【考题回放】 1.已知平面α外不共线的三点A,B,C 到α的距离都相等,则正确的结论是( ) A.平面ABC 必平行于α B. 存在△ABC 的一条中位线平行于α或在α内 C. 平面ABC 必与α相交 D. 平面ABC 必不垂直于α 2.如图,过平行六面体ABCD-A 1B 1C 1D 1任意两条棱的中 点作直线,其中与平面DBB 1D 1平行的直线共有( ) A.4条 B.6条 C.8条 D.12条 3.设三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别 是侧棱AA 1、 CC 1 上的点,且PA=QC 1,则 四棱锥B —APQC 的体积为( ) A .16 B .14 C .13V D .12 4.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列 四个命题:①若βαβα//,,则⊥⊥m m ; ②若βααβγα//,,则⊥⊥ ③若βαβα//,//,,则n m n m ? ?; ④若m 、n 是异面直线,βααββα//,//,,//,则n n m m ??, 其中真命题是( ) A .①和② B .①和③ C .③和④ D .①和④ 5.在正方形''''D C B A ABCD -中,过对角线' BD 的一个平面交'AA 于E ,交'CC 于F ,则( ) ① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形 ③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD ' 有可能垂直于平面D BB ' 以上结论正确的为 。(写出所有正确结论的编号) 6.如图,四面体ABCD 中,O 、E 分别BD 、BC 的中点,2,CA CB CD BD ==== AB AD == (Ⅰ)求证:AO ⊥平面BCD ; (Ⅱ)求异面直线AB 与CD 所成角的大小; (Ⅲ)求点E 到平面ACD 的距离. 【考点透视】 判断线线、线面、面面的平行与垂直,求点到平面的距离及多面体的体积。 【热点透析】 1. 转化思想: ① ??⊥?⊥?⊥线线平行线面平行面面平行,线线线面面面 ; ② 异面直线间的距离转化为平行线面之间的距离, 平行线面、平行面面之间的距离转化为点与面的距离。 2.空间距离则主要是求点到面的距离主要方法: ①体积法; ②直接法,找出点在平面内的射影

高考数学命题角度4_3空间位置关系证明与二面角求解大题狂练理

命题角度4.3:空间位置关系证明与二面角求解 1.如图所示,已知三棱柱111ABC A B C -中, 1111AC B C =, 111A A A B =, 1160AA B ∠=?. (1)求证: 1AB B C ⊥; (2)若1112A B B C ==, 112B C =,求二面角11C AB B --的余弦值. 【答案】(1)见解析;(2) 21 7 . 【解析】试题分析: (1)证明线面垂直,一般利用线面垂直判定定理,即从线线垂直出发给予证明,而线线垂直的寻找与论证往往需要结合平几知识,如利用等腰三角形性质得底边上中线垂直底面得线线垂直,(2)一般利用空间向量数量积求二面角大小,先根据条件确定恰当空间直角坐标系,设立各点坐标,利用方程组求各面法向量,利用向量数量积求法向量夹角余弦值,最后根据法向量夹角与二面角关系确定二面角的余弦值. (2)∵1ABB ?为等边三角形, 2AB =,∴13OB =,

∵在ABC ?中, 2AB =, 2BC AC ==, O 为AB 中点, ∴1OC = , ∵12B C =, 13OB =,∴222 11OB OC B C +=, ∴1OB OC ⊥, 又1OB AB ⊥, ∴1OB ⊥平面ABC . 以O 为原点, OB , OC , 1OB 方向为x , y , z 轴的正向,建立如图所示的坐标系, ()1,0,0A -, () 10,0,3B , ()1,0,0B , ()0,1,0C , 则() 1111,1,3OC OC CC OC BB =+=+=-,则()11,1,3 C -, ()1 1,0,3AB =, () 10,1,3AC =, 则平面1BAB 的一个法向量()0,1,0m =, 设(),,n x y z =为平面11AB C 的法向量,则1130, {30, n AB x z n AC y z ?=+=?=+=令1z =-,∴3x y ==, ∴( ) 3,3,1n = -, ∴21 cos ,7m n m n m n ?= =?. 点睛:垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直.

