文档库 最新最全的文档下载
当前位置:文档库 › 伴生气轻烃回收工艺技术

伴生气轻烃回收工艺技术

伴生气轻烃回收工艺技术
伴生气轻烃回收工艺技术

伴生气轻烃回收工艺技术

蒋 洪 朱 聪(西南石油学院 四川省南充市 637001) 摘要 油气田存在丰富的伴生气资

源。为了提高油气综合利用水平,开展伴

生气轻烃回收工艺技术研究有十分重要的

现实意义。针对工艺流程设计、设备选型

和控制系统设计进行分析与探讨后指出,

在工艺设计中应正确选用制冷工艺,精心

组织工艺流程,合理利用外冷和内冷;设

备选型应体现技术先进和高效的原则;小

型浅冷装置的控制方案应着重简单实用,

大中型深冷装置则应选用先进的集散控制

系统。

主题词 伴生气 轻烃回收 工艺设 计 回收率 制冷 工艺 流程

在油气田开发中存在丰富的伴生气。为了合理利用这部分天然气资源,油田采用轻烃回收装置,取得了较好的经济效益。但国产化装置仍存在工艺方案不合理、产品收率低、能耗高等问题。针对伴生气轻烃回收工艺,本文对工艺流程设计、设备选型和设计、控制系统设计进行分析与探讨,提出工艺设计的基本思路和原则。

1.回收工艺过程和特点

目前,伴生气轻烃回收工艺都采用冷凝分离法。虽然冷凝分离法可采用冷剂制冷法、膨胀制冷和混合制冷法等多种制冷工艺,但从工艺原理上看,都是经过气体冷凝回收液烃和液烃精馏分离成合格产品这两大步骤。从流程组织上,回收工艺过程由原料气预处理、原料气增压、脱水、冷凝分离、制冷系统、液烃分馏、产品储配等7个单元组成。

一般来说,伴生气具有压力低,气质富的特性。为满足冷凝分离的工艺要求,伴生气回收工艺需设置压缩机增压过程,增压值大小与干气外输压力、制冷温度、分馏塔塔压、产品收率等因素有关,这是低压气轻烃回收工艺的特点。

2.优化工艺流程

工艺流程的变化是因原料气气源条件(气量、压力和组成)、产品要求和建设环境等因素的不同而引起的。工艺流程的合理与否是回收装置达到较高的技术经济效益的前提。

2.1 制冷工艺的选择

制冷工艺的选择主要考虑原料气的压力、组成、液烃回收率等因素。当伴生气处理量小、组成较富时,为了回收C3+烃类,可采用浅冷回收工艺,制冷方法主要采用冷剂制冷或冷剂制冷+节流膨胀制冷;当伴生气处理量较大、组成又比较贫、希望回收较多乙烷时,应采用深冷回收工艺,制冷方法主要采用复叠式制冷、混合冷剂制冷、膨胀机制冷、冷剂制冷与膨胀机制冷相结合的混合制冷。国内技术成熟和开发应用广泛的制冷工艺有膨胀机制冷、混合制冷。

国内冷剂制冷工艺,为了满足环境保护的要求,现主要采用丙烷压缩循环制冷,制冷温度为-30~-35℃,制冷系数较大。丙烷冷剂可在轻烃回收装置中自行生产,无刺激性气味,该工艺将在我国广泛应用。采用冷剂制冷工艺的装置,所需要的冷量由独立的外部制冷系统提供,不受原料气贫富程度的限制,对原料气的压力无严格要求。装置在运行中,可以改变制冷量的大小以适应原料气量和组成的变化以及季节性的气温变化。

膨胀机制冷有透平膨胀机、热分离机、气波机制冷三种方式。由于透平膨胀机制造技术日趋完善,机组质量有保证,操作、维修方便,等熵效率高,处理量大,加之机组产品系列化,选用、更换都很容易,所以,凡是有自由压力能可供利用的场合,可优先考虑选用透平膨胀机,必要时再考虑设置外部冷剂制冷。在无供电条件的边远地区,使用热分离机或气波机制冷更为有利。对于低压气源,是否可采用膨胀机制冷,需对制冷工艺方案进行技术经济对比分析,才能作出决策。

4 油气田地面工程(OGSE) 第19卷第1期(2000.1) 

2.2 工艺流程的设计

从伴生气中回收轻烃的工艺流程尽管种类较多,但基本上由7个单元组成。在工艺设计中,必须统一组织各工艺单元,从系统优化的观点出发,力求有较高的产品收率和产品质量,达到节约工程投资和运行成本,获得较高的技术经济效益的目的。

对于浅冷工艺装置,所需冷量由外加冷剂制冷提供,外加冷源和原料气增压压缩机消耗的动力是浅冷装置运行能耗的主要部分。因此,为了能使装置经济合理地运行,在组织流程时,尽可能减少增压能耗和冷损。在确定冷凝压力时,应综合考虑气源压力、外输压力、液烃分馏塔压力和产品收率等因素,使增压能耗最小。与此同时,在浅冷分离中,由于低温分离器分出的气体具有一定的压力(一般在1600kPa以上),而这部分气体大多直接外输,并不需要这样高的压力,因而应该考虑回收这部分能量。利用膨胀制冷,可以获得一定的温降,以补充装置冷量。要从整个流程来综合设计增压、冷凝分离、制冷、液烃分馏4个单元,有效利用压能和外加冷量。

对于深冷工艺装置,为满足工艺条件的冷量要求,首先应立足于国内成熟的膨胀机制冷,仅靠伴生气压降膨胀制冷,满足不了装置对冷量的要求。为此,需要设置外加冷剂制冷以补充冷量,即采用冷剂制冷与膨胀机制冷相结合的混合制冷工艺。对于采用膨胀机制冷的装置,原料气预冷后是先膨胀后增压(逆升压)还是先增压后膨胀(正升压),应从整个流程的安排考虑,以便使其达到比较合适的膨胀比,取得尽可能低的制冷温度和尽可能高的收率。

在工艺流程设计中,应积极采用和开发新工艺、新技术,以达到节能降耗、提高液烃收率的目的。如采用气体过冷工艺(GSP)、液体过冷工艺(LSP)、直接换热工艺(DHX)、混合冷剂制冷工艺等。

2.3 工艺参数的优化

合理的工艺参数既是满足一定工艺要求的保证,也是使装置能在经济合理的工况下运行的前提。当油田伴生气的组成一定时,对于浅冷工艺装置,主要是确定冷凝温度和压力。

冷凝压力的确定首先应考虑气体外输的压力要求。当冷凝下来的液烃需要靠本身压力输到液烃分馏单元时,冷凝压力还应满足液烃分馏操作的压力要求。如果气体外输压力高于液烃分馏操作压力,则应按外输压力确定冷凝压力,反之则按液烃分馏操作的压力来确定冷凝压力。当采用膨胀机制冷时,冷凝压力也应为达到一定的膨胀比创造条件。

