文档库 最新最全的文档下载
当前位置:文档库 › 单光子计数实验报告

单光子计数实验报告

单光子计数实验报告
单光子计数实验报告

单光子计数实验报告

实验时间:2013年3月7日

摘要

本实验中,我们学习了PMT为探测器的光子计数技术的基础实验方法,并通过实验了解光子计数方法和弱光检测中的一些特殊问题。得出最佳甄别电平为20V,单光子计数信噪比RSN与测量时间t的0.5003次幂成正比;信噪比随入射光功率Po的增大而增大;并发现暗记数率R d随温度T减低而逐渐减小,而光计数率R与温度T的变化无关,只在小范围内随机涨落。

关键词

单光子计数,甄别电平,光计数,暗计数,信噪比

引言

现代光测量技术已步入极微弱发光分析时代。在诸如生物微弱发光分析、化学发光分析、发光免疫分析等领域中,辐射光强度极其微弱,要求对所辐射的光子数进行计数检测。对于一个具有一定光强的光源,若用光电倍增管接收它的光强,如果光源的输出功率及其微弱,相当于每秒钟光源在光电倍增管接收方向发射数百个光子的程度,那么,光电倍增管输出就呈现一系列分立的尖脉冲,脉冲的平均速率与光强成正比,在一定的时间内对光脉冲计数,便可检测到光子流的强度,这种测量光强的方法称为光子计数。

单光子计数是目前测量弱光信号最灵敏和有效的实验手段,这种技术中,一般都采用光电倍增管作为光子到电子的变换器(近年来,也有微通道板和雪崩光电二极管),通过分辨率单个光子在光电倍增管中激发出来的光电子脉冲,利用脉冲高度甄别技术和数字计数技术,把光信号从热噪声中以数字话的方式提取出来。与模拟检测技术相比,单光子计数技术有如下的优点:1.消除了光电倍增管高压直流漏电流和各倍增极的热发射噪声的影响,提高了测量的信噪比。2.时间稳定性好。在单光子计数系统中,光电倍增管漂移、系统增益的变化,零点漂移和其他因素对计数影响不大。3.可输出数字信号,能够直接输出给计算机进行分析处理。4有比较宽的探测灵敏度,目前一般的光子计数器探测灵敏度优于10-17W,这是其他探测方法达不到的。

本实验学习PMT为探测器的光子计数技术的基础实验方法,并通过实验了解光子计数方法和弱光检测中的一些特殊问题。

原理

1.光子流量和光流强度

光是有光子组成的光子流,单个光子的能量ε与光波频率ν的关系是

ε=hν=hc/λ(1)

式中c是真空中的光速,h是普朗克常数,λ是波长。

光子流量可用单位时间内通过的光子数R表示,光流强度是单位时间内通过的光能量,常用光功率P表示。单色光的光功率P与光子流量R的关系是: P=Rε(2)

如果光源发出的是波长为500nm的近单色光,可以计算出一个光子的能量ε为

Ε=3.98×10-19J

当光功率为10-16W时,这种近单色光的光子流量为

R=2.5×102s-1

当光流强度小于10-16W时通常称为弱光,此时可见光的光子流量可降到一毫秒内不到一个,光子,因此实验中要完成的将是对单个光子进行检测,进而得出弱光的光流强度,这就是单光子计数。

2.PMT输出信号波形

PMT是一种从紫外到近红外都有极高灵敏度和超快时间相应的真空电子管类光探测器件,用于各种微弱光的测量。

图1 PMT的结构示意图

由图1所示,光阴极上发射出的电子,经聚焦和加速打在第一倍增极上面,将在第一倍增极上打出几倍于入射电子数目的二次电子。这些电子被加速后达到

第二倍增极上,接连经过几个或十几个倍增极的增殖作用后,电子数目最高可增加到108。最后由阳极收集所有的电子,在阳极回路中形成一个电脉冲信号。

在非弱光测量中由于光子流量较大测得的PMT输出信号为连续信号。而在弱光测量,光子流量较小,相邻两光子间的时间间隔可达毫秒量级,阳极回路中输出的是一个个离散的尖脉冲。尽管光信号可以是由一连续发光的光源发出的,而光电倍增管输出的电信号却是一个一个无重叠的尖脉冲,光子流量与这些脉冲的平均计数率成正比。只要用计数的方法测出单位时间内的光电子脉冲数,就相当于检测了光的强度。

3.单光电子峰

将光电倍增管的阳极输出脉冲接到脉冲高度记录器作脉冲高度分布分析,可以得到单光电子峰分布,如图2所示。

图2 PMT输出的脉冲幅度分布曲线

脉冲幅度较小的主要是热发射噪声信号,而光阴极发射的电子形成的脉冲,其幅度集中在横坐标的中部,形成所谓“单光电子峰”。形成这种分布的原因是:(1)光阴极发射的电子,包括光电子和热发射电子,都受到了所有倍增电极的增殖。因此它们的幅度大致接近。

(2)各倍增极的热发射电子经受倍增的次数要比光阴极发射的电子经受的少,因此前者在阳极上形成的脉冲幅度要比后者低。所以途中脉冲幅度较小的部分主要是热噪声脉冲。

(3)各倍增极的倍增系数不是一定值,有一定统计分布,大体上遵守泊松分布。

所以,如果用脉冲高度甄别器将幅度高于谷底的脉冲加以甄别、输出并计数

显示,就可能实现高信噪比的单光子计数,大大提高检测灵敏度。

4.光子计数器的组成

为了能够实现对弱光经过光电倍增管放大后产生的单光子电压脉冲的准确计数,必须设法消去光电倍增管噪声脉冲特别是倍增极产生的热反射噪声脉冲对计数器的干扰。本实验采用脉冲高度甄别和数字计数技术来实现。其原理框图如图3所示:

图3单光子计数器原理框图

(1)放大器:把光电子脉冲和噪声脉冲线性放大。经放大的脉冲信号送至脉冲幅度甄别器。

(2)脉冲幅度甄别器:甄别器中设有一个连续可调的参考电压Vh。当输入脉冲高度低于Vh时,甄别器过滤该脉冲,使甄别器不产生输出。只有高于Vh的脉冲,甄别器才输出一个标准脉冲。由于噪声脉冲和单光子脉冲的幅度的分离,只要选取合适的参考电压Vh,就能去掉大部分噪声脉冲而只有光电子脉冲通过,从而提高信噪比。

(3)计数器:在规定的时间间隔内将甄别器的输出脉冲累加计数。

5.光子计数器的噪声和信噪比

测量弱信号最关心的是探测信噪比,因此,必须分析光子计数系统中的各种噪声来源。

(1)泊松统计噪声

用PMT探测热光源发射的电子,相邻的光子达到光阴机上的时间间隔是随机的,对于大量粒子的统计结果服从泊松分布。由于这种统计特性,测量到的信号计数中就有一定的不确定度,这种不确定度是一种噪声,称为统计噪声。统计噪

