文档库 最新最全的文档下载
当前位置:文档库 › 整理高一数学的函数定义域、值域和单调性、奇偶性练习题

整理高一数学的函数定义域、值域和单调性、奇偶性练习题

整理高一数学的函数定义域、值域和单调性、奇偶性练习题
整理高一数学的函数定义域、值域和单调性、奇偶性练习题

1word 版本可编辑.欢迎下载支持. 高一数学函数练习题

一、 求函数的定义域

1、 求下列函数的定义域:

⑴y =

⑵y =

⑶01

(21)1

11y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;

3、若函数(1)f x +的定义域为[]-23,,

则函数(21)f x -的定义域是 ;函数1(2)f x

+的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域

5、求下列函数的值域:

⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311

x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸

y =⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼

y = ⑽

4y =

⑾y x =-6、已知函数222()1

x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式系

1、已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、已知()f x 是二次函数,且2

(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

2word 版本可编辑.欢迎下载支持. 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,

()(1f x x =+

,则当(,0)x ∈-∞时()f x =____ _

()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1

f x

g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间

6、求下列函数的单调区间:

⑴ 2

23y x x =++

⑵y ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2

(1)f x -的单调递增区间是 8、函数236

x y x -=+的递减区间是

;函数y =的递减区间是 五、综合题

9、判断下列各组中的两个函数是同一函数的为 ( )

⑴3

)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,

()g x ;

⑸21)52()(-=x x f , 52)(2-=x x f 。

A 、⑴、⑵

B 、 ⑵、⑶

C 、 ⑷

D 、 ⑶、⑸ 10、若函数()f x = 3

442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4

3) 11

、若函数()f x =的定义域为R ,则实数m 的取值范围是( )

(A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤

12、对于11a -≤≤,不等式2(2)10x a x a +-+->恒成立的x 的取值范围是( )

(A) 02x << (B) 0x <或2x > (C) 1x <或3x > (D) 11x -<<

函数的概念及定义域、值域基本知识点总结.doc

函数的概念及定义域.值域基本知识点总结 函数概念 1.映射的概念 设A、B是两个集合,如果按照某种对应法则/ ,对于集合4小的任意元素,在集合B 中都冇唯一确宦的元索与Z对应,那么这样的单值对应叫做从A到B的映射,通常记为f :A^ B , f 表示对应法则 注意:(1)A中元素必须都有彖J1唯一;(2)B中元素不一定都有原彖,但原彖不一定唯一。 2.函数的概念 (1)函数的定义: 设A、B是两个非空的数集,如果按照某种对应法则/,对于集合4屮的每个数兀, 在集合B中都

冇唯一确怎的数和它对应,那么这样的对应叫做从A到B的一个函数,通常

⑵函数的定义域、值域 在函数y = f(x\xeA中,x叫做自变量,x的取值范围A叫做y = f(x)的定义域;与x的值相对应的y值叫做两数值,函数值的集合{/⑴卜e △}称为函数y = /(%)的值域。 (3)函数的三要素:定义域、值域和对丿应法则 3.函数的三种表示法:图象法、列表法、解析法 (1).图象法:就是用函数图象表示两个变量之间的关系; (2).列表法:就是列出表格来表示两个变量的函数关系; (3).解析法:就是把两个变量的函数关系,用等式來表示。 4.分段函数 在H变量的不同变化范围屮,对应法则用不同式子來表示的函数称为分段函数。 (-)考点分析 考点1:映射的概念 例1. (1) A = R , B = {yly〉O}, f :x —> y =1 xI ; (2) A = {x\ x>2,x e N^}, B = {y\ y>O,y e N], / : x y = x2 - 2x + 2 ; (3) A = {xI x > 0}, = {>' I y e R}, / : x —> y = ±\[x . 上述三个对应是A到B的映射. 例2.若A = {1,2,3,4}, B = {aM,a,b,cwR,则A到B的映射有个,B到A的映射有个,A到B 的函数有个 例3.设集合M ={-1,0,1}, 7V = {-2,-1,0,1,2},如果从M到N的映射/满足条件:对 (4)8 个(3)12 个(C)16 个(0)18 个 M中的每个元素兀与它在N中的象/(兀)的和都为奇数,则映射/的个数是() 考点2:判断两函数是否为同一个函数