对于以回收C3+烃类为目的装置,当冷凝压力初步选定后,在确定冷凝温度时,既要保证C3较高的冷凝率,又不能使C2的冷凝率过高。在压力一定时,这个温度主要与气体组成有关。伴生气中C3+含量较多时,此温度较高,反之则较低。若冷凝温度降低,虽然C3+的冷凝率有所增加,但因C2的冷凝率增加更快,不仅要耗费更多的冷量来冷凝C2,而且还必须耗费热量将其从凝析液中脱除出来,这在经济上是不合理的。

在工艺设计中,从整个工艺流程出发,综合考虑各单元的能量利用,从而确定合理的冷凝温度和压力。以回收C3+烃类为目的浅冷装置,一般情况下50%~80%的C3收率是比较合适的,深冷装置的C2回收率一般认为60%~85%比较合适,但应进行工艺计算、方案对比,确定最佳产品收率。若确定适宜的冷凝温度介于-20~-35℃,采用丙烷冷剂压缩循环制冷提供工艺所需的冷量;若冷凝温度低于-35℃,为了达到较为经济的轻烃回收率,可适当提高冷凝压力或可采用膨胀制冷达到要求的低温。

3.主要设备选型和设计

工艺流程是由各种工艺设备组合而成,流程能否实现工艺设计的目的,关键问题之一是设备选型和设计是否合理。设备选型和设计中应遵循轻便、高效、技术先进、工作可靠等原则。

在装置中,如果气—液分离器存在设计计算和内部结构不够合理等问题,气相中会携带出液滴,就得不到与计算结果相同的凝液量,液烃回收率就降低了。常规的重力分离器,分离效果并不是很好,为了改进分离效果,不少人致力于这方面的研究工作,出现了多种高效分离器,可在回收装置中选用,以提高气—液分离效果。

压缩机、制冷机、膨胀机设计选型时,要与制造厂家充分协商研究,给厂家提供详细、准确的工艺要求和相关参数,正确选型,以保证机组供货质量。选型时应以国产机组为主,必要时可引进国外设备。对于伴生气轻烃回收装置,压(下转12页)

5

 油气田地面工程(OGSE) 第19卷第1期(2000.1) 

药剂的混合水中细菌含量都可达标,所筛选的杀菌剂杀菌效果显著。

3.结论

(1)KQL—60/0.6JB型核桃壳和纤维球全自动过滤器在清水处理首次应用,并获得成功。

(2)GL150/6—W/A型两级核桃壳全自动过滤器及水力旋流器在含油污水处理首次应用,并获得成功。

(3)开发研制出反相破乳剂FC—02,对O/W 乳液有较好的破乳效果。

(4)筛选出了对路的水处理药剂,保证了水处理装置的正常运行和水质全面达标。

(5)发现了一种氧化性缓蚀剂与硫化物能反应,产生一种可溶于水的物质,该技术除硫成本较低,易于操作。

(6)通过对彩南油田注入水的研究,验证了清水处理及含油污水处理工艺设计的合理性;证明了水处理和药剂两者缺一不可,保证了注水水质达标。

(7)含油污水处理过滤前不宜设泵提升,可采用低转速、容积式泵,以减低水中油的乳化程度。

(8)彩南油田污水和清水适宜于处理后混注。

(9)该技术成果每年直接经济效益200万元,能提高污水利用率,减少环境污染,并为原油的稳产提供有力的保障。

(收稿日期 1999-05-19 编辑 张秀丽)

(上接5页)缩机和冷剂制冷机组是装置能耗的主要部分,选型时,压缩机的功率和制冷机的制冷量要估算准确,以减少能耗。

板翅式换热器具有体积小、换热面积大、对介质的适应性强、换热温差小等优点。但板翅式换热器还没有形成标准系列。设计选型时,设计人员给生产厂家提供各股流的工艺参数、热负荷以及工艺要求,由厂家进行详细设计和生产,以保证换热器的质量。冷换设备和冷剂蒸发器都可用板翅式,重量轻、换热效率高,有利于橇装设计。

目前,国产轻烃回收装置中,分馏塔(脱乙烷塔、脱丙烷塔、脱丁烷塔)多数采用填料塔,少数采用浮阀板式塔。国内填料塔设计规范和方法还不够完善,主要是由于在填料层中的传质比较复杂,不断有新的理论问题和计算概念提出,很多传质研究也未能有很好的统一关联式。因此,填料层的高度一般应尽量参考实际数据进行选择。填料高度的计算通常采用等板高度法,对于等板高度值选用应慎重。生产厂家提供的有关材料,大多数是空气和水模拟结果,多是在小直径塔内进行的试验。塔径的计算,要满足使塔具有最低的总操作费用和良好的稳定操作性能的条件。近年来,国内新型高效填料、高效分布器与再分布器已研制成功,为填料塔在轻烃回收装置中广泛应用创造了良好条件,但填料塔的设计与国外差距较大,国外塔类设备的设计有一整套技术比较先进的设计规范、标准及具体的设计方法。因此,应积极消化国外先进技术,开发研制高效浮阀塔,提高填料塔的设计技术水平。

加热炉的设计和选型应力求炉体结构简单、造价低、占地面积小、热效率高,满足连续和平稳生产运行的工艺要求,便于实现橇装化。国内主要采用圆筒式加热炉和火筒式加热炉。当热负荷在1000~2500kW时,可采用圆筒式加热炉;对于小型装置,热负荷在20~500kW之间时,推荐采用火筒式加热炉,这种加热炉重量轻,节省钢材,占地面积小,有利于实现橇装化。

4.结语

(1)一般来说,伴生气具有压力低,气质富的特性,为满足冷凝分离工艺要求,需设置压缩机增压过程,增压值大小与干气外输压力、制冷温度、分馏塔塔压、产品收率等因素有关。

(2)应精心组织工艺流程,正确选用制冷工艺,合理利用外冷和内冷,通过工艺计算、参数研究,对多种工艺方案进行技术和经济对比分析,达到提高液烃回收率、节约投资的目的。

(3)设备选型和设计应体现技术先进和高效的原则。小型浅冷装置控制系统应简单实用,大中型深冷装置应优化控制设计方案,选用先进的集散控制系统。

(收稿日期 1999-08-16 编辑 王德祥)

12 油气田地面工程(OGSE) 第19卷第1期(2000.1) 

OIL-GASFIELD SURFACE ENGINEERING

Vol.19 No.1 Jan.2000

CONTENTS&ABSTRACTS

1 Effective Shear Rate to Flow Fluid in Pipeline

Zhang G uozhong etc 4 Recovery Technology of Light Hydrocarbon in Accompanying Gas

After analysis and discussion the article points out choosing refrigeration technology correctly,or gnizing process flow with the best of care and utilizing outer and inner cooling reasonably.In type-selecting of equipment it should r eflect advanced in technology and high efficiency.The control scheme of small sized shallow refrigeration should be simple and practical.In large and medium sized cryogenic system,advanced collecting scattering control system should be shosen.

Subject terms:accompanying gas/light hydrocarbon rec overy/technology design/rec overy rate/process flo w

Jiang H ong etc 6 Study to Flow Pattern of Oil-water Two-phase Flow

This article briefly introduces the reserch result about oil-water two-phase flow at abroad in recent twenty years,in-cluding flow patterns,flow patterns transfor m,the relationship between flow pattern and pressure drop etc theor y and their experiment studys and puts some views to the research direction of oil-water two-phase flow in the coming years.