声固有的信噪比为===

SNR

(2)暗计数

PMT的光阴及各个倍增极还有热电子发射,即在没有入射光时,还有按技术。虽然可以用减低管子的工作温度、选用小面积光阴极以及选择最佳的甄别电压等使暗计数Rd最小,但对于极微弱的光信号,仍是一个不可忽视的噪声来源。以R

d

==

SNR (4) (3)脉冲堆积效应

分析光子计数器的噪声和计数误差时,除了上述两个重要的因素外,还应考虑脉冲堆积效应,这是计数率较高时的主要误差来源。

(4)光子计数系统的信噪比

在光子计数系统中,存在着光阴极和倍增极的热发射等引起的暗计数R d。当用分别测量暗计数平均值N d和总计数平均值N t的方法测量信号的计数时,测量结果的信噪比为

==

SNR (5) 实验装置

光子计数器有PMT、放大器、脉冲高度甄别器、计数器等组成。实验中采用天津港东GSZF-2A型单光子计数实验系统,示意图如图4所示

图4 实验装置示意图

用于光子计数的PMT必须具有适合于实验中工作波段的光谱响应,要有适当的阴极面积,量子效率高,暗记数率低,时间响应快,并且光阴极稳定性高。为了获得较高的稳定性,除尽量采用光阴极面积小的管子外,还采用制冷技术来降低光子的环境温度,以减少各倍增极的热发射电子发射。

放大器的作用是将阳极回路输出的光电子脉冲线性的放大,

放大器的增益可

根据单光子脉冲的高度和甄别器甄别电平的范围来选定。

脉冲高度甄别器有连续可调的阈电平,即甄别电平。用于光子计数时,可以将甄别电平调节到单光电子峰下限处。这是各倍增极所引起的热噪声脉冲因小于甄别电平而不能通过。经甄别器后只有光阴极形成的光电子脉冲和热电子脉冲的输出。

计数器的作用是将甄别器输出的脉冲累积起来并予以显示。

实验结果与分析

1. 确定最佳甄别电平

选择入射光功率为P 0=1.2*10-13W ,测量PMT 输出脉冲幅度随电压的分布,得到PMT 输出的脉冲幅度分布的微分曲线,如图5所示:

图5 PMT 输出的脉冲幅度分布曲线

先确定甄别电平的取值范围为20V 附近,然后再分别取20V 附近的几个值,分别测它们的光计数Nt 和暗计数Nd,计算信噪比,取信噪比最大那个值。结果如表1所示: 表1

最终电压幅度为20V时的信噪比最大,所以选取20V为最佳甄别电平,此时的误差最小。

2.探究信噪比与测量时间的关系

实验中采集样式设为时间方式,阈值选定为最佳甄别电平20V。选择入射光=2*10-14W,。通过改变测量时间,分别进行测量,结果表2所示:

功率为P

表2

信噪比与测量时间的关系曲线如图6所示:

图6 信噪比与测量时间的关系曲线

由图信噪比SNR与测量时间t的拟合曲线公式可知,信噪比SNR与测量时间t的0.5003次幂成正比。由公式(5)可知,理论上SNR与t的0.5次幂成正比,则实验值与理论值基本相符。

3.探究信噪比与入射光功率的关系

设定积分时间t=1s,通过选择减光片组和调整光源强度,改变入射光功率Po,分别进行测量,结果如表3所示:

表3

信噪比与入射光功率的关系曲线如图7所示:

图7 信噪比与入射光功率的关系曲线

由图7可知信噪比RSN随入射光功率Po的增大而增大。

4.工作温度T对PMT的暗记数率R d和光计数率R的影响

用半导体致冷仪降温,分别测量不同温度下的暗记数率R d和光计数率Rp,结果如表4所示:

表4

由表4可知,随温度T的逐渐降低,暗记数R d逐渐减小,这是由于温度较低时会抑制热电子的发射,所以随T的降低,R d逐渐减小。同时随温度T的变化,光计数率R几乎不变,只随机地在小范围内涨落,所以可以认为:光计数率R 与温度的变化无关。

结论

本实验测量了该光子计数系统甄别器的阈值电平为20V;探究发现单光子计数信噪比SNR与测量时间t的0.5003次幂成正比;信噪比SNR随入射光功率Po 的增大而增大;并发现暗记数率R d随温度T减低而逐渐减小,而光计数率R与温度T的变化无关,只在小范围内随机涨落。试验结果与理论预期基本相符。参考文献

[1] 熊俊,近代物理实验.北京:北京师范大学出版,2007

单光子计数

鲁东大学物理与光电工程学院——近代物理实验(Ⅱ)学号 姓名 班级 日期 单光子计数实验系统 1.实验目的 (1)了解单光子计数器的结构和工作原理; (2)学习用单光子计数系统检验微弱光信号的方法; (3)研究鉴别电压对系统性能的影响,确定最佳鉴别电压(阈值); (4)了解光子计数器的信噪比,测试光子计数器的最低暗计数率和最小可检测光计数率; 2.实验原理 2.1光子流量和光流强度 光具有波粒二像性,其粒子性特征物理量(能量E 和动量p )与波动性特征物理量(频率ν和波长λ)的关系是 /;//E hv hc p h E c λλ==== (1) 式中h 是普朗克常量,c 是光速。 在弱光情况下,光的量子性特征明显,即光子。一束单色光可以看成是光子流,光子流量R (CPS )定义为单位时间内通过某一截面的光子数(单位:秒-1,或Hz),光流强度是单位时间内通过某一截面的光能量E ,用光功率P 表示。单色光的光功率P 等于光子流量R 乘以单光子能量(本实验所用单色光500nm ,光子能量E=4×10-19J),即 P RE = (2) 测得入射光子流量R ,即可计算出相应的入射光功率P 。 表1光子流量R(CPS)和光功率P(W)之间的对应数值关系及检测方法 2.2单光子计数 在量子通讯、量子光学、生物化学发光分析等领域中,辐射光强度极其微弱,光子流量 为1~103,光电管的阴极受光照射产生光电子,经过多级倍增在阳极产生一系列分立的尖脉冲(光电子脉冲),再对脉冲进行放大、甄别后进行脉冲计数。脉冲的平均数量与光子流量成正比,在一定的时间内对光脉冲计数,便可检测到光子流量,这种测量光强的方法称为光子计数。实际的光电管中,入射光子是以一定概率(量子效率η)产生光电子,考虑到光电倍增管的量子效率η,可由脉冲计数率R p (CPS)换算出光子流量R /p R R η= (CPS) (3) 光子计数器主要由光源、光阑筒、光电倍增管、放大器、甄别器、计数器等组成,图1. 图1单光子计数器原理

实验五 时序逻辑电路实验报告 计数器

实验五 时序逻辑电路实验 一、实验目的 1.掌握同步计数器设计方法与测试方法。 2.掌握常用中规模集成计数器的逻辑功能和使用方法。 二、实验设备 1.直流稳压电源、信号源、示波器、万用表、面包板 2.74LS190、74LS393、74LS04 3.1kΩ电阻、发光二极管 三、实验原理 1.计数器 计数器不仅可用来计数,也可用于分频、定时和数字运算。在实际工程应用中,一般很少使用小规模的触发器组成计数器,而是直接选用中规模集成计数器。 2.(1) 四位二进制(十六进制)计数器74LS161(74LS163) 74LSl61是同步置数、异步清零的4位二进制加法计数器,其功能表见表5.1。 74LSl63是同步置数、同步清零的4位二进制加法计数器。除清零为同步外,其他功能与74LSl61相同。二者的外部引脚图也相同,如图5.1所示。 表5.1 74LSl61(74LS163)的功能表 3.集成计数器的应用——实现任意M进制计数器 一般情况任意M进制计数器的结构分为3类,第一类是由触发器构成的简单计数器。第二类是由集成二进制计数器构成计数器。第三类是由移位寄存器构成的移位寄存型计数器。第一类,可利用时序逻辑电路的设计方法步骤进行设计。第二类,当计数器的模M较小时用一片集成计数器即可以实现,当M较大时,可通过多片计数器级联实现。两种实现方法:反馈置数法和反馈清零法。第三类,是由移位寄存器构成的移位寄存型计数器。 4.实验电路: 十进制计数器

