文档库 最新最全的文档下载
当前位置:文档库 › 低温循环水余热回收

低温循环水余热回收

低温循环水余热回收
低温循环水余热回收

在工业生产上普遍采用蒸汽做为载热体。在各种换热设备中蒸汽的有效能利用率都较低,特别是在各种生产部门中,由工业余热产生的大量低品位付产蒸汽(二次蒸汽)也都没有得到充分的回收利用。本文介绍采用热泵一闪蒸一孔板疏水一加热等单元组成的热泵供热系统,利用蒸汽喷射式热泵回收二次蒸汽,使其增压提高能量品位后再供生产使用。利用疏水孔板,代替常规疏水器,漏汽率低,管理十分简单。一、热泵供热原理及节能指标热泵是开发和利用低品位能源的手段,即以输入高品位能量(机械能、电能及热能等),通过热力循环从环境中吸取低于热用户能源品位的…

世界最大余热回收吸收式热泵系统”启运仪式在江苏省江阴市举办[发表时间:2009-11-23 10:31:54 | 文章来源:新浪网] | 浏览:49次 ]

更多相关内容请关注河南节能网。河南节能网是中国唯一一家节能行业专业B2B网站。网站信息齐全,是河南节能服务网下重点网站!网站地址:https://www.wendangku.net/doc/f51457271.html,

11月21日在江苏省江阴市举办“世界最大余热回收吸收式热泵系统”启运仪式。这是双良股份与国l阳新能合作的新开始,标志着双良股份近年来转型节能减排绿色产业又取得重要突破。

打造节能样板

即将发运的吸收式热泵系统,目前是世界上最大的热电余热回收机组,8台30兆瓦机组将为阳泉地区新建居民提供集中供暖。第一批将交付的6台机组,在不增加其他供热设备的前提下,充分利用热电厂的循环冷却水热量,收集余热进行加温,完全满足热电厂新增的144万平方米的供热需求,按照每平米24元成本计算,年采暖效益3500万元,节省冷却水补水量45万吨,节水效益180万元,相当于每年节省蒸气42万吨,节约5万吨标准煤,减少二氧化碳排放13万吨,减少二氧化硫及碳氧化物排放2200吨。

据了解,这是双良股份迄今最大的一笔余热利用设备订单,设备总价近5000万元。不过,在公司董事长缪志强看来,其意义更在于为双良股份开辟出广阔的市场空间和新的利润增长点。专家强调,在全国电力行业中,绝大多数企业都有专门供热的需求,存在低温热水

资源被白白浪费的现象,这是一个巨大的市场。双良股份这一系统不仅可减少资源浪费,增加相关企业的综合效益,也将为当地的环保事业作出巨大贡献,为热电行业的节能减排工作提供可广泛复制的样板。

全面转型节能减排

与三年前相比,双良股份溴化锂制冷机业务结构已发生根本转变。传统的民用中央空调应用占比降低至20%,而一般工业应用和工业余热利用占比均达到40%。双良股份总经理节连山说,余热利用向客户提供的不再只是单一产品,而是包括主机、管路、控制系统和其他辅助设备在内的余热利用系统,体现了双良余热利用系统的技术水平,也构成了潜在竞争者进入这一领域的障碍。

截至目前,双良在溴化锂制冷机(热泵)领域共获得76项专利,溴化锂制冷机荣获国家重点新产品,溴化锂吸收式热泵获中国机械工业科学技术二等奖。在余热利用领域,客户会有极具吸引力的节能技改投资回收期,可实现共赢。未来,双良股份还可开展余热合同管理业务,提供余热利用运营服务。余热利用将发展成为公司最具可持续发展、盈利水平最高的业务。

缪志强说,经过几年积累,双良股份以国家级企业技术中心和博士后工作站为载体,依靠技术创新,进行产业结构调整,已实现从传统的主要从事民用中央空调生产商向以先进技术推动节能减排的绿色企业的全面转型:传统中央空调市场稳步发展,余热利用技术完全成熟迅速走向市场,大型节水设备空气冷凝器异军突起,海水淡化技术正在走向产业化。

在同日举行的双良股份节能减排与低碳经济发展战略研讨会上,双良集团总裁缪双大提出,通过节能来提高能源使用效率是实现低碳经济最直接、最简便和最经济的途径。今后双良还将进一步开发清洁能源利用技术,合作伙伴益科博能源公司研发成功的太阳能光热发电核心技术具有世界先进水平,公司将与益科博合作,把太阳能光热和溴化锂换热技术结合起来,向全世界推广太阳能光热中央空调。

浅谈新型水环热泵系统的应用

发布时间:2008年04月03日浏览数:27

水环热泵空调系统是指用水环路将小型的水/空气热泵机组并联在一起,构成一个以回收建筑物内部余热为主要特点的热泵供暖、供冷的空调系统。20世纪80年代初,在我国开始初步应用。但是,由于一些工程安装使用后的效果并不理想,甚至无法使用,所以多数人认为这是一个不好的空调系统。本文以一个实际的工程实例,介绍了新型水环热泵的应用及其前景。

前言:

所谓的水环热泵空调系统是指小型的水/空气热泵机组的一种应用方式。即用水环路将小型的水/空气热泵机组并联在一起,构成一个以回收建筑物内部余热为主要特点的热泵供暖、供冷的空调系统。20世纪80年代初,我国一些外商投资的建筑中采用了水环热泵空调系统,由于这些工程显出:水环热泵空调系统回收建筑物内余热的特有功能;不像传统采暖系统那样会对环境产生严重的当局染;省掉或减少常规空调系统的冷热源设备和机房,便于分户计量和计费,便于安装、管理等优点。但是,由于一些工程盲目安装使用,导致出现了一些运行管理上的诸多问题,再加上国家对环保的考虑,对地下水的使用做了限制,使多数人对水环热泵系统产生了一些误解,认为这是一个不好的空调系统。那么,现在这种状况下水环热泵系统就真的无用武之地了吗?

1 新型水环热泵系统介绍

新型水环热泵的出现使我们对水环热泵系统有了一个新的认识。这里所谓的“新型”是指这种水环热泵空调系统区别于以往的水环热泵系统,主要区别为:1.系统里面不用天然水源做冷热源,取而代之的是冷却塔和热水锅炉;2.热泵机组由原来的“一体式”变为“分体”式,即压缩机与盘管分离的形式,即解决了噪音,又使安装使用更加灵活;3.由于采用了高效的压缩机,热泵机组的能效比大大提高,平均在4.2以上,已经接近中央空调;4.热泵机组的冷凝盘管由原来的板式改为双层管式,解决了长时间使用堵塞的问题。

新型水环热泵摒弃了以往水源热泵的噪音大、使用受限制的弊端,而发扬了水源热泵便于分户计量和计费,便于安装、管理等优点,使此种空调系统又焕发了新的生机和活力。

2 水环热泵在本工程的应用

本工程使用功能为办公综合楼,内设办公室、餐厅、展览厅、银行等,由南楼和北楼组成,南楼为六层,北楼为九层,两栋楼由通廊连接。本工程建筑面积约30700m2,空调面积约24050m2。由于甲方也是使用方,因此甲方根据使用要求对空调系统设计提出以下要求:1.北楼3-9层可能将来出租或出售,空调系统要求与其它部分分开;2.空调系统运行和计费要方便,保证各单位的独立使用。

