文档库 最新最全的文档下载
当前位置:文档库 › 电磁感应2

电磁感应2

电磁感应2
电磁感应2

电磁感应

1.如图所示,在高度差h=0.50m、水平平行的虚线范围内,有磁感强度B=0.50T、方向垂直于竖直平面的匀强磁场,正方形线框abcd的质量m=0.10kg、边长L=0.50m、电阻R=0.50Ω,线框平面与竖直平面平行,静止在位置I时,cd边跟磁场下边缘有一段距离。现用一竖直向上恒力F=4.0N向上提线框,该线框从位置I由静止开始向上运动,穿过磁场区,最后到达位置Ⅱ(ab边恰好出磁场),线框平面在运动中保持在竖直平面内,且cd边保持水平。设cd边刚进入磁场时,线框恰好开始做匀速运动。

(1)求线框在位置I时cd边到磁场下边界的距离H?

(2)线框由位置I到位置Ⅱ的过程中,恒力F做的功是多少?线框内产生的热量是多少?

2.如图所示,质量为m、边长为L的正方形线框,从有界匀强磁场上方、离磁场边界h处由静止开始下落(下落过程中线圈下边始终保持水平,不计空气阻力)。线框每边电阻为R,匀强磁场的宽度

为H(H>L)、磁感应强度为B,重力加速度为g。试求:

(1)当线圈的ab边刚进入磁场时,它可能做什么运动,并分析各种运动下h的条件?

(2)若ab边刚进入磁场和刚穿出磁场时都作减速运动,且加速度大小相等。求线框经过磁场的过程中产生的焦耳热?

(3)若线圈刚好以匀速运动进入匀强磁场,此时线圈中的电流

为I0,且线圈的边长L=h、磁场的宽度H=2h。请在坐标系中定性画出线圈进入磁场到离开磁场的过程中,线圈中的电流i随下落高度x变化的图象。(不需要计算过程,按图象评分,设电流沿abcda如方向为正方向,x以磁场上边界为起点。)

3.如图所示,“凸”字形硬质金属线框质量为m,相邻各边互相垂直,且处于同一竖直平面内,ab边长为l,cd边长为2l,ab与cd平行,间距为2l。匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面。开始时,cd边到磁场上边界的距离为2l,线框由静止释放,从cd 边进入磁场直到ef、pq边进入磁场前,线框做匀速运动。在ef、pq边离开磁场后,ab边离开磁场之前,线框又做匀速运动。线框完全穿过磁场过程中产生的热量为Q。线框在下落过程中始终处于原竖直平面内,且ab、cd边保持水平,重力加速度为g。求

(1)线框ab边将离开磁场时做匀速运动的速度大小

是cd边刚进入磁场时的几倍;

(2)磁场上下边界间的距离H。

4.如图所示,在倾角为的光滑斜面上,存在着两个磁感应强度相等的匀强磁场,磁场方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L,一个质量为m,边长为L的正方形线框以速度V刚进入上边磁场时,即恰好做匀速直线运动,求:

(1)当边刚越过时,线框的加速度多大?方向如何?

(2)当到达与中间位置时,线框又恰好作匀速运动,求线框从开始进入到边到达与

中间位置时,产生的热量是多少?

5.电阻可忽略的光滑平行金属导轨长S=1.15m,两导轨间距

L=0.75 m,导轨倾角为30°,导轨上端ab接一阻值R=1.5Ω的电阻,磁感应强度B=0.8T的匀强磁场垂直轨道平面向上。阻

值r=0.5Ω,质量m=0.2kg的金属棒与轨道垂直且接触良好,从轨道上端ab处由静止开始下滑至底端,在此过程中金属棒产

生的焦耳热Q r=0.1J。(取g=10m/s2)求:

(1)金属棒在此过程中克服安培力的功W安;

(2)金属棒下滑速度v=2m/s时的加速度a;

(3)为求金属棒下滑的最大速度v m,有同学解答如下:由动能定理W重-W安=mv m2/2,……。由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答。

法拉第电磁感应定律教案新人教版选修Word版

高二物理选修3-2《法拉第电磁感应定律》教案 目的要求 复习法拉第电磁感应定律及其应用。 知识要点 1.法拉第电磁感应定律 (1)电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即t k E ??Φ=,在国际单位制中可以证明其中的k =1,所以有t E ??Φ=。对于n 匝线圈有t n E ??Φ=。(平均值) 将均匀电阻丝做成的边长为l 的正方形线圈abcd 从匀强磁场中向右匀速拉出过程,仅ab 边上有感应电动势E =Blv ,ab 边相当于电源,另3边相当于外电路。ab 边两端的电压为3Blv /4,另3边每边两端的电压均为Blv /4。 将均匀电阻丝做成的边长为l 的正方形线圈abcd 放在匀强磁场 中,当磁感应强度均匀减小时,回路中有感应电动势产生,大小为E =l 2(ΔB /Δt ),这种情况下,每条边两端的电压U =E /4-I r = 0均为零。 (2)感应电流的电场线是封闭曲线,静电场的电场线是不封闭的,这一点和静电场不同。 (3)在导线切割磁感线产生感应电动势的情况下,由法拉第电磁感应定律可推导出感应电动势大小的表达式是:E=BLv sin α(α是B 与v 之间的夹角)。(瞬时值) 2.转动产生的感应电动势 ⑴转动轴与磁感线平行。如图,磁感应强度为B 的匀强磁场方向垂直于纸面向外,长L 的金属棒oa 以o 为轴在该平面内以角速度ω逆时针匀速转动。求金属棒中的感应电动势。在应用感应电动势的公式时,必须注意其中的速度v 应该指导线上各点的平均速度,在本题中 应该是金属棒中点的速度,因此有22 12L B L BL E ωω=?=。 ⑵线圈的转动轴与磁感线垂直。如图,矩形线圈的长、宽分 别为L 1、L 2,所围面积为S ,向右的匀强磁场的磁感应强度为B ,线圈绕图示的轴以角速度ω匀速转动。线圈的ab 、cd 两边切割磁 感线,产生的感应电动势相加可得E=BS ω。如果线圈由n 匝导线 绕制而成,则E=nBS ω。从图示位置开始计时,则感应电动势的瞬时值为e=nBS ωcos ωt 。该结论与线圈的形状和转动轴的具体 位置无关(但是轴必须与B 垂直)。 实际上,这就是交流发电机发出的交流电的瞬时电动势公式。 3.电磁感应中的能量守恒 只要有感应电流产生,电磁感应现象中总伴随着能量的转化。电磁感应的题目往往与能量守恒的知识相结合。这种综合是很重要的。要牢固树立起能量守恒的思想。 例题分析 例1:如图所示,长L 1宽L 2的矩形线圈电阻为R ,处于磁感 L 1 v c B l a b d l v a b d ω o a v b c L 1 L 2 ω

