文档库 最新最全的文档下载
当前位置:文档库 › 电流互感器极性的判断

电流互感器极性的判断

电流互感器极性的判断
电流互感器极性的判断

怎样测量电流互感器的极性

电流互感器在交接及大修前后应进行极性试验,以防在接线时将极性弄错,造成在继电保护回路上和计量回路中引起保护装置错误动作和不能够正确的进行测量,所以必须在投运前做极性试验。

测量电流互感器的极性的方法很多,我们在工作时常采用的有以下三种试验方法:①直流法;②交流法;③仪器法。

1直流法

见图1。用1.5~3V干电池将其正极接于互感器的一次线圈L1,L2接负极,互感器的二次侧K1接毫安表正极,负极接K2,接好线后,将K合上毫安表指针正偏,拉开后毫安表指针负偏,说明互感器接在电池正极上的端头与接在毫安表正端的端头为同极性,即L1、K1为同极性即互感器为减极性。如指针摆动与上述相反为加极性。

图1直流法测电流互感器极性

2交流法

见图2,将电流互感器一、二次线圈的L2和二次侧K2用导线连接起来,

在二次侧通以1~5V的交流电压(用小量程),用10V以下的电压表测量U

及U3的数值如U3=U1-U2为减极性;若U3=U1+U2为加极性。

2

图2交流法测电流互感器极性

注意:在试验过程中尽量使通入电压低一些,以免电流太大损坏线圈,为了读数清楚电压表尽量选择小一些,变流比在5以下时采用交流法测量比较简单准确,对变流比超过10的互感器不要采用这种方法进行测量,因为U2的数值较小U3与U1的数值接近,电压表的读数不易区别大小,所以在测量时不好辨别,一般不宜采用此法测量极性。

3仪表法

一般的互感器校验仪都有极性指示器,在测量电流互感器误差之前仪器可预先检查极性,若指示器没有指示则说明被试电流互感器极性正确(减极性)。

高压电流互感器极性的判断

按规定电流互感器在交接及大修前后应进行极性试验,防止接线时将极性弄错,造成继电保护回路上和计量回路中的保护装置错误动作和不能正确地进行计量,因此必须在接线时做极性试验。

判断电流互感器极性的方法有三种,分别为直流法、交流法、仪器法。其中最方便、最实用的是直流法,用一只普通的1号干电池,一根0.5米长的连接线,一只指针式万用表,最好是MF-500型的,上面带有微安挡,指针偏转角度大,显示比较直观。把万用表左侧旋钮调整到A直流电流挡位,右侧旋钮调整到50微安刻度;判断极性时一般两个人一起操作,其中一个人把万用表的正极红表笔接电流互感器二次侧的S1端,负极黑表笔接S2端,另一个人把连接线一端固定在电流互感器一次侧P2端,连接线的另一端和干电池负极锌片端接触,使干电池的正极瞬间碰触电流互感器的一次侧P1端,会发现万用表指针正偏(向右偏)之后,又马上返回,这说明极性正确,为负极。然后红表笔接S2端黑表笔接S3端,或红表笔接S3端黑表笔接S4端,指针偏转情况应与上述相同;如指针

摆动与上述相反,为正极,检查是否看错或标注错误,检测时二次侧接线柱处标有P字母的为保护用端子。

高压断路器装配的用于测量和保护的电流互感器虽然线圈多、变比多,但在出厂时已全部连接到接线端子排上,且标注清楚,相对容易测试。如ZW7-40.5/1600-25型户外交流高压真空断路器,每相带有四个线圈,其中二个用于测量,二个用于保护,三个变比,分别为500/5、600/5、800/5。单只的电流互感器其极性标注字母一般随外绝缘一起浇注,多数二次侧接线柱处位置狭小,标注字母不清楚,如LQJ-10、LQJ-10Q等型号的电流互感器,如果不进行极性判断,很容易看错导致接线错误;这就更需要在接线前认真地进行极性测试。