Subject terms:crude/water/two-phase flow/flow pattern/press ure drop/detect

Chen Jie etc 10 Quality of Injection Water in C ainan Oilfield Attaining Standard

W ang A ijun etc 13 Energy Consumption Analysis and Renovation Result to Unit Operation on La360Water Injection Station

Wang Yaming etc 15 Optimum Operation of Triplunger Polymer Injection Pumps

Bai Bo etc 18 Way to Decrease Investment of Polymer Drive Engineering

Qu Jianhua etc 20 Primary Discussion on Venezuela OL Oil and Its Storage-Transportation Technology

Zhou Qinglin 22 Application of High Pressure Glass Fibre Reinforced Plstic Pipeline on Ying-hong Oil Pipeline

Wang Yalin etc 23 Field Application of Extra-thickened Oil Dehydration Technology

Ning Jiaqing etc 26 Crude Dehydration Electrode Plate New Technology

Zhao Bingzhong etc 28 Experiment on C rude Dehydration Under High Pressure Palse Electric Field

Dehydration(demulsification)experiment on oil-water emulsion based on the high pressure pulse electric fields or on the synergistic action of high pressur e pulse field and the c entrifugal force field.The experiment result shows that this dehydration technology opens up prospects for commercial application.

Subj ect terms:oil-water e muls ion/puls e el ectric field/dehydration

·

·

2

伴生气轻烃回收工艺技术

伴生气轻烃回收工艺技术 蒋 洪 朱 聪(西南石油学院 四川省南充市 637001) 摘要 油气田存在丰富的伴生气资 源。为了提高油气综合利用水平,开展伴 生气轻烃回收工艺技术研究有十分重要的 现实意义。针对工艺流程设计、设备选型 和控制系统设计进行分析与探讨后指出, 在工艺设计中应正确选用制冷工艺,精心 组织工艺流程,合理利用外冷和内冷;设 备选型应体现技术先进和高效的原则;小 型浅冷装置的控制方案应着重简单实用, 大中型深冷装置则应选用先进的集散控制 系统。 主题词 伴生气 轻烃回收 工艺设 计 回收率 制冷 工艺 流程 在油气田开发中存在丰富的伴生气。为了合理利用这部分天然气资源,油田采用轻烃回收装置,取得了较好的经济效益。但国产化装置仍存在工艺方案不合理、产品收率低、能耗高等问题。针对伴生气轻烃回收工艺,本文对工艺流程设计、设备选型和设计、控制系统设计进行分析与探讨,提出工艺设计的基本思路和原则。 1.回收工艺过程和特点 目前,伴生气轻烃回收工艺都采用冷凝分离法。虽然冷凝分离法可采用冷剂制冷法、膨胀制冷和混合制冷法等多种制冷工艺,但从工艺原理上看,都是经过气体冷凝回收液烃和液烃精馏分离成合格产品这两大步骤。从流程组织上,回收工艺过程由原料气预处理、原料气增压、脱水、冷凝分离、制冷系统、液烃分馏、产品储配等7个单元组成。 一般来说,伴生气具有压力低,气质富的特性。为满足冷凝分离的工艺要求,伴生气回收工艺需设置压缩机增压过程,增压值大小与干气外输压力、制冷温度、分馏塔塔压、产品收率等因素有关,这是低压气轻烃回收工艺的特点。 2.优化工艺流程 工艺流程的变化是因原料气气源条件(气量、压力和组成)、产品要求和建设环境等因素的不同而引起的。工艺流程的合理与否是回收装置达到较高的技术经济效益的前提。 2.1 制冷工艺的选择 制冷工艺的选择主要考虑原料气的压力、组成、液烃回收率等因素。当伴生气处理量小、组成较富时,为了回收C3+烃类,可采用浅冷回收工艺,制冷方法主要采用冷剂制冷或冷剂制冷+节流膨胀制冷;当伴生气处理量较大、组成又比较贫、希望回收较多乙烷时,应采用深冷回收工艺,制冷方法主要采用复叠式制冷、混合冷剂制冷、膨胀机制冷、冷剂制冷与膨胀机制冷相结合的混合制冷。国内技术成熟和开发应用广泛的制冷工艺有膨胀机制冷、混合制冷。 国内冷剂制冷工艺,为了满足环境保护的要求,现主要采用丙烷压缩循环制冷,制冷温度为-30~-35℃,制冷系数较大。丙烷冷剂可在轻烃回收装置中自行生产,无刺激性气味,该工艺将在我国广泛应用。采用冷剂制冷工艺的装置,所需要的冷量由独立的外部制冷系统提供,不受原料气贫富程度的限制,对原料气的压力无严格要求。装置在运行中,可以改变制冷量的大小以适应原料气量和组成的变化以及季节性的气温变化。 膨胀机制冷有透平膨胀机、热分离机、气波机制冷三种方式。由于透平膨胀机制造技术日趋完善,机组质量有保证,操作、维修方便,等熵效率高,处理量大,加之机组产品系列化,选用、更换都很容易,所以,凡是有自由压力能可供利用的场合,可优先考虑选用透平膨胀机,必要时再考虑设置外部冷剂制冷。在无供电条件的边远地区,使用热分离机或气波机制冷更为有利。对于低压气源,是否可采用膨胀机制冷,需对制冷工艺方案进行技术经济对比分析,才能作出决策。 4 油气田地面工程(OGSE) 第19卷第1期(2000.1)

5万吨年炼厂气体分离工艺设计(参考)

淮海工学院专业设计报告书 题目: 50000吨/年炼厂液化气分离 工艺初步设计 系(院):化学工程学院 专业:化学工程与工艺 班级: 姓名: 学号: 2013年12月20 日

设计任务书 班级:姓名:学号: 一、设计题目: 50000吨/年炼厂液化气分离工艺设计。 二、设计条件: 液化石油气 组分 wt% 乙烷 0.31 乙烯 0.02 丙烯 35.58 丙烷 8.46 正丁烷 7.51 异丁烷 14.66 异丁烯 12.08 丁烯-1 5.01 反丁烯-2 9.81 顺丁烯-2 6.55 异戊烷 0.01 总硫量 20~50ppm 水分饱和水 合计 100 丙烯: 分子式: C 3H 6 熔点(℃): -191.2 沸点(℃): -47.72 相对密度(水=1): 0.5 相对蒸气密度(空气=1): 1.48 饱和蒸气压(kPa): 602.88(0℃) 性能: 主要成分:乙烯、乙烷、丙烷、丙烯、丁烷、丁烯等。 外观与性状:无色气体或黄棕色油状液体, 有特殊臭味。 闪点(℃): -74 引燃温度(℃): 426~537 爆炸上限%(V/V): 33 爆炸下限%(V/V): 5 健康危害:本品有麻醉作用。急性中毒:有头晕、头痛、兴奋或嗜睡、恶心、呕吐、脉缓等;重症者可突然倒下,尿失禁,意识丧失,甚至呼吸停止。可致皮肤冻伤。慢