磁场、电磁感应要点

一、 选择题:(每小题3分,共6) 磁场 1 一个带电粒子以速度v 垂直进入匀强磁场B 中,其运动轨迹是一半径为R 的圆。要使半径变为 2R ,磁感应强度B 应变为:( ) (A) 2B (B) B/2 (C) 2 B (D) 2 B/2 2. 磁场的高斯定理说明了稳恒磁场的某些性质。下列说法正确的是 ( ) (A) 磁场力是保守力; (B) 磁场是无源场; (C) 磁场是非保守力场; (D) 磁感应线不相交。 3 如图所示,1/4圆弧导线 ab,半径为r,电流为I ,均匀磁场为B, 方向垂直ab 向上,求圆弧ab 受的安培力的大小和方向( ) (A 垂直纸面向外 (B 垂直纸面向里 (C )2BIr π 垂直纸面向外 (D )2BIr π 垂直纸面向里 4. 如图所示,圆型回路L 内有电流1I 、2I ,回路外有电流3I ,均在真空中,P 为L 上的点,则( )

(A )012()L d I I μ?=-+?B l (B )0123()L d I I I μ?=++?B l (C )0123()L d I I I μ?=+-?B l (D )012()L d I I μ?=+?B l 5 匀强磁场B 中有一半径为r ,高为L 的圆柱面,B 方向与柱轴平行,则穿过圆柱面的磁通量为:( ) (A) B R 2π (B) 0 (C) B R 22π (D) B R 221π 6 载有电流I 的导线如图放置,在圆心O 处的磁感应强度B 为:( ) (A)μ0I/4R+μ0I/4πR (B)μ0I/2πR+ 3μ0I/8R (C) μ0I/4πR -3μ0I/8R (D) μ0I/4R+ μ0I/2πR

第五节 电磁感应现象的两类情况(最新教案)

第五节电磁感应现象的两类情况 教学目标: (一)知识与技能 1.知道感生电场。 2.知道感生电动势和动生电动势及其区别与联系。 (二)过程与方法 通过同学们之间的讨论、研究增强对两种电动势的认知深度,同时提高学习物理的兴趣。 (三)情感、态度与价值观 通过对相应物理学史的了解,培养热爱科学、尊重知识的良好品德。 教学重点:感生电动势与动生电动势的概念。 教学难点:对感生电动势与动生电动势实质的理解。 教学方法:讨论法,讲练结合法 教学用具:多媒体课件 教学过程: (一)引入新课 什么是电源?什么是电动势? 电源是通过非静电力做功把其他形式能转化为电能的装置。 如果电源移送电荷q时非静电力所做的功为W,那么W与q的比值W/q,叫做电源的电动势。用E表示电动势,则:E=w/q 在电磁感应现象中,要产生电流,必须有感应电动势。这种情况下,哪一种作用扮演了非静电力的角色呢?下面我们就来学习相关的知识。 (二)进行新课 1、感生电场与感生电动势 投影教材图4.5-1,穿过闭会回路的磁场增强,在 回路中产生感应电流。是什么力充当非静电力使得自 由电荷发生定向运动呢?英国物理学家麦克斯韦认 为,磁场变化时在空间激发出一种电场,这种电场对 自由电荷产生了力的作用,使自由电荷运动起来,形成了电流,或者说产生了电

动势。这种由于磁场的变化而激发的电场叫感生电场。感生电场对自由电荷的作 用力充当了非静电力。由感生电场产生的感应电动势,叫做感生电动势。 例题:教材P22,例题分析 2、洛伦兹力与动生电动势 (投影)教材P23的〈思考与讨论〉 1.导体中自由电荷(正电荷)具有水平方向的速度,由左手定则可判断受 到沿棒向上的洛伦兹力作用,其合运动是斜向上的。 2.自由电荷不会一直运动下去。因为C、D两端聚集电荷越来越多,在CD 棒间产生的电场越来越强,当电场力等于洛伦兹力时,自由电荷不再定向运动。 3.C端电势高。 4.导体棒中电流是由D指向C的。 一段导体切割磁感线运动时相当于一个电源,这时非静电 力与洛伦兹力有关。由于导体运动而产生的电动势叫动生电动 势。 如图所示,导体棒运动过程中产生感应电流,试分析电路 中的能量转化情况。 导体棒中的电流受到安培力作用,安培力的方向与运动方向相反,阻碍导体 棒的运动,导体棒要克服安培力做功,将机械能转化为电能。 (三)实例探究 磁场变强【例1】如图所示,一个闭合电路静止于磁场中,由于磁场强弱 的变化,而使电路中产生了感应电动势,下列说法中正确的是(AC) A.磁场变化时,会在在空间中激发一种电场 B.使电荷定向移动形成电流的力是磁场力 C.使电荷定向移动形成电流的力是电场力 D.以上说法都不对 【例2】如图所示,导体AB在做切割磁感线运动时, 将产生一个电动势,因而在电路中有电流通过,下列说法中 正确的是(AB) A.因导体运动而产生的感应电动势称为动生电动势

物理选修3---2第四章电磁感应知识点汇总.docx

v1.0可编辑可修改物理选修 3--2 第四章电磁感应知识点汇总 (训练版) 知识点一、电磁感应现象 1、电磁感应现象与感应电流. (1)利用磁场产生电流的现象,叫做电磁感应现象。 ( 2)由电磁感应现象产生的电流,叫做感应电流。 物理模型 上下移动导线AB,不产生感应电流 左右移动导线AB,产生感应电流 原因 : 闭合回路磁感线通过面积发生变化