电流互感器极性及方向保护的问题

谈谈对于极性与方向保护的理解 以电流互感器为例,我们常说要以减极性方式接线,为什么要这样规定呢? 所谓减极性接线就就是在某一个瞬间(因为交流电方向随着时间变化,但某一个时刻还就是具备明确的方向性的)电流互感器一次侧感受到的电流方向如果就是流入,那么二次侧应该就是流出;一次侧如果就是流出,那么二次侧就就是流入。 为什么一次电流与二次侧电流要相反呢? 其实这个相反就是针对电流互感器而言的,再想一想二次侧电流要接到哪个装置?保护装置! 这样当电流互感器一次侧感受到电流流入,二次侧则流出,那么对于保护装置又就是流入了!! 因此,减极性的接法的目的就是要保证二次设备(例如保护装置)感受到的电流方向要与一次电流方向一致!! 减极性具体接线接线 具体来

说比方说当流变P1侧指向母线,则二次上应该将三根S1 与短接三根S2成为一根后总计4根线接入保护装置。 当流变P2侧指向母线,则二次上应该将三根S2 与短接三根S1成为一根线后总计4根线接入保护装置。 对于电压互感器而言 也存在一个极性问题,采用减极性接线的目的也就是要保证二次设备感受到的电压要与一次电压相一致。 再说说方向保护 对于方向过电流保护,一次侧感受到的电流电压之间的相位关系具有明显的规律性: 当正方向故障时一次侧电压超前电流30°左右 当反方向故障时一次侧电流超前电压150°左右(150°=180°-30°) 既然流变与压变均采用减极性接法,也就就是说它们能够原封不动地将一次侧的相位关系搬到二次侧,那么保护装置就可以利用一次侧的电流电压相位关系来对方向进行判断了! 再想一想,如何才能够原封不动地将一次侧的电流电压关系照搬到二次侧?我们必须遵循一定的规范,这个规范就就是减极性接法!! 如果一旦流变或压变二次接线接错了,那么保护装置判断为正方向的可

高中化学分子极性及其判断规律专题辅导

高中化学分子极性及其判断规律 张素琳 一、分类:按照分子的极性,可把分子分为两类。 1. 非极性分子:正负电荷重心重合,分子对外不显示电负性的分子。例如:H O 22、、 N Cl Br CO CS CH CCl BF 22222443、、、、、、、等。 2. 极性分子:正负电荷重心不重合,分子对外显示电负性的分子。例如H O NH 23、、 HCl 、H 2O 2等。 二、掌握常见分子极性及其空间构型:常见分子极性及其空间构型可用下表表示。 三、了解常见分子空间构型及其键角:中学常见分子空间构型及其键角列举如下: (1)H O N 222、、等双原子单质分子为直线形,夹角为180°。 (2)H O 2为平面形,夹角为104.5°。 (3)NH 3为三角锥形,夹角为107°18'。 (4)H 2S 为平面形,夹角为92°。 (5)CH CCl SiH 444()、为正四面体形,夹角为109°28'。 (6)CH Cl CH Cl CHCl 3223()、为四面体形,夹角不确定。 (7)C H 22为直线形,夹角为180°。 (8)C H 24为平面形,夹角为120°。 (9)C H 66为平面形,夹角为60°。

(10)P 4为正四面体形,夹角为109°28'。 (11)CO CS 22()为直线形,夹角为180°。 (12)BF 3为平面形,夹角为120°。 注意:中学常见的四面体物质有①CH 4 ②CH Cl 3 ③CH Cl 22 ④CHCl 3 ⑤ CCl 4 ⑥P 4 ⑦NH 4 ⑧SiH 4 ⑨SiF 4等。其中是正四面体的有①、⑤、⑥、⑦、⑧、 ⑨共6种。 四、分子极性判断规律。 ①双原子单质分子都是非极性分子。如H O N Cl Br 22222、、、、等。 ②双原子化合物分子都是极性分子。如HCl 、HBr 、HI 等。 ③多原子分子极性要看空间构型是否对称,对称的是非极性分子,否则是极性分子。如H 2O 、NH HCl H O CH Cl 3223、、、等是极性分子;CO CH CCl BF 2443、、、等是非极性分子。 ④AB n 形分子极性判断:若A 原子的最外层电子全部参与成键,这种分子一般为非极性分子。如CO CH BF 243、、等。若A 原子的最外层电子没有全部参与成键,这种分子一般为极性分子。如H O NH 23、等。

