文档库 最新最全的文档下载
当前位置:文档库 › 数值计算课后习题答案(全)

数值计算课后习题答案(全)

数值计算课后习题答案(全)
数值计算课后习题答案(全)

习 题 一 解 答

1.取3.14,3.15,

227

355113

作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。

分析:求绝对误差的方法是按定义直接计算。求相对误差的一般方法是先求出绝对误差再按定义式计算。注意,不应先求相对误差再求绝对误差。有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。有了定理2后,可以根据定理2更规范地解答。根据定理2,首先要将数值转化为科学记数形式,然后解答。

解:(1)绝对误差:

e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。 相对误差:

3

()0.0016()0.5110

3.14

r e x e x x

-=

=≈?

有效数字:

因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。 而π-3.14=3.14159265…-3.14=0.00159…

所以│π-3.14│=0.00159…≤0.005=0.5×10-2=213

1

11010

22--?=

?

所以,3.14作为π的近似值有3个有效数字。 (2)绝对误差:

e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。 相对误差:

2

()0.0085()0.2710

3.15

r e x e x x

--=

=

≈-?

有效数字:

因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。 而π-3.15=3.14159265…-3.15=-0.008407…

所以│π-3.15│=0.008407……≤0.05=0.5×10-1

=112

111010

2

2

--?=

?

所以,3.15作为π的近似值有2个有效数字。 (3)绝对误差:

22() 3.14159265 3.1428571430.0012644930.00137

e x π=-

=-=-≈-

相对误差:

3

()0.0013()0.4110

227

r e x e x x

--=

=

≈-?

有效数字:

因为π=3.14159265...=0.314159265 (10)

22 3.1428571430.3142857143107

==?,m=1。

而22 3.14159265 3.1428571430.0012644937

π-=-=-

所以

2

2

13

22 3.14159265 3.1428571430.0012644930.005

7

110.51010

10

2

2

π----

=-=≤=?=

?=

?

所以,

227

作为π的近似值有3个有效数字。

(4)绝对误差:

355() 3.14159265 3.141592920.00000027050.000000271113

e x π=-

=-=-≈- 相对误差:

7

()0.000000271

()0.86310

355113

r e x e x x

--=

=

≈-?

有效数字:

因为π=3.14159265...=0.314159265 (10)

355 3.141592920.31415929210113

==?,m=1。

而355 3.14159265 3.141592920.0000002705113

π-=-=-

所以

6

6

17

355 3.14159265 3.141592920.00000027050.0000005

113

110.51010

10

2

2

π----

=-=≤=?=

?=

?

所以,

355113

作为π的近似值有7个有效数字。

2、用四舍五入原则写出下列各数的具有五位有效数字的近似数。

346.7854,7.000009,0.0001324580,0.600300

分析:本题实际上指出,按要求截取的近似数符合有效数字定义,相关数位上的数字都是有效数字。解答方法简单,直接写出就可以,不需要也不应该做形式转化(化为科学计数法形式)

解:346.7854≈346.79,

7.000009≈7.0000,

0.0001324580≈0.00013246, 0.600300≈0.60030。 指出:

3、下列各数都是对准确数进行四舍五入后得到的近似数,试分别指出他们的绝对误差限和相对误差限和有效数字的位数。

12340.0315,0.3015,31.50,5000

x x x x ====。

分析:首先,本题的准确数未知,因此绝对误差限根据四舍五入规则确定。其次,应当先求绝对误差限,再求相对误差限,最后确定有效数字个数。有效数字由定义可以直接得出。

解:由四舍五入的概念,上述各数的绝对误差限分别是

1234()0.00005,()0.00005,()0.005,()0.5x x x x εεεε====

由绝对误差和相对误差的关系,相对误差限分别是

111

222

333

444

()0.00005()0.16%,0.0315()0.00005()0.02%,

0.3015()0.005()0.002%,31.5()0.5()0.01%.

5000

x x x x x x x x x x x x εδεδεδεδ==≈==≈==≈=

=≈

有效数字分别有3位、4位、4位、4位。

4.

0.1%。 解:设取n 个有效数字可使相对误差小于0.1%,则

11

110

0.1%

2n

a -?<,

而34≤≤,显然13a =,此时,

111

1110

10

0.1%

223

n

n

a --?=

?

即131

10106

n --?<,

也即461010n ?> 所以,n=4。

3.162≈。

5、在计算机数系F(10,4,-77,77)中,对31120.14281100.31415910x x =?=-?与,试求它们的机器浮点数()(1,2)i f l x i =及其相对误差。

解:

3

3

3

3

11111

1

1

1

2222()0.142810,(())()0.14281100.1428100.0000110,()0.314210,(())()0.31415910(0.314210)0.0004110

fl x e fl x x fl x fl x e fl x x fl x =?=-=?-?=?=-?=-=-?--?=?其相对误

差分别是

31

123

1

0.00001100.000041100.007%,0.013%0.142810

0.314210

e e ??=

≈=

≈-?-?。

6、在机器数系F(10,8,L,U)中,取三个数

4

2

2

0.2337125810,0.3367842910,0.3367781110x y z -=?=?=-?,试按(),()x y z x y z ++++两种算法计算

x y z ++的值,并将结果与精确结果比较。

解:

4

22

2

2

2

2

2

2

(())(0.2337125810

0.3367842910)0.3367781110

(0.00000023100.3367842910)0.33677811100.33678452100.33677811100.0000064110

fl x y z -++=?+?-?=?+?-?=?-?=?

4

2

2

42

2

2

2

(())0.2337125810(0.33678429100.3367781110)

0.2337125810

0.0000061810

0.00000023100.00000618100.0000064110

fl x y z --++=?+?-?=?+?=?+?=?

精确计算得:

4

22

22

2

2

2

20.2337125810

0.33678429100.3367781110

(0.00000023371258100.3367842910)0.33677811100.33678452371258100.33677811100.000064137125810

x y z -++=?+?-?=?+?-?=?-?=?

第一种算法按从小到大计算,但出现了两个数量级相差较大的数相加,容易出现大数吃小数.而第二种算法则出现了两个相近的数相减,容易导致有效数位的减少。计算结果证明,两者精度水平是相同的。

***

在机器数系F(10,8,L,U)中,取三个数

4

2

2

0.2337125810,0.3367842910,0.3367781110x y z --=?=

?=-

?,试按(),()x y z x y z ++++两种算法计

算x y z ++的值,并将结果与精确结果比较。

解:

4

22

2

2

2

22

2

2

2

(())(0.23371258100.3367842910)0.3367781110

(0.00233713100.3367842910)0.3367781110

0.3391214210

0.3367781110

0.00003391100.33677811100.336744210

fl x y z -----++=?+?-?=?+?-?=?-?=?-?=-?

