文档库 最新最全的文档下载
当前位置:文档库 › 晶闸管直流电动机调速系统

晶闸管直流电动机调速系统

晶闸管直流电动机调速系统
晶闸管直流电动机调速系统

晶闸管直流电动机调速

系统

文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

晶闸管—直流电动机调速系统

采用晶闸管可控整流电路给直流电动机供电,通过移相触发,改变直流电动机电枢电压,实现直流电动机的速度调节。这种晶闸管—直流电动机调速系统是电力驱动中的一种重要方式,更是可控整流电路的主要用途之一。可以图7-1所示三相半波晶闸管—直流电动机调速系统为例,说明其工作过程和系统特性。

直流电动机是一种反电势负载,晶闸管整流电路对反电势负载供电时,电流容易出现断续现象。如果调速系统开环运行,电流断续时机械特性将很软,无法负载;如果闭环控制,断流时会使控制系统参数失调,电机发生振荡。为此,常在直流电机电枢回路内串接平波电抗器Ld,以使电流Id尽可能连续。这样,晶闸管—直流电动机调速系统的运行分析及机械特性,必须按电流连续与否分别讨论。

8.1.1 电流连续时

如果平波电抗器Ld电感量足够大,晶闸管整流器输出电流连续,此时晶闸管—直流电动机系统可按直流等值电路来分析,如图7-2所示。图中,左半部代表电流连续时晶闸管整流器的等效电路,右半部为直流电动机的等效电路。由于电流连续,晶闸管整流器可等效为一个直流电源Ud与内阻的串联,Ud为输出整流电压平均值

(7-1)

式中U为电源相压有效值,为移相触发角。

电流连续情况下,晶闸管有换流重迭现象,产生出换流重迭压降,相当于整流电源内串有一个虚拟电阻,其中LB为换流电感。再考虑交流电源(整流变压器)的等效内电阻Ro,则整流电源内阻应为,如图所示。

电流连续时直流电动机可简单地等效为为反电势E与电枢及平波电抗器的电阻总和Ra串联,而平波电抗器电感Ld在直流等效电路中是得不到反映的。

这样,根据图7-2等效电路,可以列写出电压平衡方程式为

(7-2)

式中,Ce为直流电机电势常数,φ为直流电机每极磁通。求出电机转速为

(7-3)

可以看出,在电枢电流连续的情况下,当整流器移相触发角固定时,电动机转速随负载电流Id的增加而下降,下降斜率为。当角改变时,随着空载转速点no的变化,机械特性为一组斜率相同的平行线。

但是在一定的平波电抗器电感Ld下,当电流减小到一定程度时,Ld中储能将不足以维持电流连续,电流将出现断续现象,此时直流电动机机械特性会发生很大变化,不再是直线,图7-3中以虚线表示。这部分的机械特性要采用电流断续时的运行分析来确定。

二、电流断续时

电枢电流断续时不再存在晶闸管换流重迭现象,晶闸管整流器供电直流电动机系统须采用图7-4所示交流等效电路来分析。在此电路中,u2为相电压瞬时值,显然只有当它大于电枢反电势Ea时晶闸管才能导通,如图7-5所示。由于id断续,电路分析时必须计入平波电感Ld的作用,回路电压平衡方程为

(7-4)

图7-4 电流断续时,晶闸管—直流电动机等效电路图7-5 电流断续时的电枢电流

为分析简便起见,先忽略等效内阻,求解出机械特性后再作为系统内阻对特性斜率进行修正。这样,可采用积分求解如下微分方程

(7-5)

式中C为积分常数,可由图7-5中边界条件

(7-6)

解出

(7-7)

式中为三相半波整流器移相触发角计算起点()的相位。

将式(7-7)代入式(7-5),可得

(7-8)

由于电流不连续,只在一段时间内有电流。设晶闸管导通角为,则又有一边界条件

(7-9)

可用来求取反电势Ea与、之间的关系。即

(7-10)

在并励直流电动机中,,故由上式可转而求得转速n和及的关系为

(7-11)

由于晶闸管导通角和负载电流大小有关,故上式实际上隐含地给出了直流电机电流断续时的机械特性,只是关系复杂不直观,需要通过求解电机电枢电流Id与导通角间的关系来揭示。

按照定义,电枢电流平均值Id为

式中,为每周内换流次数,三相半波和三相桥式整流电路。将式(7-8)和式(7-10)代入上式并经积分和整理,可得负载电流和导通角之间的关系为:

(7-12)

这样,就可以为参变量,将式(7-11)和式(7-12)联系起来,求得不同和下、三相半波晶闸管整流器供电直流电动机的机械特性,由于直流电机电磁转矩,故特性曲线用作横坐标,如图7-6所示。

图7-6 三相半波晶闸管整流器供电直流电机机械特性

由于是由单一组整流器供电的不可逆直流调速系统,电机系统只可工作在

的第Ⅰ象限和的第Ⅳ象限。第Ⅰ象限内,晶闸管移相触发角,整流器工作在可控整流状态;电机转速n、电磁转矩同方向,直流电机运行在电动状态。第Ⅳ象限内,,整流器工作在有源逆变状态;电机转速与电磁转矩反方向,直流电动机运行在反转制动状态,并将转子机械动能变成电能经可控整流器返回交流电源。

无论是第Ⅰ或第Ⅳ象限,当电机电流Id较小时晶闸管导通角,电流断续,机械特性变得很软,随着负载增加转速下降很快;当负载增大到一定数值时,,电流进入连续状态。由于分析中忽略电枢电阻,机械特性变成水平;如计及电阻影响,则电流连续时特性将具有一定斜度,其斜度为。