性影响:长期接触低浓度者,可出现头痛、头晕、睡眠不佳、易疲劳、情绪不稳以及植物神经功能紊乱等。 环境危害:对环境有危害,对水体、土壤和大气可造成污染。 燃爆危险:本品易燃,具麻醉性。 危险特性:极易燃,与空气混合能形成爆炸性混合物。遇热源和明火有燃烧爆炸的危险。与氟、氯等接触会发生剧烈的化学反应。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。 特点: ①污染少。②发热量高。③易于运输。④压力稳定。⑤储存设备简单,供应方式灵活。

天然气轻烃回收工艺流程

轻烃回收工艺主要有三类:油吸收法;吸附法;冷凝分离法。当前主要采用冷凝分离法实现轻烃回收。 1、吸附法 利用固体吸附剂(如活性氧化铝和活性炭)对各种烃类吸附 容量不同,而,将吸附床上的烃类脱附,经冷凝分离出所需的 产品。吸使天然气各组分得以分离的方法。该法一般用于 重烃含量不高的天然气和伴生气的加工办法,然后停止吸 附,而通过少量的热气流附法具有工艺流程简单、投资少的 优点,但它不能连续操作,而运行成本高,产品范围局限性大, 因此应用不广泛。 2、油吸收法 油吸收法是基于天然气中各组分在吸收油中的溶解度差异,而使不同的烃类得以分离。根据操作温度的不同, 油吸收法可分为常温吸收和低温吸收。常温吸收多用于中 小型装置,而低温吸收是在较高压力下,用通过外部冷冻装 置冷却的吸收油与原料气直接接触,将天然气中的轻烃洗 涤下来,然后在较低压力下将轻烃解吸出来,解吸后的贫油 可循环使用,该法常用于大型天然气加工厂。采用低温油吸 收法C3收率可达到(85~90%),C2收率可达到(20~6 0%)。 油吸收法广泛应用于上世纪60年代中期,但由于其工 艺流程复杂,投资和操作成本都较高,上世纪70年代后,

己逐步被更合理的冷凝分离法所取代。上世纪80年代以后, 我国新建的轻烃回收装置己较少采用油吸收法。 3、冷凝分离法 (1)外加冷源法 天然气冷凝分离所需要的冷量由独立设置的冷冻系统提供。 系统所提供冷量的大小与被分离的原料气无直接关系,故 又可称为直接冷凝法。根据被分离气体的压力、组分及分 离的要求,选择不同的冷冻介质。制冷循环可以是单级也 可以是多级串联。常用的制冷介质有氨、氟里昂、丙烷或 乙烷等。在我国,丙烷制冷工艺应用于轻烃回收装置还不 到10年时间,但山于其制冷系数较大,制冷温度为 (-35~-30℃),丙烷制冷剂可由轻烃回收装置自行生产,无 刺激性气味,因此近儿年来,该项技术迅速推广,我国新建的 外冷工艺天然气轻烃回收装置基本都采用丙烷制冷工艺, 一些原设计为氨制冷工艺的老装置也在改造成丙烷制冷工 艺。 (2)自制冷法 ①节流制冷法 节流制冷法主要是根据焦耳-汤姆逊效应,较高压力的原料 气通过节流阀降压膨胀,使原料气冷却并部分液化,以达到 分离原料气的目的。该方法具有流程简单、设备少、投资 少的特点,但此过程效率低,只能使少量的重烃液化,故只

TUE-12-利用LNG冷能的轻烃分离高压流程

利用 LNG 冷能的轻烃分离高压流程
高婷,林文胜,顾安忠
(上海交通大学制冷与低温工程研究所,上海,200240) 摘要:利用 LNG 冷能能以较低的能耗分离回收其中高附加值的 C2+轻烃资源,同时实现 LNG 气化,是 LNG 冷能 利用的有效方式。本文提出一种新型的利用 LNG 冷能的轻烃分离流程,脱甲烷塔在较高的压力下运行,从而分 离出的富甲烷天然气能以较低能耗压缩到管输压力;脱乙烷塔在常压下运行,可以直接得到常压液态乙烷及 LPG 产品,方便产品的储运。脱甲烷塔中再沸器的热耗由燃气提供,经计算只需消耗 1 %左右的天然气;脱乙烷塔中 冷凝器所需的冷量由 LNG 提供。该流程轻烃回收率可达 90 %以上,其中乙烷回收率可达 85 %左右。以某气源组 分为基础,考察了乙烷含量和乙烷价格变化对装置经济性的影响,结果表明,使用该流程进行轻烃回收效益可观。 关键词:液化天然气(LNG) ;冷能利用;轻烃分离;高压流程;经济性分析 中图分类号:TQ 028; TE64 文献标识码:A 文章编号:
Light hydrocarbons separation at high pressure from liquefied natural gas with its cryogenic energy utilized
Gao Ting, Lin Wensheng, Gu Anzhong
(Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240)
Abstract: C2+ light hydrocarbons, which are resources with high additional values, can be separated from LNG with low power
consumption by efficiently utilizing its cryogenic energy, and LNG is gasified meanwhile. A novel light hydrocarbons separation process is proposed in this paper: the demethanizer works at higher pressure, thus the methane-rich natural gas can be compressed to pipeline pressure with low power consumption; the deethanizer works at atmosphere pressure, consequently liquefied ethane and LPG (liquefied petroleum gas, i.e. C3+) at atmosphere pressure can be product directly, which are easy to be stored and transported. The heat consumption of the reboiler in the demethanizer is provided by the combustion of the separated natural gas, which account for about 1 % of the total amount; the cold energy of the condenser in the deethanizer is provided by the cryogenic energy of LNG. The recovery rate is more than 90 % for light hydrocarbons, and about 85% for ethane. On the basis of one typical feed gas composition, the effects of the ethane content and the ethane price to the economics of the process is studied. The results show that, recovering light hydrocarbons from LNG by this process can gain great profits.
Keywords: liquefied natural gas (LNG); cryogenic energy utilization; light hydrocarbons separation; high pressure process; economic analysis 都是湿气 (乙烷、 丙烷等C2+轻烃的摩尔含量在10 % 以上) 湿气中的C2+轻烃是优质清洁的乙烯裂解原 , 料,用其代替石脑油生产乙烯,装置投资可节省30 %,能耗降低30 %,综合成本降低10 %。利用LNG 的冷能分离出其中的轻烃资源, 还可以省去制冷设 备,以很低的能耗获得高附加值的乙烷和由C3+组
Corresponding author: Lin Wensheng, E-mail:linwsh@https://www.wendangku.net/doc/0212801135.html,.
引 言
LNG是在低温下以液态形式存在的天然气, 通 常需要重新气化才能获得利用。 LNG气化时释放的 -1 冷能大约为840 kJ·kg ,回收这部分能源具有可观 的经济和社会效益[1-2]。目前世界贸易中许多LNG
联系人:林文胜。第一作者:高婷(1985—) ,女,博士研究生。