根据甲方要求我设计了两个方案供甲方选择,1.商用风冷分体机;2.水环热泵系统。最后由于方案1对建筑外立面影响较大,而且制冷效率较低,所以最后选择了水环热泵系统。本工程设置两个空调系统,1.南楼及北楼一、二层为一个系统,空调面积约为10120m2,设计选择三台方形横流冷却塔,设于北楼屋面,相应采用四台冷却水泵(三用一备);2.北楼三层至九层为一个系统,空调面积为13930m2,设计选择四台方形横流冷却塔,设于北楼屋面,相应采用五台冷却水泵(四用一备)。根据使用功能,末端分别设计为全空气低速空调系统(水冷柜机)及风机盘管或卡式双出风型(水冷分离式热泵机组)加新风系统(带独立冷源的吊挂式新风机);还有一小部分24小时使用的地方设计选用风冷分体空调机。

本方案可以说完全满足了甲方的使用要求,计费方面只有冷却塔和冷却水泵属于公共分摊的部分,而这部分用电在空调用电里面是很小的一部分,其它大部分用电都在末端用户,空调计费全部纳入用户使用的电费里面,所以充分实现了用多少收多少。当过渡季或有人晚间加夜班时,末端机组开机比较少,这时冷却塔可以只开一台,节约运行费用。北楼出租部分可按租户需要改变末端形式,或预留冷却水接口,而设备由租户自行安装,这还可以降低甲方的初投资,避免出租率低时的经济损失。

3 水环热泵在其它类型建筑中的应用分析

由于目前很多中央空调系统都逐渐出现了计费的纠纷问题,空调计费成了物业管理的一大难题,解决已有中央空调系统和新设计中央空调系统的计费问题是设计人员目前应考虑的一个首要问题。从本工程我发现水环热泵空调系统对于目前这种出租用办公系统是十分的适用,它不仅解决了计费和运行管理的问题,而且又不用设独立的空调计费系统和中央空调机房,减少了中央空调系统的造价。那么这种空调系统是否适用于其它类型的空调系统呢?结论是肯定的,比如宾馆型建筑,即使不存在中央空调计费的问题,但当房间空置率较高时,可以关闭房间的空调机,而只开使用的部分,从而可以大大节约空调电费。

4 结论

对于一栋多个单位使用的建筑物来说,水环热泵是一种很好的空调解决方案,它不仅计费简单方便,而且运行管理灵活,在冬季需采暖地区还可以利用天然热源,如地热、工厂余热来供热。这种空调系统既减少了甲方的初投资,又减少了使用者的空调使用费用,从而减少了空调的能耗,对解决日趋紧张的夏季空调用电很有帮助。

分析了城市污水处理厂余热能回收利用的可行性及应用方式,研究了以污水处理过程中产出的沼气驱动沼气机热泵的节能与环保作用,并做系统构建与经济性的计算.结果表明:与燃煤锅炉、燃气锅炉以及电动热泵相比,以污水厂产出沼气为燃料,输入功率为500kW的沼气机热泵,按年运行300d计,可分别节约标准煤450t、天然气27.7万m^3以及用电量68.2万kW·h,一年半即可收回沼气机热泵的先期投入费.因此,城市污水处理厂利用产出沼气驱动热泵以回收污水中余热能,是一种资源有效利用的节能方式,具有显著的经济效益与环保效益.(共5页)

锅炉低温烟气余热回收

锅炉节能工程

烟气余热回收装置技术参数 烟气余热回收型号:JNQ-4 节能器进出水接口尺寸(热水锅炉):DN125 节能器进出水接口尺寸(蒸汽锅炉):DN50 烟气进/出口直径:可根据配套锅炉尺寸¢400 烟气侧阻力:≤50Pa 设备换热材料:耐高温,高频焊螺旋翅片管。 使用我公司节能器,可使烟温从150℃-220℃降到80℃-170℃左右,可使软化水箱循环 加热将锅炉给水从常温给水提高到50℃-80℃,从而使得锅炉效率6.8%以上。 实际节约的总热量由用户的用热情况及烟温可下降的幅度决定。 烟气余热回收装置结构介绍 我公司生产的烟气余热回收装置为整体组装式,安装方便,便于维修。翅片管外走烟气,管内走水,形成间壁式对流换热。 设计结构本身就考虑了水力的均匀分配。所配管束均为一样。实际的使用效果非常好! 烟气侧管箱采用了碳钢材料制造,采用航天高级防腐涂料对与烟气接触部分进行了防腐处理。防腐涂料固化以后表面形成一层瓷釉,可以有效地防止弱酸的腐蚀。达到预期的使用寿命。 设备本身带有冷凝水排放装置,“烟气余热回收装置”最下部设置了冷凝水收集箱及排放口,及时将产生的冷凝水排出,排入下水系统.冷凝水为弱酸性,PH值实测为6左右,不

会对环境造成污染。冷凝水收集箱采用航天高级防腐涂料进行了防腐处理,耐腐蚀性强,使 用可靠。 烟气余热回收装置换热技术介绍 我公司生产的烟气余热回收装置是采用强化翅片换热管结构。整体组装,安装方便,便 于维修。采用强化传热技术,从而能够把烟气中的热量最大程度回收的节能装置。 换热技术说明: 利用换热翅片的特性,通过脱流涡界产生脉动气流,在翅片扩展面间隙中形成具有周期性特性的射流,使原来稳定流动的烟气产生有规律的周期性脉动,交替出现的脉动压力波使原来的层流变为强烈的紊流,受热面的冲刷变得更加剧烈,边界面减薄,气流混合充分,强化了烟气与换热面之间的传热;同时,脉动气体产生的烟气震动使冷凝液膜明显减薄,加快冷凝液滴的脱离速度,强化凝结换热。该强化扩展面传热技术可降低烟气侧的热阻,节省换热面。脉动压力波频率可以选择,通过合理设计,脉动气体产生的烟气振动不会与设备产生共振,运行稳定、安全可靠。换热技术特点: 1、应用范围广,可用于燃油、燃气锅炉、油田加热炉、余热锅炉、直燃机、燃气发电机,燃煤 锅炉低温余热回收(根据不同结构形式可布置在锅炉不同位置)等多种类型设备。气-气,气-汽,气-液等多种介质间传热。适用温度范围:50-300℃ 2、传热系数高,当量传热系数比普通换热器提高2倍以上 3、启动迅速、传热速度快,系统启动数秒就可将烟气温度降到低点,烟气中的水蒸汽迅速凝结 放热,节能效果显著 4、流动阻力小,扩展面为低翅结构,烟气流程短且与散热片同向流动 5、脉动气流及冷凝水可自动清灰和冲刷受热面,使受热面不易结灰垢,不易堵塞 6、结构紧凑,翅片扩展面强化换热,设备体积小,重量轻 7、降噪:独特的内部结构及翅片的扰流效果可以在一定范围内有效降低锅炉烟气排放的噪音 8、环保:烟气中水蒸气的凝结可以吸收烟气中的部分酸性气体,对烟气排放有一定的净化作用