不管是 N 级还是 S 级向下插入,都会产生感应电流, 抽出也会产生,唯独磁铁停止在线圈力不会产生 原因闭合电路磁场B发生变化。 开关闭合、开关断 开、开关闭合,迅速滑动 变阻器,只要线圈 A 中电 流发生变化,线圈 B 就有 感应电流。

知识点二、产生感应电流的条件 1 、产生感应电流的条件:闭合电路中磁通量发生变化。 ........... 2 、产生感应电流的常见情况. (1)线圈在磁场中转动。(法拉第电动机) (2)闭合电路一部分导线运动 ( 切割磁感线 ) 。 (3)磁场强度B变化或有效面积S变化。 ( 比如有电流产生的磁场,电流大小变化或者开关断 开) 3、对“磁通量变化”需注意的两点. (1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过 平面的磁感线的净条数)。 (2)“运动不一定切割,切割不一定生电”。导体切割磁感线,不是在导体中产生感应电流的充 要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。 知识点三、感应电流的方向 1 、楞次定律. (1)内容:感应电流具有这样的方向,即感 应电流的磁场总是要阻碍引起感应电流的磁通量的变 化。 ( 2)“阻碍”的含义. 从阻碍磁通量的变化理解为: 当磁通量增大 时,会阻碍磁通量增大,当磁通量减小时,会阻碍磁 通量减小。 从阻碍相对运动理解为: 阻碍相对运动是“阻碍”的又一种体现,表现在“近斥远吸,来拒去留”。

高二物理-选修3-2-电磁感应-期末重点复习资料

电磁感应专题复习 知识网络 第一部分电磁感应现象、楞次定律 知识点一——磁通量 ▲知识梳理 1.定义 磁感应强度B与垂直场方向的面积S的乘积叫做 穿过这个面积的磁通量,。如果面积S与B不垂直,如图所示,应以B乘以在垂直于磁场方向上的投影面积,即 。 2.磁通量的物理意义 磁通量指穿过某一面积的磁感线条数。 3.磁通量的单位:(韦伯)。 特别提醒: (1)磁通量是标量,当有不同方向的磁感线穿过某面时,常用正负加以区别;另外,磁通量与线圈匝数无关。

(2)磁通量的变化,它可由B、S或两者之间的夹角的变化引起。 ▲疑难导析 一、磁通量改变的方式有几种 1.线圈跟磁体间发生相对运动,这种改变方式是S不变而相当于B变化。 2.线圈不动,线圈所围面积也不变,但穿过线圈面积的磁感应强度是时间的函数。 3.线圈所围面积发生变化,线圈中的一部分导体做切割磁感线运动。其实质也是B不变,而S增大或减小。 4.线圈所围面积不变,磁感应强度也不变,但二者间的夹角发生变化,如在匀强磁场中转动矩形线圈。 二、对公式的理解 在磁通量的公式中,S为垂直于磁感应强度B方向上的有效面积,要正确理解三者之间的关系。 1.线圈的面积发生变化时磁通量是不一定发生变化的,如图(a),当线圈面积由变为时,磁通量并没有变化。 2.当磁场范围一定时,线圈面积发生变化,磁通量也可能不变,如图(b)所示,在空间有磁感线穿过线圈S,S外没有磁场,如增大S,则不变。

3.若所研究的面积内有不同方向的磁场时,应是将磁场合成后,用合磁场根据去求磁通量。 例:如图所示,矩形线圈的面积为S(),置于磁感应强度为B(T)、方向水平向右的匀强磁场中,开始时线圈平面与中性面重合。求线圈平面在下列情况的磁通量的改变量:绕垂直磁场的轴转过(1);(2);(3)。 (1); (2); (3)。负号可理解为磁通量在减少。 知识点二——电磁感应现象 ▲知识梳理 1.产生感应电流的条件 只要穿过闭合电路的磁通量发生变化,即,则闭合电路中就有感应电流产生。 2.引起磁通量变化的常见情况 (1)闭合电路的部分导体做切割磁感线运动。 (2)线圈绕垂直于磁场的轴转动。 (3)磁感应强度B变化。 ▲疑难导析

法拉第电磁感应定律教学设计及教学反思

《法拉第电磁感应定律》教学设计及教学反思 通榆蒙校林万生 一、教学目标 (一)知识和能力目标 1、知道感应电动势的概念,会区分Φ、ΔΦ、的物理意义。 2、理解法拉第电磁感应定律的内容和数学表达式,会推导公式知道适用范围并能应 用解答有关的简单问题。 3、通过学生对实验的观察、分析、思考,找出规律,培养学生的逻辑思维能力,观 察、分析、总结规律的能力。 (二)过程与方法目标 1.教师通过回顾上节内容引入感应电动势,通过演示实验,指导学生观察分析,总结规律。5 2.学生积极思考认真比较,理解感应电动势的存在,通过观察实验现象的分析讨论,总结影响感应电动势大小的因素。5 3.教师用类比法区分Φ、ΔΦ、的物理意义和它们与感应电动势的关系。2 4.讲解法拉第电磁感应定律的内容和推导数学表达式。 (三)情感、态度、价值观目标 1.通过使用类比让学生找到适合自己的记忆法,多方面提高自己的能力。 2.通过演示、推导让学生知道把抽象具体化,化难为简。 3.课后让学生体会科学家的探究精神。 二、教学重点 1. 区分Φ、ΔΦ、?Ф/?t的物理意义的理解; 2. 法拉第电磁感应定律的建立过程以及对公式E=?Ф/?t的理解。 三、教学难点 1. 区分Φ、ΔΦ、?Ф/?t的物理意义的理解; 2. 法拉第电磁感应定律的建立过程以及对公式E=?Ф/?t的理解。 四、教学准备 准备实验仪器:灵敏电流计、电流计、条形磁铁、蹄形磁铁、螺线管、铁芯、学生电源、 单匝线圈、滑动变阻器、开关、导线若干。 五、教学过程 (一)引入新课 教师和学生一起回顾第一节中的三个实验。在这三个实验中,闭合电路中都产生了感 应电流,则电路中必须要有电源,电源提供了电动势,从而产生电流。在电磁感应现象中产 生的电动势叫做感应电动势。那么感应电动势的大小跟哪些因素有关呢?本节课我们就来共 同研究这个问题。