石油炼化公司的各个装置工艺的流程图大全及其简介

炼化公司的各个装置工艺的流程图大全及其简介 从油田送往炼油厂的原油往往含盐(主要是氧化物)带水(溶于油或呈乳化状态),

可导致设备的腐蚀,在设备内壁结垢和影响成品油的组成,需在加工前脱除。电脱盐基本原理: 为了脱掉原油中的盐份,要注入一定数量的新鲜水,使原油中的盐充分溶解于水中,形成石油与水的乳化液。 在强弱电场与破乳剂的作用下,破坏了乳化液的保护膜,使水滴由小变大,不断聚合形成较大的水滴,借助于重力与电场的作用沉降下来与油分离,因为盐溶于水,所以脱水的过程也就是脱盐的过程。 CDU装置即常压蒸馏部分 常压蒸馏原理:

精馏又称分馏,它是在精馏塔内同时进行的液体多次部分汽化和汽体多次部分冷凝的过程。 原油之所以能够利用分馏的方法进行分离,其根本原因在于原油内部的各组分的沸点不同。 在原油加工过程中,把原油加热到360~370℃左右进入常压分馏塔,在汽化段进行部分汽化,其中汽油、煤油、轻柴油、重柴油这些较低沸点的馏分优先汽化成为气体,而蜡油、渣油仍为液体。 VDU装置即减压蒸馏部分

减压蒸馏原理: 液体沸腾必要条件是蒸汽压必须等于外界压力。 降低外界压力就等效于降低液体的沸点。压力愈小,沸点降的愈低。如果蒸馏过程的压力低于大气压以下进行,这种过程称为减压蒸馏。 轻烃回收装置是轻烃的回收设备,采用成熟、可靠的工艺技术,将天然气中比甲烷或乙烷更重的组分以液态形式回收。

RDS即渣油加氢装置,渣油加氢技术包含固定床渣油加氢处理、切换床渣油加氢处理、移动床渣油加氢处理、沸腾床渣油加氢处理、沸腾床渣油加氢裂化、悬浮床渣油加氢裂化、渣油加氢一体化技术及相应的组合工艺技术。

(工艺技术)轻烃回收工艺技术发展概况

轻烃回收工艺技术发展概况 自20世纪80年代以来,国内外以节能降耗、提高液烃收率及减少投资为目的,对NGL回收装置的工艺方法进行了一系歹¨的改进,出现了许多新的工艺技术。大致说来,有以下几个方面。 (一) 膨胀机制冷法工艺技术的发展 1. 气体过冷工艺(GSP)及液体过冷工艺(LSP) 1987年Ovaoff工程公司等提出的GSP及LSP是对单级膨胀机制冷工艺(ISS)和多级膨胀机制冷工艺(MTP)的改进。典型的GSP及LSP流程分别见图5-16和图5-17。 GSP是针对较贫气体(c;烃类含量按液态计小于400mL/m3)、LSP是针对较富气体(C 2 +烃类含量按液态计大于400mL/m3)而改进的NGL回收方法。表5-10列出了处理量为283×104m3/d的NGL回收装置采用ISS、MTP及GSP等工艺方法时的主要指标对比。 表5-10 ISS、MTP及GSP主要指标对比 工艺方法ISS MTP GSP C 2 回收率/% 冻结情况 再压缩功率/kW 80.0 冻结 6478 85.4 冻结 4639 85. 8 不冻结

制冷压缩功率/kW 总压缩功率/kW 225 6703 991 5630 3961 1244 5205 美国GPM气体公司Goldsmith天然气处理厂NGL回收装置即在改造后采用了GSP法。该装置在1976年建成,处理量为220×104m3/d,原采用单级膨胀机制冷法,1982年改建为两级膨胀机制冷法,处理量为242×104m3/d,最高可达 310×104m3/d,但其乙烷收率仅为70%。之后改用单级膨胀机制冷的GSP法,乙烷收率有了明显提高,在1995年又进一步改为两级膨胀机制冷的GSP法,设计处理量为380×104m3/d,乙烷收率(设计值)高达95%。 2. 直接换热(DHX)法 DHX法是由加拿大埃索资源公司于1984年首先提出,并在JudyCreek厂的NGL 回收装置实践后效果很好,其工艺流程见图5-18。 图中的DHX塔(重接触塔)相当于一个吸收塔。该法的实质是将脱乙烷塔回流罐的凝液经过增压、换冷、节流降温后进入DHX塔顶部,用以吸收低温分离器进 该塔气体中的C 3+烃类,从而提高C 3 +收率。将常规膨胀机制冷法(ISS)装置改造成 DHX法后,在不回收乙烷的情况下,实践证明在相同条件下C 3 +收率可由72%提高到95%,而改造的投资却较少。

20000吨乙胺装置分离系统工艺毕业设计

20000吨乙胺装置分离系统工艺设计 辛清炜1,李强2 (1.东北电力大学化学工程学院,吉林吉林132012; 2.东北电力大学化学工程学院,吉林吉林 132012) 摘要:本设计的内容是年产20000吨乙胺装置分离系统装置工艺设计,工艺采用连续精馏的方式,使用四个精馏塔,将乙醇和液氨混合加氢精馏成纯度大于99.5%的乙胺产品。本设计主要对T103塔所给的各个组分的质量分数并经过ASPEN软件模拟,得出各个塔的理论板数和回流比以及工艺条件,得出本套工艺装置的初步数据。同时完成物料衡算、热量衡算、并对乙胺精馏塔进行严格设备计算。对塔的冷凝器、再沸器、回流罐、接塔管和进料泵进行了详细计算和选型。 关键词:乙胺;精馏;ASPEN软件;工艺设计 Process Design of Separation System of 20000t Ethylamine Plant XIN Qing-wei1 ,LI Qiang2 (1.Chemical Engineering College, Northeast Dianli University, Jilin Jilin 132012;2.Chemical Engineering College, Northeast Dianli University, Jilin Jilin 132012) Abstract;The present design is 20000 tons per year ethylamine separation system means plant process design, continuous distillation process using manner, using four distillation column, ethanol and ammonia mixing hydrogenation rectification into purity of more than 99.5% of amine products. The design of the main T103 tower to the various components of the quality score and through the ASPEN software simulation, the theoretical plate of each column and reflux ratio and process conditions, the set of process equipment, the preliminary data. At the same time to complete the material balance, heat balance, and the rectification of the column for strict equipment calculation. The calculation and selection of the condenser, the re boiling device, the reflux tank, the connecting pipe and the feed pump of the tower are calculated in detail. And draw the process flow chart of the control point, the material map, equipment layout and piping layout. Key Words:Ethylamine;Distillation;ASPEN;Process planning 1绪论