国内外低温余热回收技术应用现状及建议概要

国内外低温余热回收技术应用现状及建议 贾春雨乔文霞 大庆石化公司科技信息处科协 黄文姣 大庆石化公司化工一厂裂解车间

国内外低温余热回收技术应用现状及建议 摘要:介绍了石化企业低温热回收利用的一些现状及技术,首先是直接里利用也就是同级利用,然后是升级利用,如利用朗肯循环的余热发电、热泵、制冷、液力透平和变热器等其他技术,将低温余热升级利用。对石化企业低温热的利用提出了建议。 关键词:石化企业低温余热回收技术同级利用升级利用 1前言 现在节能工作已成为世界性的课题。随着国民经济的快速增长,能源需求日益增加,供需矛盾逐渐突出。为保证经济的可持续发展,国家已将资源节约作为一项基本国策。作为能源加工转换单位的石化企业,一方面为社会提供了大量可利用的能源,同时也消耗了大量能源,是石化行业开展节能工作的重点。近年来随着装置技术进步和先进节能技术的应用能源利用水平有了大幅度提高,但大部分装置间的热联合、低温余热利用等方面还存在巨大的节能潜力。在节能工作不断深入的今天,欲降低装置及全公司能耗,低温余热回收是必不可少的一个方面。低温余热的回收利用不但可以代替所消耗的高质量热源,同时可以降低相关部位的冷却负荷,降低循环冷却水和空冷电耗,对降低能源消耗具有重要义。 炼油和化工行业既是生产能源和基础原材料的工业,又是高能耗工业。炼油、石化和化学工业仍然存在着减少能源消费的巨大机遇,在化学加工过程中,为转化而作为能源使用的燃料50%以上损失掉了,这种损失通过改进能量产生、分配和转化可使其减少。通过能量回收也可使损失减少。 美国能源部正在通过“2020年梦想计划”推进能源节约,由公司、政府部门、大学和专业组织组成的联合体正在共同开发一些技术,以解决工业问题。一些致力于节能的项目可取得很大的效果,例如,包括陶氏化学、普莱克斯、休斯敦大学和科克-格律希公司组成的集团开发的成果,已使现有填料式蒸馏塔器的能效提高10%~20%、塔器能力提高5%~10%和热回收提高10%~20%。 我国提出到“十一五”末单位国内生产总值能耗比“十五”末降低20%的目标,作为耗能大户的石油和化工行业节能大有潜力。据统计,2004年石油和化学工业消费各种能源折标准煤27921.8万吨,其中油气开采业消费3627.7万吨,石油加工为3060万吨,化学工业消费21234.1万吨。根据对7种主要产品节能潜力的分析,

基于热泵技术的热电厂循环水余热回收方案研究

基于热泵技术的热电厂循环水余热回收方案研究 发表时间:2018-10-01T19:15:42.717Z 来源:《基层建设》2018年第26期作者:陈永山 [导读] 摘要:传统的热电厂进行供热的时候,能源选用上通常是煤、石油、天然气这样的能源,供热效率较低,且会产生一些对人类有害的气体。 身份证号码:37011219810311XXXX 摘要:传统的热电厂进行供热的时候,能源选用上通常是煤、石油、天然气这样的能源,供热效率较低,且会产生一些对人类有害的气体。而如果使用循环水余热回收技术,就能够改变这一点,通过该技术的使用使得整个供热过程变得清洁环保,且节约了大量的能源,供热的规模也大大增强了。由此可见,将循环水余热回收技术加以利用是非常重要的。 关键词:热泵技术;热电厂循环水余热;回收方案 引言 随着社会的不断发展,全球化石能源的储量随之急剧减少。伴随着化石燃料消耗量的急剧增加,环境问题又日益凸显出来。全球气候变暖、雾霆、大气层破坏等诸多环境问题对人类社会的长久稳定发展造成极大的影响。在我国的能源消耗构成中,电力企业占国家化石能源的消耗量的比重相对较大,近些年我国政府也出台针对电力企业节能减排的政策:重点推广能量梯级利用、低温余热发电和热泵机组供暖等节能减排技术。 1热泵的分类及基本工作原理 1.1热泵的基本种类 如图1所示,由热源来源进行种类划分,热泵主要可分为如下几类:①水源热泵。所利用的水源主要包括自然水源和人工排水源。自然水源主要为地下水、河川水及海洋水。人工排水源主要为城市生活污水、工业废水及热电冷却水。②地源热泵。③空气源热泵。具体至当前普遍应用于热电厂的热泵,我们具体又可将其划分为两大类:①压缩式热泵,包括蒸汽驱动压缩式热泵和电驱动压缩式热泵。②吸收式热泵。 图1热泵的基本种类结构示意 1.2热泵技术的基本工作原理 从本质上而言,热泵显然为一种热量提升装置。热泵主要从周围环境中吸收热量,并将其有效传递给被加热对象,也即是温度较高的物体。热泵的工作原理和制冷机类似。一般情况下,热泵主要有如下几个重要部分构成:①压缩机;②蒸发器;③冷凝器;④膨胀节流阀等。具体如图2所示。 图2热泵技术的基本工作原理示意 (1)压缩机为热泵机组的心脏,压缩机起到的作用主要为:压缩并输送循环工质,将其由低温、低压转变为高温、高压。蒸发器为热泵机组的输出冷量设备。(2)蒸发器可使经节流阀流入的制冷剂液体蒸发,进而吸收被冷却物体的热量,最终切实实现制冷的目的。(3)冷凝器为热泵机组输出热量的设备。压缩机消耗功转化的热量以及蒸发器中吸收的热量传输至冷凝器中之后,会被冷却介质带走,从而实现制热的基本目的。(4)热泵机组的膨胀阀亦或是节流阀可以对循环工质起到较好的节流降压作用,在此基础上还可起到对进入蒸发器的循环工质流量进行调节的重要作用。研究表明,采用热泵技术能够节约大量的电能。 2方案确定 在选择循环水余热回收方案时,首先要对各个方案的经济性进行分析并以此为方案选择依据,当热泵机组确定时,即使余热量无限大,但是热泵机组增加的热量不是无限增大的,热泵机组所能回收的热量存在一个极限值,也就是理论最大回收热量。因此,本文将针对吸收式热泵和压缩式热泵,以电厂实际条件为背景,分析其所能提供的最大供热量,来选择合适的热泵机组。 2.1应用吸收式热泵 采用吸收式热泵时,需要耗费部分抽汽作为热泵的驱动热源,吸收循环水的余热并将吸收的热量输送给一次网回水,使一次网回水温度升高。吸收式热泵的供热量为:

烟气余热回收换热器具体分析

烟气余热回收热换热器具体分析 随着我国经济的快速发展,能源的价格在日益上涨,能源库存也在日益减少,我们不断在发掘新型能源。工业锅炉是我国主要的热能动力设备,针对工业锅炉的使用特点(排烟余热回收潜力大的特点),烟气余热回收换热器应运而生。 电站锅炉排烟温度一般在110℃到160℃;大中型锅炉在正常运行时,排烟损失占到锅炉燃料输入热量的4%到8%;排烟温度每降15℃—20℃,可提高锅炉效率1%左右;排烟温度是锅炉热损失中最大的一项。 影响排烟温度的因素: (1)燃料的性质 (2)受热面积的状况(积灰、结垢、结焦等等) (3)过量空气系数、漏风率 (4)低温腐蚀因素 那么在降低排烟温度方面有什么措施呢,经过研究发现,降低排烟温度的方法是使用烟气余热换热器,在锅炉尾部烟道适当的位置增加烟气余热回收换热装置。根据不同需求可以在不同工序位置安装烟气回收装置(除尘前、除尘后、垂直烟道、水平烟道等)。 烟气余热回收换热器的优势有哪些? (1)提高锅炉的循环效率,降低煤耗; (2)改善除尘效率(烟气余热回收装置在除尘前安装时) (3)减少脱硫塔蒸发量,节约用水。 值得注意的是,在安装烟气余热换热器后,会带来一些问题,如:低温腐蚀、磨损、积灰、烟气阻力等等。 一、低温腐蚀 烟气水露点:烟气中水蒸气含量一般为10%—15%,分压为0.01到0.012MPa,水蒸气的露点温度为45—54℃。 酸露点:当烟气中有SO3存在并与水蒸气发生作用生成硫酸蒸汽时,烟气中硫酸蒸汽的露点温度称为酸露点或烟气露点。它比水露点高很多,通常在90—130℃,对于高硫煤产生的烟气或富氧燃烧,酸露点甚至能达到140—160℃。