《空间中的平行关系》教案

《空间中的平行关系》教案 教学目标 1、知识与技能 (1)认识和理解空间平行线的传递性,会证明空间等角定理. (2)通过直观感知,归纳直线和平面平行及平面和平面平行的判定定理. (3)掌握直线和平面平行,平面与平面平行的判定定理和性质定理,并能利用这些定理解决空间中的平行关系问题. 2、过程与方法 通过类比和转换的思维方法,将空间中的某些立体图形问题转化为平面图形的问题,从而化难为易,化繁为简,带未知为已知,使问题得到很好的解决(线∥线线∥面面∥面).教学重难点 重点:平面的基本性质与推论以及它们的应用;线线平行及平行线的传递性和面面平行的定义与判定. 难点:自然语言与数学图形语言和符号语言间的相互转化与应用;如何由平行公理以及其他基本性质推出空间线、线,线、面和面、面平行的判定和性质定理,并掌握这些定理的应用. 教学过程 一、导入 看图观察,图中的关系是什么? 二、平面中的平行关系 1. 平行直线 (1)空间两条直线的位置关系 ①相交:在同一平面内,有且只有一个公共点; ②平行:在同一平面内,没有公共点. (2)初中几何中的平行公理: 过直线外一点有且只有一条直线和这条直线平行. 【说明】此结论在空间中仍成立. (3)公理4(空间平行线的传递性): 平行于同一条直线的两条直线互相平行.即:如果直线a // b,c // b,那么a // c. 【说明】此公理是判定两直线平行的重要方法:寻找第三条直线分别与前两条直线平行. 2. 等角定理 等角定理:如果一个角的两边和另一个角的两边分别对应平行,并且方向相同,那么这

两个角相等. 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等. 需要说明的是:对于等角定理中的条件:“方向相同”. (1)若仅将它改成“方向相反”,则这两个角也相等. (2)若仅将它改成“一边方向相同,而另一边方向相反”,则这两个角互补.此定理及推论是证明角相等问题的常用方法. 3. 空间图形的平移 如果空间图形F的所有点都沿同一方向移动相同的距离到F'的位置,则说图形F在空间做了一次平移. 注意:图形平移后与原图形全等,即对应角和对应两点间的距离保持不变. 图形平移有如下性质: (1)平移前后的两个图形全等; (2)对应角的大小平移前后不变; (3)对应两点的距离平移前后不变; (4)对应两平行直线的位置关系在平移前后不变; (5)对应两垂直直线的位置关系在平移前后不变. 4. 证明空间两直线平行的方法 (1)利用定义 用定义证明两条直线平行,需证两件事:一是两直线在同一平面内;二是两直线没有公共点. (2)利用公理4 用公理4证明两条直线平行,只需证一件事:就是需找到直线c,使得a // c,同时b//c,由公理4得a // b. 5. 直线与平面平行 (1)直线和平面的位置关系有三种,用公共点的个数归纳为 (2)线面平行的判定定理:如果不在一个平面内的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.

2018届高考数学复习—立体几何:(二)空间直线、平面关系的判断与证明—2.平行与垂直关系的证明(试题版)

【考点2:空间直线、平面的平行与垂直关系证明】题型1:直线、平面平行的判断及性质 【典型例题】 [例1]?(1)如图,在四面体P ABC中,点D,E,F,G分别是棱 AP,AC,BC,PB的中点.求证:DE∥平面BCP . ?(2)(2013福建改编)如图,在四棱锥P-ABCD中,AB∥DC, AB=6,DC=3,若M为P A的中点,求证:DM∥平面PBC . ?(3)如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC 的中点,G为DE的中点.证明:直线HG∥平面CEF . [例2]?(1)如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证: ①B,C,H,G四点共面; ②平面EF A1∥平面BCHG . ?(2)如图E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证: ①EG∥平面BB1D1D; ②平面BDF∥平面B1D1H . 【变式训练】 1.(2014·衡阳质检)在正方体ABCD-A1B1C1D1中,E是DD1 的中点,则BD1与平面ACE的位置关系为______. 2.如图,四边形ABCD是平行四边形,点P是平面ABCD外 一点,M是PC的中点,在DM上取一点G,过G和AP作平 面交平面BDM于GH. 求证:AP∥GH . 3.如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱 A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1 相交,交点分别为F,G,求证:FG∥平面ADD1A1 . 4.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E 在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G= 1,H是B1C1的中点. (1)求证:E,B,F,D1四点共面; (2)求证:平面A1GH∥平面BED1F . 题型2:直线、平面垂直的判断及性质 【典型例题】 [例1]?(1)如图,在四棱锥P-ABCD中, P A⊥底面ABCD, AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC中点. 证明:①CD⊥AE;②PD⊥平面ABE . ?(2)如图所示,在四棱锥P-ABCD中,AB⊥平面