伴生气轻烃回收工艺技术

伴生气轻烃回收工艺技术 摘要 油气田存在丰富的伴生气资源。为了提高油气综合利用水平,开展伴 生气轻烃回收工艺技术研究有十分重要的现实意义。针对工艺流程设计、设备选型和控制系统设计进行分析与探讨后指出,在工艺设计中应正确选用制冷工艺,精心组织工艺流程,合理利用外冷和内冷;设备选型应体现技术先进和高效的原则;小型浅冷装置的控制方案应着重简单实用,大中型深冷装置则应选用先进的集散控制系统。 主题词伴生气轻烃回收工艺设计回收率制冷工艺流程 在油气田开发中存在丰富的伴生气。为了合理利用这部分天然气资源,油田采用轻烃回收装置,取得了较好的经济效益。但国产化装置仍存在工艺方案不合理、产品收率低、能耗高等问题。针对伴生气轻烃回收工艺,本文对工艺流程设计、设备选型和设计、控制系统设计进行分析与探讨,提出工艺设计的基本思路和原则。 回收工艺过程和特点 目前,伴生气轻烃回收工艺都采用冷凝分离法。虽然冷凝分离法可采用冷剂制冷法、膨胀制冷和混合制冷法等多种制冷工艺,但从工艺原理上看,都是经过气体冷凝回收液烃和液烃精馏分离成合格产品这两大步骤。从流程组织上,回收工艺过程由原料气预处理、原料气增压、脱水、冷凝分离、制冷系统、液烃分馏、产品储配等几个单元组成。 一般来说,伴生气具有压力低,气质富的特性。为满足冷凝分离的工艺要求,伴生气回收工艺需设置压缩机增压过程,增压值大小与干气外输压力、制冷温度、分馏塔塔压、产品收率等因素有关,这是低压气轻烃回收工艺的特点。 优化工艺流程 工艺流程的变化是因原料气气源条件(气量、压力和组成)、产品要求和建设环境等因素的不同而引起的。工艺流程的合理与否是回收装置达到较高的技术经济效益的前提。 制冷工艺的选择 制冷工艺的选择主要考虑原料气的压力、组成、液烃回收率等因素。当伴生气处理量小、组成较富时,为了回收烃类,可采用浅冷回收工艺,制冷方法主要采用冷剂制冷或冷剂制冷+节流膨胀制冷;当伴生气处理量较大、组成又比较贫、

5万吨年轻烃分离装置工艺设计毕业设计

5万吨/年轻烃分离装置工艺设计毕业设计 目录 第一章总述 (1) 1.1 前言 (1) 1.2 主题 (1) 1.2.1 轻烃的分离原理 (1) 1.2.2 分离顺序的选择 (2) 1.2.3 产品性能用途 (2) 1.2.4 生产现状 (4) 1.2.5 发展前景 (4) 第二章工艺流程设计 (6) 2.1 工艺流程设计 (6) 2.1.1 工艺方案 (6) 第三章物料衡算 (8) 3.1 原始数据的获得 (8) 3.2 塔T-101物料衡算 (10) 3.2.1 T-101清晰分割物料衡算 (10) 3.2.2 确定塔的操作压力及温度 (11) 3.2.3 确定最小回流比 (13) 3.2.4 确定最适宜的回流比 (14) 3.2.5 全塔效率及确定实际塔板数 (15) 3.2.6 进料温度及压力的确定 (16) 3.3 塔T-201物料衡算 (16) 3.3.1 塔T-201清晰分割物料衡算 (16) 3.3.2 确定塔的操作压力及温度 (17) 3.3.3 验证T-201清晰分割是否成立 (18)

3.3.4 确定最适宜的回流比 (19) 3.3.5 全塔效率及确定实际塔板数 (20) 3.3.6 进料温度及压力的确定 (21) 3.4 塔T-301物料衡算 (22) 3.4.1 清晰分割物料衡算 (22) 3.4.2 确定塔的操作压力及温度 (22) 3.4.3 验证T-301清晰分割是否成立 (24) 3.4.4 确定最小回流比 (25) 3.4.5 全塔效率及确定实际塔板数 (26) 3.4.6 进料温度及压力的确定 (27) 第四章能量衡算 (28) 4.1 T-101能量衡算 (29) 4.1.1 焓值计算 (29) 4.1.2 热负荷的计算 (29) 4.1.3 计算传热剂用量 (31) 4.2 T-201 能量衡算 (31) 4.2.1 焓值计算 (31) 4.2.2 热负荷的计算 (31) 4.2.3 计算传热剂用量 (32) 4.3 T-301 能量衡算 (32) 4.3.1 焓值计算 (32) 4.3.2 热负荷的计算 (32) 4.3.3 计算传热剂用量 (33) 4.4 三塔热量衡算表 (33) 第五章设备工艺计算及选型 (35) 5.1 T-101 的设计与选型 (35) 5.1.1 塔径的计算 (35) 5.1.2 塔高的计算 (39) 5.1.3 塔体设计 (39)

12.8万吨年多组分轻烃分离装置工艺设计毕业设计

12.8万吨/年多组分轻烃分离装置工艺设计毕业设计 目录 第一章总论 (3) 1.1 原料及产品 (3) 1.2 装置概况 (3) 1.3 原料性能、用法、生产方法 (4) 1.4 乙烯生产工艺技术简介 (2) 第二章工艺流程设计 (12) 2.1工艺流程设计 (12) 2.1.1 工艺方案 (12) 第三章物料衡算 (17) 3.1 原始数据的获得 (18) 3.2 T-101物料衡算 (18) 3.2.1 T-101清晰分割物料衡算 (20) 3.2.2 确定塔的操作压力及温度 (21) 3.2.3 确定最小回流比 (21) 3.2.4 确定最适宜的回流比 (22) 3.2.5 全塔效率及确定实际塔板数 (23) 3.2.6 进料温度的确定 (23) 3.3 T-201清晰分割物料平衡 (24) 3.3.1 T-201清晰分割物料衡算 (24) 3.3.2 确定塔的操作压力及温度 (25) 3.3.3 确定最适宜的回流比........................................................................ . (27) 3.3.4 全塔效率及确定实际塔板数 (28) 3.3.5 进料温度及压力的确定 (29) 3.4 T-301物料衡算 (29)

3.4.1清晰分割物料衡算 (29) 3.4.2 确定塔的操作压力及温度 (30) 3.4.3确定最小回流比 (32) 3.4.4 确定最适宜的回流比 (32) 3.4.5 进料温度的确定 (33) 第四章能量衡算 (34) 4.1 T-101能量衡算................................... 错误!未定义书签。 4.1.1 焓值衡算 (36) 4.1.2 热负荷的计算 (37) 4.1.3 计算传热剂用量 (38) 4.2 T-201能量衡算 (38) 4.2.1 焓值计算 (38) 4.2.2 热负荷的计算 (39) 4.2.3 计算传热剂用量 (39) 4.3 T-301能量衡算 (38) 4.3.1焓值计算 (39) 4.3.2 热负荷的计算 (40) 4.3.3计算传热剂用量 (40) 第五章设备工艺计算及选型 (42) 5.1 塔的设计与选型 (42) 5.1.1 T-101的设计与选型 (42) 5.1.2 T-201的设计与选型 (55) 5.1.3 T-301的设计与选型 (70) 第六章设计结果汇总表 (76) 6.1 全塔的物料衡算表........................................................................ .. (74) 6.2全塔的热量衡算表........................................................................ .. (74) 6.3各塔的操作条件