电流互感器极性常见的几个问题

电流互感器极性常见的几个问题 在电力系统中,因为电流互感器极性接线错误导致保护装置误动或拒动的现象时有发生,严重影响供电系统的稳定运行。同样,电流互感器的极性接线在化工厂应用中也显得尤为重要。本文就化工厂常见的一些电流互感器极性问题进行总结,并给出相应整改措施。 标签:电流互感器;极性;保护装置;措施 1 前言 电流互感器(CT)是将一次侧大电流转换成可供计量、测量、保护等二次设备使用的二次侧电流的变流设备,还可以使二次设备与一次高压隔离。它的一次、二次绕组都是由两个端子引出,任何一侧的引出端子用错,都会使二次侧的相位变化180度,既影响继电保护装置的正确动作,也影响电力系统的在线监测及故障处理,严重时还会引起人身安全。 2 电流互感器极性 为了便于正确接线和理论分析,电流互感器的一次绕组和二次绕组的引出端子都标有极性符号。一次绕组P1为首端,P2为末端;二次绕组S1为首端,S2为末端。通常用“.”“*”等符号标记,表示同极性,即P1、S1(或P2、S2)为同名端。通常电流互感器采用减极性原则(同名端流入,同名端流出)标注,规定当一次侧电流从首端P1流入,由末端P2流出;二次侧电流从首端S1流出,末端S2端流入。 3 电流互感器极性常见的几个问题 结合本化工厂实际,保护1为南瑞RCS-9671CS变压器差动保护装置;保护2、3、4为施耐德MiCOM P140馈线管理保护装置系列下的P143装置,相间/零序过电流保护可自由设置方向;保护5为施耐德MiCOM P640 变压器保护装置系列下的P643装置。 3.1 变压器或线路差动保护CT接线 变压器或线路差动保护保护范围内两侧CT采用180度極性接线,为了满足被保护对象正常运行或区外故障时,二次侧差流近似于零,保护不会动作;区内故障时,二次侧差流近似等于两倍短路电流,保护动作。 3.2 针对35kV IV母进线和馈线(带方向) ①4#主变进线保护2所示CT极性:电流方向指向母线,为反方向动作;②4#热电站升压变高压侧后备保护4所示CT极性:电流方向指向主变,为正方向

反馈极性的判断方法瞬时极性法

反馈极性的判断方法瞬时 极性法 Last revision on 21 December 2020

反馈极性的判断方法——瞬时极性法 反馈在电技术中应用十分广泛。反馈有正,负之分。负反馈主要用于模拟放大电路中,负反馈既能稳定静态工作点,又能改善放大电路的各种性能。放大电路很少用正反馈。在一定条件下放在电路中的负反馈可转化为正反馈,形成自激振荡,使放大器不能正常工作,这是要避免的一面。正反馈还有有利的一面,就是在波形产生的电路中,人为地把电路接成反馈形式,产生所需的波形。在电子技术实践中,要正确组成反馈放大电路和振荡电路。必须清晰准确地判别正负反馈。如何有效判别正负反馈本文介绍瞬时(变化)极性法。 学习反馈电路,掌握反馈的基本概念和判别方法,必须解决以下问题: (1)什么是反馈反馈就是将放大电路的输出信号的一部分,通过一定电路形式送回到输入回路称为反馈。 (2)反馈元件如何判别既与输出回路相连,又与输入回路相连的器件都是反馈元件;虽仅在输出回路或输入回路,但与反馈支路相连,并对反馈信号大小产生影响的元件也是反馈元件。 (3)如何构成反馈放大器引入反馈的放大电路称为反馈放大电路,即反馈放大器。(见图1) 图1 图中A是基本放大电路,F是反馈网络,两部分构成一个闭环。X’i和x’f分别是输入信号和反馈信号,x’d是净输入信号,三者汇交的节点称为混合环节。X’i、x’f、x’d可以是电压信号,也可以是电流信号,x’i与x’f在节点处可以相加也可以相减。如果是串联反馈x’i和x’f都用电压表示,两个电压在此串联相减。如果是并联反馈,x’i和x’f都用电流表示,两个电流在此并联相减。