高一函数单调性奇偶性经典练习

函数单调性奇偶性经典练习 一、单调性题型 高考中函数单调性在高中函数知识模块里面主要作为工具或条件使用,也有很多题会以判断单调性单独出题或有的题会要求先判断函数单调性才能进行下一步骤解答,另有部分以函数单调性质的运用为主. (一)函数单调性的判断 函数单调性判断常用方法: 121212121212()()0()()()()0()()()()()()()()()()()()f x f x f x f x x x x x f x f x f x f x f x g x f x f x g x f x g x g x g x f x ->>??> 210x x ∴->,1(4)0x ->,2(4)0x -> 12()()f x f x ∴> 故函数()f x 在区间(4)+∞,上为减函数. 练习1 证明函数21()3 x f x x -= +在区间(3)-+∞,上为减函数(定义法) 练习2 证明函数2()f x x =-2()3 -∞,上为增函数(定义法、快速判断法) 练习3 求函数3()2x f x x -=+定义域,并求函数的单调增区间(定义法) 练习4 求函数()f x x =定义域,并求函数的单调减区间(定义法) (复合函数,基本初等函数相加减问题,反函数问题在本章结束时再练习) (二) 函数单调性的应用 例1 若函数()f x 是定义在R 上的增函数,且2 (2)(3)f x x f a +>+恒成立,求实数a 的范围。 练习1 若函数()f x 是定义在R 上的增函数,且2()(3)f x f a >-恒成立,求实数a 的范围 练习2 若函数()f x 是定义在R 上的增函数,且2()(32)f a f a >+恒成立,求实数a 的范围 例2 若函数()f x 是定义在[]22-,上的减函数,且2(23)()f m f m +>恒成立,求实数m 的取值范围. 练习1 若函数()f x 是定义在[]13-,上的减函数,且(23)(54)f m f m +>-恒成立,求实数m 的取值范围.

高一数学必修一函数的奇偶性

函数的单调性和奇偶性 教材复习 基本知识方法 1.奇偶函数的性质: ()1函数具有奇偶性的必要条件是其定义域关于原点对称; ()2()f x 是偶函数?()f x 的图象关于y 轴对称;()f x 是奇函数?()f x 的图象关于原点对称; ()3奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的 单调性. 2.()f x 为偶函数()()(||)f x f x f x ?=-=. 3.若奇函数()f x 的定义域包含0,则(0)0f =. 4.判断函数的奇偶性的方法: ()1定义法:首先判断其定义域是否关于原点中心对称. 若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x =-或()()f x f x =-是否定义域上的恒等式; ()2图象法; ()3性质法:设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域12D D D = 上:奇±奇=奇,偶±偶=偶,奇?奇=偶,偶?偶=偶,奇?偶=奇; 5. 判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1() f x f x =±-. 6.判断函数的单调性的方法: (1)定义法;(2)图象法;(3)性质法:在公共定义域内,利用函数的运算性质:若()f x 、)(x g 同为增函数,则①()()f x g x +为增函数;②()()f x g x 为增函数;③()1()0() f x f x >为减函数; ()()0f x ≥为增函数;⑤()f x -为减函数.