4

2

2

42

2

42

2

22

(())0.2337125810(0.3367842910

0.3367781110)

0.2337125810(0.00003368100.3367781110)0.2337125810

0.3367474210

0.00000023100.33674742100.3367471910

fl x y z ----++=?+?-?=?+?-?=?-?=?-?=-?

第一种算法是按从小到大的顺序计算的,防止了大数吃小数,计算更精确。 精确计算得:

4

2

2

2

0.2337125810

0.3367842910

0.3367781110

0.0000233712580.003367842933.6778110.00339121415833.67781133.6744197858420.3367441978584210

x y z --++=?+?-?=+-=-=-=-?

显然,也是第一种算法求出的结果和精确结果更接近。

7、某计算机的机器数系为F(10,2,L,U),用浮点运算分别从左到右计算及从右到左计算

10.40.30.20.040.030.020.01+++++++

试比较所得结果。 解:从左到右计算得

10.40.30.20.040.030.020.01

0.1100.04100.03100.02100.00100.00100.00100.00100.19101.9

+++++++=?+?+?+?+?+?+?+?=?=

从右到左计算得

1

1

1

1

10.40.30.20.040.030.020.010.010.020.030.040.20.30.410.110

0.2100.3100.4100.20.30.41

0.10.20.30.410.11010.1100.1100.2102

----+++++++=+++++++=?+?+?+?++++=++++=?+=?+?=?=

从右到左计算避免了大数吃小数,比从左到右计算精确。

8、对于有效数1233.105,0.001,0.100x x x =-==,估计下列算式的相对误差限

21123212333

,,x y x x x y x x x y x =++==

分析:求和差的相对误差限采取先求出和差的绝对误差限再求相对误差限的方法。求积商的相对误差限采取先求每一个数的相对误差限再求和的方法。

解:因为1233.105,0.001,0.100x x x =-==都是有效数, 所以123()0.0005,()0.0005,()0.0005

x x x εε

ε=== 1230.00050.00050.0005()0.16%,()50%,()0.5%

3.105

0.001

0.100

x x x δδδ=

==

==

=

则123123()()()()0.00050.00050.00050.0015x x x x x x εεεε++=++=++=

4

123123123

()0.0015

0.0015() 4.9910

0.05%3.1050.0010.100

3.004

x x x x x x x x x εδ-++++=

=

=

≈?=++-++

123123()()()()0.16%50%0.5%50.66%x x x x x x δδδδ=++=++=

2233

(

)()()50%0.5%50.5%x x x x δδδ=+=+=

9、试改变下列表达式,使其计算结果比较精确(其中1x 表示x 充分接近0,1x 表示x 充分大)。

(1)1212ln ln ,x x x x -≈; (2)

11,111x x x

x

---+ ;

(3)1x ;

(4)1c o s ,01x

x x x -≠ 且;

(5)

1c o t ,01x x x x

-≠

且。

分析:根据算法设计的原则进行变形即可。当没有简单有效的方法时就采用泰勒展开的方法。 解:(1)1122

ln ln ln x x x x -=;

(2)

2

2

2

111(1)

11(1)(1)

1(12)

3(1)(1)

(1)(1)

x x x x x

x x x x x x x

x x x x -+---=

-+-++--+-=

=

-+-+;

(3)

=

==

112

()()

2

x x

=

+--

==

=

=

(4)

242

242

1

321

1

1(1(1))

1cos2!4!(2)!

(1)

2!4!(2)!

(1)

2!4!(2)!

n

n

n

n

n

n

x x x

x n

x x

x x x

n

x

x x x

n

+

-

+

--+-+-+

-

=

--+-+

=

=--+-+

(5)

2

321

2

321

n

2

11111

cot()

345(2)!

2

11

345(2)!

B

n

n

n

n

n

n

B

x x x x

x x x n

B

x x x

n

-

-

-=------

=++++

(是贝努利数)

10、用4位三角函数表,怎样算才能保证1cos2

- 有较高的精度?

解:根据2

1c o s22s in1

-=

,先查表求出sin1 再计算出要求的结果精度较高。

11

、利用27.982

≈求方程25610

x x

-+=的两个根,使它们至少具有4位有效数字。

解:

由方程的求根公式,本方程的根为

1,2

28

22

x===±

27.982

≈,则

1

282827.98255.982

x=+≈+=

如果直接根据求根公式计算第二个根,则因为两个相近的数相减会造成有效数字的减少,误差增大。因此

根据韦达定理121x x =,在求出155.982x ≈后这样计算2x :

1

21

1155.982

x x =

?=0.01786=0.178610

这样就保证了求出的根有四位有效数字。 12、试给出一种计算积分

1

1

(0,1,2,3,...)n

x

n I e

x

e dx n -==?,

近似值的稳定算法。

解:当n =0时,1

1

011

00

(1)1x I e

x e dx e e e

---==-=-?

(1

1

1x x e dx e e ==-?)。

对I n 运用分部积分法(b

b

b

a a

a

udv uv vdu =-??)得

1

1

1

11

1

1

1

1

()(0)n

x

n

x n x

n x

n I e

x

e dx e x e

n x

e dx e e n x

e dx -----==-=--???

1

1

1

10

11n x

n ne

x

e dx nI ---=-=-?

由此得到带初值的递推关系式

1

0111(1,2,3,...)

n n I e

I nI n --?=-??

=-=?? 由递推公式I n =1-nI n -1 解得11(1)

n n I I n

-=

-,这是逆向的递推公式,对I n 的值作估计,有

1

1

1

11

00

11

n x n

n I e

x e dx e e

x dx n --=≤=

+?

?

另有

1

1

1

1

1

11

n x n n I e

x e dx e

x dx e

n ---=≥=+?

?

(取e 的指数为最小值0,将e x 取作 e 0 =1作为常数即可简化公式)。 则 1

111

1

n e I n n -≤≤

++。

那么,我们可以取其上下限的平均值作为其近似值。即取

1

11

(1)21

n I e

n -=

++

可以看出,n 越大,这个近似值越精确地接近于准确值。

(n 越大,I n 的上限和下限就越接近,近似值区间的长度就越短,近似值和精确值就越接近) 此时,e n -1=I n -1*-I n -1=-

1n

(I n *-I n )=

1n

e n ,│e 0│=

1!

n │e n │,计算是稳定的。

实际上,如果我们要求I 9,可以先求出I 20,这样求出的I 9的误差是比I 20的误差小得多的,而I 20

的误差本身也并不大。实际上,这样求出的I 9比直接计算出来的精确得多。

习 题 二 解 答

1.用二分法求方程x 3-2x 2-4x-7=0在区间[3,4]内的根,精确到10-3,即误差不超过31

102-?。

分析:精确到10-3与误差不超过10-3不同。

解:因为f(3)=-10<0,f(4)=9>0,所以,方程在区间[3,4]上有根。 由

3

4311*10

2

2

2

2

2

n n

n n

n

n

b a b a x x -----≤

==

=

<

?