余热回收技术

余热回收技术 1、热管余热回收器 热管余热回收器即是利用热管的高效传热特性及其环境适应性制造的换热装置,主要应用于工业节能领域,可广泛回收存在于气态、液态、固态介质中的废弃热源。按照热流体和冷流体的状态,热管余热回收器可分为:气—气式、气-汽式、气—液式、液—液式、液—气式。按照回收器的结构形式可分为:整体式、分离式和组合式。 2、间壁式换热器 换热器是化工,石油,动力,食品及其它许多工业部门的通用设备,在生产中占有重要地位.在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。常见间壁式换热器如:冷却塔(或称冷水塔) 、气体洗涤塔(或称洗涤塔) 、喷射式热交换器、混合式冷凝器。 3、蓄热式换热器 蓄热式换热器用于进行蓄热式换热的设备,一般用于对介质混合要求比较低的场合。换热器内装固体填充物,用以贮蓄热量。一般用耐火砖等砌成火格子(有时用金属波形带等)。

蓄热式换热分两个阶段进行。第一阶段,热气体通过火格子,将热量传给火格子而贮蓄起来。第二阶段,冷气体通过火格子,接受火格子所储蓄的热量而被加热。这两个阶段交替进行。通常用两个蓄热器交替使用,即当热气体进入一器时,冷气体进入另一器。常用于冶金工业,如炼钢平炉的蓄热室。也用于化学工业,如煤气炉中的空气预热器或燃烧室,人造石油厂中的蓄热式裂化炉。 4、节能陶瓷换热器 陶瓷换热器是一种新型的换热设备,在高温或腐蚀环境下取代了传统的金属换热设备。用它的特殊材质——SIC质,把窑炉原来用的冷空气变成了热空气来达到余热回收的目的。由于其可长期在浓硫酸、盐酸和碱性气、液体中长期使用。抗氧化,耐热震,高温强度高,抗氧化性能好,使用寿命长。热攻工业窑炉。把换取的热风作为助燃风送进窑炉与燃气形成混合气进行燃烧,可节能25%-45%,甚至更多的能源。 5、喷射式混合加热器 喷射式混合加热器是射流技术在传热领域的应用,喷射式混合加热器是通过汽、水两相流体的直接混合来生产热水的设备。喷射式混合加热器具有传换效率高,噪音低(可达到65dB以下),体积小,安装简单,运行可靠,投资少。利用喷射式混合加热器回收发电厂、造纸厂、化工厂的余热,加热采暖循环水

低温余热回收技术

低温余热回收技术--热泵节能技术 时间:2007-10-20 11:23:19 来源:原创作者:剑气书生 1引言 在工业生产中,不但需要大量能源,而且产生和浪费了大量各种型式的余热,特别是低温位余热。实践证明,低温余热完全可以作为二次能源开发和利用,其中采用热泵技术就是重要方法之一。近年来,国外热泵技术已成功地应用于许多工业部门,并取得了良好的节能效果。 我们知道,热量可以自发地从高温物体传递到低温物体,但不能自发地沿相反方向进行传递。然而,根据热力学第二定律,若以机械功作为补偿条件,热量也可以从低温物体转移到高温物体中去。热泵就是根据这一定律,靠消耗一定能量(如机械能、电能)或使一定能量的能位降级,迫使热量由低温热源(物体)传递到高温热源(物体)的机械装置。热泵的工作原理与制冷机相同,只是目的不同而已。用于供冷的称制冷机;用来供热的则称热泵,二者均按逆卡诺循环方式工作。 2热泵的分类 利用热泵的工作有二:一是使低温余热的温位提高,使之获得较高温度后的热源能用于工艺过程,这种热泵称为温度提高型热泵。二是将低温热源的余热传递给高温热源,满足整个系统能量平衡的需要,这种热泵称为热量获得型热泵。热泵按其工作原理还可分为蒸汽压缩式热泵、吸收式热泵、化学式热泵三大类。压缩式热泵按其介质的循环方式可分为开式热泵和闭式热泵。不同类型热泵的工作原理是不相同的,蒸汽压缩式热泵按其工作原理又可分为机械压缩式和蒸汽喷射压缩式两种。化学式热泵目前还处于探索、研究阶段。这里主要介绍蒸汽压缩式热泵的机理、节能原理及其在化工中的应用前景。 3热泵工作原理 3.1机械压缩式热泵的工作原理 低温蒸汽通过压缩机吸收外功后,提高其温位者称机械压缩式热泵。由于压缩机的压缩比一般都比较大,故余热温位可以得到较大提高,这种热泵属温度提高型热泵,其工作原理如图1所示。构成机械压缩式热泵的主要部件有蒸发器2、压缩机3、冷凝器4、膨胀阀(节流阀)6等。所用循环工质均为低沸点介质,如氟利昂、氨等。机械压缩式热泵系统的工作过程如下:低佛点工质流经蒸发器时蒸发成蒸汽,此时从低温位处吸收热量,来自蒸发器的低温低压蒸汽,经过压缩机压缩后升温升压,达到所需温度和压力的蒸汽流经冷凝器,在冷凝器中,将从蒸发器中吸取的热量和压缩机耗功所相当的那部分热量排出。放出的热量Q就传递给高温热源5,使其温位提高。蒸汽冷凝降温后变成液相,流经节流阀6膨胀后,压力继续下降,低压液相工质流入蒸发器,由于沸点低,因而很容易从周围环境吸收热量而再蒸发,又形成低温低压蒸汽,依此不断地进行重复循环。此时,若将蒸发器放在盛水的容器中,蒸发器内的低沸点介质,就吸收水中的热量,使水温不断下降而成冰水(甚至结冰)。吸收了周围环境热量的蒸汽再进入压缩机,供给压缩机以功(机械功或电能)而驱动压缩机不断运行,如此循环往复不断,就能使低温热量连续不断地传递到高温热源处,以满足工艺和其他方面的需要,从而使难以直接利用的低温位热能得到有效的利用,达到节能目的。故热泵是一种充分利用低品位热能的高效节能装置。

电厂循环水余热回收供暖节能分析与改造技术

电厂循环水余热回收供暖节能分析与改造技术 摘要:当今世界,节能已成为一项重要的研究课题。发电厂作为耗能大户,存在大量循环水余热没有得到有效利用,浪费严重。因此,如何利用循环水余热成为电厂节能的重要任务。 1.回收电厂循环水余热的意义 能源是国民经济发展的基础,深入开展节能工作,不仅是缓解能源矛盾和保障国家经济安全的重要措施,而且也是提高经济增长质量和效益的重要途径。本世纪的头20 年,我国工业化和城镇化进程将进一步加快,需要较高的能源增长作为支撑。因此,节能工作对促进整个经济社会发展的作用日益凸显,国家已经把节能作为可持续发展的大政策。 目前,我国大中型城市普遍存在着集中供热热源不能满足迅速增加的供热需求的情况,而新建大型热源投资高、建设周期长,并受到城市环境容量的强烈制约。 为了缓解供热紧张的局面,一些地方盲目发展小型燃煤锅炉房,严重恶化了城市的大气环境;一些城市盲目发展燃气采暖、甚至电热采暖,在带来高采暖成本的同时,也引发了城市的燃气和电力资源的全面紧张。一方面,是燃用高品位的化石燃料来提供低品位的热能用于供暖和提供生活热水。另一方面,城市周边的火力发电厂在发电过程中,通过冷却塔将大量的低品位热量排放到大气中,造成了巨大的能源浪费和明显的环境湿热影响。因此,如果能将循环冷却水余热用于供热(采暖、生活热水等),不仅能够减少电厂冷却水散热造成的水蒸发损失和环境的热污染,而且能够缓解采暖带来燃气和电力资源的紧张局面。同时,实现能源的梯级利用,节约大量燃料,提高能源综合利用率。 北京五大热电厂和热力集团所属六个供热厂的供热能力都已达到极限。北京热电厂普遍采用的抽凝式汽轮机组,即使在冬季最大供热工况下,也有占热电厂总能耗10~20%的热量由循环水(一般通过冷却塔)排放到环境。根据调研,北京并入城市热网的四大热电厂在冬季可利用的循环水余热量就达1000MW 以上,远期规划余热量将达约1700MW。如果将这些余热资源加以利用,仅仅考虑有效利用现有的余热量,就相当于在不新增电厂装机容量和不增加当地污染物排放的情况下,可新增供热面积3000 万平方米以上。因此,利用电厂循环水余热供热是一种极具吸引力的城市集中供热新形式。 2.电厂循环水余热供热技术现状 2.1汽轮机低真空运行供热技术 凝汽式汽轮机改造为低真空运行供热后,凝汽器成为热水供热系统的基本加热器,原来的循环冷却水变成了供暖热媒,在热网系统中进行闭式循环,可有效利用汽轮机凝汽所释放