电流断续时直流电机电枢回路等效电阻增加很多,除使机械特性变软外,还会使调速系统调节器特性变坏,往往引起系统振荡,此时应设法减小电流断续的范围,为此应设计好平波电抗器的电感量。晶闸管—直流电动机系统中平波电抗器电感量按最小电流IL min下仍能保证电流连续为原则来选择。因为电流连续的条件是晶闸管导通角,则由式(7-12)可推得

一般IL min由调速系统设计确定,约为(5~10%)额定电枢电流。这样,保证电流连续的电感量为

(7-13)

一般来说整流相数越多、整流器脉波数越多,整流电压脉动减小,所需电感量可选小些。

转速电流双闭环的数字式可逆直流调速系统的仿真与设计(课程设计完整版)

湖南科技大学 信息与电气工程学院 《课程设计报告》 题目:转速电流双闭环的数字式可逆直流调速系统的仿真与设计 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师:

任务书 题 目 转速电流双闭环的数字式可逆直流调速系统的仿真与设计 时 间安排 2013年下学期17,18周 目 的: 应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB 软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 在原理设计与仿真研究的基础上,应用PROTEL 进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。 要 求:电动机能够实现可逆运行。要求静态无静差。动态过渡过程时间s T s 1.0≤,电流超调量%5%≤i σ,空载起动到额定转速时的转速超调量%30%≤n σ。 总体方案实现:主电路选用直流脉宽调速系统,控制系统选用转速、电流双闭环控制方案。主电路采用25JPF40电力二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT 构成H 型双极式控制可逆PWM 变换器。其中属于脉宽调速系统特有的部分主要是UPM 、逻辑延时环节DLD 、全控型绝缘栅双极性晶体管驱动器GD 和PWM 变换器。系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差。 从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。 指导教师评语: 评分等级:( ) 指导教师签名:

直流电动机调速系统

创新设计创新设计名称: 直流电动机调速系统设计

目录 目录 (1) 1 引言 (2) 1.1 设计背景 (2) 1.2 系统可实现的功能 (2) 2 总体方案设计 (3) 2.1 单片机选型方案 (3) 2.2 转速测量方案选择 (4) 2.3直流电机驱动电路介绍 (5) 2.4 PWM调宽方式的选择 (6) 2.5键盘的选择 (6) 2.6整体方案设计框图 (6) 3 硬件电路设计 (7) 3.1 系统的整体硬件框图 (7) 3.2 按键模块电路设计 (7) 3.3数码管显示模块电路设计 (8) 4系统软件设计 (10) 4.1 PWM输出程序设计 (10) 4.2 数字PID算法程序设计 (11) 4.3速度采集模块程序设计 (12) 4.4 按键设定程序设计 (13) 4.5 速度显示模块程序设计 (15) 5 总结 (16) 6参考文献 (17) 附录A系统原理图 (18)

1 引言 1.1 设计背景 现代工业生产中,电动机是主要的驱动设备,目前在直流电动机拖动系统中已大量采用晶闸管(即可控硅)装置向电动机供电的KZ—D拖动系统,取代了笨重的发电动一电动机的F—D系统,又伴随着电子技术的高度发展,促使直流电机调速逐步从模拟化向数字化转变,特别是单片机技术的应用,使直流电机调速技术又进入到一个新的阶段,智能化、高可靠性已成为它发展的趋势。直流电机调速基本原理是比较简单的(相对于交流电机),只要改变电机的电压就可以改变转速了。改变电压的方法很多,最常见的一种PWM脉宽调制,调节电机的输入占空比就可以控制电机的平均电压,控制转速。本设计主要研究了利用MCS-51系列单片机,通过PWM方式控制直流电机调速的方法。PWM控制技术以其控制简单、灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。 1.2 系统可实现的功能 设计一个直流电机调速系统,要求系统具有如下功能:通过按键设定转速的大小,然后由单片机产生PWM控制信号,控制直流电机驱动器L298N,使电动机以一定的转速旋转,为实现闭环控制,通过外围器件为单片机提供测量转速的电平变化信号,单片机测得转速后,与设定的转速值相比较,通过数字PID算法产生控制信号,改变PWM输出的占空比,从而改变电动机转速,从而实现闭环控制,使电动机在一个转速值上较稳定的旋转。

直流电动机调速课程设计

《电力拖动技术课程设计》报告书 直流电动机调速设计 专业:电气自动化 学生姓名: 班级: 09电气自动化大专 指导老师: 提交日期: 2012 年 3 月

前言 在电机的发展史上,直流电动机有着光辉的历史和经历,皮克西、西门子、格拉姆、爱迪生、戈登等世界上著名的科学家都为直流电机的发展和生存作出了极其巨大的贡献,这些直流电机的鼻祖中尤其是以发明擅长的发明大王爱迪生却只对直流电机感兴趣,现而今直流电机仍然成为人类生存和发展极其重要的一部分,因而有必要说明对直流电机的研究很有必要。 早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工效率。

直流PWMM可逆调速系统的设计与仿真

基础课程设计(论文) 直流PWM-M可逆调速系统的设计与仿真 专业:电气工程及其自动化 指导教师:刘雨楠 小组成员:陈慧婷(20114073166) 石文强(20114073113) 刘志鹏(20114073134) 张华国(20114073151) 信息技术学院电气工程系 2014年10月20日