电流互感器极性的判断

怎样测量电流互感器的极性 电流互感器在交接及大修前后应进行极性试验,以防在接线时将极性弄错,造成在继电保护回路上和计量回路中引起保护装置错误动作和不能够正确的进行测量,所以必须在投运前做极性试验。 测量电流互感器的极性的方法很多,我们在工作时常采用的有以下三种试验方法:①直流法;②交流法;③仪器法。 1直流法 见图1。用1.5~3V干电池将其正极接于互感器的一次线圈L1,L2接负极,互感器的二次侧K1接毫安表正极,负极接K2,接好线后,将K合上毫安表指针正偏,拉开后毫安表指针负偏,说明互感器接在电池正极上的端头与接在毫安表正端的端头为同极性,即L1、K1为同极性即互感器为减极性。如指针摆动与上述相反为加极性。 图1直流法测电流互感器极性 2交流法

见图2,将电流互感器一、二次线圈的L2和二次侧K2用导线连接起来, 在二次侧通以1~5V的交流电压(用小量程),用10V以下的电压表测量U 及U3的数值如U3=U1-U2为减极性;若U3=U1+U2为加极性。 2 图2交流法测电流互感器极性 注意:在试验过程中尽量使通入电压低一些,以免电流太大损坏线圈,为了读数清楚电压表尽量选择小一些,变流比在5以下时采用交流法测量比较简单准确,对变流比超过10的互感器不要采用这种方法进行测量,因为U2的数值较小U3与U1的数值接近,电压表的读数不易区别大小,所以在测量时不好辨别,一般不宜采用此法测量极性。 3仪表法 一般的互感器校验仪都有极性指示器,在测量电流互感器误差之前仪器可预先检查极性,若指示器没有指示则说明被试电流互感器极性正确(减极性)。 高压电流互感器极性的判断

按规定电流互感器在交接及大修前后应进行极性试验,防止接线时将极性弄错,造成继电保护回路上和计量回路中的保护装置错误动作和不能正确地进行计量,因此必须在接线时做极性试验。 判断电流互感器极性的方法有三种,分别为直流法、交流法、仪器法。其中最方便、最实用的是直流法,用一只普通的1号干电池,一根0.5米长的连接线,一只指针式万用表,最好是MF-500型的,上面带有微安挡,指针偏转角度大,显示比较直观。把万用表左侧旋钮调整到A直流电流挡位,右侧旋钮调整到50微安刻度;判断极性时一般两个人一起操作,其中一个人把万用表的正极红表笔接电流互感器二次侧的S1端,负极黑表笔接S2端,另一个人把连接线一端固定在电流互感器一次侧P2端,连接线的另一端和干电池负极锌片端接触,使干电池的正极瞬间碰触电流互感器的一次侧P1端,会发现万用表指针正偏(向右偏)之后,又马上返回,这说明极性正确,为负极。然后红表笔接S2端黑表笔接S3端,或红表笔接S3端黑表笔接S4端,指针偏转情况应与上述相同;如指针

电流互感器极性及方向保护的问题

谈谈对于极性和方向保护的理解 以电流互感器为例,我们常说要以减极性方式接线,为什么要这样规定呢 所谓减极性接线就是在某一个瞬间(因为交流电方向随着时间变化,但某一个时刻还是具备明确的方向性的)电流互感器一次侧感受到的电流方向如果是流入,那么二次侧应该是流出;一次侧如果是流出,那么二次侧就是流入。 为什么一次电流和二次侧电流要相反呢 其实这个相反是针对电流互感器而言的,再想一想二次侧电流要接到哪个装置保护装置! 这样当电流互感器一次侧感受到电流流入,二次侧则流出,那么对于保护装置又是流入了!! 因此,减极性的接法的目的是要保证二次设备(例如保护装置)感受到的电流方向要与一次电流方向一致!! 减极性具体接线接线 具体来