六进制扭环计数器 具有方波输出的六分频电路 图5.1 74LS161(74LS163)外部引脚图 四、实验内容及步骤 1.集成计数器实验 (1)按电路原理图使用中规模集成计数器74LS163和与非门74LS00,连接成一个同步置数或同步清零十进制计数器,并将输出连接至数码管或发光二极管。然后使用单次脉冲作为触发输入,观察数码管或发光二极管的变化,记录得到电路计数过程和状态的转换规律。 (2)根据电路图,首先用D触发器74LS7474构成一个不能自启的六进制扭环形计数器,同样将输出连接至数码管或发光二极管。然后使用单次脉冲作为触发输入,观察数码管或发光二极管的变化,记录得到电路计数过程和状态的转换规律。注意观察电路是否能自启,若不能自启,则将电路置位有效状态。接下来再用D触发器74LS7474构成一个能自启的六进制扭环形计数器,重复上述操作。 2.分频实验 同步置数法 同步清零法

单光子计数

单光子计数 摘要:单光子计数是测量弱光信号最灵敏和有效的实验手段,采用光电倍增管作为光子到电子的变换器,通过分辨单个光子在光电倍增管中激发出来的光电子脉冲,利用脉冲高度甄别技术和数字计数技术,把光信号从热噪声中以数字话的方式提取出来。 关键词:光电倍增管光电子脉冲 一、引言 通常在一些基本的科研领域,特别是某些前沿学科,诸如高分辨率光谱学、非线性光学、拉曼光谱学、表面物理学的研究方面,都会遇到极微弱的光信息(简称弱光)检测问题。所谓弱光是指光流强度比光电倍增管本身的热噪声(10-14W)还要低,以致用一般的直流检验方法已经很难从这种噪声中检测出信号。 与模拟检测技术相比,单光子计数技术有如下的优点: 1、消除了光电倍增管高压直流漏电流和各倍增极的热发射噪声的影响,提高了测量的信噪比。 2、时间稳定性好。在单光子计数系统中,光电倍增管漂移、系统增益的变化,零点漂移和其他因素对计数影响不大。 3、可输出数字信号,能够直接输出给计算机进行分析处理。 4、有比较宽的探测灵敏度,目前一般的光子计数器探测灵敏度优于10-17W,这是其他探测方法达不到的。 二、实验原理 1、光子流量和光流强度 光是由光子组成的光子流,单个光子的能量ε与光波频率ν的关系是 (1) 式中c是真空中的光速,h是普朗克常数,λ是波长。 光子流量可用单位时间内通过的光子数R表示,光流强度是单位时间内通过的光能量,常用光功率P表示。单色光的光功率P与光子流量R的关系是 =(2) P Rε 如果光源发出的是波长为630nm的近单色光,可以计算出一个光子的能量ε为 ε = 3.13×10-19J 当光功率为P=10-16W时,这种近单色光的光子流量R为 R = 3.19×102s-1 当光流强度小于10-16W时通常称为弱光,此时可见光的光子流量可降到一毫秒内不到一个光子。因此实验中要完成的将是对单个光子进行检测,进而得出弱光的光流强度,这就是单光子计数。 2、测量弱光时光电倍增管的输出特性 当光子入射到光电倍增管的光阴极上时,光阴极吸收光子后将发射出一些光子,光阴极产生的光电子数与入射到阴极上的光子数之比成为量子效率。大多数材料的量子效率都在

EDA实验报告-实验3计数器电路设计(DOC)

暨南大学本科实验报告专用纸 课程名称EDA实验成绩评定 实验项目名称计数器电路设计指导教师郭江陵 实验项目编号03 实验项目类型验证实验地点B305 学院电气信息学院系专业物联网工程 组号:A6 一、实验前准备 本实验例子使用独立扩展下载板EP1K10_30_50_100QC208(芯片为EP1K100QC208)。EDAPRO/240H实验仪主板的VCCINT跳线器右跳设定为3.3V;EDAPRO/240H实验仪主板的VCCIO跳线器组中“VCCIO3.3V”应短接,其余VCCIO均断开;独立扩展下载板“EP1K10_30_50_100QC208”的VCCINT跳线器组设定为 2.5V;独立扩展下载板“EP1K10_30_50_100QC208”的VCCIO跳线器组设定为3.3V。请参考前面第二章中关于“电源模块”的说明。 二、实验目的 1、了解各种进制计数器设计方法 2、了解同步计数器、异步计数器的设计方法 3、通过任意编码计数器体会语言编程设计电路的便利 三、实验原理 时序电路应用中计数器的使用十分普遍,如分频电路、状态机都能看到它的踪迹。计数器有加法计数器、可逆计数器、减法计数器、同步计数器等。利用MAXPLUSII已建的库74161、74390分别实现8位二进制同步计数器和8位二——十进制异步计数器。输出显示模块用VHDL实现。 四、实验内容 1、用74161构成8位二进制同步计数器(程序为T3-1); 2、用74390构成8位二——十进制异步计数器(程序为T3-2); 3、用VHDL语言及原理图输入方式实现如下编码7进制计数器(程序为T3-3): 0,2,5,3,4,6,1 五、实验要求 学习使用Altera内建库所封装的器件与自设计功能相结合的方式设计电路,学习计数器电路的设计。 六、设计框图 首先要熟悉传统数字电路中同步、异步计数器的工作与设计。在MAX+PLUS II中使用内建的74XX库选择逻辑器件构成计数器电路,并且结合使用VHDL语言设计转换模块与接口模块,最后将74XX模块与自设计模块结合起来形成完整的计数器电路。并借用前面设计的数码管显示模块显示计数结果。 ◆74161构成8位二进制同步计数器(程序为T3-1)

光子计数技术

光子计数技术 光子计数技术,是检测极微弱光的有力手段,这一技术是通过分辨单个光子在检测器(光电倍增管)中激发出来的光电子脉冲,把光信号从热噪声中以数字化的方式提取出来。这种系统具有良好的长时间稳定性和很高的探测灵敏度。目前,光子技术系统广泛应用于科技领域中的极微弱光学现象的研究和某些工业部分中的分析测量工作,如在天文测光、大气测污、分子生物学、超高分辨率光谱学、非线性光学等现代科学技术领域中,都涉及极微弱光信息的检测问题。 现代光子计数技术的优点是: 1.有很高的信噪比。基本上消除了光电倍增管的高压直流漏电流和各倍增极的热电子发射形成的暗电流所造成的影响。可以区分强度有微小差别的信号,测量精度很高。 2.抗漂移性很好。在光子计数测量系统中,光电倍增管增益的变化、零点漂移和其他不稳定因素对计数影响不大,所以时间稳定性好。 3.有比较宽的线性动态范围,最大计数率可达106s-1. 4.测量数据以数字显示,并以数字信号形式直接输入计算机进行分析处理。 一.实验的目 1.学习光子计数技术的原理,掌握光子计数系统中主要仪器的基本操作。 2.掌握用光子计数系统检测微弱光信号的方法。了解弱光检测中的一些特殊问题。 二.实验原理 (一)光子流量和光流强度 光是由光子组成的光子流,光子是一种没有静止质量,但有能量(动量)的粒子。一个频率为(或波长为)的光子,其能量为 (2-8-1)式中普朗克常量, 光速(m/s)。以波长=6.310m的氦—氖激光为例,一个光子的能量为: =(J) 一束单色光的功率等于光子流量乘以光子能量,即 (2-8-2) 光子的流量R(光子个数/S)为单位时间内通过某一截面的光子数,如果设法测出入射光子的流量R,就可以计算出相应的入射光功率P。 有了一个光子能量的概念,就对微弱光的量级有了明显的认识,例如,对于氦—氖激光器而言,1mW的光功率并不是弱光范畴,因为光功率P=1mW,则