摘要 当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流调速控制作为电气传动的主流在现代化生产中起着主要作用。本文主要研究直流调速系统,它主要由三部分组成,包括控制部分、功率部分、直流电动机。长期以来,直流电动机因其具有调节转速比较灵活、方法简单、易于大范围内平滑调速、控制性能好等特点,一直在传动领域占有统治地位。微机技术的快速发展,在控制领域得到广泛应用。本文对基于微机控制的双闭环可逆直流PWM调速系统进行了较深入的研究,从直流调速系统原理出发,逐步建立了双闭环直流PWM调速系统的数学模型,用微机硬件和软件发展的最新成果,探讨一个将微机和电力拖动控制相结合的新的控制方法,研究工作在对控制对象全面回顾的基础上,重点对控制部分展开研究,它包括对实现控制所需要的硬件和软件的探讨,控制策略和控制算法的探讨等内容。在硬件方面充分利用微机外设接口丰富,运算速度快的特点,采取软件和硬件相结合的措施,实现对转速、电流双闭环调速系统的控制。论文分析了系统工作原理和提高调速性能的方法,研究了IGBT模块应用中驱动、吸收、保护控制等关键技术.在微机控制方面,讨论了数字触发、数字测速、数字PWM调制器、双极式H型PWM变换电路、转速与电流控制器的原理,并给出了软、硬件实现方案。 关键词:直流可逆调速数字触发PWM 数字控制器

晶闸管—直流电动机调速系统教学文稿

7.1 晶闸管—直流电动机调速系统 采用晶闸管可控整流电路给直流电动机供电,通过移相触发,改变直流电动机电枢电压,实现直流电动机的速度调节。这种晶闸管—直流电动机调速系统是电力驱动中的一种重要方式,更是可控整流电路的主要用途之一。可以图7-1所示三相半波晶闸管—直流电动机调速系统为例,说明其工作过程和系统特性。 直流电动机是一种反电势负载,晶闸管整流电路对反电势负载供电时,电流容易出现断续现象。如果调速系统开环运行,电流断续时机械特性将很软,无法负载;如果闭环控制,断流时会使控制系统参数失调,电机发生振荡。为此,常在直流电机电枢回路内串接平波电抗器Ld,以使电流Id尽可能连续。这样,晶闸管—直流电动机调速系统的运行分析及机械特性,必须按电流连续与否分别讨论。 8.1.1 电流连续时 如果平波电抗器Ld电感量足够大,晶闸管整流器输出电流连续,此时晶闸管—直流电动机系统可按直流等值电路来分析,如图7-2所示。图中,左半部代表电流连续时晶闸管整流器的等效电路,右半部为直流电动机的等效电路。由于电流连续,晶闸管整流器可等效为一个直流电源Ud与内阻的串联,Ud为输出整流电压平均值 (7-1) 式中U为电源相压有效值,为移相触发角。

电流连续情况下,晶闸管有换流重迭现象,产生出换流重迭压降,相当于整流电源内串有一个虚拟电阻,其中LB为换流电感。再考虑交流电源(整流变压器)的等效内电阻Ro,则整流电源内阻应为,如图所示。 电流连续时直流电动机可简单地等效为为反电势E与电枢及平波电抗器的电阻总和Ra 串联,而平波电抗器电感Ld在直流等效电路中是得不到反映的。 这样,根据图7-2等效电路,可以列写出电压平衡方程式为 (7-2) 式中,Ce为直流电机电势常数,φ为直流电机每极磁通。求出电机转速为 (7-3) 可以看出,在电枢电流连续的情况下,当整流器移相触发角固定时,电动机转速随 负载电流Id的增加而下降,下降斜率为。当角改变时,随着空载转速点no的变化,机械特性为一组斜率相同的平行线。 但是在一定的平波电抗器电感Ld下,当电流减小到一定程度时,Ld中储能将不足以维持电流连续,电流将出现断续现象,此时直流电动机机械特性会发生很大变化,不再是直线,图7-3中以虚线表示。这部分的机械特性要采用电流断续时的运行分析来确定。 二、电流断续时

直流电动机调速系统设计方案

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 直流电动机调速系统设计 初始条件: 采用MC787组成触发系统,对三相全控桥式整流电路进行触发,通过改变直流电动机电压来调节转速。 要求完成的主要任务: (1)设计出三相全控桥式整流电路拓扑结构; (2)设计出触发系统和功率放大电路; (3)采用开环控制、转速单闭环控制、转速外环+电流内环控制。 (4) 器件选择:晶闸管选择、晶闸管串联、并联参数选择、平波和均衡电抗 器选择、晶闸管保护设计 参考文献: [1] 周渊深.《电力电子技术与MATLAB仿真》.北京:中国电力出版社, 2005:41-49、105-114 时间安排: 2011年12月5日至2011年12月14日,历时一周半,具体进度安排见下表 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 1概述 0 2转速、电流双闭环直流调速系统的组成及其静特性 0 2.1转速、电流双闭环直流调速系统的组成 0 2.2 稳态结构框图和静特性 (1) 3双闭环直流调速系统的数学模型与动态过程分析 (2) 3.1双闭环直流调速系统的动态数学模型 (2) 3.2双闭环直流调速系统的动态过程分析 (3) 4转速电流双闭环直流调速系统调节器的工程设计 (5) 4.1转速和电流两个调节器的作用 (5) 4.2调节器的工程设计方法 (5) 4.2.1设计的基本思路 (6) 4.3 触发电路及晶闸管整流保护电路设计 (6) 4.3.1触发电路 (6) 4.3.2整流保护电路 (7) 4.3.2.1 过电压保护和du/dt限制 (7) 4.3.2.2 过电流保护和di/dt限制 (8) 4.4 器件选择与计算 (8) 5心得体会 (13) 参考文献 (14) 附录:电路原理图 (15)

直流电动机调速系统设计综述

概述 (2) 1 设计任务与分析 (3) 1.1 任务要求 (3) 1.2 任务分析 (3) 2方案选择及论证 (4) 2.1 三相可控整流电路的选择 (4) 2.2 触发电路的选择 (4) 2.3 电力电子器件的缓冲电路 (5) 2.4 电力电子器件的保护电路 (5) 3主电路设计 (7) 3.1 整流变压器计算 (7) 3.1.1 U2的计算 (7) 3.1.2一次侧和二次侧相电流I1和I2的计算 (8) 3.1.3变压器的容量计算 (8) 3.2 晶闸管元件的参数计算 (9) 3.2.1晶闸管的额定电压 (9) 3.2.2晶闸管的额定电流 (9) 3.3 电力电子电路保护环节 (10) 3.3.1交流侧过电压保护 (10) 3.3.2直流侧过电压保护 (11) 3.3.3晶闸管两端的过电压保护 (11) 3.3.4过电流保护 (11) 4触发电路设计 (11) 4.1 触发电路主电路设计 (11) 4.2 触发电路的直流电源 (13) 5电气原理图 (14) 小结与体会 (15) 参考文献 (16) 附录 (16)