物理选修3-2知识点总结

第四章:电磁感应 【知识要点】 一.磁通量 穿过某一面积的磁感线条数; Φ=BS ·sin θ;单位Wb ,1Wb=1T ·m 2;标量,但有正负。 二.电磁感应现象 当穿过闭合电路中的磁通量发生变化,闭合电路中有感应电流的现象。如果电路不闭合只会产生感应电动势。(这种利用磁场产生电流的现象叫电磁感应现象,是1831年法拉第发现的)。 三.产生感应电流的条件 1、闭合电路的磁通量发生变化。 2、闭合电路中的一部分导体在磁场中作切割磁感线运动。(其本质也是闭合回路中磁通量发生变化)。 四.感应电动势 ] 1、概念:在电磁感应现象中产生的电动势; 2、产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。 3、方向判断:感应电动势的方向用楞次定律或右手定则判断。 五.法拉第电磁感应定律 1、内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。 2、公式:E =n ΔΦ Δt ,其中n 为线圈匝数。 3、公式t n E ??=φ 中涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: (1).回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由??φ=BS , 此时S t B n E ??=, 此式中的??B t 叫磁感应强度的变化率, 若??B t 是恒定的, 即磁场变化是均匀的,产生的感应电动势是恒定电动势。 (2).磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。 (3).磁通量、磁通量的变化量、磁通量的变化率的区别

注意:○1该式t n E ?=中普遍适用于求平均感应电动势。 ○ 2E 只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关 六.导体切割磁感线时的感应电动势 1、导体垂直切割磁感线时,感应电动势可用E =Blv 求出,式中l 为导体切割磁感线的有效长度。 (1)有效性:公式中的l 为有效切割长度,即导体与v 垂直的方向上的投影长度。 < 甲图:l =cd sin β; 乙图:沿v 1方向运动时,l =MN ;沿v 2方向运动时,l =0。 丙图:沿v 1方向运动时,l =2R ;沿v 2方向运动时,l =0;沿v 3方向运动时,l =R (2)相对性:E =Blv 中的速度v 是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系。 2、导体不垂直切割磁感线时,即v 与B 有一夹角θ,感应电动势可用E =Blv sin θ 求出。 3、公式Blv E =一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势 例:如图所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转动,转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 解析: AC 各部分切割磁感线的速度不相等, v v l A C ==0,ω, 且AC 上各点的 —

周测--电磁感应2

电磁感应周末测试 一.选择题: 1.下列说法中正确的是 ( ) A .线圈的自感系数跟线圈内电流的变化率成正比 B .把线圈中铁芯抽出一些,自感系数减小 C .变压器的铁芯是利用薄硅钢片叠压而成,而不采用一块整硅钢,这是为了减小涡流,提高变压器的效率 D .磁电式仪表的线圈通常用铝框做骨架,把线圈绕在铝框上,这样做的目的是利用涡流起到电磁阻尼的作用 2.如图,闭合线圈上方有一竖直放置的条形磁铁,磁铁的N 极朝下。当磁铁向下运动时(但未插入线圈内部)( ) A.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互吸引 B.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互排斥 C.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互吸引 D.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互排斥 3.穿过一个电阻为2 ,总匝数为100匝的闭合线圈的磁通量每秒均匀减小0.4Wb ,则线圈中:( ) A .感应电动势为0.4V B .感应电动势为40V C .感应电流恒为0.2A D .感应电流恒为20A 4.如图所示是一种延时开关,当S 1闭合时,电磁铁F 将衔铁D 吸下,C 线路接通。当S 1断开时,由于电磁感应作用,D 将延迟一段时间才被释放。则( ) A .由于A 线圈的电磁感应作用,才产生延时释放D 的作用 B .由于B 线圈的电磁感应作用,才产生延时释放D 的作用 C .如果断开B 线圈的电键S 2,无延时作用 D .如果断开B 线圈的电键S 2,延时将变长 5.图为地磁场磁感线的示意图在北半球地磁场的坚直分量向下。飞机在我国上空匀速巡航。机翼保持水平,飞行高度不变。由于地磁场的作用,金属机翼上有电势差,设飞行员左方机翼未端处的电势为U 1,右方机翼未端处的电势力U 2,( ) A .若飞机从西往东飞,U 1比U 2高 B .若飞机从东往西飞,U 2比U 1高 C .若飞机从南往北飞,U 1比U 2高 D .若飞机从北往南飞,U 2比U 1高 6. 如图所示,两个互连的金属圆环,粗金属环的电阻是细金属环电阻的二分之一.磁场垂直穿过粗金属环所在区域.当磁感强度随时间均匀变化时,在粗环内产生的感应电动势为E ,则a 、b 两点间的电势差为( ) A . E 21 B .E 3 1 C .E 32 D ..E