轻烃回收基本知识

轻烃回收基本知识 1、天然气:主要由碳氢化合物组成的气体混合物,并含有少量的惰性气体。主要成分:甲烷、乙烷、丙烷、正(异)丁烷、正(异)戊烷等烷烃,及少量的二氧化碳、氮气、硫化氢等。 2、富气:(湿气)甲烷含量在低于90%以上、丙烷以上成分含量大于10%以上的天然气,称为富气。(通常指未处理的伴生气或原料气) 3、干气:甲烷含量大于90%以上的天然气,成为干气。(通常指轻烃装置处理后的外输气) 4、轻烃回收:对伴生气经过加工处理,获得液体轻烃的过程。 5、原油稳定:对(未处理)原油进行加工脱出易挥发组分。主要脱出溶解在原油中的戊烷以下的易挥发组分 6、油田混合烃(液化石油气):主要成分丙烷、正(异)丁烷。(冬、夏季乙烷、戊烷含量有标准要求) 7、轻质油:主要有戊烷以上成份组成液体混合物。 8、回收轻烃的手段:提高气体分离压力和降低气体分离温度。(升压、降温) 9、原油稳定回收轻烃的手段:本站采用降压(负压)、升温.(负压稳定) 10、影响干燥器脱水效果的主要因素 (1)天然气的温度和湿度(2)天然气的流动速度(3)吸附剂层的高度及再生的完善程度 11、吸附剂使用后(反复再生)变劣的主要原因 (1)吸附剂的表面被碳、聚合物、化合物所覆盖(2)由于半融熔是部分细孔破坏而消失(3)由于化学反应使结晶细粒遭到破坏。 12、吸附剂失效的危害 造成天然气的露点升高,低温区形成水化物,使低温设备、管线冻堵,引起系统压力升高造成事故。(丛压力差的大小判断分析并及时采取解冻处理) 问题处理 13、稳定气与伴生气的有效(回收)成分区别:一般稳定气比伴生气高3倍左右。优先处理稳定气。 14、影响装置轻烃产量的因素(1)原料气中的有效成分(2)原料气量(3)分离压力、温度(4)脱乙烷塔(脱乙烷气的效果)(5)轻质油中的丁烷以下成分含量(液化气塔混合烃分离效果) 15、轻烃装置增加轻烃产量的措施 (1)优先处理稳定气(2)提高处理量(满负荷运行)(3)提高分离器压力、降低分离温度(4)降低脱乙烷气中的有效成分(5)减少轻质油中丁烷以下成分含量(切割效果) 16、脱乙烷塔压高的原因 (1)塔温高(2)脱乙烷气量少 17、脱乙烷气的影响 (1)易造成塔操作压升高(2)轻烃储罐压力高 18、稳定装置增加轻烃产量的措施 (1)提高稳定塔进料温度、降低塔压(2)提高原油稳定量(3)增加补气量(4)降低正负压冷凝器温度 19、液化气塔压力建立不起来的原因:

天然气轻烃回收工艺介绍

天然气轻烃回收工艺 一.轻烃回收工艺 从天然气中回收轻烃凝液经常采用的工艺包括油吸收法,吸附法,冷凝法。国内外近20多年已建成的轻烃回收装置大多采用冷凝法。冷凝法回收轻烃工艺就是利用天然气中各烃类组分冷凝温度的不同,在逐步降温过程中依次将沸点较高的烃类冷凝分离出来的方法。该法的基点是在于:需要提供较低温位的冷量使原料气降温。按制冷温度不同,又可分为浅冷分离和深冷分离工艺。浅冷是以回收丙烷为主要目的,制冷温度一般在-15~-25℃左右,深冷则以回收乙烷为目的或要求丙烷收率大于90%。制冷温度一般在-90~-100℃左右。 常用的制冷工艺主要有三种:①冷剂循环制冷工艺;②膨胀制冷工艺;③冷剂制冷与膨胀制冷的联合制冷工艺。 常用的原料气脱水工艺主要采用分子筛(3A或4A)脱水法和甘醇脱水法。 二.轻烃回收工艺选择 1.选择依据 含量及自身可利用的压力降大小等多方面因素来选择合适根据油气田中C 2 的制冷工艺。根据原料气预冷温度要求的脱水深度及天然气组成等多方面因素来选择合适的天然气脱水工艺。 2.制冷工艺的选择 ① 冷剂制冷工艺 冷剂制冷是利用某些物质(制冷工质)在低温下冷凝分离(如融化、汽化、升华)时的吸热效应产生的冷量。在NGL(Natural Gas Liquids天然气凝液)回收中常用乙烷、丙烷、氨、氟里昂等由液体汽化吸热冷。这就需要耗功,用压缩机将气体压缩升压,冷凝液化、蒸发吸热、产生冷量必须消耗热能。 冷剂制冷工艺流程比较复杂,投资较高,但稳定性比较好。 ② 膨胀机制冷工艺 膨胀机制冷是非常接近于等熵膨胀的过程,气体经过膨胀降压之后温度降低(可能有凝液产生)。这部分气体与原料气换冷或通过别的途径放出冷量。膨胀机制冷可以回收一部分功,一般匹配同轴压缩机。

轻烃回收安全规程

轻烃回收安全规程 SY/T6562-2003 The safety code of recovering light hydrocarbon 前言 本标准由石油工业安全专业标准技术委员会提出并归口。 本标准起草单位:胜利石油管理局河口采油厂、安全环保处。 本标准主要起草人:王彦春、孙现东、高圣新、王光卿、王登文、李俊荣、陈建设。 1 范围 本标准规定了油田伴生气、气田天然气轻烃回收安全管理的基本要求。 本标准适用于陆上油气田轻烃回收厂(站)。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 50183—1993 原油和天然气工程设计防火规范 SBJ 12—2000 氨制冷系统安装工程施工及验收规范 SY 6278—1997 天然气净化厂安全规范 3 术语和定义

下列术语和定义适用于本标准。 轻烃回收light hydrocarbon recover 从石油天然气(包括油田伴生气或气田天然气)中,经过初加工处理获取烃类产品的过程。 4 投产准备 4.1 岗位配置 4.1.1 应建立健全各项安全管理制度,包括但不限于: a)岗位安全生产职责; b)设备安全技术操作规程; c)消防网络; d)事故应急预案 4.1.2 人员:岗位人员应经安全主管部门培训合格,取得上岗操作证。 4.1.3 工具:岗位应配备各类防爆工具。 4.1.4 劳动保护用品:工作人员应穿戴劳动防护用品,并符合岗位防爆、防静电、防中毒的要求。 4.2 吹扫 4.2.1 制定吹扫程序和要求,吹扫介质采用压缩空气。 4.2.2 吹扫时空气压力,中压系统宜为0.25MPa~0.40MPa(表压),低压系统宜为0.04MPa~0.05MPa(表压)。 4.2.3 吹扫应反复多次冲击进行(塔、设备除外)。 4.2.4 采用白色滤纸或白布放在吹扫口处验证,当滤纸或白布