实验报告五 定时器计数器实验

信息工程学院实验报告 课程名称:微机原理与接口技术Array 实验项目名称:定时器/计数器实验实验时间: 班级:姓名:学号: 一、实验目的 1. 掌握8254 的工作方式及应用编程。 2. 掌握8254 典型应用电路的接法。 二、实验设备 PC 机一台、TD-PITD+实验系统一套。 三、实验原理 8254 是Intel 公司生产的可编程间隔定时器。是8253 的改进型,比8253 具有更优良的性能。8254 具有以下基本功能: (1)有 3 个独立的16 位计数器。 (2)每个计数器可按二进制或十进制(BCD)计数。 (3)每个计数器可编程工作于 6 种不同工作方式。 (4)8254 每个计数器允许的最高计数频率为10MHz(8253 为2MHz)。 (5)8254 有读回命令(8253 没有),除了可以读出当前计数单元的内容外,还可以读出状态寄存器的内容。 (6)计数脉冲可以是有规律的时钟信号,也可以是随机信号。计数初值公式为: n=f CLKi ÷f OUTi、其中f CLKi 是输入时钟脉冲的频率,f OUTi 是输出波形的频率。 图5-1 是8254 的内部结构框图和引脚图,它是由与CPU 的接口、内部控制电路和三个计数器组成。8254 的工作方式如下述: (1)方式0:计数到0 结束输出正跃变信号方式。 (2)方式1:硬件可重触发单稳方式。 (3)方式2:频率发生器方式。 (4)方式3:方波发生器。 (5)方式4:软件触发选通方式。 (6)方式5:硬件触发选通方式。

图5-1 8254 的内部接口和引脚 8254 的控制字有两个:一个用来设置计数器的工作方式,称为方式控制字;另一个用来设置读回命令,称为读回控制字。这两个控制字共用一个地址,由标识位来区分。控制字格式如表5-1~5-3 所示。 表5-1 8254 的方式控制字格式 表5-2 8254 读出控制字格式 表5-3 8254 状态字格式 8254 实验单元电路图如下图所示:

定时器实验报告

电子信息工程学系实验报告 课程名称:单片机原理及接口应用Array实验项目名称:51定时器实验实验时间: 班级:姓名:学号: 一、实验目的: 熟悉keil仿真软件、protues仿真软件的使用和单片机定时程序的编写。了解51单片机中定时、计数的概念,熟悉51单片机内部定时/计数器的结构与工作原理。掌握中断方式处理定时/计数的工作过程,掌握定时/计数器在C51中的设置与程序的书写格式以及使用方法。 二、实验环境: 软件:KEIL C51单片机仿真调试软件,proteus系列仿真调试软件 三、实验原理: 1、51单片机定时计数器的基本情况 8051型有两个十六位定时/计数器T0、T1,有四种工作方式。MCS-51系列单片机的定时/计数器有几个相关的特殊功能寄存器: 方式控制寄存器TMOD; 加法计数寄存器TH0、TH1 (高八位);TL0、TL1 (低八位); 定时/计数到标志TF0、TF1(中断控制寄存器TCON) 定时/计数器启停控制位TR0、TR1(TCON) 定时/计数器中断允许位ET0、ET1(中断允许寄存IE) 定时/计数器中断优先级控制位PT0、PT1(中断优IP) 2、51单片机的相关寄存器设置 方式控制寄存器TMOD: TMOD的低四位为T0的方式字,高四位为T1的方式字。TMOD不能位寻址,必须整体赋值。TMOD各位的含义如下: 1. 工作方式选择位M1、M0 3、51单片机定时器的工作过程(逻辑)方式一 方式1:当M1M0=01时,定时器工作于方式1。

T1工作于方式1时,由TH1作为高8位,TL1作为低8位,构成一个十六位的计数器。若T1工作于定时方式1,计数初值为a,晶振频率为12MHz,则T1从计数初值计数到溢出的定时时间为t =(216-a)μS。 4、51单片机的编程 使用MCS-51单片机的定时/计数器的步骤是: .设定TMOD,确定: 工作状态(用作定时器/计数器); 工作方式; 控制方式。 如:T1用于定时器、方式1,T0用于计数器、方式2,均用软件控制。则TMOD的值应为:0001 0110,即0x16。 .设置合适的计数初值,以产生期望的定时间隔。由于定时/计数器在方式0、方式1和方式2时的最大计数间隔取决于使用的晶振频率fosc,如下表所示,当需要的定时间隔较大时,要采用适当的方法,即将定时间隔分段处理。 计数初值的计算方法如下,设晶振频率为fosc,则定时/计数器计数频率为fosc/12,定时/计数器的计数总次数T_all在方式0、方式1和方式2时分别为213 = 8192、216 = 65536和28 = 256,定时间隔为T,计数初值为a,则有 T = 12×(T_all – a)/fosc a = T_all – T×fosc/12 a = – T×fosc/12 (注意单位) THx = a / 256;TLx = a % 256; .确定定时/计数器工作于查询方式还是中断方式,若工作于中断方式,则在初始化时开放定时/计数器的中断及总中断: ET0 = 1;EA = 1; 还需要编写中断服务函数: void T0_srv(void)interrupt 1 using 1 { TL0 = a % 256; TH0 = a / 256; 中断服务程序段} .启动定时器:TR0(TR1)= 1。 四、实验内容过程及结果分析: 利用protues仿真软件设计一个可以显示秒表时间的显示电路。利用实验板上的一位led数码管做显示,利用中断法编写定时程序,控制单片机定时器进行定时,所定时间为1s。刚开始led数码管显示9,每过一秒数码管显示值减一,当显示到0时返回9,依此反复。然后设计00-59的两位秒表显示程序。 (1)实现个位秒表,9-0

实验7-集成计数器-(实验报告要求)

集成计数器 --实验报告要求 一、实验目的(0.5分) 1.熟悉中规模集成电路计数器的功能及应用。 2.掌握利用中规模集成电路计数器构成任意进制计数器的方法。 3. 掌握计数器的典型应用。 计数器对输入的时钟脉冲进行计数,来一个CP脉冲计数器状态变化一次。根据计数器计数循环长度M,称之为模M计数器(M进制计数器)。通常,计数器状态编码按二进制数的递增或递减规律来编码,对应地称之为加法计数器或减法计数器。 一个计数型触发器就是一位二进制计数器。N个计数型触发器可以构成同步或异步N 位二进制加法或减法计数器。当然,计数器状态编码並非必须按二进制数的规律编码,可以给M进制计数器任意地编排M个二进制码。 在数字集成产品中,通用的计数器是二进制和十进制计数器。按计数长度、有效时钟、控制信号、置位和复位信号的不同有不同的型号。 1.74LS161计数器 74LS161是集成TTL四位二进制加法计数器,其符号和管脚分布分别如下图1所示: 表 1为74LS161的功能表:表1 A B C D