电磁感应定律的应用教案

电磁感应定律应用 【学习目标】 1.了解感生电动势和动生电动势的概念及不同。 2.了解感生电动势和动生电动势产生的原因。 3.能用动生电动势和感生电动势的公式进行分析和计算。 【要点梳理】 知识点一、感生电动势和动生电动势 由于引起磁通量的变化的原因不同感应电动势产生的机理也不同,一般分为两种:一种是磁场不变,导体运动引起的磁通量的变化而产生的感应电动势,这种电动势称作动生电动势,另外一种是导体不动,由于磁场变化引起磁通量的变化而产生的电动势称作感生电动势。 1.感应电场 19世纪60年代,英国物理学家麦克斯韦在他的电磁场理论中指出,变化的磁场会在周围空间激发一种电场,我们把这种电场叫做感应电场。 静止的电荷激发的电场叫静电场,静电场的电场线是由正电荷发出,到负电荷终止,电场线不闭合,而感应电场是一种涡旋电场,电场线是封闭的,如图所示,如果空间存在闭合导体,导体中的自由电荷就会在电场力的作用下定向移动,而产生感应电流,或者说导体中产生感应电动势。 要点诠释:感应电场是产生感应电流或感应电动势的原因,感应电场的方向也可以由楞次定律来判断。感应电流的方向与感应电场的方向相同。 2.感生电动势 (1)产生:磁场变化时会在空间激发电场,闭合导体中的自由电子在电场力的作用下定向运动,产生感应电流,即产生了感应电动势。 (2)定义:由感生电场产生的感应电动势成为感生电动势。 (3)感生电场方向判断:右手螺旋定则。 3、感生电动势的产生 由感应电场使导体产生的电动势叫做感生电动势,感生电动势在电路中的作用就是充当电源,其电路是内电路,当它和外电路连接后就会对外电路供电。 变化的磁场在闭合导体所在的空间产生电场,导体内自由电荷在电场力作用下产生感应电流,或者说产生感应电动势。其中感应电场就相当于电源内部所谓的非静电力,对电荷产生作用。例如磁场变化时产生的感应电动势为cos B E nS t ?θ?= . 知识点二、洛伦兹力与动生电动势 导体切割磁感线时会产生感应电动势,该电动势产生的机理是什么呢?导体切割磁感线产生的感应电动势与哪些因素有关?他是如何将其他形式的能转化为电能的? 1、动生电动势

高考物理(知识点总结 例题精析)电磁感应专题2 电磁感应中的.

专题二:电磁感应中的力学问题 电磁感应中通过导体的感应电流,在磁场中将受到安培力的作用,从而影响其运动状态,故电磁感应问题往往跟力学问题联系在一起,这类问题需要综合运用电磁感应规律和力学的相关规律解决。 一、处理电磁感应中的力学问题的思路 ——先电后力。 1、先作“源”的分析 ——分离出电路中由电磁感应所产生的电源,求出电源参数E 和r ; 2、再进行“路”的分析 ——画出必要的电路图(等效电路图),分析电路结构,弄清串并联关系, 求出相关部分的电流大小,以便安培力的求解。 3、然后是“力”的分析 ——画出必要的受力分析图,分析力学所研究对象(常见的是金属杆、 导体线圈等)的受力情况,尤其注意其所受的安培力。 4、接着进行“运动”状态分析 ——根据力和运动的关系,判断出正确的运动模型。 5、最后运用物理规律列方程并求解 ——注意加速度a =0时,速度v 达到最大值的特点。导体受 力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定运动状态,抓住a =0,速度v 达最大值这一特点。 二、分析和运算过程中常用的几个公式: 1、关键是明确两大类对象(电学对象,力学对象)及其互相制约的关系. 电学对象:内电路 (电源 E = n ΔΦΔt 或E = nB ΔS Δt ,E =S t B n ???) E = Bl υ 、 E = 12Bl 2 ω . 全电路 E =I (R +r ) 力学对象:受力分析:是否要考虑BIL F =安 . 运动分析:研究对象做什么运动 . 2、可推出电量计算式 R n t R E t I q ?Φ=?= ?= . 【例1】磁悬浮列车是利用超导体的抗磁化作用使列车车体向上浮起,同时通过周期性地变换磁极 方向而获得推进动力的新型交通工具。如图所示为磁悬浮列车的原理图,在水平面上,两根平行直导轨间有竖直方向且等距离的匀强磁场B 1和B 2 ,导轨上有一个与磁场间距等宽的金属框abcd 。当匀强磁场B 1和B 2同时以某一速度沿直轨道向右运动时,金属框也会沿直轨道运动。设直轨道间距为L ,匀强磁场的磁感应强度为B 1=B 2=B ,磁场运动的速度为v ,金属框的电阻为R 。运动中所受阻力恒为f ,则金属框的最大速度可表示为( ) A 、2222()m B L v f R v B L -?= B 、2222 (2) 2m B L v f R v B L -?= C 、2222(4)4m B L v f R v B L -?= D 、2222 (2) 2m B L v f R v B L +?= 【解析】:由于ad 和bc 两条边同时切割磁感线,故金属框中产生的电动势为E =2BLv ′ ,其中v ′是金属框相对于磁场的速度(注意不是金属框相对于地面的速度,此相对速度的方向向 左),由闭合电路欧姆定律可知流过金属框的电流为R E I = 。整个金属框受到的安培力为 v c a b d B 2 B 1

电磁感应现象的两类情况(新、选)

电磁感应现象的两类情况 [随堂基础巩固] 1.某空间出现了如图4-5-9所示的一组闭合电场线,方向从上向下看 是顺时针的,这可能是() A.沿AB方向磁场在迅速减弱 B.沿AB方向磁场在迅速增强图4-5-9 C.沿BA方向磁场在迅速增强 D.沿BA方向磁场在迅速减弱 解析:感生电场的方向从上向下看是顺时针的,假设在平行感生电场的方向上有闭合回路,则回路中的感应电流方向从上向下看也应该是顺时针的,由右手螺旋定则可知,感应电流的磁场方向向下,根据楞次定律可知,原磁场有两种可能:原磁场方向向下且沿AB方向减弱,或原磁场方向向上,且沿BA方向增强,所以A、C有可能。 答案:AC 2.如图4-5-10所示,矩形闭合金属框abcd的平面与匀强磁场垂 直,若ab边受竖直向上的磁场力的作用,则可知线框的运动情况是() A.向左平动进入磁场图4-5-10 B.向右平动退出磁场 C.沿竖直方向向上平动 D.沿竖直方向向下平动 解析:由于ab边受竖直向上的磁场力的作用,根据左手定则可判断金属框中电流方向为abcd,根据楞次定律可判断穿过金属框的磁通量在增加,所以选项A正确。 答案:A 3.研究表明,地球磁场对鸽子识别方向起着重要作用。鸽子体内的电阻大约为103Ω,当它在地球磁场中展翅飞行时,会切割磁感线,在两翅之间产生动生电动势。这样,鸽子体内灵敏的感受器即可根据动生电动势的大小来判别其飞行方向。若某处地磁场磁感应强度的竖直分量约为0.5×10-4 T。鸽子以20 m/s的速度水平滑翔,则可估算出两翅之间产生的动生电动势大约为() A.30 mV B.3 mV C.0.3 mV D.0.03 mV 解析:鸽子展翅飞行时两翅端间距约为0.3 m。由 E=Bl v得E=0.3 mV。C项正确。