低温余热资源的利用方式和技术

低温余热资源的利用方式和技术 随着节能工作的不断深入,低温余热资源的利用日益成为节能工作的一个热点和难点,本文分析了低品味余热资源的特点,总结了目前的利用方式和技术进展。 1、余热资源等级划分 工业余热主要指工业企业热能转换设备及用能设备在生产过程中排放的废热、废水、废气等低品位能源。利用余热回收技术将这些低品位能源加以回收利用,是节能的重要手段之一。按照余热资源载体的温度高低,可把余热资源按品味进行划分,温度高则代表余热资源的可做功能力高,即是所谓“高品位余热资源”。温度低,则代表该余热资源品味较低。 2、低品位余热资源的来源及利用难点 余热资源的主要来源为:①烟气的余热;②高温产品和炉渣的余热;③冷却介质的余热;④可燃废气、废液和废料的余热;⑤废汽、废水余热;⑥化学反应余热。 比较典型的低品位余热资源有:①锅炉(加热炉)等排放的烟气,一般在140~180℃;②高炉渣、炼钢渣的冲渣水,温度在60~9 0℃;③循环冷却水,大部分在30~50℃;油田采出水,在30~60℃。 低品位余热资源的利用难点在于:①大部分低品位余热资源含有腐蚀性的物质,对设备长期安全运行构成不小的影响;②有的低品位余热资源具有间歇性的特点,难于连续运行;③由于品味较低,难以在现场附近寻找到合适的供热(冷)负荷;④用于发电,效率较低,技术还有待成熟,经济效益偏低。 3、低品位余热资源的利用方式探讨 低品位余热资源的利用可以分为直接热利用、制冷制热和热功转换三种方式。 3.1直接热利用 热交换技术设备对低温余热的利用是通过换热设备将余热能量直接传给自身工艺的耗能过程,是余热回收直接高效的方法之一。由于低温余热资源温度较低,需要找到合适的利用场合,还要考虑输送过程中的损耗因素。

电厂循环水余热回收供暖节能分析与改造技术知识讲解

电厂循环水余热回收供暖节能分析 与改造技术 摘要:当今世界,节能已成为一项重要的研究课题。发电厂作为耗能大户,存在大量循环水余热没有得到有效利用,浪费严重。因此,如何利用循环水余热成为电厂节能的重要任务。 1.回收电厂循环水余热的意义 能源是国民经济发展的基础,深入开展节能工作,不仅是缓解能源矛盾和保障国家经济安全的重要措施,而且也是提高经济增长质量和效益的重要途径。本世纪的头20 年,我国工业化和城镇化进程将进一步加快,需要较高的能源增长作为支撑。因此,节能工作对促进整个经济社会发展的作用日益凸显,国家已经把节能作为可持续发展的大政策。 目前,我国大中型城市普遍存在着集中供热热源不能满足迅速增加的供热需求的情况,而新建大型热源投资高、建设周期长,并受到城市环境容量的强烈制约。 为了缓解供热紧张的局面,一些地方盲目发展小型燃煤锅炉房,严重恶化了城市的大气环境;一些城市盲目发展燃气采暖、甚至电热采暖,在带来高采暖成本的同时,也引发了城市的燃气和电力资源的全面紧张。一方面,是燃用高品位的化石燃料来提供低品位的热能用于供暖和提供生活热水。另一方面,城市周边的火力发电厂在发电过程中,通过冷却塔将大量的低品位热量排放到大气中,造成了巨大的能源浪费和明显的环境湿热影响。因此,如果能将循环冷却水余热用于供热(采暖、生活热水等),不仅能够减少电厂冷却水散热造成的水蒸发损失和环境的热污染,而且能够缓解采暖带来燃气和电力资源的紧张局面。同时,实现能源的梯级利用,节约大量燃料,提高能源综合利用率。 北京五大热电厂和热力集团所属六个供热厂的供热能力都已达到极限。北京热电厂普遍采用的抽凝式汽轮机组,即使在冬季最大供热工况下,也有占热电厂总能耗10~20%的热量由循环水(一般通过冷却塔)排放到环境。根据调研,北京并入城市热网的四大热电厂在冬季可利用的循环水余热量就达1000MW 以上,远期规划余热量将达约1700MW。如果将这些余热资源加以利用,仅仅考虑有效利用现有的余热量,就相当于在不新增电厂装机容量和不增加当地污染物排放的情况下,可新增供热面积3000 万平方米以上。因此,利用电厂循环水余热供热是一种极具吸引力的城市集中供热新形式。 2.电厂循环水余热供热技术现状 2.1汽轮机低真空运行供热技术

烟气余热回收专题报告

目录 1、低温省煤器系统概述及应用情况 (1) 2、低温省煤器热力连接方式比较 (3) 2.1、并联系统 (3) 2.2、串联系统 (4) 2.3、连接系统比较 (4) 3、低温省煤器的设置安装位置比较 (5) 3.1、安装方案一 (5) 3.2、安装方案二 (8) 3.3、安装方案比较结论 (9) 3.4、对主厂房布置的影响 (10) 4、低温省煤器防腐和防积灰措施 (10) 4.1、低温省煤器防腐的措施 (10) 4.2、低温省煤器防积灰措施 (11) 5、低温省煤器的经济性初步分析 (12) 6、下阶段进一步研究重点 (14) 7、结论 (14)

【内容摘要】本专题对低温省煤器加热凝结水的热力连接方式和布置方式进行了分析论证,对推荐的低温省煤器设置方案进行了技术经济分析,并提出了下阶段调研重点。主要结论为:设置低温省煤器在技术上是可行的,可显著提高机组热效率,降低发电标煤耗,节约脱硫工艺用水量。 1、低温省煤器系统概述及应用情况 排烟损失是锅炉运行中最重要的一项热损失,根据西安热工研究院的调研结果,有相当多的电厂运行中存在锅炉排烟温度偏高现象,而且与设计值之间的正偏差大于+10℃,有的达到+20℃以上,国内最早投运的百万机组中,玉环、泰州等电厂锅炉的排烟温度也明显偏高。由此可见,锅炉排烟温度偏高的问题具有普遍性。进行锅炉烟气余热回收,对减少排烟损失,降低排烟温度,节约能源,提高电厂的经济性,具有重要意义。而低温省煤器的运用就是提高烟气利用效率的一种手段。低温省煤器与常规省煤器不同之处在于,其采用的与烟气换热的介质为凝结水。图1是低温低压省煤器的系统连接示意,通常从某个低压加热器引出部分或全部冷凝水,送往低温低压省煤器。 图1 低温省煤器的系统连接示意图 在国外,低温省煤器较早就得到了应用。起先,前苏联为了减少