从表1在为低电平时实现异步复位(清零需要时钟信号。在复位端高电平条件下,预置端LD 为低电平时实现同步预置功能,即需要有效时钟信号才能使输出状态 等于并行输入预置数A B C D 。在复位和预置端都为无效电平时,两计数使能端输入使能信号,74LS161实现模16加法计数功能;两计数使能端输入禁止信号, ,集成计数器实现状态保持功能, 。在时,进位输出端 OC=1。 2.组成任意进制的计数器 在数字集成电路中有许多型号的计数器产品,可以用这些数字集成电路来实现所需要的计数功能和时序逻辑功能。在设计时序逻辑电路时有两种方法,一种为反馈清零法,另一种为反馈置数法。 (1)反馈清零法 反馈清零法是利用反馈电路产生一个给集成计数器的复位信号,使计数器各输出端为零(清零)。反馈电路一般是组合逻辑电路,计数器输出部分或全部作为其输入,在计数器一定的输出状态下即时产生复位信号,使计数电路同步或异步地复位。反馈清零法的逻辑框图见图 2。 图2 反馈清零法框图 (2)反馈置数法 反馈置数法将反馈逻辑电路产生的信号送到计数电路的置位端,在滿足条件时,计数电路输出状态为给定的二进制码。反馈置数法的逻辑框图如图 3所示。 图 3 反馈清零法框图 在时序电路设计中,以上两种方法有时可以并用。 Q 0 n-10

单光子计数

单光子计数 摘要:本文简单介绍了单光子计数的原理、单光子计数器的主要性能及其操作方法,并用单光子计数器检测了微弱光信号。 关键词:单光子;单光子计数器;微弱光信号 1.引言 通常在一些基本的科研领域,特别是某些前沿学科,诸如高分辨率光谱学、非线性光学、拉曼光谱学、表面物理学的研究方面,都会遇到极微弱的光信息(简称弱光)检测问题。所谓弱光是指光电流强度比光电倍增管本身的热噪声(10^-14W)还要低,以致用一般的直流检测方法已很难从这种噪声中检测出信号。 单光子计数是目前测量微弱光信号最灵敏和有效的实验手段,这种技术中,一般都采用光电倍增管作为光子到电子的变换器(近年来,也有用微通道板和雪崩光电二极管的),通过分辨单个光子在光电倍增管中激发出来的光电子脉冲,利用脉冲高度甄别技术和数字计数技术,把光信号从热噪声中以数字化的方式提取出来。与模拟检测技术相比,单光子计数技术有如下的优点: 1.消除了光电倍增管高压直流漏电流和各倍增极的热发射噪声的影响,提高了测量的信噪比。 2.时间稳定性好。在单光子计数系统中,光电倍增管漂移、系统增益的变化,零点漂移和其他不稳定因素的计数影响不大。 3.可输出数字信号,能够直接输出给计算机进行分析处理。 4.有比较宽的线性动态范围,最大计数率可达10^6s^-1。 5.有很高的探测灵敏度,目前一般的光子计数器探测灵敏度优于10^-17W,这是其他探测方法达不到的。 2.实验目的 1.了解单光子计数工作原理。 2.了解单光子计数器的主要性能,掌握其基本操作方法。 3.了解用单光计数器系统结检测微弱光信号的方法。 3.实验原理 3.1光子流量和光流强度

光子计数器原理

光子计数器原理 现代光测量技术已步入极微弱发光分析时代。在诸如生物微弱发光分析、化学发光分析、发光免疫分析等领域中,辐射光强度极其微弱,要求对所辐射的光子数进行计数检测。对于一个具有一定光强的光源,若用光电倍增管接收它的光强,如果光源的输出功率及其微弱,相当于每秒钟光源在光电倍增管接收方向发射数百个光子的程度,那么,光电倍增管输出就呈现一系列分立的尖脉冲,脉冲的平均速率与光强成正比,在一定的时间内对光脉冲计数,便可检测到光子流的强度,这种测量光强的方法称为光子计数。 光子计数器是主要由光电倍增管、电源、放大系统、光源组成。 1.电倍增管的工作原理 光电倍增管是一个由光阴极、阳极和多个倍增极(亦称打拿极)构成的特殊电子管。它的前窗对工作在可见光区及近紫外区的用紫外玻璃:而在远紫外区则必须使用石英。 (1)光阴极:光阴极的作用是将光信号转变成电信号,当外来光子照射光阴极时,光阴极便可以产生光电子。产生电子的多少与照射光的波长及强度有关。当照射光的波长一定时,光阴极产生光电流的强度正比于照射光的强度,这是光电倍增管测定光强度的基础。各种不同的光电倍增管具有不同的光谱灵敏度。目前很少用单一元素制作光阴极,常用的有AgOCs、Cs3Sb、BiAgOCs、Na2KSb、K2CsSb等由多元素组成的光阴极材料。 (2)倍增极:倍增极也称打拿极,所用的材料与阴极相同。倍增极的作用实质上是放大电流,即在受到前一级发出的电子的打击后能放出更多的次级电子。普通光电倍增管中倍增极的数目,一般为11个,有的可达到20个。倍增极数目越大,倍增极间的电位降越大,PMT的放大作用越强。

(3)阳极:大部分由金属网做成,置于最后一级打拿级附近,其作用是接受最后一个倍增极发出的电子。但接受后,不象倍增极那样再射出电子,而是通导线以电流的形式输出。 光电倍增管的工作原理如图1所示,在光电倍增管的阴极和阳极间加一高电压,且阳极接地,阴极接在高压电源的负端。另外,在阳极和阴极之间串接一定数目的固定电阻,这样在每个倍增级上都产生一定的电位降(一般为50V到90V),使阴极最负(图中假定为·400V),每一倍增极-300V,顺次增高,至阳极时为 Jf0”V。当一束光线照射阴极时,假设产生一个光电子,这个光电子在电场的作用下,向第一倍增极射去。由于第一倍增极的电位比光阴极要正100V,所以电子在此期间会被加速。当其撞击第一倍增极时,会溅射出数目更多的二次电子(图中假定为2个)。依此类推,电子数目越来越多。目前,一般光电倍增管的电子数总增益G约为106,有的甚至高达108~101~,由于其放大作用很强,所以适用于微弱光信号的测量。这里 G=dN (1) 式中d是每一个入射光电子能打出的二次电子的平均数,叫做二次发射系数。此二次发射系数与倍增级材料及倍增极间的电位降有关,式中n为倍增极的数目。

同步计数器的设计实验报告文档

2020 同步计数器的设计实验报告文档 Contract Template

同步计数器的设计实验报告文档 前言语料:温馨提醒,报告一般是指适用于下级向上级机关汇报工作,反映情况,答复上级机关的询问。按性质的不同,报告可划分为:综合报告和专题报告;按行文的直接目的不同,可将报告划分为:呈报性报告和呈转性报告。体会指的是接触一件事、一篇文章、或者其他什么东西之后,对你接触的事物产生的一些内心的想法和自己的理解 本文内容如下:【下载该文档后使用Word打开】 同步计数器的设计实验报告 篇一:实验六同步计数器的设计实验报告 实验六同步计数器的设计 学号: 姓名: 一、实验目的和要求 1.熟悉JK触发器的逻辑功能。 2.掌握用JK触发器设计同步计数器。 二、实验仪器及器件 三、实验预习 1、复习时序逻辑电路设计方法。 ⑴逻辑抽象,得出电路的状态转换图或状态转换表 ①分析给定的逻辑问题,确定输入变量、输出变量以及电路的状态数。通常都是取原因(或条件)作为输入逻辑变量,取结