电磁感应定律及变压器的规律

第8题 电磁感应定律及变压器的规律 (限时:45分钟) 1. (多选)如图1,圆环形导体线圈a 平放在水平桌面上,在a 的正上方固定一竖直螺线管b ,二者轴线重合,螺线管与电源和滑动变阻器连接成如图所示的电路.若将滑动变阻器的滑片P 向下滑动,下列表述准确的是 ( ) 图1 A .线圈a 中将产生俯视顺时针方向的感应电流 C .线圈a 有缩小的趋势 答案 CD 解析 若将滑动变阻器的滑片P 向下滑动,螺线管b 中的电流增大,根据楞次定律,线圈a 中将产生俯视逆时针方向的感应电流,穿过线圈a 的磁通量变大,线圈a 有缩小的趋势,线圈a 对水平桌面的压力F N 将变大,选项C 、D 准确. 2. (多选)水平面上的光滑平行导轨MN 、PQ 上放着光滑导体棒ab 、cd ,两棒用绝缘拉直的细线系住.t =0时刻的匀强磁场的方向如图2甲所示,磁感应强度B 随时间t 的变化图线如图乙所示,不计ab 、cd 间电流的相互作用,则 ( ) 图2 A .在0~t 2时间内回路中的电流先顺时针后逆时针 B .在0~t 2时间内回路中的电流大小先减小后增大 C .在0~t 2时间内回路中的电流大小不变 D .在0~t 1时间内细线的张力逐渐减小 答案 CD 解析 0~t 2时间内,磁场先向里减小,再向外增大,由楞次定律可知,电流一直为顺时 针方向,A 错误;由E =ΔB Δt S =kS 可知,产生的感应电动势、感应电流大小不变,B 错误,C 准确;导体棒受到的安培力F =BIl,0~t 1时间内电流恒定而磁场减小,则安培力减小,细线的张力逐渐减小,D 准确. 3. (单选)如图3所示,B 是一个螺线管,C 是与螺线管相连接的金属线圈,在B 的正上方用绝缘丝线悬挂一个金属圆环A ,A 的环面水平且与螺线管的横截面平行.若仅在金属

物理选修3-2知识点总结

第四章:电磁感应 【知识要点】 一.磁通量 穿过某一面积的磁感线条数; Φ=BS ·sin θ;单位Wb ,1Wb=1T ·m 2;标量,但有正负。 二.电磁感应现象 当穿过闭合电路中的磁通量发生变化,闭合电路中有感应电流的现象。如果电路不闭合只会产生感应电动势。(这种利用磁场产生电流的现象叫电磁感应现象,是1831年法拉第发现的)。 三.产生感应电流的条件 1、闭合电路的磁通量发生变化。 2、闭合电路中的一部分导体在磁场中作切割磁感线运动。(其本质也是闭合回路中磁通量发生变化)。 四.感应电动势 1、概念:在电磁感应现象中产生的电动势; 2、产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。 3、方向判断:感应电动势的方向用楞次定律或右手定则判断。 五.法拉第电磁感应定律 1、内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。 2、公式:E =n ΔΦΔt ,其中n 为线圈匝数。 3、公式t n E ??=φ 中涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: (1).回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由??φ=BS , 此时S t B n E ??=, 此式中的 ??B t 叫磁感应强度的变化率, 若??B t 是恒定的, 即磁场变化是均匀的,产生的感应电动势是恒定电动势。 (2).磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的 轴匀速转动产生交变电动势就属这种情况。 (3).磁通量、磁通量的变化量、磁通量的变化率的区别

注意:○1该式t n E ?=中普遍适用于求平均感应电动势。 ○ 2E 只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关 六.导体切割磁感线时的感应电动势 1、导体垂直切割磁感线时,感应电动势可用E =Blv 求出,式中l 为导体切割磁感线的有效长度。 (1)有效性:公式中的l 为有效切割长度,即导体与v 垂直的方向上的投影长度。 甲图:l =cd sin β; 乙图:沿v 1方向运动时,l =MN ;沿v 2方向运动时,l =0。 丙图:沿v 1方向运动时,l =2R ;沿v 2方向运动时,l =0;沿v 3方向运动时,l =R (2)相对性:E =Blv 中的速度v 是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系。 2、导体不垂直切割磁感线时,即v 与B 有一夹角θ,感应电动势可用E =Blv sin θ 求出。 3、公式Blv E =一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势? 例:如图所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转动,转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 解析: AC 各部分切割磁感线的速度不相等, v v l A C ==0,ω, 且AC 上各点的

《电磁感应现象的两类情况》教案2

电磁感应现象的两类情况 【教学目标】 1、知识与技能: (1)、了解感生电动势和动生电动势的概念及不同。 (2)、了解感生电动势和动生电动势产生的原因。 (3)、能用动生电动势和感生电动势的公式进行分析和计算。 2、过程与方法 通过探究感生电动势和动生电动势产生的原因,培养学生对知识的理解和逻辑推理能力。 3、情感态度与价值观 从电磁感应现象中我们找到产生感生电动势和动生电动势的个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想。 【教学重点】感生电动势和动生电动势。 【教学难点】感生电动势和动生电动势产生的原因。 【教学方法】类比法、练习法 【教具准备】 多媒体课件 【教学过程】 一、复习提问: 1、法拉第电磁感应定律的内容是什么?数学表达式是什么? 答:感应电动势的大小与磁通量的变化率成正比,即E= ?Φ。 t? 2、导体在磁场中切割磁感线产生的电动势与什么因素有关,表达式是什么,它成立的条件又 是什么? 答:导体在磁场中切割磁感线产生的电动势的大小与导体棒的有效长度、磁场强弱、导体棒的运动速度有关,表达式是E=BLv sinθ,该表达式只能适用于匀强磁场中。 二、引入新课 在电磁感应现象中,由于引起磁通量的变化的原因不同感应电动势产生的机理也不同,本节课我们就一起来学习感应电动势产生的机理。 三、进行新课 (一)、感生电动势和动生电动势 由于引起磁通量的变化的原因不同感应电动势产生的机理也不同,一般分为两种:一种是磁场不变,导体运动引起的磁通量的变化而产生的感应电动势,这种电动势称作动生电动势,另外一种是导体不动,由于磁场变化引起磁通量的变化而产生的电动势称作感生电动势。