直流电动机具有良好的起动和制动性能,广泛应用于机械、纺织、冶金、化工、轻工等工业系统。随着电力电子技术的发展,晶闸管在直流电动机的调速系统中得到广泛应用。晶闸管直流电动机调速系统,可实现电动机的无级调速,具有调节范围宽,控制精度高,使用寿命长、成本低等优点。正确掌握晶闸管直流电动机调速系统的设计方法,对系统的可靠运行及应用有重大意义。 本设计以晶闸管直流电动机调速装置为主,介绍了系统的各个部件的组成及主要器件的参数计算。调速装置以可控整流电路作为直流电源,把交流电变换成大小可调的单一方向直流电。通过改变触发电路所提供的触发脉冲送出的早晚来改变直流电压的平均值。 关键词:可控整流晶闸管触发电路保护电路

(完整版)晶闸管直流调速系统参数和环节特性的测定

晶闸管直流调速系统参数和环节特性的测定一、实验目的 (1)熟悉晶闸管直流调速系统的组成及其基本结构。 (2)掌握晶闸管直流调速系统参数及反馈环节测定方法。 二、实验原理 晶闸管直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发动机组等组成。 在本实验中,整流装置的主电路为三相桥式电路,控制电路可直接由给定电压U g作为触发器的移相控制电压U ct,改变U g的大小即可改变控制角α,从而获得可调直流电压,以满足实验要求。实验系统的组成原理如图1所示。 图1 晶闸管直流调速试验系统原理图

三、实验内容 (1) 测定晶闸管直流调速系统主电路总电阻值R 。 (2) 测定晶闸管直流调速系统主电路电感值L 。 (3) 测定直流电动机-直流发电机-测速发电机组的飞轮惯量GD 2。 (4) 测定晶闸管直流调速系统主电路电磁时间常数T d 。 (5) 测定直流电动机电势常数C e 和转矩常数C M 。 (6) 测定晶闸管直流调速系统机电时间常数T M 。 (7) 测定晶闸管触发及整流装置特性()ct d U f U =。 (8) 测定测速发电机特性()n f U TG =。 四、实验仿真 晶体管直流调速实验系统原理图如图1所示。该系统由给定信号、同步脉冲触发器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。图2是采用面向电气原理图方法构成的晶闸管直流调速系统的仿真模型。下面介绍各部分的建模与参数设置过程。 4.1 系统的建模和模型参数设置 系统的建模包括主电路的建模与控制电路的建模两部分。 (1)主电路的建模与参数设置 由图2可见,开环直流调速系统的主电路由三相对称交流电压源、晶闸管整流桥、平波电抗器、直流电动机等部分组成。由于同步脉冲触发器与晶闸管整流桥是不可分割的两个环节,通常作为一个组合体来讨论,所以将触发器归到主电路进行建模。 ①三相对称交流电压源的建模和参数设置。首先从电源模块组中选取一个交流电压源模块,再用复制的方法得到三相电源的另两个电压源模块,并用模块标题名称修改方法将模块标签分别改为“A 相”、“B 相”、“C 相”,然后从元件模块

直流电动机开环调速MATLAB系统仿真

东北石油大学MATLAB电气应用训练 2013年 3 月 8日

MATLAB电气应用训练任务书 课程 MATLAB电气应用训练 题目直流电动机开环调速系统仿真 专业电气信息工程及其自动化姓名赵建学号 110603120121 主要内容: 采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的MATLAB /SIMULINK 仿真模型。分析系统起动的转速和电流的仿真波形,并进行调试,使双闭环直流调速系统趋于合理与完善 基本要求: 1.设计直流电动机开环调速系统 2.运用MATLAB软件进行仿真 3.通过仿真软件得出波形图 参考文献: [1] 陈伯时. 电力拖动自动控制系统—运动控制系统第3版[M]. 北京:机械工业出版社, 2007. [2] 王兆安, 黄俊. 电力电子技术第4版[M]. 北京:机械工业出版社, 2000. [3] 任彦硕. 自动控制原理[M]. 北京:机械工业出版社, 2006. [4] 洪乃刚. 电力电子和电力拖动控制系统的MATLAB仿真[M]. 北京:机械工业出版社, 2006. 完成期限 2013.2.25——2013.3.8 指导教师李宏玉任爽 2013年 2 月25 日

目录 1课题背景 (1) 2直流电动机开环调速系统仿真的原理 (2) 3仿真过程 (5) 3.1仿真原理图 (5) 3.2仿真结果 (9) 4仿真分析 (12) 5总结 (13) 参考文献 (14)