1.设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数。 2.函数)11()(+--=x x x x f 是( ) A .是奇函数又是减函数 B .是奇函数但不是减函数 C .是减函数但不是奇函数 D .不是奇函数也不是减函数 3.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)2 52()23 (2++-a a f f 与的大小关系是( ) A .)23(-f >)252(2++a a f B .)23(-f <)2 52(2 ++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)2 52(2++a a f 4.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ?<的解集是( ) A .{}|303x x x -<<>或B .{}|303x x x <-<<或 C .{}|33x x x <->或 D .{}|3003x x x -<<<<或 5.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数, 则实数a 的取值范围是( ) A .3a ≤- B .3a ≥- C .5a ≤ D .3a ≥ 6.设()f x 是R 上的奇函数,且当[)0,x ∈+∞时,()(1f x x =,则当(,0)x ∈-∞时()f x =_____________________。 7.若函数2()1 x a f x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为________. 8.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2-+=x x x f ,那么0x <时,()f x =. 9.设函数()f x 与()g x 的定义域是x R ∈且1x ≠±,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 和()g x 的解析式. 10.利用函数的单调性求函数x x y 21++=的值域;

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

函数的定义域、值域及解析式

函数的定义域、值域及解析式 【教学目标】 1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型。 2.了解对应关系在刻画函数概念中的作用。 3.了解构成函数的三要素,会求一些简单函数的定义域和值域 【教学重难点】函数定义域、值域以及解析式的求法。 【教学内容】 1.定义 高中函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A →B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.如:f(x)=x2 f(x)=2x+2等 (1)其中,x叫做自变量,x的取值范围A叫做函数的定义域; (2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式. 2.构成函数的三要素:定义域、对应关系和值域 常见函数的定义域与值域 函数解析式定义域值域 一次函数y=ax+b(a≠0) 二次函数y=ax2+bx+c(a≠0) 反比例函数 (k为常数, k≠0) 1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) 2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)例. 判断下列函数f(x)与g(x)是否表示同一个函数,说明理由? (1)f ( x ) = (x-1) 0;g ( x ) = 1 (2)f ( x ) = x; g ( x ) = (√x)2 (3)f ( x ) = x 2;g ( x ) = (x + 1) 2 (4)f ( x )=x2-2x+2, g ( x )=t2-2t+2 3.区间的概念

高一数学函数奇偶性练习题及答案解析

高一数学函数奇偶性练习题及答案解析 数学函数奇偶性练习题及答案解析 1.下列命题中,真命题是 A.函数y=1x是奇函数,且在定义域内为减函数 B.函数y=x3x-10是奇函数,且在定义域内为增函数 C.函数y=x2是偶函数,且在-3,0上为减函数 D.函数y=ax2+cac≠0是偶函数,且在0,2上为增函数 解析:选C.选项A中,y=1x在定义域内不具有单调性;B中,函数的定义域不关于原点对称;D中,当a<0时,y=ax2+cac≠0在0,2上为减函数,故选C. 2.奇函数fx在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f-6+f-3的值为 A.10 B.-10 C.-15 D.15 解析:选C.fx在[3,6]上为增函数,fxmax=f6=8,fxmin=f3=-1.∴2f-6+f-3=-2f6- f3=-2×8+1=-15. 3.fx=x3+1x的图象关于 A.原点对称 B.y轴对称 C.y=x对称 D.y=-x对称 解析:选A.x≠0,f-x=-x3+1-x=-fx,fx为奇函数,关于原点对称. 4.如果定义在区间[3-a,5]上的函数fx为奇函数,那么a=________. 解析:∵fx是[3-a,5]上的奇函数, ∴区间[3-a,5]关于原点对称, ∴3-a=-5,a=8. 答案:8 1.函数fx=x的奇偶性为

A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.非奇非偶函数 解析:选D.定义域为{x|x≥0},不关于原点对称. 2.下列函数为偶函数的是 A.fx=|x|+x B.fx=x2+1x C.fx=x2+x D.fx=|x|x2 解析:选D.只有D符合偶函数定义. 3.设fx是R上的任意函数,则下列叙述正确的是 A.fxf-x是奇函数 B.fx|f-x|是奇函数 C.fx-f-x是偶函数 D.fx+f-x是偶函数 解析:选D.设Fx=fxf-x 则F-x=Fx为偶函数. 设Gx=fx|f-x|, 则G-x=f-x|fx|. ∴Gx与G-x关系不定. 设Mx=fx-f-x, ∴M-x=f-x-fx=-Mx为奇函数. 设Nx=fx+f-x,则N-x=f-x+fx. Nx为偶函数. 4.已知函数fx=ax2+bx+ca≠0是偶函数,那么gx=ax3+bx2+cx A.是奇函数 B.是偶函数 C.既是奇函数又是偶函数