有2n-1>1000,又为210=1024>1000, 所以n =11,即只需要二分11次即可。

x *≈x 11=3.632。 指出:

(1)注意精确度的不同表述。精确到10-3和误差不超过10-3是不同的。 (2)在计算过程中按规定精度保留小数,最后两次计算结果相同。 如果计算过程中取4位小数,结果取3位,则如下表:

(3)用秦九韶算法计算f(x n )比较简单。 1*.求方程x 3-2x 2-4x-7=0的隔根区间。 解:令32247y x x x =---, 则2344322()()y x x x x '=--=+-

当23443220()()y x x x x '=--=+-=时,有122

23,x x =-=。

因为2

14902150327(),()y y -=-

<=-<,所以方程在区间223

(,)-上无根;

因为2149

0327

()y -=-

<,而函数在23

(,)-∞-

上单调增,函数值不可能变号,所以方程在该区间上无

根;

因为2150()y =-<,函数在(2,+∞)上单调增,所以方程在该区间上最多有一个根, 而(3)=-10<0,y(4)=9>0,所以方程在区间(3,4)有一个根。 所以,该方程有一个根,隔根区间是(3.4)。

2.证明1sin 0x x --=在[0,1]内有一个根,使用二分法求误差不大于41

102-?的根,需要迭代多少次?

分析:证明方程在指定区间内有一个根,就是证明相应的函数在指定区间有至少一个零点。

解:令()1sin f x x x =--,

因为(0)10sin 010,(1)11sin 1sin 10f f =--=>=--=-<, 则(0)(1)0f f <,

由零点定理,函数f(x)在[0,1]区间有一个根。 由

4

1011*10

2

2

2

2

2

n n

n n

n

n

b a b a x x -----≤

==

=

<

?

有2n-1>10000,又为210=1024,213=8192<10000,214=16384>10000 所以n =15,即需要二分15次。 3.试用迭代公式10220,1210

k k

k x x x x +=

=++,求方程3

2

210200x x x ++-=的根,要求精确到5

10

-。

分析:精确到510-即误差不超过51

102

-?

解:令32()21020f x x x x =++-

指出:

精确到510-可以从两个方面判定。第一,计算过程中取小数到510-位,最后两个计算结果相同,终止计算。第二,计算过程中取小数到610-,当5

1110

2

k k x x -+-<

?终止计算。

本题采用第一种方法。

4.将一元非线性方程20cos x x e -=写成收敛的迭代公式,并求其在005.x =附近的根,要求精确到

2

10

-。

解:20cos x x e -=改写为222110

cos cos cos x x

x

x x x e e

e

=?

=?

-=,则

21cos x

x x x e

=+

-,设 21cos ()x

x g x x e

=+

-

22224

111)

sin cos (sin cos )

()()

x

x

x

x

x

x xe xe

x x g x e e

e

π

+--+'=+

=-

=-

在005.x =处,因为

05

054

051096151..)

(.).g e

π+

'=-

=<

所以迭代法121cos ()k

k

k k x x g x x e

+=+-在005.x =的邻域内收敛。

列表迭代如下:

此时0692069000614.cos ..e -=。

5.为求方程3210x x --=在015.x =附近的一个根,设将方程改为下列等价形式,并建立相应的迭代公式:

12

213

2

2312

11

2

1111121111

31

1(),;

(),();(),.

()k k

k k

k k x x x

x

x x x x x x x x +++=+

=+

=+=+=

=

--迭代公式迭代公式迭代公式 试分析每种迭代公式的收敛性,并取一种公式求出具有4位有效数字的近似值。 解:(1)因为2

11x x

=+

,所以迭代函数为2

11()g x x

=+

,则

2

3

2

12()(

)()g x x

x

x

--'''===-,3322152151

15

3375

(.)...g -'=-?=

=

<满足局部收敛性条件,所以迭代

公式12

11k k

x x +=+

具有局部收敛性。

(2)因为12

31()x x =+,所以迭代函数为1

2

31()()g x x =+,则

121

2

2

33

2

2

3

1221213

3

31()()()

()x

g x x x x x x --

'=

+=

+=

+,

2

2

3

215

150********.(.).(.)g ?'=

=<+满足局部收敛性条件,所以迭代公式1

2311()k k

x x +=+具有收敛性。

(3)因为1

2

1

1()x x =

-,所以迭代函数为1

2

1

1()()g x x =

-,则

1312

2

111122

()()

()g x x x ---

'=-

-=-

-,

32

3

2

11

151********

205(.)(.)

..g -

'=-=

=>?不满足收敛性条件,所以迭代公式

11

2

1

1()k k x x +=

-不具有收敛性。

用迭代公式1211k k

x x

+=+列表计算如下:

所以,方程的近似根为1465*.x ≈。

6.设23()()x x C x ?=+-,应如何取C 才能使迭代公式1()k k x x ?+=具有局部收敛性?

解:设C 为常数,因为23()()x x C x ?=+-,所以12()x Cx ?'=+,要使迭代公式具有局部收敛性,需00121()x Cx ?'=+<,此时即有01121Cx -<+<,也即

010Cx -<<。即只要C 去满足如上条件的常数,就可以使得迭代公式具有局部收敛性。

7.用牛顿法求方程3310x x --=在初始值02x =邻近的一个正根,要求3110k k x x -+-<。

解: 因为3310x x --=

所以有3

()31f x x x =--,相应的迭代公式为

3

3

122

312133

33

k k k k k k k x x x x x x x +--+=-

=

--

取x 0=2为迭代的初始近似值。迭代的结果列表如下:

因为3

3210.000110

2

x x --=<

?,符合计算的精度要求,所以

*

3 1.8794x x ≈=。

8.用牛顿法解方程1

0c x

-=,导出计算数c 的倒数而不用除法的一种简单的迭代公式。用此公式

求0.324的倒数,设初始值03x =,要求计算有5位有效数字。

解:对于方程1

0c x -=,有1()f x c

x =

-,相应的迭代公式为

2

12

1

21k k k k k k

c x x x x cx x +-=-

=--

应用该迭代公式求0.324的倒数,列表计算如下

所以

1308640324

..≈。

9.设a

lim

k →∞

解:设a 为正实数,n 为自然数,由牛顿法,方程0()n f x x a =-=的解为

11111

()()(1)1[(1)]

k k k k n

n

n

k k k k n n k

k

n k n k

k n k

f x x x f x x a nx x a

x nx nx n x a

nx a n x n

x +----=-

'--+=-

=

-+==

-+

由此,则

11

1

2

1

11

1

2

21

11

1

1

1

1

1

1

1

1

1

1

1

1

[()]

lim lim

[()])

[()]

lim

([()])

[()]

lim

([()

k n

k

k k

k n

k

k n

k

k

k n

k

k n

k

k

k n

k

a

n x

x n x

a

n x

n x

a

n x

n x

a

n x

n x

a

n n x

x

a

n x

x

+-

+

→∞→∞

-

+-

+

→∞

-

+-

+

→∞

-

-+

=

-+

??