空间中直线间的位置关系

翔宇教育集团课时设计纸 总课题:7.1直线的倾斜角和斜率 总课时2 第2课时 主备人:杨玉叶 课题: 直线的倾斜角和斜率(二) 课型:新授课 教学目的:(1)掌握经过两点的直线的斜率公式。 (2)能结合三角函数和反三角函数知识进行斜率和倾斜角间的转化运算。 (3)准确运用倾斜角和斜率的对应关系解题。 教学重点: 过两点的直线的斜率公式。 教学难点:过两点的直线的斜率公式的建立。 教学过程: 一 复习引入 1.判断正误(1)直线的倾斜角为α,则直线的斜率为tan α;(2)直线的斜率值为tan β,则该直线倾斜角为β;(3)因为所有直线都有倾斜角,故所有直线都有斜率;(4)因平行y 轴的直线斜率不存在,故平行y 轴的直线倾斜角不存在。 2.直线有倾斜角是直线斜率存在的 条件。 3.直线过A (1,1)B (-1,-1)求直线AB 的倾斜角和斜率。若B 点坐标改为(3,2)或(-3,-2),结果又如何? 先求倾斜角再求斜率较繁,能否直接用点的坐标表示斜率? 二 讲授新课 1.斜率公式 P 1(x 1,y 1) P 2(x 2,y 2) 当向量P 1 P 2方向向上时,斜率k= 当向量方向向下,斜率k= 当向量P 1 P 2垂直y 轴时,斜率k= 当向量P 1 P 2垂直x 轴时,斜率k= 综上有:当直线P 1 P 2斜率存在时,斜率k=2 121x x y y -- 指出:(1)斜率公式与两点的顺序无关; (2)若x 1≠x 2 ,y 1 =y 2直线平行x 轴或x 轴,k =0 (3)若x 1=x 2 ,y 1≠ y 2直线垂直x 轴 k 不存在。 (4)在同一直线上的任两点所确定的斜率都相等 2.直线的方向向量 直线上的向量P 1 P 2及与它平行的向量都称为方向向量. 思考:(1)方向向量P 1 P 2的坐标为多少? (2)当x 1≠x 2时向量2 11x x - P 1 P 2是直线P 1 P 2的方向向量吗?坐标为多少?由公式可知:如果知道直线上两点的坐标,即可求出直线的斜率。

利用空间向量证明空间中的位置关系-新人教B版高考数学一轮总复习测试

核心素养测评四十三利用空间向量证明空间中的位置关系 (30分钟60分) 一、选择题(每小题5分,共25分) 1.若直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,1,1), 则( ) A.l∥α B.l⊥α C.l?α或l∥α D.l与α斜交 【解析】选C.因为a=(1,0,2),n=(-2,1,1), 所以a·n=0,即a⊥n,所以l∥α或l?α. 2.已知a=(1,1,1),b=(0,2,-1),c=m a+n b+(4,-4,1).若c与a及b都垂直,则m,n的值分别为 ( ) A.-1,2 B.1,-2 C.1,2 D.-1,-2 【解析】选 A.由已知得c=(m+4,m+2n-4,m-n+1),故a·c=3m+n+1=0,b·c=m+5n-9=0.解得m=-1,n=2. 3.已知平面α内有一点M(1,-1,2),平面α的一个法向量为n=(6,-3,6),则下列点P中,在平面α内的是( ) A.P(2,3,3) B.P(-2,0,1) C.P(-4,4,0) D.P(3,-3,4) 【解析】选A. 逐一验证法,对于选项A,=(1,4,1),所以·n=6-12+6=0,所以⊥n,所以点P在平面α内,同理可验证其他三个点不在平面α内. 4.如图所示,在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,则: ①A1M∥D1P;②A1M∥B1Q; ③A1M∥平面DCC1D1;④A1M∥平面D1PQB1.

以上说法正确的个数为( ) A.1 B.2 C.3 D.4 【解析】选C.=+=+,=+=+,所以∥,所以A1M∥D1P,由线面平行的判定定理可知,A1M∥平面DCC1D1,A1M∥平面D1PQB1.①③④正确. 5.如图,F是正方体ABCD-A1B1C1D1的棱CD的中点.E是BB1上一点,若D1F⊥DE,则有( ) A.B1E=EB B.B1E=2EB C.B1E=EB D.E与B重合 【解析】选A.分别以DA,DC,DD1为x,y,z轴建立空间直角坐标系,设正方体的棱长为2, 则D(0,0,0),F(0,1,0),D1(0,0,2), 设E(2,2,z),则=(0,1,-2),=(2,2,z),因为·=0×2+1×2-2z=0,所以z=1,所以B1E=EB. 二、填空题(每小题5分,共15分) 6.若A0,2,,B1,-1,,C-2,1,是平面α内的三点,设平面α的法向量a=(x,y,z),则x∶y∶z=________. 【解析】=1,-3,-,=-2,-1,-, a·=0,a·=0,x∶y∶z