高中函数定义域值域单调性及高考题

函数知识综合复习 讲课时间: 知识点:函数的定义域、值域、单调性及奇偶性 考点:函数知识的全面考察 一、定义域 1.基本函数求定义域: 例1:(1)236)(2+-= x x x f (2)42113)(+-+-=x x x f (3)y=x x -||1 (4)y=3102++x x (5))352(log )(21-+-=-x x x f x 练习:236)(2+-=x x x f 2 )1(102-+-=x x y 2.抽象函数求定义域: 例2:(1)已知)(x f 的定义域为]1,1[-,求)12(-x f 的定义域。 (2)已知)12(-x f 的定义域为]1,1[-,求)(x f 的定义域 学生练习:(1)已知)12(-x f 定义域为]1,0[,求)3(x f 的定义域 (2)已知)(x f 的定义域为[]4,2-,则)()()(x f x f x g +-=的定义域为 。 (3)若[]0,3)1(的定义域为+x f ,求)(x f 的定义域。 例3:(1)已知函数()f x =的定义域为R ,求实数a 的范围. (2)已知函数y =的定义域为R ,求实数m 的范围 二、值域 例1:求下列函数的值域()2f x x =+,2211)(x x x x f +++=(?) 21+-=x x y ,1y x x =+,)1(1222->+++=x x x x y 练习:(1)x x x f 211)(--+=,(2)x x x f 212)(-+=,

(3)212)(x x x f +=,(4)x x x f 82)(+= 例2:求52)(++-=x x x f 的值域 练习:求13)(+--=x x x f 的值域 例3:设函数()y f x =是定义在(0,)+∞上的减函数,且()()()f xy f x f y =+,1)3 1(=f 。(1)求(1)f 的值; (2)若存在实数m ,使得()2f m =,求m 的值; (3)如果()(2)2f x f x +-<,求x 的取值范围。 练习:若()f x 是定义在(0,)+∞上的增函数,且()()x f f x f y y ?? =- ???。 (1)求)1(f 的值;(2)解不等式:(1)0f x -<; (3)若(2)1f =,解不等式1(3)()2f x f x +-< 三、单调性 1.基本函数的单调性及证明方法 例1:函数x x f a log )(=在区间]9,2[上的最大值比最小值大2,求a 例2:判断函数)0(1)(2≠-=a x ax x f 在区间)1,1(-上的单调性。 2.复合函数的单调性 例2:(1)函数22)13()(a x a ax x f +--=在],1[+∞-上是增函数,求实数a 的取值范围. (2)求函数213 2log (32)y x x =-+的单调区间。 练习:(1)函数2()42f x ax x =+-在[]1,3-上为增函数,求a 的取值范围 (2)已知函数)(log )(22m mx x x f +-=的定义域是R ,并且在(-∞,1)上单调递减,则实数m 的取值范围 (3)已知log (2)a y ax =-在[0,1]上是x 的减函数,求a 的取值范围

高中函数定义域和值域的求法总结(十一种)

高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ? ??>-≥②①0x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而 3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。 (2)已知)]x (g [f 的定义域,求f(x)的定义域。 其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求 g(x)的值域,即所求f(x)的定义域。 例4 已知)1x 2(f +的定义域为[1,2],求f(x)的定义域。 解:因为51x 234x 222x 1≤+≤≤≤≤≤,,。 即函数f(x)的定义域是}5x 3|x {≤≤。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。 例5 已知函数8m m x 6m x y 2++-=的定义域为R 求实数m 的取值范围。 分析:函数的定义域为R ,表明0m 8mx 6mx 2≥++-,使一切x ∈R 都成立,由2x 项