果作输出逻辑变量。 ②定义输入、输出逻辑状态和每个电路状态的含意,并将电路状态顺序编号。 ③按照题意列出电路的状态转换表或画出电路的状态转换图。通过以上步骤将给定的逻辑问题抽象成时序逻辑函数。 ⑵状态化简 ①等价状态:在相同的输入下有相同的输出,并且转换到同一次态的两个状态。 ②合并等价状态,使电路的状态数最少。 ⑶状态分配 ①确定触发器的数目n。因为n个触发器共有2n种状态组合,所以为获得时序电路所需的M个状态,必须取2n1<M2n ②给每个电路状态规定对应的触发器状态组合。 ⑷选定触发器类型,求出电路的状态方程、驱动方程和输出方程 ①根据器件的供应情况与系统中触发器种类尽量少的原则谨慎选择使用的触发器类型。 ②根据状态转换图(或状态转换表)和选定的状态编码、触发器的类型,即可写出电路的状态方程、驱动方程和输出方程。 ⑸根据得到的方程式画出逻辑图 ⑹检查设计的电路能否自启动 ①电路开始工作时通过预置数将电路设置成有效状态的一种。 ②通过修改逻辑设计加以解决。

单光子计数

单光子计数 【摘要】本实验主要学习了以PMT 为探测器的光子计数技术的基本实验方法,测量出了以中心波长为500nm 的发光二极管作为光源时,系统最佳甄别电平为300mV ;在此甄别电平下研究了信噪比R SN 与测量时间t 和入射光光功率P 0的关系,得出了测量时间越大、入射光功率越小,信噪比越大的结论;最后研究了工作温度T 对暗计数率的影响,发现温度降低暗计数率减小至一定值后保持稳定的较小值,得出可以通过降温增大信噪比的结论。 【关键词】单光子计数,信噪比,甄别电平,暗计数率 一、引言 现代科学技术许多领域都会涉及微弱光信息的检测问题,微弱光信号是时间的上的比较分散的光子,因而由检测器(通常是光电倍增管,以下简称PMT )输出的将是自然离散化的电信号。针对这一特点发展起来的单光子计数技术,采用脉冲放大、脉冲甄别和数字计数技术,大大提高了弱光探测的灵敏度,一般可以优于10-17,这是其他弱信号探测方法所不能比拟的。 光子计数计数有如下优点:第一,有很高的信噪比,基本消除了PMT 的高压直流漏电流和各倍增极的热点子的发射形成的暗电流所造成的影响,可以区分强度有微小差别的信号,测量精度很高;第二:抗漂移性很好,在光子计数测量系统中,PMT 增益的变化/零点漂移和其他不稳定因素影响不大,所以时间稳定性好;第三:有比较宽的线性动态范围,最大计数率可单位多达107/s 。 本实验学习以PMT 为探测器的光子计数技术基本实验方法并通过实验了解光子计数方法和弱光检测中的一些特殊问题,确定了弱光测量需要的最佳甄别电平,研究了信噪比R SN 与积分时间t 和入射光功率P 0和的关系,以及工作温度T 对暗计数率的影响。 二、实验原理 (一)物理原理 1、光子流量与光流强度 光是由光子组成的光子流,单个光子的能量是E p 与光波频率ν的关系是 p hc E h νλ == (1) 其中,光子流量R 表示单位时间内通过的光子数,光流强度P 是单位时间内通过的光能量即光功率,且有 p P RE =(2) 当光流强度小于16 10 W -时通常称为弱光,此时可见光的光子流量可见到1ms 内不到一个光子,因此实 验中的要完成的将是对单个光子进行进检测,进而得出弱光的光流强度,这就是单光子计数。 2、PMT 输出的信号波形 PMT 是一种从紫外到近红外都有极高的灵敏度和超快时间响应的真空电子管类光探测器件,用于各种

3.4 单光子计数

实验3.4 单光子计数 一、引言 通常在一些基本的科研领域,特别是某些前沿学科,诸如高分辨率光谱学、非线性光学、拉曼光谱学、表面物理学的研究方面,都会遇到极微弱的光信息(简称弱光)检测问题。所谓弱光是指光流强度比光电倍增管本身的热噪声(10-14W)还要低,以致用一般的直流检验方法已经很难从这种噪声中检测出信号。 单光子计数是目前测量弱光信号最灵敏和最有效的实验手段,这种技术中,一般都采用光电倍增管作为光子到电子的变换器(近年来,也有用微通道管和雪崩光电二极管的),通过分辨单个光子在光电倍增管中散发出来的光电子脉冲,利用脉冲高度甄别技术和数字计数技术,把光信号从热噪声中以数字化的方式提取出来。与模拟检测技术相比,单光子计数技术有如下的优点: 1.消除了光电倍增管高压直流漏电流和各倍增极的热发射噪声的影响,提高了测量的信噪比。 2.时间稳定性好。在单光子计数系统中,光电倍增管漂移、系统增益的变化,零点漂移和其他因素对计数影响不大。 3.可输出数字信号,能够直接输出给计算机进行分析处理。 4.有比较宽的线性动态范围,最大计数率可达106s-1。 5.有很宽的探测灵敏度,目前一般的光子计数器探测灵敏度优于10-17W,这是其他探测方法达不到的。 二、实验目的 1. 了解单光子计数工作原理。 2. 了解单光子计数的主要性能,掌握其基本操作方法。 3. 了解用单光计数系统检测微弱光信号的方法。 三、实验原理 1. 光子流量和光流强度 光是由光子组成的光子流,单个光子的能量ε与光波频率ν的关系是 ε=hν=hc/λ

式中c是真空中的光速,h是普朗克常数,λ是波长。 光子流量可用单位时间内通过的光子数R表示,光流强度是单位时间内通过的光能量,常用光功率P表示。单色光的光功率P与光子流量R的关系是 P=Rε 如果光源发出的是波长为630nm的近单色光,可以计算出一个光子的能量ε为 ε=3.13×10-19J 当光功率为P=10-16W时,这种近单色光的光子流量R为 R=3.19×102s-1 当光流强度小于10-16W时通常称为弱光,此时可见光的光子流量可降到一毫秒内不到一个光子。因此实验中要完成的将是对单个光子进行检测,进而得出弱光的光流强度,这就是单光子计数。 2.测量弱光时光电倍增管的输出特性 光电倍增管在实验1.2中已作介绍,其结构原理如图1所示。当光子入射到光电倍增管的光阴极上时,光阴极吸收光子后将发射出一些光子,光阴极产生的光电子数与入射到阴极上的光子数之比成为量子效率。大多数材料的量子效率都在30%以下。在弱光下光电倍增管输出的光电子脉冲基本上不重叠,所以光子计数实际上是将光电子产生的脉冲逐个记录下来的一种探测技术。当然,从统计意义上说也是单光子的计数。 图1 盒栅式光电倍增管 如图1所示,光阴极上发射出的光电子,经聚焦和加速达到第一倍增极上,将在第一倍增极上“打出”几倍于入射电子数目的二次电子。这些二次电子被加速后打到第二倍增极上……接连经过十个倍增极的增殖作用后,电子数目最高可增加到108。最后由阳极收集所有的电子,在阳极回路中形成一个电脉冲信号,如图2所示,脉冲宽度t w与光电倍增管的