余热回收方案

能量回收系统

第一部分:能量回收系统介绍 压缩空气是工业领域中应用最广泛的动力源之一。由于其具有安全、无公害、调节性能好、输送方便等诸多优点,使其在现代工业领域中应用越来越广泛。但要得到品质优良的压缩空气需要消耗大量能源。在大多数生产型企业中,压缩空气的能源消耗占全部电力消耗的10%—35%。 根据行业调查分析,空压机系统5年的运行费用 组成:系统的初期设备投资及设备维护费用占到总费用的25%,而电能消耗(电费)占到75%,几乎所有的系统浪费最终都是体现在电费上。 根据对全球范围内各个行业的空气系统进行评估,可以发现:绝大多数的压缩空气系统,无论其新或旧,运行的效率都不理想—压缩空气泄漏、人为用气、不正确的使用和不适当的系统控制等等均会导致系统效率的下降,从而导致客户大量的能耗浪费。据统计,空气系统的存在的系统浪

费约15—30%。这部分损失,是可以通过全面的系统解决方案来消除的。 对压缩空气系统节能提供全面的解决方案应该从压缩空气系统能源审计 开始。现代化的压缩空气系统运行时所碰到的 疑难和低效问题总是让人觉得很复杂和无从下 手。其实对压缩空气系统进行正确的能源审计 就可以为用户的整个压缩空气系统提供全面的 解决方案。对压缩空气系统设备其进行动态管理,使压缩空气系统组件 充分发挥效能。 通过我们在压缩空气方面的专业的、全面的空气系统能源审计和分析采 取适合实际的解决方案,能够实现为客户的压缩空气系统降低 10%—50%的电力消耗,为客户带来新的利润空间。 经过连续近二十年的经济高速增长,中国已经成为全球制造业的中心,大规模的产量提升,造成巨大的资源消耗和能量需求,过快的发展正逐步制约国家经济实力的进一步提升,因此,2005年《国务院关于加强节能工作的决定》明确目标指出: ?到“十一五”期末(2010年),万元GDP能耗比“十五”期末降低20% 左右,平均年节能率为4.4%。 ?重点行业主要产品单位能耗总体达到或接近本世纪初国际先进水平。 ?压缩机作为制造行业的能耗大户,受到越来越多的关注,节能潜力巨大。 ?压缩机在工矿企业的平均耗能占整个企业的约30%,部分行业的压缩机 耗电量占总耗电量的比例高达70% ?从投资成本结构分析,压缩机的节能重心在能耗上,针对于电机驱动类 型的压缩机,能耗可以近似等于电耗。 平均全球各地区平均使用空压机负荷的百分比

热电厂循环水余热利用方案

******技术发展有限公司 ******热电厂循环水利用方案 (溴化锂吸收式热泵) 联系人: 手机: 联系电话: 传真: 信箱: 2013年8月18日

目录 1 项目简介 (3) 1.1 吸收式热泵方案 (3) 1.2 吸收式热泵供暖工艺流程设计 (3) 1.3 蒸汽型吸收式热泵主机选型(31.7℃→25℃) (4) 1.4 节能运行计算 (4) 1.5 初投资与回报期计算 (5) 2 热泵机组简介 (6) 2.1 吸收式热泵供暖机组 (6) 2.2 溴化锂吸收式热泵采暖技术特点 (7) 2.3 标志性案例介绍 (7)

1 项目简介 ********热电厂,采暖季有温度为26.3~19.6℃的循环冷却水2800m3/h,需要通过降低汽轮机组凝汽器真空或提高汽轮机背压,使得冷却循环水的温度提升到到31.7℃,然后利用溴化锂吸收式热泵机组提取凝汽器冷却循环水中的热量,将循环冷却水温度降低到25℃,可以制备供水温度为74.7/55℃热网水2400 m3/h,对建筑物进行供暖,供暖期为152天。提高汽轮机背压大约2KPa左右,汽轮机的轴向推力几乎不变,对发电量影响不大。 1.1 吸收式热泵方案 采用蒸汽型吸收式热泵机组,通过0.49MPa的饱和蒸汽作为驱动热源,在冬季采暖期,将2800m3/h的循环冷却水从31.7℃降低到25℃,可以从循环冷却水中提取21.82MW的热量用于建筑物采暖。 1.2 吸收式热泵供暖工艺流程设计 使用吸收式热泵加热,供暖系统流程原理图如下: 由上图可以看出,实际应用流程非常简单,只是把工艺循环水引到热泵机房,把原来通过冷却塔排放到环境中的冷凝废热,通过溴化锂吸收式热泵机组将热量传递给供暖回水。此系统改造不影响循环水原系统的稳定性,节省大量的蒸汽,同时带来了大量的经济效益。

硫酸低温余热回收汇总

硫酸低温余热回收整理 1.硫磺制酸工艺包含三大步:硫磺焚烧、二氧化硫转化和三氧化硫吸收。这三 步均为放热反应,产生的热量分别占总热量的56%,19%和25%。 2.孟莫克利用当W(H2SO4 )提高到99%以上时硫酸腐蚀性略有下降的特性,将 酸温和酸浓严格控制在一定的工况范围内,同时采用在此特定工况范围内耐腐蚀的专用合金ZeCor系列,从而实现了HRS在实际工程中应用。 3.HRS主要由HRS热回收塔、HRS酸循环泵、HRS锅炉及HRS稀释器4台设备 组成。 4. 图1 典型的HRS工艺流程 5.含三氧化硫气体从塔底进入由塔顶排出。该塔装有上下两级填料层,下一级 填料层的上塔酸是220℃、W(H2SO4)99%以上的硫酸,上一级填料层的上塔酸则是与传统吸收工艺浓度和温度相似的硫酸,以确保三氧化硫吸收率。两股酸都从塔底流入与塔相连的泵槽,然后由HRS酸循环泵送入HRS锅炉,生产0.3~1.0 MPa饱和蒸汽。由于酸吸收三氧化硫后浓度增加,需通过HRS 稀释器加水以维持浓度,加水后的循环酸回到HRS热回收塔的下一级再进行吸收。 6.由于HRS热回收塔上一级加入的酸和吸收三氧化硫后产生的酸以及HRS热 回收塔下一级循环多余的高温酸需串出系统外,一般采用HRS加热器和HRS 预热器来冷却该串出酸,用此热量加热HRS锅炉给水和进除氧器的脱盐水。 7.表1 孟莫克硫磺制酸装置能量回收工艺比较