复合函数定义域与值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01(21)111 y x x = +-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义 域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1 (2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = ⑹ 22 5941x x y x +=-+

⑺31y x x =-++ ⑻2y x x =- ⑼ y = ⑽ 4y = ⑾y x =- 6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+ ,则当(,0)x ∈-∞时 ()f x =____ _ ()f x 在R 上的解析式为

高一数学必修1-函数的单调性和奇偶性的综合应用

高一数学必修1-函数的单调性和奇偶性的综 合应用 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

- 1 - 高一数学必修1 函数的单调性和奇偶性的综合应用(第一课时) 对称有点对称和轴对称: 数的图像关奇函于原点成点对称,偶函数的图像关于y 轴成轴对称图形。 1、函数的单调性:应用:若()y f x =是增函数,12()()f x f x > ? 1x 2x 应用:若()y f x =是减函数,12()()f x f x > ? 1x 2x 相关练习:若()y f x =是R 上的减函数,则(1)f 2(22)f a a ++ 2、熟悉常见的函数的单调性:y kx b =+、k y x = 、2y ax bx c =++ 相关练习:若()f x ax =,()b g x x =-在(,0)-∞上都是减函数,则2()f x ax bx =+在(0,)+∞上是 函数(增、减) 3、函数的奇偶性: 定义域关于原点对称,()()f x f x -= ? ()f x 是偶函数 定义域关于原点对称,()()f x f x -=- ? ()f x 是奇函数 O 点对称:对称中心O 轴对称:

- 2 - (当然,对于一般的函数,都没有恰好()()f x f x -=±,所以绝大部分函数都不具有奇偶性) 相关练习:(1)已知函数21()4f x ax bx a b =+++是定义在[1,2]a a -上的奇函数,且(1)5f =,求a 、b (2)若2()(2)(1)3f x K x K x =-+-+是偶函数,则()f x 的递减区间是 。 (3)若函数()f x 是定义在R 上的奇函数,则(0)f = 。 (4)函数()y f x =的奇偶性如下:画出函数在另一半区间的大致图像 4、单调性和奇偶性的综合应用 【类型1 转换区间】 相关练习:(1)根据函数的图像说明,若偶函数()y f x =在(,0)-∞上是减函数,则()f x 在(0,)+∞上是 函数(增、减) (2) 已知()f x 为奇函数,当0x >时,()(1)f x x x =-,则当0x <时,()x = (3)R 上的偶函数在(0,)+∞上是减函数,3()4 f - 2(1)f a a -+ (4)设()f x 为定义在((,)-∞+∞上的偶函数,且()f x 在[0,)+∞为增函数,则(2)f -、()f π-、 偶函数奇函数奇函数奇函数