FPGA_触发器与计数器实验报告

电力学院 FPGA应用开发实验报告 实验名称:触发器与计数器 专业:电子科学与技术 姓名: 班级: 学号:

1.触发器功能的模拟实现 实验目的: 1.掌握触发器功能的测试方法。 2.掌握基本RS触发器的组成及工作原理。 3.掌握集成JK触发器和D触发器的逻辑功能及触发方式。 4.掌握几种主要触发器之间相互转换的方法。 5.通过实验,体会EPLD芯片的高集成度和多I/O口。 实验说明: 将基本RS触发器,同步RS触发器,集成J-K触发器,D触发器同时集一个FPGA芯片中模拟其功能,并研究其相互转化的方法。 实验的具体实现要连线测试,实验原理如图所示:

2.计数器 在VHDL中,可以用Q<=Q+1简单地实现一个计数器,也可以用LPM来实现。下面分别对这两种方法进行介绍。 方法一: 第1步:新建一个Quartus项目。 第2步:建立一个VHDL文件,实现一个8位计数器。计数器从“00000000”开始计到“11111111”,计数器的模是256。计数器模块还需要包含一个时钟clock、一个使能信号en、一个异步清0信号aclr和一个同步数据加载信号sload。模块符号如下图所示: 第3步:VHDL代码如下: 第4步:将VHDL文件另存为counter_8bit.vhd,并将其设定为项目的最顶层文件,再进行语法检查。

第5步:语法检查通过以后,用KEY[0]表示clock,SW[7..0]表示data,SW[8~10]分别表示en、sload和aclr;LEDR[7..0]表示q。 第6步:引脚分配完成后,编译并下载。 第7步:修改上述代码,把计数器的模更改为100,应如何操作。 模为100的计数器,VHDL代码如下: 方法二:使用LPM实现8位计数器。 LPM是指参数化功能模块,用LPM可以非常方便快捷地实现一个计数器。 第1步:选择Tools->MegaWizard Plug-In Manager命令,打开如下图所示的对话框。

单光子计数

单光子计数 物理学系刘录081120076 一、引言 通常在一些基本的科研领域,特别是某些前沿学科,诸如高分辨率光谱学、非线性光学、拉曼光谱学、表面物理学的研究方面,都会遇到极微弱的光信息(简称弱光)检测问题。所谓弱光是指光流强度比光电倍增管本身的热噪声(10-14W)还要低,以致用一般的直流检验方法已经很难从这种噪声中检测出信号。 单光子计数是目前测量弱光信号最灵敏和有效的实验手段,这种技术中,一般都采用光电倍增管作为光子到电子的变换器(近年来,也有微通道板和雪崩光电二极管),通过分辨率单个光子在光电倍增管中激发出来的光电子脉冲,利用脉冲高度甄别技术和数字计数技术,把光信号从热噪声中以数字话的方式提取出来。与模拟检测技术相比,单光子计数技术有如下的优点: 1.消除了光电倍增管高压直流漏电流和各倍增极的热发射噪声的影响,提高了测量的 信噪比。 2.时间稳定性好。在单光子计数系统中,光电倍增管漂移、系统增益的变化,零点漂 移和其他因素对计数影响不大。 3.可输出数字信号,能够直接输出给计算机进行分析处理。 4.有比较宽的探测灵敏度,目前一般的光子计数器探测灵敏度优于10-17W,这是其他 探测方法达不到的。 二、实验目的 1.了解单光子计数工作原理。 2.了解单光子计数器的主要功能,掌握其基本操作方法。 3.了解用单光子计数系统检验微弱光信号的方法。 三、实验原理 1.光子流量和光流强度 光是有光子组成的光子流,单个光子的能量ε与光波频率ν的关系是 ε=hν=hc/λ (1) 式中c是真空中的光速,h是普朗克常数,λ是波长。 光子流量可用单位时间内通过的光子数R表示,光流强度是单位时间内通过的光能量,常用光功率P表示。单色光的光功率P与光子流量R的关系是: P=Rε (2) 如果光源发出的是波长为630nm的近单色光,可以计算出一个光子的能量ε为 Ε=3.13×10-19J 当光功率为10-16W时,这种近单色光的光子流量为 R=3.19×102s-1 当光流强度小于10-16W时通常称为弱光,此时可见光的光子流量可降到一毫秒内不到一个,

可编程定时器计数器实验报告

实验名称 可编程定时器/计数器(8253) 学生姓名 学生学号 专业班级 指导老师 2015-1-7

实验六可编程定时器/计数器(8253) 一、实验目的 掌握8253芯片和微机接口原理和方法,掌握8253定时器/计数器的工作方式和编程原理。 二、实验内容 1.设计8253定时器/技术器仿真电路图; 2.根据仿真电路图,编写代码,对8253定时器/计数器进行仿真。 三、实验要求 1.要求计数器2工作于模式1(暂稳态触发器),计数初值为1250; 2.计数器0工作于方式3(方波模式),输出一个1KHz的方波, 8253的输 入时钟为1MHz,计数初始值格式为BCD。 3.8253与系统的连接如所示。 图 1计数器8253与8086连接原理图 注:实验过程中,发现有误。应将8253定时器/计数器右边部分的电阻R2与按钮交换位置。 四、实验原理 8253具有3个独立的计数通道,采用减1计数方式。在门控信号有效时,每输入1个计数脉冲,通道作1次计数操作。当计数脉冲是已知周期的时钟信号时,

计数就成为定时。 8253的工作方式3被称作方波发生器。任一通道工作在方式3,只在计数值n为偶数,则可输出重复周期为n、占空比为1:1的方波。 进入工作方式3,OUTi输出低电平,装入计数值后,OUTi立即跳变为高电平。如果当GATE为高电平,则立即开始减“1”计数,OUTi保持为高电平,若n为偶数,则当计数值减到n/2时,OUTi跳变为低电平,一直保持到计数值为“0”,系统才自动重新置入计数值n,实现循环计数。这时OUTi端输出的周期为n×CLKi 周期,占空比为1:1的方波序列;若n为奇数,则OUTi端输出周期为n×CLKi 周期,占空比为((n+1)/2)/((n-1)/2)的近似方波序列。 8253定时器/计数器控制字决定这定时器0,1,2的工作模式。一旦CPU对控制字进行写操作,且对相应的定时器有效,则相应定时器改变工作模式,可能准备接收计时初值。控制字的格式如所示。 图 2 8253控制字格式 8253有4个端口,且通过A[1…0]引脚控制着4个端口。访问端口如所示。 表 1 8253端口地址列表 五、实验步骤及结果 1.确定8253的方式字,以及计数初始值; 根据和实验要求,计算得出 计数器0对应的控制字为27H,计数器0的初值为1000H;