说比方说当流变P1侧指向母线,则二次上应该将三根S1 和短接三根S2成为一根后总计4根线接入保护装置。 当流变P2侧指向母线,则二次上应该将三根S2 和短接三根S1成为一根线后总计4根线接入保护装置。 对于电压互感器而言 也存在一个极性问题,采用减极性接线的目的也是要保证二次设备感受到的电压要和一次电压相一致。 再说说方向保护 对于方向过电流保护,一次侧感受到的电流电压之间的相位关系具有明显的规律性: 当正方向故障时一次侧电压超前电流30°左右 当反方向故障时一次侧电流超前电压150°左右(150°=180°-30°) 既然流变和压变均采用减极性接法,也就是说它们能够原封不动地将一次侧的相位关系搬到二次侧,那么保护装置就可以利用一次侧的电流电压相位关系来对方向进行判断了! 再想一想,如何才能够原封不动地将一次侧的电流电压关系照搬到二次

侧我们必须遵循一定的规范,这个规范就是减极性接法!! 如果一旦流变或压变二次接线接错了,那么保护装置判断为正方向的可能实际是反方向,判断为反方向其实为正方向,那么就乱了套了! 这就再一次印证了我们经常说的 对于方向性保护,一定要注意二次接线,极性不要搞错了 交流电每时每刻电流、电压的大小和方向均是在不停变化的,我们常说假设电流由母线流向线路为正,其实是指某个瞬间交流电流由母线流向线路。 但是不管电流电压怎么变化方向,但是有一点需要切记,电流和电压之间的相位关系具有一定的规律性,即电流和电压矢量之间的夹角肯定是有规律的! 由此可见掌握方向保护(不管是方向过电流还是零序方向保护或者其他方向保护)的精髓就是要记住 正方向和反方向故障时电流和电压之间的相位关系。

电流互感器现场校验仪说明书

电流互感器现场校验仪说明书 由于输入输出端子、测试柱等均有可能带电压,在插拔测试线、电源插座时,会产生电火花,小心电击,避免触电危险,注意人身安全! 安全要求 请阅读下列安全注意事项,以免人身伤害,为了避免可能发生的危险,只可在规定的范围内使用。 只有合格的技术人员才可执行维修。 —防止火灾或人身伤害 使用适当的电源线。只可使用专用并且符合规格的电源线。 正确地连接和断开。当测试导线与带电端子连接时,请勿随意连接或断开测试导线。 注意所有终端的额定值。为了防止火灾或电击危险,请注意所有额定值和标记。在进行连接之前,请阅读使用说明书,以便进一步了解有关额定值的信息。避免接触裸露电路和带电金属。有电时,请勿触摸裸露的接点和部位。 请勿在潮湿环境下操作。 请勿在易爆环境中操作。 -安全术语 警告:警告字句指出可能造成人身伤亡的状况或做法。 目录

一、简介 (4) 二、特点 (4) 三、主要性能技术指标 (5) 四、操作指南 (7) 五、主界面介绍 (8) 六、电流互感器测量操作介绍 (9) 七、电阻、导纳测试操作介绍 (11) 八、电压互感器测试操作介绍 (14) 九、数据浏览功能 (16) 十、系统帮助 (17) 十一、系统设置 (18) 十二、使用注意事项 (19) 十三、打印机使用及安装方法 (19) 一、简介 发电厂与变电站的高压电能计量装置,以及大量用户的电能计量装置,关系到发电、送电、供电及用户多方的利益。为保证计量准确,必须按照SD109《电能计量装置检验规程》和DL/T448-2000《电能计量装置技术管理规程》进行检验。 HGQL-H电流互感器现场测试仪是以高端测试技术,大规模电子线路设计以及符合国家相关规程研制出来的。它解决了现场检定电流互感