高一数学--奇偶性

高一数学第四讲 函数的奇偶性 一、知识要点: 1、函数奇偶性定义: 如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数; 如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。 如果函数f (x )不具有上述性质,则f (x )既不是奇函数也不是偶函数 如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。 2、函数奇偶性的判定方法:定义法、图像法 (1)利用定义判断函数奇偶性的格式步骤: ①首先确定函数的定义域是否关于原点对称;②确定f (-x )与f (x )的关系;③作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。 ①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,定义域关于原点对称。 (2) 利用图像判断函数奇偶性的方法: 图像关于原点对称的函数为奇函数,图像关于y 轴对称的函数为偶函数, (3)简单性质: 设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶,奇?偶=奇 二、基础练习: 1. f (x ),g (x )是定义在R 上的函数,h (x )=f (x )+g (x ),则f (x ),g (x )均为偶函数,h (x )一定为偶函数吗? 反之是否成立? 2.已知函数y =f (x )是定义在R 上的奇函数,则下列函数中是奇函数的是 ①y =f (|x |); ②y =f (-x ); ③y =x ·f (x ); ④y =f (x )+x . 3.设函数若函数2 ()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是 4.已知y =f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2 -2x ,则在x<0上f (x )的表达式为 5. 设f (x )是R 上的偶函数,且在(0,+∞)上是减函数,若x 1<0,且x 1+x 2>0,则 f (x 1)与f (-x 2)的大小关系是 三、例题精讲: 题型1: 函数奇偶性的判定 例1. 判断下列函数的奇偶性: ① x x x x f -+-=11)1()(,②y =,③22 (0)()(0) x x x f x x x x ?+??④2 211)(x x x f --= 变式:设函数f (x )在(-∞,+∞)内有定义,下列函数: ① y =-|f (x )|; ②y =xf (x 2); ③y =-f (-x ); ④y =f (x )-f (-x )。 必为奇函数的有_ __(要求填写正确答案的序号)

函数的概念、定义域与值域、单调性、奇偶性与周期性

精锐教育学科教师辅导讲义 年 级: 高 一 辅导科目: 数学 课时数:3 课 题 函数的概念、定义域与值域、单调性、奇偶性与周期性 教学目的 1.理解函数的概念;理解构成函数的要素(定义域、值域、对应法则),了解映射的概念. 2.理解函数的三种表示方法(图象法、列表法、解析法),会选择恰当的方法表示简单情境中的函数. 3.理解和熟记函数的单调性和最值的定义; 4.掌握求解函数的值域和最值的基本方法,并能解决与函数值域和最值有关的问题. 5.理解和熟记函数的奇偶性和周期的定义; 6.掌握判定函数的奇偶性和周期性的基本方法,并能解决与函数奇偶性和周期性有关的问题. 教学内容 教材回归 ◎基础重现: 1.函数的概念: 设A ,B 是两个非空的数集,如果按某个确定的对应关系f ,使对集合A 中的 元素x ,在集合B 中都有 的元素y 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数,记作:()y f x =,x A ∈.其中 叫做函数()y f x =的定义域;将所有 叫做函数的值域. 2.函数的相等 函数的定义含有三个要素: 、 和 .当函数的定义域及对应法则确定后,函数的值域也随之确定.因此,定义域和对应法则是函数的两个基本条件,当且仅当两个函数的 和 都分别对应相同时,两个函数才是同一个函数. 3.映射的定义 设A 、B 两个非空集合,如果按照某种对应法则f ,对于集合A 中的每一个元素,在集合B 中都有 的元素与之对应,那么,这样的对应关系叫做集合A 到集合B 的映射,记作::f A B →. 4.函数的表示法 (1)解析法: ; (2)列表法: ; (3)图象法: . 5.函数的定义域: (1)函数的定义域是构成函数的非常重要的部分,如没有标明定义域,则认为定义域为使得函数解析式 x 的取值范围. (2)实际问题中还需考虑自变量的实际意义,若解析式由几个部分组成,则定义域为各个部分相应集合的 . 6.函数的值域: 当函数的自变量取遍定义域中 所有值时叫做函数的值域. 求函数值域主要有以下一些方法: (1)函数的定义域与对应法则直接制约着函数的值域,对于一些比较简单的函数可直接 求得值域,有时也称为 ; (2)二次函数或可转化为二次函数形式的问题常用 求值域;