-+

??

??

=

--+

??

--+

??

??

=

-

+2

11

1

2

1

2

1

1

1

1

1

])

[()lim]

lim

([()lim])

lim

[(

([(

k n

k

k

k

k n

k

k

k

a

n n x

x

a

n x

x

n n

n

+-

→∞

+

→∞

-

→∞

→∞

??

??

-+

??

??

??

=

-+

??

-+

??

??

=

-

=

=

10.用快速弦截求方程3310

x x

--=在初始值02

x=邻近的实根(取1 1.9

x=,要求精确到3

10-)。解:因为3310

x x

--=

所以有3

()31

f x x x

=--,相应的迭代公式为

11

1

()

()

()()

k

k k k k

k k

f x

x x x x

f x f x

+-

-

=--

-

取x0=2

因为3

4310.000010

2

x x --=<

?,符合计算的精度要求,所以

*

4 1.8794

x x ≈=。

指出:

本教程所说快速弦截法是通常所说的弦截法(割线法),而它所说弦截法是通常的单点弦截法。 11、分别用下列方法求方程4cos x x e =在04

x π

=邻近的根,要求有三位有效数字。

(1)用牛顿法,取04

x π

=;

(2)用弦截法,取01,4

2

x x π

π

=

=

(3)用快速弦截法,取01,4

2

x x π

π

=

=

解:方程4cos x x e =变形为4cos 0x e x -=, 则()4cos ,()4sin x x f x e x f x e x '=-=+。 牛顿法、弦截法、快速弦截法公式分别为 (1)牛顿法

1()4cos ()

4sin k k

x k k k k k x k k

f x e x x x x f x e

x +-=-

=-

'+;

(2)弦截法

1()(0.785)() 1.81

k k k k k f x x x x f x +=-

-+;

(3)快速弦截法

111()()()()

k k k k k k k f x x x x x f x f x +--=-

--。

计算方法引论课后答案.

第一章 误差 1. 试举例,说明什么是模型误差,什么是方法误差. 解: 例如,把地球近似看为一个标准球体,利用公式2 4A r π=计算其表面积,这个近似看为球体的过程产生 的误差即为模型误差. 在计算过程中,要用到π,我们利用无穷乘积公式计算π的值: 12 222...q q π=? ?? 其中 11 2,3,... n q q n +?=?? ==?? 我们取前9项的乘积作为π的近似值,得 3.141587725...π≈ 这个去掉π的无穷乘积公式中第9项后的部分产生的误差就是方法误差,也成为截断误差. 2. 按照四舍五入的原则,将下列各数舍成五位有效数字: 816.956 7 6.000 015 17.322 50 1.235 651 93.182 13 0.015 236 23 解: 816.96 6.000 0 17.323 1.235 7 93.182 0.015 236 3. 下列各数是按照四舍五入原则得到的近似数,它们各有几位有效数字? 81.897 0.008 13 6.320 05 0.180 0 解: 五位 三位 六位 四位 4. 若1/4用0.25表示,问有多少位有效数字? 解: 两位 5. 若 1.1062,0.947a b ==,是经过舍入后得到的近似值,问:,a b a b +?各有几位有效数字? 解: 已知4311 d 10,d 1022 a b --

数值计算课后答案

习 题 四 解 答 1、设010,1x x ==,写出()x f x e -=的一次插值多项式1()L x ,并估计插值误差。 设插值函数为1()L x ax b =+,由插值条件,建立线性方程组为 1 01 1a b a b e -?+=???+=? 解之得11 1a e b -?=-?=? 则11()(1)1L x e x -=-+ 因为(),()x x y x e y x e --'''=-= 所以,插值余项为 (1)(2) (2)011 ()()()()() (1)! 1()()2!1 ()()()2!1 (0)(1)((0,1))2n r x f x p x f x n f x f x x x x e x x ξξπξπξξ+-=-=+= =--=--∈ 所以 01 0101 ()max max (1) 2111248x r x e x x e ξξ-≤≤≤≤-≤-=??=。 2选用合适的三次插值多项式来近似计算f 和f 。 解:设三次插值多项式为230123()f x a a x a x a x =+++,由插值条件,建立方程组为 23012323 012323 01232301 23(0.1)(0.1)(0.1)0.9950.30.30.30.995 0.70.70.70.7651.1 1.1 1.10.454 a a a a a a a a a a a a a a a a ?+?-+?-+?-=?+?+?+?=??+?+?+?=??+?+?+?=?

即 012301230123 123012312301230.10.010.0010.9950.10.010.0010.9950.30.090.0270.9950.40.080.02800.70.490.3430.7650.80.480.344 1.761.1 1.21 1.3310.454a a a a a a a a a a a a a a a a a a a a a a a a a a -+-=-+-=??+++=++=??? +++=++=??+++=?12301231232330.40.720.9880.3110.10.010.0010.9950.40.080.02800.320.288 1.760.384 3.831a a a a a a a a a a a a a ??????++=-? -+-=??++=??? +=? ?-=-? 解之得 01 230.416.293.489.98 a a a a =??=-?? =-??=? 则所求的三次多项式为23()0.41 6.29 3.489.98f x x x x =--+。 所以 2323 (0.2)0.41 6.290.2 3.480.29.980.20.91 (0.8)0.41 6.290.8 3.480.89.980.8 1.74f f =-?-?+?=-=-?-?+?=- 3、设(0,1,2,,)i x i n =L 是 n+1个互异节点,证明: (1)0()(0,1,2,,)n k k i i i x l x x k n ===∑L ; (2)0 ()()0(0,1,2,,)n k i i i x x l x k n =-==∑L 。 证明: (1)由拉格朗日插值定理,以x 0,x 1,x 2,…x n 为插值节点,对y=f(x)=x k 作n 次插值,插值多项式为 0()()n n i i i p x l x y ==∑, 而y i =x i k , 所以0 ()()()n n k n i i i i i i p x l x y l x x ====∑∑ 同时,插值余项 (1)(1)11 ()()()()()()0(1)!(1)! n k n k n r x x p x f x x x n n ξξππ++=-= ==++ 所以0 ()n k k i i i l x x x ==∑ 结论得证。 (2)取函数()(),0,1,2,,k f x x t k n =-=L 对此函数取节点(0,1,2,,)i x i n =L ,则对应的插值多项式为