空间的平行关系

空间的平行关系综合问题 空间平行与垂直关系的关系的证明要注意转化:线线平行线面平行面面平行,线线垂直线面垂直面面垂直。 一、线线平行。判定两线平行的方法 1、平行于同一直线的两条直线互相平 行2、垂直于同一平面的两条直线互相平行;3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行;4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行;5、在同一平面内的两条直线,可依据平面几何的定理证明 二、线面平行。判定线面平行的方法 1、据定义:如果一条直线和一个平面没有公共点;2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行;3、两面平行,则其中一个平面内的直线必平行于另一个平面; 4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面; 5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面 基础训练题 1.下列命题中,正确命题的个数是 . ①若直线l上有无数个点不在平面α内,则l∥α;②若直线l与平面α平行,则l与平面α内的任意一条直线都平行;③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点. 2.下列条件中,不能判断两个平面平行的是(填序号). ①一个平面内的一条直线平行于另一个平面②一个平面内的两条直线平行于另一个平面③一个平面内有无数条直线平行于另一个平面④一个平面内任何一条直线都平行于另一个平面 3.对于平面α和共面的直线m、n,下列命题中假命题是(填序号). ①若m⊥α,m⊥n,则n∥α②若m∥α,n∥α,则m∥n ③若m?α,n∥α,则m∥n ④若m、n与α所成的角相等,则m∥n 4.已知直线a,b,平面α,则以下三个命题: ①若a∥b,b?α,则a∥α; ②若a∥b,a∥α,则b∥α; ③若a∥α,b∥α,则a∥b. 其中真命题的个数是 . 5、设有直线m、n和平面α、β.下列命题不正确的是(填序号). ①若m∥α,n∥α,则m∥n②若m?α,n?α,m∥β,n∥β,则α∥β

2021版高考数学二轮复习专题限时集训8空间位置关系的判断与证明文2020147

专题限时集训(八) 空间位置关系的判断与证明 [专题通关练] (建议用时:30分钟) 1.若a ,b 是空间中两条不相交的直线,则过直线b 且平行于直线a 的平面( ) A .有且仅有一个 B .至少有一个 C .至多有一个 D .有无数个 B [∵a ,b 是空间中两条不相交的直线.∴a ,b 可能平行或异面.若a ,b 平行,则过直线b 且平行于直线a 的平面有无数个;若a ,b 异面,在b 上取一点O ,过O 作c ∥a ,则b ,c 确定平面α,∴a 平行于α,此时过直线b 且平行于直线a 的平面只有一个.故选B.] 2.(2019·长沙模拟)已知正三棱柱ABC -A 1B 1C 1的侧棱长为4,底面边长为2 3.若点M 是线段A 1C 的中点,则直线BM 与底面ABC 所成角的正切值为( ) A.12 B.13 C.23 D.34 C [过点M 作MN ⊥AC 于N ,连接BN (图略),则∠MBN 为直线BM 与底面ABC 所成角,由 题意可知MN =2,BN =3,所以tan∠MBN =MN BN =23 .] 3.已知α,β表示两个不同的平面,l 表示既不在α内也不在β内的直线,存在以下三个条件:①l ⊥α;②l ∥β;③α⊥β,若以其中两个推出另一个构成命题,则正确命题的个数为( ) A .0 B .1 C .2 D .3 C [由①②?③、①③?②是真命题,而由②③不能得到①,故选C.] 4.如图,在四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°.将△ADB 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A -BCD ,则在三棱锥A -BCD 中,下列命题正确的是( ) A .平面ABD ⊥平面ABC B .平面AD C ⊥平面BDC C .平面ABC ⊥平面BDC D .平面ADC ⊥平面ABC D [因为在四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,所以BD ⊥CD ,又平面ABD ⊥平面BCD ,且平面ABD ∩平面BCD =BD ,所以CD ⊥平面ABD ,则CD ⊥AB ,又AD ⊥AB ,CD ∩AD =D ,所以AB ⊥平面ADC ,即平面ABC ⊥平面ADC ,故选D.] 5.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,CC 1的中点,则在空间与三条直线A 1D 1,

相关文档
相关文档 最新文档