高一上学期函数的单调性-奇偶性及周期性知识点和题型

(一)函数的单调性 1.函数单调性定义:对于给定区间D 上的函数f(x),若对于任意x 1,x 2∈D, 当x 1 f(x 2),则称f(x)是区间D 上的减函数,D 叫f(x)单调递减区间. 2.函数单调性的判断方法: (1)从直观上看,函数图象从左向右看,在某个区间上,图象是上升的,则此函数是增函数,若图象是下降的,则此函数是减函数。 (2)一般地,设函数)(x f y =的定义域为I .如果对于属于定义域I 内某个区间A 上的任意两个自变量的值1x , 2x ,且21x x <,则021<-x x (1)()()则0-21≠-)(x f 即在区间A 上是增函数; (2)()()则21x f x f >()() ()121212 0f x f x x x x x -? <≠-)(x f 即在区间A 上是减函数. 如果函数)(x f y =在某个区间上是增函数或减函数,那么就说函数在这一区间具有(严格的)的单调性,这一区间叫做)(x f y =的单调区间. 单调区间是函数定义域的子区间,因此函数单调性是函数的局部性质,应以定义域为前提;必须指明在某个区间上函数是增函数或减函数 (3)复合函数单调性判断方法:设()()[][],,,,,y f u u g x x a b u m n ==∈∈ 若内外两函数的单调性相同,则()y f g x =????在x 的区间D 内单调递增, 若内外两函数的单调性相反时,则()y f g x =????在x 的区间D 内单调递减. (同增异减) 3.常见结论 若f(x)为减函数,则-f(x)为增函数 ; 若f(x)>0(或<0)且为增函数,则函数) (1 x f 在其定义域内为减函数.

必修一函数定义域值域和单调性奇偶性练习题

高一数学函数练习题 一、 求函数的定义域 1、 求下列函数的定义域: ⑴y = ⑵y = ⑶01 (21)1 11y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,, 则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311 x y x -= + ⑷311x y x -=+ (5)x ≥ ⑸ y =⑹ 225941x x y x +=-+

⑺31y x x =-++ ⑻2y x x =- ⑼ y = ⑽ 4y =⑾y x =- 6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式系 1、已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+ ,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是

求函数定义域和值域方法和典型题归纳

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见要是满足有意义的情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。 (2)求定义域时,尽量不要对函数解析式进行变形,以免发生变化。(形

数学必修一定义域值域知识点总结

数学必修一定义域值域知识点总结 数学必修一定义域知识点 定义 (高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域; 常见题型 1,已知f(x)的定义域,求f(g(x))的定义域. 例1,已知f(x)的定义域为(-1,1),求f(2x-1)的定义域. 略解:由-1<2x-1<1有0<1 ∴f(2x-1)的定义域为(0,1) 2,已知f(g(x))的定义域,求f(x)的定义域. 例2,已知f(2x-1)的定义域为(0,1),求f(x)的定义域。 解:已知0<1,设t=2x-1 ∴x=(t+1)/2 ∴0<(t+1)/2<1 ∴-1<1 ∴f(x)的定义域为(-1,1) 注意比较例1与例2,加深理解定义域为x的取值范围的含义。 3,已知f(g(x))的定义域,求f(h(x))的定义域.

例3,已知f(2x-1)的定义域为(0,1),求f(x-1)的定义域。 略解:如例2,先求出f(x)的定义域为(-1,1),然后如例1有-1<1,即0<2 ∴f(x-1)的定义域为(0,2) 指使函数有意义的一切实数所组成的集合。 其主要根据: ①分式的分母不能为零 ②偶次方根的被开方数不小于零 ③对数函数的真数必须大于零 ④指数函数和对数函数的底数必须大于零且不等于1 例4,已知f(x)=1/x+√(x+1),求f(x)的定义域。 略解:x≠0且x+1≧0, ∴f(x)的定义域为[-1,0)∪(0,+∞) 注意:答案一般用区间表示。 例5,已知f(x)=lg(-x2+x+2),求f(x)的定义域。 略解:由-x2+x+2>0有x2-x-2<0 即-1<2 ∴f(x)的定义域为(-1,2) 函数应用题的函数的定义域要根据实际情况求解。 例6,某工厂统计资料显示,产品次品率p与日产量 x(件)(x∈N,1≦x<99)的关系符合如下规律: 又知每生产一件正品盈利100元,每生产一件次品损失100元. 求该厂日盈利额T(元)关于日产量x(件)的函数;