计算方法——第二章——课后习题答案刘师少

2.1 用二分法求方程013=--x x 在[1, 2]的近似根,要求误差不超过3102 1-?至少要二分多少? 解:给定误差限ε=0.5×10-3,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(2 11 a b k 即可,亦即 96678.912lg 10lg 35.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =10. 2.3 证明方程1 -x –sin x =0 在区间[0, 1]内有一个根,使用二分法求误差不超过 0.5×10-4的根要二分多少次? 证明 令f (x )=1-x -sin x , ∵ f (0)=1>0,f (1)=-sin1<0 ∴ f (x )=1-x -sin x =0在[0,1]有根.又 f '(x )=-1-c os x<0 (x ∈[0.1]),故f (x ) 在[0,1]单调减少,所以f (x ) 在区间 [0,1]内有唯一实根. 给定误差限ε=0.5×10-4,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211 a b k 即可,亦即 7287.1312 lg 10lg 45.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =14. 2.4 方程0123=--x x 在x =1.5附近有根,把方程写成四种不同的等价形式,并建立相应的迭代公式: (1)211x x +=,迭代公式2111k k x x +=+ (2)231x x +=,迭代公式3211k k x x +=+ (3)112-=x x ,迭代公式111-=+k k x x (4)13-=x x ,迭代公式131-=+k k x x 试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似根。 解:(1)令211)(x x f + =,则3 2)(x x f -=',由于 159.05.112)(33<≈≤='x x f ,因而迭代收敛。 (2)令321)(x x f +=,则322)1(3 2)(-+='x x x f ,由于

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2)0 ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。 插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q

(1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() () x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又 插值余项为1011 ()()()()()()2 R x f x L x f x x x x x ''=-= -- 011 ()()()()2 f x f x x x x x ''∴= --

数值分析课后答案

1、解:将)(x V n 按最后一行展开,即知)(x V n 是n 次多项式。 由于 n i i i n n n n n i n x x x x x x x x x x V ...1...1... ......... ...... 1 )(21110 20 0---= ,.1,...,1,0-=n i 故知0)(=i n x V ,即110,...,,-n x x x 是)(x V n 的根。又)(x V n 的最高 次幂 n x 的系数为 )(...1...1... ...... .........1),...,,(101 1 21 11 2 2221 02001101j n i j i n n n n n n n n n n n x x x x x x x x x x x x x x V -== ∏-≤<≤-----------。 故知).)...()()(,...,,()(1101101------=n n n n x x x x x x x x x V x V 6、解:(1)设 .)(k x x f =当n k ,...,1,0=时,有.0)()1(=+x f n 对 )(x f 构造Lagrange 插值多项式, ),()(0 x l x x L j n j k j n ∑== 其 0)()! 1() ()()()(1)1(=+=-=++x w n f x L x F x R n n n n ξ, ξ介于j x 之间,.,...,1,0n j = 故 ),()(x L x f n =即 .,...,1,0,)(0 n k x x l x k j n j k j ==∑= 特别地,当0=k 时, 10) (=∑=n j x j l 。 (2) 0)()1(1) ()1()()(0000=-=??? ? ??-??? ? ??-=--=-===∑∑∑∑k j j i j i k j k i i j i i k j n j k i i j k n j j x x x x i k x l x x i k x l x x )利用(。 7、证明:以b a ,为节点进行线性插值,得 )()()(1 b f a b a x a f b a b x x P --+--= 因 0)()(==b f a f ,故0)(1=x P 。而 ))()(("2 1 )()(1b x a x f x P x f --= -ξ,b a <<ξ。 故)("max )(8 122)("max )(max 2 2 x f a b a b x f x f b x a b x a b x a ≤≤≤≤≤≤-=??? ??-≤。 14、解:设 ))...()(()(21n n x x x x x x a x f ---=, k x x g =)(,记)() (1 ∏=-=n j j n x x x w ,则 ),()(x w a x f n n =).()(' j n n j x w a x f = 由差商的性质知 [])! 1()(1,..,,1) (' 1 )(')('1 211 11 -== ==-===∑∑∑ n g a x x x g a x w x a x w a x x f x n n n n n j j n k j n n j j n n k j n j j k j ξ, ξ介于n x x ,...,1之间。 当20-≤≤ n k 时,0)()1(=-ξn g , 当 1-=n k 时,)!1()(1-=-n g n ξ, 故 ???-=-≤≤=-= --=∑1,,20,0)!1()(1) ('1 11 n k a n k n g a x f x n n n n j j k j ξ 16、解:根据差商与微商的关系,有 [] 1! 7! 7!7)(2,...,2,2)7(7 10===ξf f , [ ] 0! 80 !8)(2,...,2,2)8(8 1 ===ξf f 。 ( 13)(47+++=x x x x f 是7次多项式, 故 ,!7)()7(=x f 0)()8(=x f )。 25、解:(1) 右边= [][]dx x S x f x S dx x S x f b a b a ??-+-)(")(")("2)(")("2 = [] d x x S x f x S x S x S x f x f b a ?-++-)("2)(")("2)(")(")("2)(" 222 = [] d x x S x f b a ?-)(")(" 22 = [][]dx x S dx x f b a b a 2 2 )(")("??- =左边。 (2)左边= ? -b a dx x S x f x S ))(")(")(("

计算方法的课后答案

《计算方法》习题答案 第一章 数值计算中的误差 1.什么是计算方法?(狭义解释) 答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。 2.一个实际问题利用计算机解决所采取的五个步骤是什么? 答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(5 3 -+-=x x x x P 在3-=x 处的值,并编程获得解。 解:400)(2 3 4 5 -+?+-?+=x x x x x x P ,从而 所以,多项式4)(5 3 -+-=x x x x P 在3-=x 处的值223)3(-=-P 。 5.叙述误差的种类及来源。 答:误差的种类及来源有如下四个方面: (1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。 (2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。 (3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。 (4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。这样引起的误差称为舍入误差。 6.掌握绝对误差(限)和相对误差(限)的定义公式。 答:设* x 是某个量的精确值,x 是其近似值,则称差x x e -=* 为近似值x 的绝对误差(简称误差)。若存在一个正数ε使ε≤-=x x e * ,称这个数ε为近似值x 的绝对误差限(简称误差限或精度)。 把绝对误差e 与精确值* x 之比* **x x x x e e r -==称为近似值x 的相对误差,称