分子极性判断方法.docx

一、共价键的极性判断 化学键有无极性,是相对于共价键而言的。从本质上讲,共价键有无极性取决于共用电子对是 否发生偏移,有电子对偏移的共价键即为极性键,无电子对偏移的共价键即为非极性键。 从形式上讲,一般来说,由同种元素的原子形成的共价键即为非极性键,由不同种元素的原子形 成的共价键即为极性键。 在学习共价键的极性判断时,一定要走出这样一种误区“由同种元素的原子形成的共价键一 定为非极性键”。 对于化合物来说,象H3C-CH3中的“C- C”键、 CH2=CH2中的“ C=C”键、 Na2O2中的“O- O” 键等具有结构对称的分子中同种元素原子间形成的共价键的确是非极性键。但象 CH3CH2OH、 CH3COOH等结构不对称的分子中的“C - C”键却不是非极性键,而是极性键。 对于单质来说,象在H2、O2、N2、P4、C60、金刚石、石墨等共价单质中的共价键的确是非 极性键。但在 O3分子中的“O - O”键却不是非极性键,而是极性键。这是因为O3分子结构呈“V”型(或角型),键长为(该键长正好位于氧原子单键键长148 pm 与双键键长 112 pm 之间),与 SO2结构相似,可模仿 SO2把 O3称作“二氧化氧”,所以 O3分子中的“O - O”键是 极性键,其分子是极性分子。 二、分子的极性判断 分子是否存在极性,不能简单的只看分子中的共价键是否有极性,而要看整个分子中的电荷分布 是否均匀、对称。 根据组成分子的原子种类和数目的多少,可将分子分为单原子分子、双原子分子和多原子分子, 各类分子极性判断依据是: 1、单原子分子:分子中不存在化学键,故无极性分子或非极性分子之说,如He、Ne等稀有气体分子。 2、双原子分子:对于双原子分子来说,分子的极性与共价键的极性是一致的。若含极性键 就是极性分子,如HF、 HI 等;若含非极性键就是非极性分子,如I2 、 O2、 N2等。 3、多原子分子: ⑴以非极性键结合的多原子单质分子,都是非极性分子,如P4等。 ⑵以极性键结合的多原子化合物分子,其分子的极性判断比较复杂,可能是极性分子,也可 能是非极性分子,这主要由分子中各键在空间的排列位置来决定。若分子中的电荷分布均匀, 排列位置对称,则为非极性分子,如CO2、 BF3、CH4等;若分子中的电荷分布不均匀,排列 位置不对称,则为极性分子,如H2O、 NH3、 PCl3等。

互感器极性及其接线安全技术示范文本

互感器极性及其接线安全技术示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

互感器极性及其接线安全技术示范文本使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 在生产实践中,由于电流互感器极性及接线不正确, 造成保护装置误动和拒动,由此而引起的停电事故时有发 生,这在克拉玛依电网已发生过多起,且故障多发生在主 变差动保护、110kV线路保护及母差保护中。例如:石西 地区110kV陆良变电站及35kV莫北变电站都因1,2号 主变差动保护电流互感器极性及接线存在问题,造成多次 全站失电。因此,正确判断电流互感器的极性及二次接线 的正确性是非常重要的。 1 极性的判断及二次线的联接 以双圈变压器差动保护接线为例,简要说明如何判断

电流互感器极性以及正确的电流互感器二次接线。 1.1电流互感器的极性判断 电流互感器一次和二次线圈间的极性,应按减极性标注,如图1所示,L1和K1为同极性端子(L2和K2也为同极性端子)。标注电流互感器极性的方法是在同极性端子上注以“*”号,从图1可以看出,当一次电流从极性端子L1流入时,在二次绕组中感应出的电流应从极性端子K1流出。 1.2正确的电流互感器的二次接线方式 (1)变压器按Y/△-11接线时,两侧电流之间有30。的相位差,即同相的低压侧电流超前高压侧电流30。,为了

电流互感器二次出线的极性要求及确定方法

电流互感器二次出线的极性要求及确定方法 [摘要] 分析了继电保护、计量、测量、故障录波等相关装置对电流互感器二次出线极性的要求,并介绍了极性确定步骤,最后给出了某电厂的发变组TA二次出线的极性配置示意图。 关键词电流互感器二次出线极性配合 0 引言 电气二次设备,如继电保护装置、测量装置、计量装置、安全自动装置等,都需要通过电流互感器来反映一次侧电流值,从而实现保护、测量等功能。电流互感器的传递变换具有极性,其二次出线极性的确定将对相关电气二次设备功能的实现造成影响,特别是保护装置用TA 的二次出线极性出现错误时将导致保护的误动或拒动,严重时将危及一次设备乃至电网的安全。 1 电流互感器的二次出线极性要求 GB1208-2006《电流互感器》规定:电流互感器中标有P1(L1)、S1(K1)的所有端子在同一瞬间具有同一极性,即P1(L1)与S1(K1)是同极性关系。其中,P1、P2(L1、L2)在电流互感器的本体上有标注(变压器套管TA除外,需由设备厂方和单体试验方提供TA的一次指向信息);S1、S2(K1、K2)在电流互感器的二次接线端子处有标注。值得注意的是,国外TA必须通过产品的出厂说明书和单体试验来获取极性信息。 1.1 与继电保护装置的配合 1.1.1电流差动保护 电流差动保护需要对一次设备各侧TA二次电流的矢量进行差流计算,因此需要综合考虑各侧TA极性的配合。对于变压器差动保护中组别引起的相差,目前微机保护均通过软件来计算补偿,所以各侧TA二次接线均采用“Y”接法。至于电流差动保护,由于各侧TA有0°和180°两种接线方式,因此要根据保护装置的具体要求来确定TA的极性。表1为几种国内常见的电流差动保护的极性要求。 差流为矢量差: 差流为矢量和:

CT极性判别方法

判断电压电流互感器极性的新方法 发布日期:2009-5-27 10:53:43 (阅2378次) 关键词: 变压器互感器继电保护 [摘要]应用克希霍夫定律(Kirchhoff''s Current Law)及二次回路接线原理,推导出一种判断电压和电流互感器极性的新方法,经与传统的检测方法进行对比,证明了其优越性和实用性,可供继保专业人员参考和运用。 [关键词]互感器继电保护克希霍夫定律(KCL)极性 引言 变压器和电流互感器在继电保护二次回路中起一、二次回路的电压和电流隔离作用,它们的一、二次侧都有两个及以上的引出端子,任何一侧的引出端子用错,都会使二次侧的相位变化180度,既影响继电保护装置正确动作,又影响电力系统的运行监控和事故处理,严重时还会危及设备及人身安全。因此,正确判断变压器(电压互感器)和电流互感器的极性正确与否是一项十分重要的工作。 1 传统的极性检测方法 1.1直流法 电压和电流互感器的传统极性检测直流法可按图1接好线,使用干电池和高灵敏度的磁电式仪表进行测定。检测极性时,将电池的正极接在一次线圈的K端上,而将磁电式仪表(如指针式电流表或毫伏表)的正极端接在二次线圈的K端上。当开关S瞬间闭合时,仪表指针偏向右转(正方向),而开关S瞬间断开时,仪表指针则偏向左转(反方向),则表明所接互感器一、二次侧端子为同极性。反之,为异极性。

1.2、交流法 按图2所示接线,将互感器一、二次线圈的尾端L2、K2接在一起,在二次线圈上通入1~5V的交流电压,再用10V以下小量程交流电压表分别测量U2、U3,若U3=U1-U2,则L1、K1为同极性,若U3=U1+U2,L1、K1为异极性。 2 新极性检测方法 该方法以KCL和二次接线原理为基本依据,强调注入电流作为引导检测过程的基本手段,将交流安培计的读数作为检测结果,来判断互感器的极性。 2.1原理 根据KCL的描述: 在任何电路中的任意节点上流入该节点的电流总和等于流出该节点的电流总和,即Σi入=Σi出。当某一节点趋于无穷大的极限情况时,KCL可以推广至任意用一闭合面(图3虚线表示与纸平面的相交线)所包围的电路部分。该闭合面S包围了部分电路,并与支路1、2、3相交,应用KCL定律可得i1-i3-i2=0。 下面讨论一种特殊状态,当初始时刻电路中无电流通过时,如果强制性地使某一闭合面包围的部分电路中流入一定量的相对于初始状态额外的电流,由于离开包围部分电路的任一闭合面的各支路的电流的代数和为零,所以必有同量的电流流出那部分电路,则可在流出的闭合面的另一支路上串联一只交流安培计测量。那么,当被包围的部分电路为电压和电流互感器的内部电路时,则其中任两相的同极性或异极性将影响流出包围的互感器内部电路电流的大小,然后结果将体现在交流安培计的读数上。下面以电流互感器的星形和三角形两种连接情况来具体说明。 2.2星形回路检测 在检测之前,须断开一次隔离刀闸,确保电流互感器内部电路处于无电流状态。任选电流互感器的两相(图4所选的是A、B两相)在一次侧线圈的L端同时接地,K端串接一升流装置。在二次侧的中性线n上串接一只交流安培计。用升流装置向其中注入定量的交流电流,电流大小及安培计的量程可由电流互感器的变比确定。数量级约在10-1A至1A之间。同时观察安培计的变化和读数。由于另一单相未注流的原方开路,在二次星形回路中电流继电器线圈阻抗相对很高,所以二次回路的电流I3很小,近似为零。此时若安培计的指针不动或微偏(读数IA也约为零),则说明此两相的二次电路在闭合面包围下其电流近似