1课题背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。尽管目前交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。现在的直流和交流调速装置都是数字化的,使用的芯片和软件各有特点,但基本控制原理有其共性。 长期以来,仿真领域的研究重点是仿真模型的建立这一环节上,即在系统模型建立以后要设计一种算法。以使系统模型等为计算机所接受,然后再编制成计算机程序,并在计算机上运行。因此产生了各种仿真算法和仿真软件。 由于对模型建立和仿真实验研究较少,因此建模通常需要很长时间,同时仿真结果的分析也必须依赖有关专家,而对决策者缺乏直接的指导,这样就大大阻碍了仿真技术的推广应用。 MATLAB提供动态系统仿真工具Simulink,则是众多仿真软件中最强大、最优秀、最容易使用的一种。它有效的解决了以上仿真技术中的问题。在Simulink中,对系统进行建模将变的非常简单,而且仿真过程是交互的,因此可以很随意的改变仿真参数,并且立即可以得到修改后的结果。另外,使用MATLAB中的各种分析工具,还可以对仿真结果进行分析和可视化。 Simulink可以超越理想的线性模型去探索更为现实的非线性问题的模型,如现实世界中的摩擦、空气阻力、齿轮啮合等自然现象;它可以仿真到宏观的星体,至微观的分子原子,它可以建模和仿真的对象的类型广泛,可以是机械的、电子的等现实存在的实体,也可以是理想的系统,可仿真动态系统的复杂性可大可小,可以是连续的、离散的或混合型的。Simulink会使你的计算机成为一个实验室,用它可对各种现实中存在的、不存在的、甚至是相反的系统进行建模与仿真。 传统的研究方法主要有解析法,实验法与仿真实验,其中前两种方法在具有各自优点的同时也存在着不同的局限性。随着生产技术的发展,对电气传动在启制动、正反转以及调速精度、调速范围、静态特性、动态响应等方面提出了更高要求,这就要求大量使用调速系统。由于直流电机的调速性能和转矩控制性能好,从20世纪30年代起,就开始

H桥可逆直流调速系统设计与实验(1)

燕山大学 CDIO课程项目研究报告 项目名称: H桥可逆直流调速系统设计与实验 学院(系):电气工程学院 年级专业: 学号: 学生: 指导教师: 日期: 2014年6月3日

目录 前言 (1) 摘要 (2) 第一章调速系统总体方案设计 (3) 1.1 转速、电流双闭环调速系统的组成 (3) 1.2.稳态结构图和静特 (4) 1.2.1各变量的稳态工作点和稳态参数计算 (6) 1.3双闭环脉宽调速系统的动态性能 (7) 1.3.1动态数学模型 (7) 1.3.2起动过程分析 (7) 1.3.3 动态性能和两个调节器的作用 (8) 第二章 H桥可逆直流调速电源及保护系统设计 (11) 第三章调节器的选型及参数设计 (13) 3.1电流环的设计 (13) 3.2速度环的设计 (15) 第四章Matlab/Simulink仿真 (17) 第五章实物制作 (20) 第六章性能测试 (22) 6.1 SG3525性能测试 (22) 6.2 开环系统调试 (23) 总结 (26) 参考文献 (26)

前言 随着交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。 项目预期成果: 设计一个双闭环可逆直流调速系统,实现电流超调量小于等于5%;转速超调量小于等于5%;过渡过程时间小于等于0.1s的无静差调速系统。 项目分工:参数计算: 仿真: 电路设计: 电路焊接: PPT答辩: 摘要

直流小电动机调速系统

题目直流小电机测速系统 一.题目要求 设计题目:直流小电动机调速系统 描述:采用单片机、uln2003为主要器件,设计直流电机调速系统,实现电机速度开环可调。 具体要求:1、电机速度分30r/m、60r/m、100r/m共3档; 2、通过按选择速度; 3、检测并显示各档速度。 实验器件: 实验板、STC89C52、直流电机、晶振(12MHz)、电容(30pFⅹ2、10uFⅹ2)、)uln2003、小按键、按键(4个)、、数码管、以及 电阻等 二.组分工

摘要 在电气时代的今天,电动机在工农业生产与人们日常生活中都起着十分重要的作用。直流电机作为最常见的一种电机,具有非常优秀的线性机械特性、较宽的调速围、良好的起动性以及简单的控制电路等优点,因此在社会的各个领域中都得到了十分广泛的应用。 本文设计了直流电机测速系统的基本方案,阐述了该系统的基本结构、工作原理、运行特性及其设计方法。本系统采用PWM 测量电动机的转速,用MCS-51单片机对直流电机的转速进行控制。本设计主要研究直流电机的控制和测量方法,从而对电机的控制精度、响应速度以及节约能源等都具有重要意义。 ·关键词:直流电机单片机 PWM 转速控制 硬件部分 1.时钟电路 系统采用12M晶振与两个30pF电容组成震荡电路,接STC89C52的XTAL1与XTAL2引脚

2.按键电路 三个按键分别控制电机的不同转速,采用开环控制方法 3.电机控制与驱动部分 电机的运行通过PWM波控制。PWM波通过STC89C52的P2.4口输出。

显示部分 采用4位共阳极数码管实现转速显示。数码管的位选端1~4分别接STC89C52的P2.0~P2.3管脚。 完整仿真电路图

直流电动机的电气调速方法

直流电动机的电气调速方法 直流电动机的电气调速方法下的调速性能及其应用。关键卸电机调违方法性能化较基本调速方法电机的电磁转炬和转速是表征电机运斤状态的主要物理量直流他励电机的电磁转矩和转速。 在恒负载转矩始下,若改变电枢回路所串联电阻化,改变电枢两端电压,或改变磁通,都可改变直流电机的机械特性,达到调速的目的。 因此,人为的改变电机的运行参数而实现的调速方法有:电枢回路串联电阻调速;改变电枢电压调速;减弱通调速这种人为的改变电机的运斤参数而得到的机械特性称人工机械特化电枢回路串联电阻调速持电源电压和磁通H为额定值不变,控制触点。 接通或断开可得到定负载转矩下电机的不同转速,电枢回路串接不同电阻下的空载转速。保持不变,而负载时的转速降将随电枢串联电阻的增加而大,电机的转速随电枢回路串联电阻的加而减小。 由于电枢电阻为恒值旧而电机的转速只能在额定转速下调整,电机的机械特性变软,在负载转炬变化时,转速降落较大,保持磁通为额定值,电枢回路不串入电阻,通过改变调压装置改变电枢电压,使其在额定电压凹下变化,其调速特性改变电枢电压的人工机械特性为条平行于自然机械特性的直线。随着电枢电压下降电机的空载转速降低,负载时的转速降保持不变,电机转速随电枢电压降低而下降。由