数值计算方法答案

数值计算方法习题一(2) 习题二(6) 习题三(15) 习题四(29) 习题五(37) 习题六(62) 习题七(70) 2009.9,9

习题一 1.设x >0相对误差为2%4x 的相对误差。 解:由自变量的误差对函数值引起误差的公式: (())(())'()()()() f x x f x f x x f x f x δδ?= ≈得 (1)()f x = 11 ()()*2%1% 22x x δδδ≈ ===; (2)4 ()f x x =时 44 4 ()()'()4()4*2%8%x x x x x x δδδ≈ === 2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。 (1)12.1x =;(2)12.10x =;(3)12.100x =。 解:由教材9P 关于1212.m n x a a a bb b =±型数的有效数字的结论,易得上面三个数的有效 数字位数分别为:3,4,5 3.用十进制四位浮点数计算 (1)31.97+2.456+0.1352; (2)31.97+(2.456+0.1352) 哪个较精确? 解:(1)31.97+2.456+0.1352 ≈2 1 ((0.3197100.245610)0.1352)fl fl ?+?+ =2 (0.3443100.1352)fl ?+ =0.3457210? (2)31.97+(2.456+0.1352) 2 1 (0.319710(0.245610))fl fl ≈?+? = 21 (0.3197100.259110)fl ?+? =0.34562 10? 易见31.97+2.456+0.1352=0.3456122 10?,故(2)的计算结果较精确。 4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少?

数值计算课后答案

习 题 三 解 答 1、用高斯消元法解下列方程组。 (1)1231231 22314254 27x x x x x x x x -+=?? ++=??+=?①②③ 解:?4②+(-)①2,1 2 ?③+(-)①消去第二、三个方程的1x ,得: 1232323231425313222 x x x x x x x ? ?-+=? -=???-=?④⑤⑥ 再由5 2)4 ?⑥+(-⑤消去此方程组的第三个方程的2x ,得到三角方程组: 1232332314272184x x x x x x ? ?-+=? -=???-= ? 回代,得: 36x =-,21x =-,19x = 所以方程组的解为 (9,1,6)T x =-- 注意: ①算法要求,不能化简。化简则不是严格意义上的消元法,在算法设计上就多出了步骤。实际上,由于数值计算时用小数进行的,化简既是不必要的也是不能实现的。无论是顺序消元法还是选主元素消元法都是这样。 ②消元法要求采用一般形式,或者说是分量形式,不能用矩阵,以展示消元过程。 要通过练习熟悉消元的过程而不是矩阵变换的技术。 矩阵形式错一点就是全错,也不利于检查。 一般形式或分量形式: 1231231 22314254 27x x x x x x x x -+=?? ++=??+=?①②③ 矩阵形式 123213142541207x x x -?????? ??? ?= ??? ? ??? ???????

向量形式 123213142541207x x x -???????? ? ? ? ?++= ? ? ? ? ? ? ? ????????? ③必须是方程组到方程组的变形。三元方程组的消元过程要有三个方程组,不能变形出单一的方程。 ④消元顺序12x x →→L ,不能颠倒。按为支援在方程组中的排列顺序消元也是存储算法的要求。实际上,不按顺序消元是不规范的选主元素。 ⑤不能化简方程,否则系数矩阵会变化,也不利于算法设计。 (2)1231231231132323110 221x x x x x x x x x --=?? -++=??++=-? ①②③ 解:?23②+( )①11,1 11 ?③+(-)①消去第二、三个方程的1x ,得: 123232311323523569111111252414111111x x x x x x x ? --=?? ? -=? ? ? +=-??④⑤⑥ 再由25 11)5211 ?⑥+(-⑤消去此方程组的第三个方程的2x ,得到三角方程组: 123233113235235691111111932235252x x x x x x ? ?--=? ? -=?? ? =-?? 回代,得: 32122310641 ,,193193193 x x x =- ==, 所以方程组的解为 41106223(,,)193193193T x =- 2、将矩阵 1020011120110011A ?? ? ?= ?- ???

数值分析课后题答案

数值分析 2?当x=1,—1,2时,f(x)=O, 一3,4,求f(x)的二次插值多项式。解: X 0 =1,x j = — 1,x 2 = 2, f(X。)= 0, f (xj = -3, f (x2)= 4; l o(x)=(x-xi^~x2\=-1(x 1)(x-2) (x o -X/X o _x2) 2 (x -x0)(x -x2) 1 l i(x) 0 2(x-1)(x-2) (x i ~x0)(x i ~x2) 6 (x—x0)(x—x,) 1 l2(x) 0 1(x-1)(x 1) (X2 -X°)(X2 - X i) 3 则二次拉格朗日插值多项式为 2 L 2(X)= ' y k 1 k ( x) kz0 = -3l°(x) 4l2(x) 1 4 =(x_1)(x—2) 4 (x-1)(x 1) 2 3 5 2 3 7 x x - 6 2 3 6?设Xj, j =0,1,||(,n 为互异节点,求证: n (1 )7 x:l j(x) =x k(k =0,1川,n); j=0 n (2 )7 (X j -x)k l j(x)三0 (k =0,1川,n); j £ 证明 (1)令f(x)=x k

n 若插值节点为X j, j =0,1,|l(, n,则函数f (x)的n次插值多项式为L n(x)八x k l j(x)。 j=0 f (n 十)(?) 插值余项为R n(X)二f(X)-L n(X) n1(X) (n +1)!