第十讲法拉第电磁感应定律应用一磁感应定律应用一95

第十一讲、法拉第电磁感应定律(一) 一、要点导学: 法拉第电磁感应定律: 二、例题精选: (一)、对感应电动势概念的理解 例:下列说法正确的是(D ) A .穿过线圈的磁通量为零时,感应电动势也一定为零 B .穿过线圈的磁通量不为零时,感应电动势也一定不为零 C .穿过线圈的磁通量均匀变化时,感应电动势也均匀变化 D .穿过线圈的磁通量变化越快,感应电动势越大 (二)、感应电动势方向(判断电势高低) 例:飞机在我国上空匀速巡航。机翼保持水平,飞行高度不变。由于地磁场的作用,金属 机翼上有电势差。设飞行员左方机翼末端处的电势为U 1,右方机翼末端处的电势为U 2,(A,C ) A .若飞机从西往东飞,U 1比U 2高 B .若飞机从东往西飞,U 2比U 1高 C .若飞机从南往北飞,U 1比U 2高 D .若飞机从北往南飞,U 2比U 1高 (三)、感应电动势大小计算 例:在如图所示的平面中, L 1、L 2是两根平行的直导线, ab 是垂直跨在L 1、L 2上并且可以 左右滑动的直导线, 它的长度是d , 电阻是r . 在线路中接入定值电阻R 和电容器C , 如图所示. 当ab 以速度v 向右匀速滑动时, 电容器上极板带什么电荷? 电量多少? ( 四)法拉第电磁感应定律与直流电综合 (1)、求回路电流、及由电流计算安培力和电热 例: 如图所示,PN 与QM 两平行金属导轨相距1m ,电阻不计,两端分别接有电阻R 1和 R 2,且R 1=6Ω,ab 导体的电阻为2Ω,与导轨良好接触并可在导轨上无摩擦地滑动,垂直穿过导轨平面的匀强磁场的磁感应强度为1T 。现ab 以恒定速度v =3m/s 匀速向右 a b R C L L 2 L 1

一电磁感应中的电路问题要点

电磁感应中的电路问题 ▲知识梳理 1.求解电磁感应中电路问题的关键是分析清楚内电路和外电路。 “切割”磁感线的导体和磁通量变化的线圈都相当于“电源”,该部分导体的电阻相当于内电阻,而其余部分的电路则是外电路。 2.几个概念 (1)电源电动势或。 (2)电源内电路电压降,r是发生电磁感应现象导体上的电阻。(r是内电路的电阻) (3)电源的路端电压U,(R是外电路的电阻)。 3.解决此类问题的基本步骤 (1)用法拉第电磁感应定律和楞次定律或右手定则确定感应电动势的大小和方向。(2)画等效电路:感应电流方向是电源内部电流的方向。 (3)运用闭合电路欧姆定律结合串、并联电路规律以及电功率计算公式等各关系式联立求解。 特别提醒:路端电压、电动势和某电阻两端的电压三者的区别: (1)某段导体作为外电路时,它两端的电压就是电流与其电阻的乘积。 (2)某段导体作为电源时,它两端的电压就是路端电压,等于电流与外电阻的乘积,或等于电动势减去内电压,当其内阻不计时路端电压等于电源电动势。 (3)某段导体作为电源时,电路断路时导体两端的电压等于电源电动势 1:图中EF、GH为平行的金属导轨,其电阻可不计,R为电阻器,C为电容器,AB为可在EF和GH上滑动的导体横杆。有均匀磁场垂直于导轨平面。若用和分别表示图中该处导线中的电流,则当横杆AB() A.匀速滑动时,=0,=0 B.匀速滑动时,≠0,≠0 C.加速滑动时,=0,=0 D.加速滑动时,≠0,≠0

2、两根光滑的长直金属导轨、平行置于同一水平面内,导轨间距为l,电阻不计,M、处接有如图所示的电路,电路中各电阻的阻值均为R,电容器的电容为C。 长度也为l、阻值同为R的金属棒ab垂直于导轨放置,导轨处于磁感应强度为B、方向竖直向下的匀强磁场中。ab在外力作用下向右匀速运动且与导轨保持良好接触,在ab运动距离为s的过程中,整个回路中产生的焦耳热为Q。求: (1)ab运动速度v的大小; (2)电容器所带的电荷量q。 3、如图所示,两条平行的光滑水平导轨上,用套环连着一质量为0.2kg、电阻为2Ω的导体杆ab,导轨间匀强磁场的方向垂直纸面向里。已知=3Ω,= 6Ω,电压表的量 程为0~10 V,电流表的量程为0~3 A(导轨的电阻不计)。求: (1)将R调到30Ω时,用垂直于杆ab的力F=40 N,使杆ab沿着导轨向右移动且达到最大速度时,两表中有一表的示数恰好满量程,另一表又能安全使用,则杆ab的速度多大?(2)将R调到3Ω时,欲使杆ab运动达到稳定状态时,两表中有一表的示数恰好满量程,另一表又能安全使用,则拉力应为多大? (3)在第(1)小题的条件下,当杆ab运动达到最大速度时突然撤去拉力,则电阻上还能产生多少热量?