于电枢电压只能在额定电压化判下变化,因此改变电枢电压调速只能在额定转速下调整,电机的机械特性硬,在负载转矩变化时,转速降落较小。 以上两种调速方法在拖动恒转矩负载,稳定在不同转速下运行时,在采用电枢回路串入电阻调速或改变电枢电调速时,力辉电动机的负载能力具有恒转矩特化改变域通调速于额定磁通下,磁路系统已接近饱和,因此改变磁通只能在额定磁通巧下减小。在某负载转矩化下,保持电枢电压为额定电压化,电枢回路不串入电阻,调整励磁电阻况使励磁电流减小,从而减小磁通。随着磁通的减小,电机的空载转速将加内,电机的转速将随着磁通的减弱而增加内内减弱磁通调速只能得到高于额定转速的转速,且电机的机械特性变软,在负载转矩变化时,转速降落较大采用弱磁调速方法时,若拖动恒转炬负载,电动机运行于不同转速下的电枢电流。 调速的相对稳定性调速的相对稳定性亦称静差率,是衡量调速精度的指示它是指负载转矩变化时,转速变化的程度,其定义为:电动机由理想空载到额定负载时转速降落n.与理想空载转速《之比的百分数,常用来表示式中心电动机的额定转速。越小调速的相对稳定性越好,越大调速的相对稳定性就越差。电动机受负载变化所引起的转速降。系统的相对稳定性就越好,调速的精度就越高;电动机的理想空载转速。越低,义就越大,系统的相对稳定性就越差,调速的精度就越低。

晶闸管直流调速系统资料

4 -1 晶闸管直流调速系统主要单元调试 一、实验目的 1.熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。 2.掌握直流调速系统主要单元部件的调试步骤和方法。 二、实验内容 1.调节器的调试 2.电平检测器的调试 3.反号器的调试 4.逻辑控制器的调试 三、实验设备及仪器 1 . DKSZ 一l 型实验装置主控制屏DK01 2 . DK02 、DK03、DK04挂箱 3 .二踪扫描示波器 4 .万用电表 四、实验方法 实验中所用的各控制单元的原理图见第二章有关内容。 1 .调节器(AsR 、ACR )的调试 合上低压直流电源开关,观察各指示灯指示是否正常。 ( l )调零.将调节器输入端接地,把串联反馈网络中的电容短接,使调节器变为P调节器,再调节面板上的调零电位器,使调节器的输出为零。 ( 2 )调整输出正、负限幅值. 将反馈电容短接线去掉,使调节器变为PI 调节器,加入一定的输入电压,调整正、负限幅电位器,使输出正负最大值为所需的数值。 ( 3 )测定输入输出特性.向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画出曲线。 ( 4 )观察PI 特性.突加给定电压UG,用示波器观察输出电压的变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容箱改变数值。 2 .电平检测器的调试 1)测定转矩极性鉴别器DPT的环宽,要求环宽为0.4-0.6V,记录高电平值,调节RP1使环宽对称纵坐标。 2)测定零电流检测器DPZ的环宽,要求环宽也为0.4-0.6V,调节RP1使回环向纵坐标右侧偏离0.1-0.2V。 3)按测得数据,画出两个电平检测器的回环。 3 .反号器(AR)的调试

逻辑无环流直流可逆调速系统设计

; 课程设计任务书 学生姓名:苌城专业班级:自动化0706 指导教师:饶浩彬工作单位:自动化学院 题目: 逻辑无环流直流可逆调速系统设计 初始条件: 1.技术数据: 晶闸管整流装置:R rec=Ω,K s=40。 / 负载电机额定数据:P N=,U N=230V,I N=37A,n N=1450r/min,R a=Ω,I fn=1.14A, GD2= 系统主电路:T m=,T l= 2.技术指标 稳态指标:无静差(静差率s≤2, 调速范围D≥10) 动态指标:电流超调量:≤5%,起动到额定转速时的超调量:≤8%,(按退饱和方式计算) 要求完成的主要任务: ? 1.技术要求: (1) 该调速系统能进行平滑的速度调节,负载电机可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作 (2) 系统静特性良好,无静差(静差率s≤2) (3) 动态性能指标:转速超调量δn<8%,电流超调量δi<5%,动态速降Δn≤10%,调速系统的过渡过程时间(调节时间)t s≤1s (4) 系统在5%负载以上变化的运行范围内电流连续 (5) 调速系统中设置有过电压、过电流等保护,并且有制动措施

2.设计内容: ! (1) 根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图 (2) 调速系统主电路元部件的确定及其参数计算(包括有变压器、电力电子器件、平波电抗器与保护电路等) (3) 动态设计计算:根据技术要求,对系统进行动态校正,确定ASR调节器与ACR调节器的结构型式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求 (4) 绘制逻辑无环流直流可逆调速系统的电气原理总图(要求计算机绘图) (5) 整理设计数据资料,课程设计总结,撰写设计计算说明书 时间安排: 课程设计时间为一周半,共分为三个阶段: (1): (2)复习有关知识,查阅有关资料,确定设计方案。约占总时间的20% (3)根据技术指标及技术要求,完成设计计算。约占总时间的40% (4)完成设计和文档整理。约占总时间的40% 指导教师签名:年月日 系主任(或责任教师)签名:年月日 】

三相异步电动机调速系统设计(精)

Anhui Vocactional & Technical College of Industry & Trade 毕业论文 三相异步电动机调速系统设计 Three-phase asynchronous motor drive system design 所在系院:电气与信息工程系 专业班级:、 机电一体技术 学生学号:43 学生姓名:叶海英 指导教师:王琳 ; 2013年3月23日 安徽工贸职业技术学院