单光子计数实验

实验十七单光子计数实验 光子计数也就是光电子计数,即当光流强度小于10?16W时,光的光子流量可降到一毫秒内不到一个光子,因此该实验系统要完成的是对单个光子进行检测,进而得出弱光的光流强度,这就是单光子计数.它是微弱光信号探测中的一种新技术。它可以探测弱到光能量以单光子到达时的能量。目前已被广泛应用于喇曼散射探测、医学、生物学、物理学等许多领域里微弱光现象的研究。 通常的直流检测方法不能把淹没在噪声中的信号提取出来。微弱光检测的方法有:锁频放大技术、锁相放大技术和单光子计数方法。最早发展的锁频,原理是使放大器中心频率f0与待测信号频率相同,从而对噪声进行抑制。但这种方法存在中心频率不稳、带宽不能太窄、对待测信号缺乏跟踪能力等缺点。后来发展了锁相,它利用待测信号和参考信号的互相关检测原理实现对信号的窄带化处理,能有效的抑制噪声,实现对信号的检测和跟踪。但是,当噪声与信号有同样频谱时就无能为力,另外它还受模拟积分电路漂移的影响,因此在弱光测量中受到一定的限制。单光子计数方法,是利用弱光照射下光电倍增管输出电流信号自然离散化的特征,采用了脉冲高度甄别技术和数字计数技术。与模拟检测技术相比有以下优点: 1、测量结果受光电倍增管的漂移、系统增益的变化及其它不稳定因素影响较小。 2、基本上消除了光电倍增管高压直流漏电流和各倍增级的热发射噪声的影响,提高了测量结果的信噪比。可望达到由光发射的统计涨落性质所限制的信噪比值。 3、有比较宽的线性动态范围。 4、光子计数输出是数字信号,适合与计算机接口作数字数据处理。 所以采用光子计数技术,可以把淹没在背景噪声中的微弱光信息提取出来。目前一般光子计数器的探测灵敏度优于10-17W,这是其它探测方法所不能比拟的。 一、实验目的 1、介绍这种微弱光的检测技术;了解SGD-2实验系统的构成原理。 2、了解光子计数的基本原理、基本实验技术和弱光检测中的一些主要问题。 3、了解微弱光的概率分布规律。 二、实验原理 1、光子 光是由光子组成的光子流,光子是静止质量为零、有一定能量的粒子。与一定的频率υ相对应,一个光子的能量E p可由下式决定: E p=hυ=hc/λ (2-1) 式中c=3×108m/s,是真空中的光速;h=6.6×10-34J·s,是普朗克常数。例如,实验中所用的光源波长为λ=500 nm的近单色光,则E p=3.96×10-19J。光流强度常用光功率P 表示,单位为W。单色光的光功率与光子流量R(单位时间内通过某一截面的光子数目)的关系为: P=R·E p (2-2) R=10个光子所以,只要能测得光子的流量R,就能得到光流强度。如果每秒接收到4 P=R E?=104×3.96×10-19=3.96×10-15W。 数,对应的光功率为 p 2、测量弱光时光电倍增管输出信号的特征

单光子计数数据处理

五.数据处理 (1)阈值方式(测量实验阈值) 无冷却时: (1)没有电流输入测量阈值:31,光子数38099 (2)有电流输入测量阈值:63,光子数135465 有冷却时: (3)没有电流输入测量阈值:31,光子数14695 (4)有电流输入测量阈值:63,光子数130945 得出结论:无论是否冷却,阈值的大小都受电流输入的影响,有电流输入比没电流输入时的阈值要大;而光子数则受冷却和电流的影响,有冷却时的光子数比没冷却的要少,有电流输入时的光子数要比没电流输入的光子数要多很多。 (2)不同光功率测得的光子数 设施采样间隔100ms,积分时间1000ms。

光子数与光功率的关系曲线如下所示: 由上图可知,在其他条件相同的情况下,单位时间内检测到的光子数随着光功率的增大而逐渐增加,二者基本成正比关系。 (3)不同积分时间测得的光子数 设置采样间隔500ms,积分时间500ms。得如下所示的图。

由表格对比可知:在其他条件相同的情况下,积分时间会影响所测量光子的数目。积分时间越长,所测得的光子数越多,二者呈线性关系。理论上可推导,当光子的出射流量基本不变时,积分时间越长,累积的光子数就越多,所测得的光子也就越多。而且积分时间越长,所测得数据的的波动小,稳定性也就更加好。 (4)不同采样间隔的光子数 设置采样间隔为500ms,积分时间为200ns。 近,采样间隔对光子数的影响不大。但采样间隔越大,所测得的数据波动性较小,出射光子较稳定。所以在测量时,应采用较大的采样间隔。 七.实验结论 通过实验,讨论了在不同温度,不同光功率,不同积分时间以及不同采样间隔情况下对实验所测得的光子数的影响。由数据处理总结如下: 1、在其他条件相同的情况下,给阴极冷却降温可以有效抑制出射光电子的数量。

最新3、单光子计数实验讲义汇总

3、单光子计数实验讲 义

单光子计数实验讲义(以课本为主) 一 实验目的 1. 掌握使用光子技术的方法对微弱信号进行检测及实验的操作过程; 2. 了解光子计数方法的基本原理光电倍增管(PMT )的工作原理。 二 实验仪器 光源,PMT ,制冷器,外光路,计算机。 三 实验原理 在弱光信号检测中,当光强微弱到一定程度时,光的量子特征开始突出起来。例如:He-Ne 激光光源,其每个光子的能量为3.19 10-19焦耳。当光功率小于10-11瓦时,相当光子的发射率为108光子数/秒,即光子的发射周期约为10-8秒,刚好是PMT 输出脉冲可分辨的极限宽度(即PMT 响应时间)。这样,PMT 的输出呈现出脉冲序列的特点,可测得一个个不重叠的光子 能量脉冲。光 子计数器就是 利用光信号脉 冲和噪声脉冲 之间的差异,如幅度上的差异,通过一定的鉴别手段进行工作,从而达到提高信噪比的目的。单光子试验框图入图1所示。 (一)基本原理 单光子计数法利用在弱光下光电倍增管 输出信号自然离散化的特点,采用精密的脉 冲幅度甄别技术和数字计数技术,可把淹没 在背景噪声中的弱光信号提取出来。当弱光 图1 单光子实验框

照射到光电子阴极时,每个入射光子以一定的概率(即量子效率)使光阴极发射一个电子。这个光电子经倍增系统的倍增最后在阳极回路中形成一个电流脉冲,通过负载电阻形成一个电压脉冲,这个脉冲称为单光子脉冲。如图1所示,横坐标表示PMT输出的噪声与单光子的幅度电平(能量),纵坐标表示其幅度电平的分布概律。可见,光电子脉冲与噪声分布位置不同。由于信号脉冲增益相近,其幅度相当好的集中在一个特定的范围内,光阴机反射的电子形成的脉冲幅度较大,而噪声脉冲则比较分散,它在阳极上形成的脉冲幅度较低,因而出现了“单光电子峰”。用脉冲幅度鉴别器把幅度低于的脉冲抑制掉,只让幅度高于的脉冲通过就实现了单光子计数。 放大器的功能是把光电子脉冲和噪声脉冲线性放大,应友谊顶的增益,上升时间≤3ns,这就要求放大大器的通频带宽达到100MHz,并且有较宽的线性动态范围和较低的热噪声,经过放大后的信号要便于脉冲幅度鉴别器的鉴别。 脉冲幅度甄别器的主要任务就是剔除噪声脉冲,把淹没在噪声信号中的光子信号筛选出来,以达到真正的光子计数的目的。在脉冲幅度甄别器里设置有一个连续可调的比较电压Vh。只有高于Vh的脉冲,才能通过甄别器得到输出。如果把甄别电平选在图2的谷点对应的脉冲高度上,就能去掉大部分噪声脉冲而只有光电子脉冲通过,从而提高信噪比。以上为一般模式(积分模式)下甄别器工作原理,图3—a为放大后信号脉冲,图3—b为甄别后输出脉冲。 图3—a 图3—b

相关文档