轻烃制冷回收工艺

轻烃制冷回收工艺 摘要:自20世纪80年代以来,国内外以节能降耗、提高轻烃收率及减少投资为目的,对NGL 回收装置的工艺方法进行了一系列的改进,出现了许多新的工艺技术从天然气中回收的轻烃是优质的燃料,也是宝贵的化工原料,具有较高的经济价值。制冷工艺主要采用冷剂循环制冷、膨胀机制冷、冷剂制冷与膨胀机制冷相结合的混合制冷,单级膨胀机制冷工艺应用广泛,深冷装置较少,装置能耗高,自控水平较低。在深冷回收装置中,以冷剂制冷作为辅助冷源,膨胀机制冷作为主冷源的混合制冷方法,因制冷温度低,液烃回收率高,对气源条件变化适应性强,将得到推广和应用。 从天然气中回收的轻烃是优质的燃料,也是宝贵的化工原料,具有较高的经济价值。本文通过采用轻烃回收工艺方法和工艺过程结合在一起进行研究在工艺设计中,针对不同的原料状况,应积极采用和开发新工艺、新技术以达到节能降耗、提高轻烃收率、有效的利用能量、降低消耗起着关键性的作用。 关键词:轻烃回收膨胀机制冷天然气 1 烃回收工艺 在气体处理厂内,通过改变气体条件,破坏各组分间的平衡,在达到新的平衡状态时会有一些组分凝析、另一些组分蒸发,从而实现从天然气内回收液态烃。改变的条件可能是压力或温度,也可能是将不同的物质引入气流,更可能是上述三种方法的结合。 早期从天然气内回收液态烃的方法是采用压缩和冷却。工程师们发现,压缩天然气至较高压力并冷却至接近环境温度,会从气流中形成并分离出一定数量的烃液,还知道采用平衡蒸发常数和天然气(组分)分析能预测烃液的回收量。压缩和冷却工艺一直是最简单的方法。然而,这种方法却不如后来开发的一些方法有效。压缩和冷却法常受周围空气或使用冷却水的制约。用制冷进一步降低气流温度并回收更多的液体产品,是传统压缩和冷却方法合乎逻辑的发展。用氨或烷为制冷剂的机械制冷系统是最早使用的制冷类型。当然,在早期的尝试中曾遇到许多与生成水合物有关的问题。在气体深冷(蒸发)器以及深冷器下游的分离器内发生过冰冻。向气流内注甲醇或乙二醇溶液能解决冰冻问题,在一些情况下,在

轻烃回收系统事故原因及预防

轻烃回收系统事故原因及预防 轻烃回收系统是指通过油田伴生气输送和初加工以及原油稳定而得到天然气凝析液的过程。 1.输气管线及站内天然气工艺管线泄漏或爆裂 输气管线及站内天然气工艺管线泄漏或爆裂的原因有:管线腐蚀穿孔;人为破坏;管线冻堵造成憋压;工艺流程切换失误,造成憋压;管线超限运行;天然气增压装置失控。 输气管线及站内天然气工艺管线泄漏或爆裂的预防措施为:严格执行工艺设施操作及维护保养规程;严格执行巡回检查制度;严格执行《输气工操作规程》;定期对管线进行维护;加强阴极保护管理;定期进行管线巡护;制定事故处理应急预案;配备正压式呼吸器和防火服。 2.压力容器泄漏、着火 压力容器泄漏、着火的原因有:压力容器有裂缝、穿孔;容器超压;安全附件、工艺附件失灵或与容器结合处渗漏;工艺流程切换失误;容器周围有明火;周围电路有阻值偏大或短路等故障发生;雷击起火;有违章操作(如使用非防爆手电,使用非防爆工具,不按劳保服装等)现象。 压力容器泄漏、着火的预防措施为:压力容器应有使用登记

和检验合格证;制定事故处理应急预案;一旦发生泄漏、着火,要立即切断油源、火种;按压力容器操作规程进行操作;对压力容器定期进行维护保养;工艺切换严格执行相关操作规程;严格执行巡回检查制度;严格执行各类安全操作规程;定期检验安全附件,并有检验合格证;防雷和防静电设施性能良好,有检验合格证;容器周围严禁明火,需要明火作业时,需经安全技术部门批准,采取一定预防措施后,方可动(用)火;定期对容器周围电路进行维护保养;定期检修各种工艺附件;配备正压式呼吸器和防火服。 3.压缩机装置爆炸着火 压缩机装置爆炸着火的原因有:压缩机装置启运前,未置换工艺流程内的空气;压缩机装置有渗漏点;压缩机装置发生机械故障;安全附件、工艺附件失灵或与压缩机装置结合处渗漏;工艺流程切换失误;压缩机装置周围有明火;压缩机装置电路有阻值偏大或短路等故障;未按照压缩机操作规程操作;有违章操作(如使用非防爆手电,使用非防爆工具,不按规定穿戴服装等)现象。 压缩机装置爆炸着火的预防措施为:新投运、检修后投运或长时间停产后投运的压缩机装置,要用惰性或天然气对工艺流程内的气体进行置换;制定事故处理应急预案;一旦发生爆炸着火,要立即切断气源、火种;按压缩机装置操作规程进行操作;定期对压缩

毕业设计-年产13.8万吨乙烯装置分离工段乙烯精馏工序工艺设计

沈阳化工大学 本科毕业论文 题目:年产13.8万吨乙烯装置分离工段乙烯精馏工序工艺设计 院系: 化学工程学院 专业:化学工程与工艺 班级: 化工 0703班 学生姓名: 指导教师: 论文提交日期:年月日 论文答辩日期:年月日

毕业设计任务书 化学工程与工艺化工0703 学生: 班

内容摘要 乙烯是石油化工的主要代表产品,在石油化工重占主导地位。目前世界上乙烯的生产绝大数来源于蒸汽裂解制烯烃技术。由于蒸汽裂解是石油化工中的大能耗装置,而且完全依赖不可再生的石油资源,因此研究和开发人员进行了新的乙烯生产技术的探索和开发。乙烷脱氢、催化裂解、甲烷氧化偶联和甲醇转化等乙烯生产新工艺,希望能够以此作为蒸汽裂解制乙烯的补充,甚至在将来替代蒸汽裂解制乙烯。乙烯主要用于生产聚乙烯、聚氯乙烯和乙二醇等。乙烯除少量由酒精脱水制得外,绝大部分石油烷烃裂解生产。 本设计是以抚顺乙烯化工有限公司裂解装置为蓝本,完成了年产13.8万吨级得乙烯装置分离工段乙烯精馏工序的工艺设计。本设计对乙烯精馏塔进行了物料衡算和热量衡算,并且对乙烯精馏塔进行了工艺设计与选型设计。乙烯精馏塔采用了浮阀塔,并符合流体力学验算和操作条件。 在指导老师的指导下,我们在整个设计过程中查阅了大量的相关文献及资料,深入掌握了有关的基本理论和专业知识,对理论知识有了更深的认识,灵活的应用到设计当中,并结合了有关的化工过程的要求去设计,还是比较顺利的完成了此次毕业设计。 关键词:乙烯;分离;乙烯精馏

Abstract The ethylene is petroleum chemical industry mainrepresentative the product, occupies the dominantposition in the petroleum chemical industry. At present in the world theethylene production overwhelming majority originates fromthe steam decomposition system alkene technology.Because the stearu decomposition isin thepetroleum chemical in dustry big energy consumption installment, moreover total dependence non-renewable oil resource, therefore the research and the development personnel have carried on the new ethylene production technologyexploration and the development.Ethylene and so on ethane dehydrogenation, catalytic pyrolysis, methane oxidation coupling and methyl alcoholtransformation produce the new crafi, the hope can bythis achievementsteam de compositionsystem ethylene supplement, even in future substitution steam decomposition system ethylene.The ethylene mainly uses in producing

相关文档