8.HRS带蒸汽喷射流程通过在HRS热回收塔入口气体烟道喷入部分低压蒸汽(如 0.3 MPa ) ,使蒸汽中的潜热进入HRS循环酸后再转移到HRS锅炉产生的中压 蒸汽,从而实现低压蒸汽向中压蒸汽的热量传递。 9.高效HRS则是将中压蒸汽的热量传递到高压蒸汽中去,它在常规HRS工艺基 础之上增加一个中间汽包,用出HRS锅炉的中压燕汽直接加热高压蒸汽锅炉给水,将锅炉给水温度提高到中压蒸汽饱和温度。 10.HRS热回收塔:该塔为圆柱形立式筒体带底部泵槽的全合金塔,即所谓塔槽 一体结构。该塔为填料塔,有上、下两层填料,每层填料都有各自的填料支承和分酸器。 11.HRS锅炉:从功能上说,HRS锅炉取代了传统工艺中的酸冷却器,其结构是 列管釜式锅炉,壳体主材为碳钢,列管为特殊合金钢所制。 12.HRS稀释器:该设备是HRS工艺中特有的设备,因为高温酸的浓度一旦降低 到控制范围之外,其腐蚀性将成千倍甚至万倍地增加,所以材质和加水均匀性至关重要。该设备主体为衬耐酸层的合金钢结构,内有加水喷头和自搅拌装置。 13.HRS 加热器和预热器:为合金制造的管壳式换热器。 14.HRS的设计一般分两种工况:a.正常湿度下,不需要串酸至HRS稀释器;b. 高湿度工况下,HRS稀释器需要从原干吸工段串酸。一旦从干吸工段有了串酸至HRS,那就会导致HRS产汽量减少。HRS产汽减少量的大小也取决于串酸量的多少。而串酸量的多少又与串入酸的酸浓有关,酸浓越高则串入的酸量就越多,反之就越少。为了尽可能小地影响到高湿度时的HRS产汽量那就希望串酸的酸浓稍尽可能小地影响到高湿度时的HRS产汽量,那就希望串酸的酸浓稍低些。因此,在增加HRS的同时,可根据原有装置的具体情况进

空压机余热回收系统原理

●空压机余热回收系统节能原理: 螺杆空压机的工作原理是由一对相互平行啮合的阴阳转子(或称螺杆)在气缸内转动,使转子齿槽之间的空气不断地产生周期性的容积变化,空气则沿着转子轴线由吸入侧输送至输出侧,从而实现空压机的吸气、压缩和排气的全过程。螺杆空气压缩机在长期连续的运行过程中,把电能转换为机械能,机械能转换为风能,在机械能转换为风能过程中,空气得到强烈的高压压缩,使之温度骤升,这是普通物理学机械能量转换现象,机械螺杆的高速旋转,同时也摩擦发热,这些产生的高热由空压机润滑油的加入混合成油、气蒸汽排出机体,这部分高温油、气的热量相当于空压机输入功率的25-30%,它的温度通常在80℃(冬季)—100℃(夏秋季)。由于机器运行温度的要求,这些热能通过空压机的散热系统做为废热排往大气中。 螺杆空压机节能系统就是利用热能转换原理,把空压机散发的热量回收转换到水里,水吸收了热量后,水温就会升高。使空压机组的运行温度降低,不仅提高了空压机运行效率,延长空压机润滑油使用寿命,回收的热水还可用于员工热水洗澡、办公室及生产车间采暖、锅炉补充水、金属涂装清洁处理、无尘室恒温恒湿车间及其他需要使用热水的地方,从而降低了企业为福利生活用热水、工业用热水而长期支付的经营成本。 ●安装空压机余热回收系统的好处: 1、安全、卫生、方便 螺杆空压机余热回收系统与燃油锅炉比较,无一氧化碳、二氧化硫、黑烟和噪音、油污等对大气环境的污染。一旦安装投入使用,只要空压机在运行,企业就随时可以提取到热水使用。 2、提高空压机的运行效率,实现空压机的经济运转 螺杆空压机的产气量会随着机组运行温度的升高而降低。在实际使用中,空压机的机械效率不会稳定在80℃标定的产气量上工作。温度每上升1℃,产气量就下降0.5%,温度升高10℃,产气量就下降5%。一般风冷散热的空压机都在88—96℃间运行,其降幅都在4—8%,夏天更甚。安装螺杆空压机余热回收系统的空压机组,可以使空压机油温控制在80—86℃之间,可提高产气量8%~10%,大大提高了空压机的运行效率。 ●空压机余热回收系统特点: 1、空压机原有冷却系统与空压机余热回收系统是两套完全独立的系统,使用者无须担心由于空压机余热回收系统的原因而影响空压机的运行。两套系统的切换自动控制,在空压机余1 / 3 热回收系统未启用时,空压机使用机身自带冷却系统;当余热回收系统启动时,系统可自动切换至余热回收系统。 2、全自动控制系统,无需人为操作,控制系统会根据温度、水位的情况做出判断,自行决定换热方式。 ●螺杆空压机余热回收系统产热水量参数表: (空压机运行压力大于7.6kg/cm2) 可回收热时m3/h时m3/h时m3/h时m3/h机型功kca2050205520602065 13500.450.30.315kw0. 0440.519800.660.522kw 0.60.9270000.680.7630kw 03330741.110.937kw0.8

吸收式热泵循环水余热回收方案在300MW机组的应用

吸收式热泵循环水余热回收方案在300MW机组的应用0引言 随着城市建筑的不断增加,需要集中供热网为更多的建筑物供暖,但是城市的热源严重不足,而新增热源又会带来环境问题,受到各地环保部门严格控制。热电厂循环水余热回收供热,可以实现能源的高效利用和循环利用,符合国家节能减排的大政方针,亦有利于缓解城市采暖供热用能的矛盾。 1系统现状 河北邢台国泰发电公司2×300MW工程10、11号汽轮机为东方汽轮机厂生产的N-300-16.7/537/537-8型亚临界、一次中间再热、单轴双缸双排汽采暖抽汽凝汽式汽轮机。汽机额定供汽量为:400t/h,汽机最大供汽量为:625t/h。 汽轮机厂采暖抽汽压力可在0.245MPa~0.688MPa范围调整,由高温热水网将130C°的高温热水送至各小区热力站。本工程最大供热能力为2875GJ/h,对外供热网循环水量11957t/h,厂区热网供水干管管径为2×DN1200。 循环冷却水带走的余热量主要是汽轮机排入凝汽器的蒸汽释放的凝结热。每台机组循环水系统配有两台流量为17640t/h循环水泵,冬季运行一台,凝汽器循环水进出口温度24/35℃。这就意味着有大量的热量通过循环水冷却水塔直接浪费掉,同时通过冷却水塔的蒸发、风吹损失大量循环水。 2余热回收方案 1)吸收式热泵基本原理(图1) 吸收式热泵以低温低压饱和蒸汽作为驱动力,从低温热源(循环水)中回收低品位余热。将蒸汽本身放热和回收余热同时传递给热网水。 蒸发器:吸热时,由冷剂泵将冷剂喷淋到蒸发器的传热管上,传热管表面的冷剂吸收管内热源水的热量而蒸发,使热源水的温度下降。 图1 吸收器:通过喷淋在吸收器传热管上的吸收溶液,吸收由蒸发器产生的冷剂蒸汽。吸收冷剂时产生的吸收热被管内流动的热水带走,使传热管表面的吸收作用持续进行。吸收冷剂蒸汽后,浓度下降的吸收液(以下称为稀溶液),由溶液泵经溶液热交换器送入发生器。 发生器:由溶液泵从吸收器送来的稀溶液,被供给发生器的蒸汽加热。被加热的稀溶液产生冷剂蒸汽,变成浓度较高的吸收液(以下称为浓溶液),通过溶液热交换器被送到吸收器。 冷凝器:在发生器中产生的冷剂蒸汽,被冷凝器传管内流动的热水冷却,冷凝后变成为冷剂液体。冷剂液返回蒸发器,再次被喷淋到蒸发器的传热管上。 溶液热交换器:由吸收器送往发生器的低温稀溶液,与来自发生器高温浓溶液进行热交换,从而提高热泵的热效率。 蒸汽调节阀:用蒸汽调节阀,通过从控制盘传来的信号,根据热负荷的变化调节供给发生器的蒸汽量。由此将热水出口温度控制在设定的值上。 溶液泵、冷剂泵:为了确保高真空,采用了完全封闭型的屏蔽泵。并利用各自的一部分排出液,润滑轴承及冷却电机。 溴化锂溶液的特性决定了它适用于吸收式热泵系统:溴化锂极易溶于水,是一种高效水蒸气吸收剂,44℃失去1分子结晶水,160℃时成为无水物,熔点550℃,沸点1265℃,在大气中不易变质不易分解,在容器中对钢铁有很强的腐