电磁感应综合应用2

电磁感应综合应用2 1.如图示,两根光滑的平行金属导轨MN,PQ处于同一水平面上,相距L=0.5m,导轨的左端用R=3Ω的电阻相连,导轨电阻不计,导轨上跨接一电阻r=1Ω的金属杆如,质量m=0.2kg,整个装置放在竖直向下的匀强磁场中,磁感应强度B=2T,现对金属杆施加水平向右的拉力F=2N,使它由静止开始运动.求: (1)金属杆的速度达到最大时,a、b两端电压多大?此时拉力的瞬时功率多大? (2)若已知金属杆从静止开始运动至最大速度的过程中,R上总共产生了10.2J的热量,此过程持续的时间多长? (3)若金属杆达到最大速度后撤去拉力,其向前冲的距离会有多大? 2.如图示,在方向竖直向上的磁感应强度为B的匀强磁场中有两条光滑固定的平行金属导轨MN、PQ,导轨足够长,间距为L,其电阻不计,导轨平面与磁场垂直,ab、cd为两根垂直于导轨水平放置的金属棒,其接入回路中的电阻均为R,质量均为m,与金属导轨平行的水平细线一端固定,另一端与cd棒的中点连接,细线能承受的最大拉力为T,开始细线处于伸直状态,ab棒在平行导轨的水平拉力F的作用下由静止向右做加速直线运动,两根金属棒运动时始终与导轨接触且与导轨相垂直. (1)若ab是以恒定加速度a向右运动的,求经多长时间细线被拉断? (2)若在细线被拉断瞬间撤去拉力F,求两根金属棒之间距离增量△x的最大值是多少? (3)若ab棒的运动速度满足v=v o sinωt,当ab棒速度第一次达到V O时,拉力F做了多少功? 3.如图示,一对平行光滑轨道放置在水平面上,两轨道间距L=0.20m,电阻R=1.0Ω,

有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B=0.5T的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F沿平行于轨道的方向拉杆,使杆做匀加速直线运动,测得力F与时间t的关系如图所示.求导体杆的质量m和加速度a. 4.如图甲所示,M1M4、N1N4为平行放置的水平金属轨道,M4P、N4Q为相同半径、平行放置的竖直半圆形金属轨道,M4、N4为切点,P、Q为半圆轨道的最高点,轨道间距L=1.0m,圆轨道半径r=0.32m,整个装置左端接有阻值R=0.5Ω的定值电阻。M1M2N2N l、M3M4N4N3为等大的长方形区域Ⅰ、Ⅱ,两区域宽度d=0.5m,两区域之间的距离s=1.0m;区域I内分布着均匀变化的磁场B1,变化规律如图乙所示,规定竖直向上为B1的正方向;区域Ⅱ内分布着匀强磁场B2,方向竖直向上。两磁场间的轨道与导体棒CD问的动摩擦因数为μ=0.2,M3N3右侧的直轨道及半圆形轨道均光滑。质量m=0.1kg,电阻R0=0.5Ω的导体棒CD在垂直于棒的水平恒力F拉动下,从M2N2处由静止开始运动,到达M3N3处撤去恒力F,CD棒匀速地穿过匀强磁场区,恰好通过半圆形轨道的最高点PQ处。若轨道电阻、空气阻力不计,运动过程导体棒与轨道接触良好且始终与轨道垂直,取g=10m/s2。求:水平恒力F的大小以及CD棒在直轨道上运动过程中电阻R上产生的热量Q。

电磁感应现象的两类情况.

4.5 电磁感应现象的两类情况 课型:新授编号:5 日期:2018-12-28 学习目标: 1.了解感生电场,知道感生电动势产生的原因。会判断感生电动势的方向,并会计算它的大小。 2.了解动生电动势的产生以及与洛伦兹力的关系。会判断动生电动势的方向,并计算它的大小。 3. 了解电磁感应规律的一般应用,会联系科技实例进行分析。 活动方案: 活动一:电磁感应现象中的感生电场 如图:一个200匝、面积为20cm2在圆形线圈,放在匀强磁场中,磁场的方向与线圈平面垂直,磁感应强度在0.05s内由0.1T增加到0.5T。在此过程中: 问题1:磁场变强会使线圈中产生什么方向的感应电流? 问题2:电流是电荷的定向移动产生的,为什么自由电荷会发生移动的? 总结: 1.变化的磁场在空间产生一种电场------ 2. 使电荷受到作用力做定向 移动 3.感生电动势的非静电力 扩展: 感生电场方向的判断: 例题1:如图所示,一个闭合电路静止于 磁场中,由于磁场强弱的变化,而使电路中 产生了感应电动势,下列说法中正确的是 () A.磁场变化时,会在在空间中激发一种感生 电场 B.使电荷定向移动形成电流的力是磁场力 C.使电荷定向移动形成电流的力是电场力 D.以上说法都不对 活动二:电磁感应现象中的洛伦兹力。 如图所示:有导线CD长0.15m,在 磁感应强度为0.8T的匀强磁场中,以 3m/S的速度做切割磁感线运动,导线垂 直磁感线,运动方向跟磁感线及直导线 均垂直. 思考下列问题: 磁场变强

1、自由电荷会随着导体棒运动,并因此受到洛伦兹力。导体中自由电荷的合运动在空间大致沿什么方向?为了方便,可以认为导体中的自由电荷是正电荷。 2、导体棒一直运动下去,自由电荷是否也会沿着导体棒一直运动下去?为什么? 3、导体棒的哪端电势比较高? 4、如果用导线把C、D两端连到磁场外的一个用电器上,导体棒中电流是沿什么方向的? 总结: 导线两端存在感应电动势,在这种情况下,非静电力与有关。 例题2:如图所示,导体AB在做切割磁感线运动时,将产生一个电动势,因而在电路中有电流通过,下列说法中正确的是() A.因导体运动而产生的感应电 动势称为动生电动势 B.动生电动势的产生与洛仑兹力有关 C.动生电动势的产生与电场力有关 D.动生电动势和感生电动势产生的原因是一样的 同步练习: 1.如图所示,一个有孔带正电小球套在 光滑的圆环上(重力不计),在垂直于匀强磁 场的平面内做圆周运动,当磁感应强度均匀 增大时,此小球的动能将() A.不变 B.增加 C.减少 D.以上情况都可能 2.穿过一个电阻为l Ω的单匝闭合线圈的磁通量始终是每秒钟均匀地减少2 Wb,则() A.线圈中的感应电动势一定是每秒减少2 V B.线圈中的感应电动势一定是2 V C.线圈中的感应电流一定是每秒减少2 A D.线圈中的感应电流一定是2 A 3.如图所示,面积为0.2 m2的100匝线圈处在匀强磁场中,磁场方问垂直于线 圈平面,已知磁感应强度随时间变 化的规律为B=(2+0.2t)T, 定值电

相关文档
相关文档 最新文档