.f(n1)( ^0 R n(X)=O n 二瓦x k l j(x) =x k(k =0,1川,n); j :o n ⑵、(X j -x)k l j(x) j卫 n n =為(' C?x j(—x)k_L)l j(x) j =0 i =0 n n i k i i =為C k( -x) (、X j l j(x)) i =0 j=0 又70 _i _n 由上题结论可知 n .原式二''C k(-x)k_L x' i=0 =(X -X)k =0 -得证。 7设f (x) c2 la,b 1且f (a) =f (b)二0,求证: max f(x)兰一(b-a) max a $至小一*丘f (x). 解:令x^a,x^b,以此为插值节点,则线性插值多项式为 L i(x^ f(x o) x x f (xj X o —人x -X o X —X o x-b x-a ==f(a) f(b)- a - b x -a 又T f (a) = f (b)二0 L i(x) = 0 1 插值余项为R(x)二f (x) - L,(x) f (x)(x - X Q)(X - xj 1 f(x) = 2 f (x)(x -X g)(X -xj

数值分析简明教程课后习题答案

比较详细的数值分析课后习题答案

0.1算法 1、 (p.11,题1)用二分法求方程013 =--x x 在[1,2]的近似根,要求误差不超过 10-3. 【解】 由二分法的误差估计式31 1*102 1 2||-++=≤=-≤ -εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10 ln 3≈-≥ k ,因此取9=k ,即至少需 2、(p.11,题2) 证明方程210)(-+=x e x f x 在区间[0,1]有唯一个实根;使用二 分法求这一实根,要求误差不超过2102 1 -?。 【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且 012010)0(0<-=-?+=e f ,082110)1(1>+=-?+=e e f ,即0)1()0(+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]有唯一实根.

由二分法的误差估计式21 1*1021 2 12||-++?=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322 ln 10 ln 2=?≈≥ k ,因此取7=k ,即至少需二分 0.2误差 1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71, 718.23=x 各有几位有效数字?并给出它们的相对误差限。 【解】有效数字: 因为111021 05.001828.0||-?= <=- x e ,所以7.21=x 有两位有效数字; 因为1 2102105.000828.0||-?=<=- x e ,所以71.22=x 亦有两位有效数字; 因为3 3102 10005.000028.0||-?=<=- x e ,所以718.23=x 有四位有效数字; %85.17.205 .0||111=<-= x x e r ε; %85.171 .205 .0||222=<-= x x e r ε;

计算方法习题答案

计算方法第3版习题答案 习题1解答 1.1 解:直接根据定义得 *411()102x δ-≤?*411()102r x δ-≤?*3*12211 ()10,()1026 r x x δδ--≤?≤?*2*5331()10,()102r x x δδ--≤?≤ 1.2 解:取4位有效数字 1.3解:433 5124124124 ()()() 101010() 1.810257.563 r a a a a a a a a a δδδδ----++++++≤≤=?++? 123()r a a a δ≤ 123132231123 ()()() a a a a a a a a a a a a δδδ++0.016= 1.4 解:由于'1(),()n n f x x f x nx -==,故***1*(())()()()n n n f x x x n x x x δ-=-≈- 故** * ***(()) (())()0.02()r r n f x x x f x n n x n x x δδδ-= ≈== 1.5 解: 设长、宽和高分别为 ***50,20,10l l h h εεωωεεεε=±=±=±=±=±=± 2()l lh h ωωA =++,*************()2[()()()()()()]l l l h h l h h εδωωδδδωδδωA =+++++ ***4[]320l h εωε=++= 令3201ε<,解得0.0031ε≤, 1.6 解:设边长为x 时,其面积为S ,则有2()S f x x ==,故 '()()()2()S f x x x x δδδ≈= 现100,()1x S δ=≤,从而得() 1 ()0.00522100 S x x δδ≈ ≤ =? 1.7 解:因S ld =,故 S d l ?=?,S l d ?=?,*****()()()()()S S S l d l d δδδ??≈+?? * 2 ()(3.12 4.32)0.010.0744S m δ=+?=, *** ** * () () 0.0744 ()0.55%13.4784 r S S S l d S δδδ= = = ≈ 1.8 解:(1)4.472 (2)4.47 1.9 解:(1) (B )避免相近数相减 (2)(C )避免小除数和相近数相减 (3)(A )避免相近数相减 (3)(C )避免小除数和相近数相减,且节省对数运算 1.10 解 (1)357sin ...3!5!7!x x x x x =-+-+ 故有357 sin ..3!5!7! x x x x x -=-+-, (2) 1 (1)(1)1lnxdx ln ln ln N+N =N N +-N N +N +-? 1 (1)1ln ln N +=N +N +-N 1.11 解:0.00548。 1.12解:21 16 27 3102 ()()() -? 1.13解:0.000021

计算方法练习题与答案

练习题与答案 练习题一 练习题二 练习题三 练习题四 练习题五 练习题六 练习题七 练习题八 练习题答案 练习题一 一、是非题 1.*x=–1 2.0326作为x的近似值一定具有6位有效数字,且其误差限 ≤ 4 10 2 1 - ? 。() 2.对两个不同数的近似数,误差越小,有效数位越多。( ) 3.一个近似数的有效数位愈多,其相对误差限愈小。( ) 4.用 2 1 2 x - 近似表示cos x产生舍入误差。( )

5. 3.14和 3.142作为π的近似值有效数字位数相同。 ( ) 二、填空题 1. 为了使计算 ()()2334912111y x x x =+ -+ ---的乘除法次数尽量少,应将该 表达式改写为 ; 2. * x =–0.003457是x 舍入得到的近似值,它有 位有效数字,误差限 为 ,相对误差限为 ; 3. 误差的来源是 ; 4. 截断误差为 ; 5. 设计算法应遵循的原则是 。 三、选择题 1.* x =–0.026900作为x 的近似值,它的有效数字位数为( ) 。 (A) 7; (B) 3; (C) 不能确定 (D) 5. 2.舍入误差是( )产生的误差。 (A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值 (C) 观察与测量 (D) 数学模型准确值与实际值 3.用 1+x 近似表示e x 所产生的误差是( )误差。 (A). 模型 (B). 观测 (C). 截断 (D). 舍入 4.用s *=21 g t 2表示自由落体运动距离与时间的关系式 (g 为重力加速度),s t 是在 时间t 内的实际距离,则s t - s *是( )误差。 (A). 舍入 (B). 观测 (C). 模型 (D). 截断 5.1.41300作为2的近似值,有( )位有效数字。 (A) 3; (B) 4; (C) 5; (D) 6。 四、计算题

第3章 MATLAB数值计算-习题 答案

roots([1 -1 -1]) x=linspace(0,2*pi,10); y=sin(x); xi=linspace(0,2*pi,100); y1=interp1(x,y,xi); y2=interp1(x,y,xi,'spline'); y3=interp1(x,y,xi,'cublic'); plot(x,y,'o',xi,y1,xi,y2,xi,y3) x=[0 300 600 1000 1500 2000]; y=[0.9689 0.9322 0.8969 0.8519 0.7989 0.7491]; xi=linspace(0,2000,20); yi=1.0332*exp(-(xi+500)/7756); y1=interp1(x,y,xi,'spline'); subplot(2,1,1);plot(x,y,'o',xi,yi,xi,y1,'*') p=polyfit(x,y,2); y2=polyval(p,xi); subplot(2,1,2);plot(x,y,'o',xi,yi,xi,y2,'*') x=[0 300 600 1000 1500 2000]; y=[0.9689 0.9322 0.8969 0.8519 0.7989 0.7491]; xi=linspace(0,2000,20); y1=interp1(x,y,xi,'spline'); subplot(2,1,1);plot(x,y,'-o', xi,y1,'-*') p=polyfit(x,y,2); y2=polyval(p,xi); subplot(2,1,2);plot(x,y,'-o',xi,y2,'-*')