毕业设计(论文)任务书系(院)专业班级 学生姓名学号 一、题目: 二、内容与要求: 》 三、设计(论文)起止日期: 任务下达日期:年月日 完成日期:年月日 指导教师签名: 年月日 四、教研室审查意见: 教研室负责人签名: 年月日 ~ 摘要

本文所讨论的是三相异步电动机的串级调速的基本原理与实现方法。对于一般交流电动机的调速,我们都是从电动机的定子侧引入控制变量(改变定子供电电压、频率)来实现的,这对于转子处于短路状态的三相笼型异步电动机是唯一的途径。但是,对于绕线式异步电动机来说,其转子绕组能够通过变量以实现调速。绕线式异步电动机转子侧的控制变量有电流、电动势、电阻等。通常转子电流随负载的大小决定,不能任意调节;而转子回路阻抗的调节属于耗能型调速,缺点较多,所以转子侧的控制变量只能是电动势。在发挥绕线式异步电动机转子的可控性优势的基础上,提高调速性能需要从两方面着手: 1从节能角度考虑,应将损耗在转子附加电阻上的能量吸收,转化成别的有用的能量或反馈到电网,以提高传动系统的效率 2从高性能调速要求考虑,应用控制理论,将其组成闭环调速控制系统,满足调速精度、动态响应等指标的要求。 综合所述,利用串级调速系统,是使绕线式异步电动机实现高性能调速的有效办法。用转子串反电动势来代替电阻,吸收转差功率;用双闭环控制提高系统的静、动态性能。把这种用附加电动势的方法将转差功率回收利用的调速称为双闭环串级调速。

晶闸管直流调速系统参数和环节特性的测定实验报告

晶闸管直流调速系统参数和环节特性的测定实验报告 一、实验目的 1.熟悉晶闸管直流调速系统的组成及其基本结构。 2.掌握晶闸管直流调速系统的参数测试及反馈环节测定方法和测试条件。 二、实验内容 1.测定晶闸管直流调速系统主电路总电阻 R。 2.测定晶闸管直流调速系统主电路总电感 L。 3.测定直流电动机 - 发电机 - 测速发电机飞轮惯量 GD2。 4.测定晶闸管直流调速系统主电路电磁时间常数 T d。 5.测定直流发电机电动势常数C e和转矩常数 C T。 6.测定晶闸管直流调速系统机电时间常数 T m。 7.测定晶闸管触发及整流装置特性 U d =?(U ct)。 8.测定测速发电机特性 U TG =?(n)。 三、实验设备

四、实验原理 五、实验步骤 (一)测定晶闸管直流调速系统主电路电阻。伏安比较法测量

1. 测量电枢回路总电阻R R=R a + R L + R n (电枢电阻R a、平波电抗器电阻R L 、整流装置内阻R n )(1)不加励磁、电机堵转 (2)合上S1和S2, 调节给定,使输出电压到30%-70%的额定电压 调节电阻,使枢电流80%-90%的额定电流 测定U1和I1。 (3)断开S2 测定U2和I2。 (4)计算电枢回路总电阻 R=(U2-U1)/( I1 - I2) 合上S1和S2测得U1=100V, I1=; 断开S2测得U2=103V,I2=;

R=(U2-U1)/( I1 - I2)=(103V-100V)/电枢电阻 R a (1)短接电机电枢 (2)不加励磁、电机堵转 (3)合上S1和S2, 调节给定,使输出电压到30%-70%的额定电压 调节电阻,使枢电流80%-90%的额定电流 测定U1’和I1’。 (4)断开S2 测定U2’和I2’。 (5)计算 平波电抗器电阻R L和整流装置内阻R n: R L + R n =(U2’-U1’)/(I2’-I1’) 电枢电阻R a :R a =R-(R L + R n) 合上S1和S2测得U1’=95V,I1’= 断开S2测得U2’=97V,I2’= R L + R n =(U2’-U1’)/(I2’-I1’)=(97V-95V)/=R-(R L + R n)=ΩΩ=Ω 3. 平波电抗器电阻 R L (1)短接电抗器两端 (2)不加励磁、电机堵转 (3)合上S1和S2,

双闭环直流电动机调速系统设计及MATLAB仿真

目录 1、引言 (2) 二、初始条件: (2) 三、设计要求: (2) 四、设计基本思路 (3) 五、系统原理框图 (3) 六、双闭环调速系统的动态结构图 (3) 七、参数计算 (4) 1. 有关参数的计算 (4) 2. 电流环的设计 (5) 3. 转速环的设计 (6) 七、双闭环直流不可逆调速系统线路图 (8) 1.系统主电路图 (8) 2.触发电路 (9) 3.控制电路 (13) 4. 转速调节器ASR设计 (13) 5. 电流调节器ACR设计 (14) 6. 限幅电路的设计 (14) 八、系统仿真 (15) 1. 使用普通限幅器进行仿真 (15) 2. 积分输出加限幅环节仿真 (16) 3. 使用积分带限幅的PI调节器仿真 (17) 九、总结 (20)