余热回收技术方案

保定太行和益水泥 活性石灰线余热回收技术方案 河北朗瑞环境工程 2012年08月

1. 工程概况 一条日产800吨活性石灰生产线。计划采用窑尾余热用于办公室采暖。 河北朗瑞环境工程是一家专业从事余热回收工程的高技术公司,与华北电力大学、航空航天大学、中科院热物理研究所联合研制了高性能的热管换热器、翅片管换热器,通过ISO9001-2000质量体系论证。河北朗瑞环境工程坚持“能源节约与开发利用并举,污染源头控制与末端治理相结合”的设计原则,致力于现代科技与实际应用的完美结合,树立了众多的高效节能、综合治理、清洁生产的典工程。特别是余热回收工程在冶金、钢铁、电力、石油、化工、建材等行业的实施,受到业界人士广泛认可。 河北朗瑞环境工程针对保定太行和益公司提供的相关参数资料,根据业主相关要求和该项目的具体情况,提出采用高性能热管换热器回收石灰窑高温烟气热能的技术方案,回收的热能用来取暖,实现节能减排的效果。 2. 工艺设计条件及要求 2.1. 设计原始参数 2.2. 主要执行标准与规 《蒸汽锅炉安全技术监察规程》 《压力容器安全技术监察规程》 /T1620-1993《锅炉钢结构技术条件》 /T1613-1993《锅炉受压元件焊接技术条件》 /T3375-2002《锅炉原材料入厂检验》

/T1615-1993《锅炉油漆包装技术条件》 /T4420 《锅炉焊接工艺评定》 JB1152 《锅炉和钢制压力容器对接焊缝超声波探伤》 /T4308-1999《锅炉产品钢印及标记移植规定》 /T1611 《锅炉管子制造技术条件》 《碳钢-水重力热管技术条件》 ZBG93010《高频电阻焊螺旋翅片管》 2.3. 主要编制原则 本方案按照技术先进、工艺可靠、经济合理的原则确定技术方案,结合本工程的具体情况,编制报告重点遵循下述原则: (1)遵守国家提倡节约能源的有关标准、规和政策,如《节约能源法》,《节能减排综合性工作方案》等。 (2)采用高效、运行稳定、管理成熟的换热工艺和技术。 (3)根据行业的具体情况,综合运用导热、对流、辐射等传热原理,采用适宜的强化传热手段,通过优化设计达到最佳的传热效果 (4)在符合上述条件情况下采取投资最少、运行费用最低的方案。 (5)系统管理和维护方便,工程设计优雅美观,与周围环境和谐统一。 2.4. 设计要求 (1)换热器换热量满足取暖热负荷并且留有一定的裕量。 3. 技术简介 3.1热管及热管换热器原理及特点介绍 3.1.1热管 热管起源于二十世纪六十年代的美国,1967年一根不锈钢-水热管首次被送入地球卫星轨道并运行成功。热管理论一经提出就得到了各国科学家的高度重视,并展开了大量的研究工作,使得热管技术得以很快发展。热管技术开始主要用于航天航空领域,我国自二十世纪70年代开始对热管进行研究,自80年代以来相继开发了热管气

离心压缩机余热回收工程技术方案

离心压缩机余热回收工程技术方案 编制单位: 编制日期:

目录 一、项目概况 (1) 二、项目建设的必要性 (1) 三、项目建设内容 (2) (一)项目设计原则 (2) (二)建设内容 (3) (三)工艺流程简述 (4) (四)产品特点............... 错误!未定义书签。 四、热工计算 (6) (一)基本参数 (6) (二)设计计算书 (6) (三)主要设备 (7) 五、经济效益分析 (10)

一、项目概况 有限公司现有三台空压机常年运行,空压机采用离心式两级压缩工艺,提供总容量为800Nm3/min,0.35MPa的压缩空气供生产使用,根据工艺和设备的要求,二级入口风温不可高于65℃。空压机压缩空气二级出口温度为夏季140℃,现生产工艺是将风温降到60℃以下。 有四台三级离心压缩空压机,提供总容量为730Nm3/min,0.75MPa的压缩空气供生产使用,根据工艺和设备的要求,二、三级入口风温不可高于65℃,空压机压缩空气三级出口温度夏季为140℃,现在的运行方式是将三级出口风温降到60℃以下外供。 二、项目建设的必要性 国民经济和社会发展第“十二五”规划纲要提出:“面对日趋强化的资源环境约束,必须增强危机意识,树立绿色、低碳发展理念,以节能减排为重点,健全激励和约束机制,加快构建资源节约、环境友好的生产方式和消费模式,增强可持续发展能力。” “十二五”期间的节能指标为:单位GDP能耗降低率为17%。在能源费用日趋增高的今天,节能降耗也是企业降低运行成本,提高经济效益的一个有效途径。 本项目中,空压机作为压缩空气的生产设备,在制取压缩空气的过程中,不可避免的要产生大量热量,受生产工艺的制约,

低温循环水余热回收

在工业生产上普遍采用蒸汽做为载热体。在各种换热设备中蒸汽的有效能利用率都较低,特别是在各种生产部门中,由工业余热产生的大量低品位付产蒸汽(二次蒸汽)也都没有得到充分的回收利用。本文介绍采用热泵一闪蒸一孔板疏水一加热等单元组成的热泵供热系统,利用蒸汽喷射式热泵回收二次蒸汽,使其增压提高能量品位后再供生产使用。利用疏水孔板,代替常规疏水器,漏汽率低,管理十分简单。一、热泵供热原理及节能指标热泵是开发和利用低品位能源的手段,即以输入高品位能量(机械能、电能及热能等),通过热力循环从环境中吸取低于热用户能源品位的… 世界最大余热回收吸收式热泵系统”启运仪式在江苏省江阴市举办[发表时间:2009-11-23 10:31:54 | 文章来源:新浪网] | 浏览:49次 ] 更多相关内容请关注河南节能网。河南节能网是中国唯一一家节能行业专业B2B网站。网站信息齐全,是河南节能服务网下重点网站!网站地址:https://www.wendangku.net/doc/f51457271.html, 11月21日在江苏省江阴市举办“世界最大余热回收吸收式热泵系统”启运仪式。这是双良股份与国l阳新能合作的新开始,标志着双良股份近年来转型节能减排绿色产业又取得重要突破。 打造节能样板 即将发运的吸收式热泵系统,目前是世界上最大的热电余热回收机组,8台30兆瓦机组将为阳泉地区新建居民提供集中供暖。第一批将交付的6台机组,在不增加其他供热设备的前提下,充分利用热电厂的循环冷却水热量,收集余热进行加温,完全满足热电厂新增的144万平方米的供热需求,按照每平米24元成本计算,年采暖效益3500万元,节省冷却水补水量45万吨,节水效益180万元,相当于每年节省蒸气42万吨,节约5万吨标准煤,减少二氧化碳排放13万吨,减少二氧化硫及碳氧化物排放2200吨。 据了解,这是双良股份迄今最大的一笔余热利用设备订单,设备总价近5000万元。不过,在公司董事长缪志强看来,其意义更在于为双良股份开辟出广阔的市场空间和新的利润增长点。专家强调,在全国电力行业中,绝大多数企业都有专门供热的需求,存在低温热水

相关文档