函数定义域、值域求法总结(精彩)

函数定义域、值域求法总结 一、定义域是函数y=f(x)中的自变量x 的范围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。这些解题思想与方法贯穿了高中数学的始终。 常用的求值域的方法:(1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 三、典例解析 1、定义域问题 例1 求下列函数的定义域: ① 21)(-= x x f ;② 23)(+=x x f ;③ x x x f -++=21 1)( 解:①∵x-2=0,即x=2时,分式21 -x 无意义, 而2≠x 时,分式21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-3 2 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }. ③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式 x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ?? ?≠-≥+020 1x x ?? ?≠-≥2 1 x x

高中数学-函数的单调性、奇偶性、周期性、对称性及函数的图像

函数的单调性、奇偶性、周期性、对称性及函数的图像 (一)复习指导 单调性: 设函数y =f (x )定义域为A ,区间M ?A ,任取区间M 中的两个值x 1,x 2,改变量Δx =x 2-x 1>0,则当Δy =f (x 2)-f (x 1)>0时,就称f (x )在区间M 上是增函数,当Δy =f (x 2)-f (x 1)<0时,就称f (x )在区间M 上是减函数. 如果y =f (x )在某个区间M 上是增(减)函数,则说y =f (x )在这一区间上具有单调性,这一区间M 叫做y =f (x )的单调区间. 函数的单调性是函数的一个重要性质,在给定区间上,判断函数增减性,最基本的方法就是利用定义:在所给区间任取x 1,x 2,当x 1<x 2时判断相应的函数值f (x 1)与f (x 2)的大小. 利用图象观察函数的单调性也是一种常见的方法,教材中所有基本初等函数的单调性都是由图象观察得到的. 对于y =f [φ(x )]型双重复合形式的函数的增减性,可通过换元,令u =φ(x ),然后分别根据u =φ(x ),y =f (u )在相应区间上的增减性进行判断,一般有“同则增,异则减”这一规律. 此外,利用导数研究函数的增减性,更是一种非常重要的方法,这一方法将在后面的复习中有专门的讨论,这里不再赘述. 奇偶性: (1)设函数f (x )的定义域为D ,如果对D 内任意一个x ,都有-x ∈D ,且f (-x )=-f (x ),则这个函数叫做奇函数;设函数f (x )的定义域为D ,如果对D 内任意一个x ,都有-x ∈D ,且f (-x )=f (x ),则这个函数叫做偶函数. 函数的奇偶性有如下重要性质: f (x )奇函数?f (x )的图象关于原点对称. f (x )为偶函数?f (x )的图象关于y 轴对称. 此外,由奇函数定义可知:若奇函数f (x )在原点处有定义,则一定有f (0)=0,此时函数f (x )的图象一定通过原点. 周期性: 对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x )成立,则函数f (x )叫做周期函数,非零常数T 叫做这个函数的周期. 关于函数的周期性,下面结论是成立的. (1)若T 为函数f (x )的一个周期,则kT 也是f (x )的周期(k 为非零整数). (2)若T 为y =f (x )的最小正周期,则 | |ωT 为y =Af (ωx +φ)+b 的最小正周期,其中ω≠0. 对称性: 若函数y =f (x )满足f (a -x )=f (b +x )则y =f (x )的图象关于直线2 b a x += 对称,若函数y =f (x )满足f (a -x )=-f (b +x )则y =f (x )的图象关于点( 2 b a +,0)对称. 函数的图象: 函数的图象是函数的一种重要表现形式,利用函数的图象可以帮助我们更好的理解函数的性质,我们首先要熟记一些基本初等函数的图象,掌握基本的作图方法,如描点作图,三角函数的五点作图法等,掌握通过一些变换作函数图象的方法.同时要特别注意体会数形结合的思想方法在解题中的灵活应用. (1)利用平移变换作图:

相关文档
相关文档 最新文档