一、设计目的 1.联系实际,对晶闸管-电动机直流调速系统进行综合性设计,加深对所学 《自动控制系统》课程的认识和理解,并掌握分析系统的方法。 2.熟悉自动控制系统中元部件及系统参数的计算方法。 3.培养灵活运用所学自动控制理论分析和解决实际系统中出现的各种问题 的能力。 4.设计出符合要求的转速、电流双闭环直流调速系统,并通过设计正确掌 握工程设计的方法。 5.掌握应用计算机对系统进行仿真的方法。 二、初始条件: 1.技术数据 (1)直流电机铭牌参数:P N =90KW, U N =440V, I N =220A, n N=1500r/min,电枢电阻Ra=0.088Ω,允许过载倍数λ=1.5; (2)晶闸管整流触发装置:Rrec=0.032Ω,Ks=45-48。 (3)系统主电路总电阻:R=0.12Ω (4)电磁时间常数:T1=0.012s (5)机电时间常数:Tm =0.1s (6)电流反馈滤波时间常数:Toi=0.0025s,转速率波时间常数:Ton=0.014s. (7)额定转速时的给定电压:Unm =10V (8)调节器饱和输出电压:10V 2.技术指标 (1)该调速系统能进行平滑的速度调节,负载电机不可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作错误!未指定书签。; (2)系统静特性良好,无静差(静差率s≤2); (3)动态性能指标:转速超调量δn<8%,电流超调量δi<5%,动态速降Δn≤8-10%,调速系统的过渡过程时间(调节时间)ts≤1s; (4)调速系统中设置有过电压、过电流等保护,并且有制动措施。三、设计要求: (1)根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图; (2)调速系统主电路元部件的确定及其参数计算。 (3)动态设计计算:根据技术要求,用Mrmin准则设计转速环,确定ASR 调节器与ACR调节器的结构型式及进行参数计算,使调速系统工作稳 定,并满足动态性能指标的要求; (4)绘制V-M双闭环直流不可逆调速系统线路图(主电路、触发电路、控

数字式PWM可逆直流调速系统

一、设计要求: 1、调速范围D=20,静差率S ≤5%。再整个调速范围内要求转速无极、平滑可调; 2、动态性能指标:电流环超调量 δ≤5%: 空载启动到额定转速时转速超量δ≤10% 直流电动机的参数: 直流电动机 型号(KW ) Z2—32 额定容量(KW ) 2.2 额定电压(V ) 220 额定电流(A ) 12.5 最大电流(A ) 18.75 额定转速(rpm ) 1500 额定励磁(A ) 0.61 GD 2 (kg m 2 ) 0.105 电动机电枢电阻RA () 1.3 电动机电枢电感la (Mh ) 10 名称 数值 整流侧内阻Rn (Ω) 0.037 整流变压器漏感Lt (mH ) 0.24 电抗器直流电阻Rh (Ω) 0.024 电抗器电感Lh (mh ) 3.2 2.1控制系统的整体设计 直流双闭环调速系统的结构图如图1所示,转速调节器与电流调节器串极联结,转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制PWM 装置。其中脉宽调制变换器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电机转速,达到设计要求。总体方案简化图如图1所示。 ASR ACR U *n + - U U i U * i + - U c TA V M + U d I d UPE L - M

2.2桥式可逆PWM变换器的工作原理 脉宽调制器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定宽度可变的脉冲电压序列,从而平均输出电压的大小,以调节电机转速。桥式可逆PWM 变换器电路如图2所示。这是电动机M两端电压的极性随开关器件驱动电压的极性变化而变化。 图2 桥式可逆PWM变换器电路

单闭环可逆直流调速系统

运动控制系统课程设计课题:单闭环可逆直流调速系统 系别:电气与信息工程学院 专业:自动化 姓名: 学号: 成绩: 河南城建学院 2015年12月31日

目录 一、设计目的 (2) 二、设计任务及要求 (2) 三、总体方案设计 (2) 四、硬件电路设计 (3) 4.1.1 直流调速系统稳态性能分析 (3) 4.1.2静态性能指标 (4) 4.1.3 基于稳态性能指标闭环直流调速系统设计 (5) 4.1.4 直流调速系统动态性能分析 (6) 4.1.5基于动态性能指标及系统动态稳定性反馈控制闭环直流调速系统设计 (9) 4.2、控制系统动、静态数学模型的建立 (10) 4.2.1 双极性控制的桥式可逆PWM变换器的工作原理 (10) 4.2.2桥式可逆PWM变换器 (10) 五、计算机仿真 (13) 六、设计总结 (14) 参考文献 (16)

一、设计目的 在电力拖动系统中,调节电压的直流调速系统是应用最为广泛的一种调速方 法,除了利用晶闸管获得可控的直流电源外,还可以利用其他可控的电力电子器 件,采用脉冲调制的方法,直接将恒定的直流电压调制为极性可变、大小可调的 直流电压,用以实现直流电机电枢电压的平滑调节,构成脉宽直流调速系统。 本设计采用了PWM 脉宽调制的方法,完成了带转速负反馈的单闭环直流调 速系统的设计及实验。本设计重点介绍了单闭环可逆直流调速系统的总体结构、 设计原理及参数优化设计方法,提供了通过matlab 仿真进行实验效果预分析和 校正处理,得到较为理想结果后进行实际操作和调试的实验思路。 二、设计任务及要求 本次运动控制课程设计要求自拟控制系统性能指标的要求(调速范围、静差 率、超调量、动态速降、调节时间等)设计系统原理图,完成元器件的选择,选 择调节器并计算调节器参数,并进行仿真或实验验证系统合理性。 为了进行定量的计算,选一组电机参数:功率kw P N 18=,额度电压 v U N 220=,额定电流A I N 94=,额定转速min /1000r n N =, 电枢电阻Ω=15.0a R ,主电路总电阻Ω=45.0R ,40=s k 。最大给定电压V U nm 15*=,整定电流反馈电压 V U im 10=.要求系统调速范围20=D ,静差率%10≤,N dbt I I 5.1=,N dcr I I 1.1=。 三、总体方案设计 为了提高直流系统的动静态性能指标,通常采用单闭环控制系统。对调速系 统的要求不高的场合,采用单闭环系统,而对调速系统指标要求高的采用多闭环 系统。按反馈的方式不同可分为转速反馈、电流反馈、电压反馈等。在单闭环系 统中,转速单闭环运用较多。在本设计中,转速单闭环实验是将反应转速变化的

相关文档
相关文档 最新文档