数值计算方法习题答案(第二版)(绪论)

数值分析 (p11页) 4 试证:对任给初值x 0, 0)a >的牛顿迭代公式 112(),0,1 ,2,......k a k k x x x k +=+= 恒成立下列关系式: 2112(1)(,0,1,2,.... (2)1,2,...... k k k x k x x k x k +-=≥= 证明: (1 )(2 1122k k k k k k x a x x x x +-??=+= =? ?? (2) 取初值00>x ,显然有0>k x ,对任意0≥k , a a x a x x a x x k k k k k ≥+??? ? ??-=???? ??+=+2 12121 6 证明: 若k x 有n 位有效数字,则n k x -?≤ -1102 1 8, 而() k k k k k x x x x x 28882182 1-=-???? ? ?+=-+ n n k k x x 21221102 1 5.22104185 .28--+?=??<-∴>≥ 1k x +∴必有2n 位有效数字。 8 解: 此题的相对误差限通常有两种解法. ①根据本章中所给出的定理: (设x 的近似数* x 可表示为m n a a a x 10......021*?±=,如果* x 具有l 位有效数字,则其相对误差限为 ()11 * *1021 --?≤ -l a x x x ,其中1a 为*x 中第一个非零数)

则7.21=x ,有两位有效数字,相对误差限为 025.0102 21 111=??≤--x x e 71.22=x ,有两位有效数字,相对误差限为 025.0102 21 122=??≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为: 00025.0102 21 333=??≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x ∴其相对误差限为00678.07 .20183.011≈<-x e x 同理对于71.22=x ,有 003063 .071 .20083 .022≈<-x e x 对于718.23=x ,有 00012.0718 .20003 .033≈<-x e x 备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。 (2)采用第二种方法时,分子为绝对误差限,不是单纯的对真实值与近似值差值的四舍五入,绝对误差限大于或等于真实值与近似值的差。 11. 解: ......142857.3722≈,.......1415929.3113 255≈ 2102 1 722-?≤-∴ π,具有3位有效数字

数值计算方法试题集及答案

《数值计算方法》复习试题 一、填空题: 1、?? ??? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=????????????。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为 ( )] ,(),([2111+++++=n n n n n n y x f y x f h y y );

数值计算课后答案4

习 题 四 解 答 1、设010,1x x ==,写出()x f x e -=的一次插值多项式1()L x ,并估计插值误差。 设插值函数为1()L x ax b =+,由插值条件,建立线性方程组为 解之得11 1 a e b -?=-?=? 则11()(1)1L x e x -=-+ 因为(),()x x y x e y x e --'''=-= 所以,插值余项为 所以 01 0101 ()max max (1) 2111248x r x e x x e ξξ-≤≤≤≤-≤ -=?? =。 2选用合适的三次插值多项式来近似计算f(0.2)和f(0.8)。 解:设三次插值多项式为230123()f x a a x a x a x =+++,由插值条件,建立方程组为 即 解之得 则所求的三次多项式为23()0.41 6.29 3.489.98f x x x x =--+。 所以 3、设(0,1,2, ,)i x i n =是 n+1个互异节点,证明: (1)0()(0,1,2, ,)n k k i i i x l x x k n ===∑; (2)0 ()()0(0,1,2, ,)n k i i i x x l x k n =-==∑。 证明: (1)由拉格朗日插值定理,以x 0,x 1,x 2,…x n 为插值节点,对y=f(x)=x k 作n 次插值,插值多项式为 0()()n n i i i p x l x y ==∑, 而y i =x i k ,

所以0 ()()()n n k n i i i i i i p x l x y l x x ====∑∑ 同时,插值余项 所以0()n k k i i i l x x x ==∑ 结论得证。 (2)取函数()(),0,1,2,,k f x x t k n =-= 对此函数取节点(0,1,2,,)i x i n =,则对应的插值多项式为 0()()()n k n i i i p x x t l x ==-∑, 由余项公式,得 (1) (1)011 ()()()()()()()()0 (1)!(1)! n n k k n k i i i r x x t x t l x f x x t x n n ξ ξππ++==---= =-=++∑所以 令t=x , 4 ()f x = (1)试用线性插值计算f(2.3)的近似值,并估计误差; (2)试用二次Newton 插值多项式计算f(2.15)的近似值,并估计误差。 解:用线性插值计算f(2.3),取插值节点为2.2和2.4,则相应的线性插值多项式是 用x=2.3代入,得 (2) 根据定理2f(x)=f(x 0)+f[x 0,x 1](x-x 0)+f[x 0,x 1,x 2](x-x 0)(x-x 1)+… +f[x 0,x 1,…,x n ](x-x 0)(x-x 1)…(x-x n -1) +f[x 0,x 1,…,x n ,x]π(x) 。 以表中的上方一斜行中的数为系数,得 f(2.15)=1.41421+0.3501 ×(2.15-2.0)-0.047 ×(2.15-2.0) ×(2.15-2.1) =1.663725

数值计算课后答案1

习 题 一 解 答 1.取3.14,3.15, 227,355113 作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。 分析:求绝对误差的方法是按定义直接计算。求相对误差的一般方法是先求出绝对误差再按定义式计算。注意,不应先求相对误差再求绝对误差。有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。有了定理2后,可以根据定理2更规地解答。根据定理2,首先要将数值转化为科学记数形式,然后解答。 解:(1)绝对误差: e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。 相对误差: 3()0.0016 ()0.51103.14 r e x e x x -==≈? 有效数字: 因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。 而π-3.14=3.14159265…-3.14=0.00159… 所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311 101022 --?=? 所以,3.14作为π的近似值有3个有效数字。 (2)绝对误差: e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。 相对误差: 2()0.0085 ()0.27103.15 r e x e x x --==≈-? 有效数字: 因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。 而π-3.15=3.14159265…-3.15=-0.008407… 所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211 101022 --?=? 所以,3.15作为π的近似值有2个有效数字。 (3)绝对误差: 22 () 3.14159265 3.1428571430.0012644930.00137 e x π=-=-=-≈-L L 相对误差:

相关文档