电流互感器接线方式

电流互感器接线方式 电流互感器在交流回路中使用,在交流回路中电流的方向随时间在改变。电流互感器的极性指的是某一时刻一次侧极性与二次侧某一端极性相同,即同时为正、或同时为负,称此极性为同极性端或同名端,用符号"*"、"-" 或"."表示。(也可理解为一次电流与二次电流的方向关系)。按照规定,电流互感器一次线圈首端标为L1,尾端标为L2;二次线圈的首端标为K1,尾端标为K2。在接线中L1 和K1 称为同极性端,L2 和K2 也为同极性端。其三种标注方法如图1 所示。电流互感器同极性端的判别与耦合线圈的极性判别相同。较简单的方法例如用 1.5V 干电池接一次线圈,用一高内阻、大量程的直流电压表接二次线圈。当开关闭合时,如果发现电压表指针正向偏转,可判定 1 和 2 是同极性端,当开关闭合时,如果发现电压表指针反向偏转,可判定1 和2 不是同极性端。 3 电流互感器的极性与常用电流保护以及易出错的二次接线 3.1 一相接线

图 1 电流互感器的三种极性标注 图 2 一相接线 一相式电流保护的电流互感器主要用于测量对称三相负载或相负荷平衡度小的三相装置中的一相电流。电流互感器的接线与极性的关系不大,但需注意的是二次侧要有保护接地,防止一次侧发生过电流现象时,电流互感器被击穿,烧坏二次侧仪表、继电设备。但是严禁多点接地。两点接地二次电流在继电器前形成分路,会造成继电器无动作。因此在《继电保护技术规程》中规定对于有几组电流互感器连接在一起的保护装置,则应在保护屏上经端子排接地。如变压器的差动保护,并且几组电流互感器组合后只有一个独立的接地点。 3.2 两相式不完全星形接线 两相式不完全星形接线用于相负荷平衡和不平衡的三相系统中。如图 3 所示。若有一相二次极性那么流过3KA 的电流为I A I

互感器极性及其接线安全参考文本

互感器极性及其接线安全 参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

互感器极性及其接线安全参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 在生产实践中,由于电流互感器极性及接线不正确, 造成保护装置误动和拒动,由此而引起的停电事故时有发 生,这在克拉玛依电网已发生过多起,且故障多发生在主 变差动保护、110 kV线路保护及母差保护中。例如:石西 地区110 kV陆良变电站及35 kV莫北变电站都因1,2号 主变差动保护电流互感器极性及接线存在问题,造成多次 全站失电。因此,正确判断电流互感器的极性及二次接线 的正确性是非常重要的。 1 极性的判断及二次线的联接 以双圈变压器差动保护接线为例,简要说明如何判断电流 互感器极性以及正确的电流互感器二次接线。 1.1 电流互感器的极性判断

电流互感器一次和二次线圈间的极性,应按减极性标注,如图1所示,L1和K1为同极性端子(L2和K2也为同极性端子)。标注电流互感器极性的方法是在同极性端子上注以“*”号,从图1可以看出,当一次电流从极性端子L1流入时,在二次绕组中感应出的电流应从极性端子K1流出。 1.2 正确的电流互感器的二次接线方式 (1) 变压器按Y/△-11接线时,两侧电流之间有30。的相位差,即同相的低压侧电流超前高压侧电流30。,为了消除这一不平衡电流,差动保护的电流互感器二次侧应采用△/Y接线,如图2所示。 变压器低压侧,即副边一次线圈接成△,则与其对应的低压侧电流互感器二次接线应接成Y型。如电流互感器为减极性,并假定靠母线侧为正,电流互感器的正端子联接在一起,作为中性线。二次引出线分别接在a、b、c各相

电流互感器电压互感器常见故障处理

电流互感器、电压互感器故障现象及处理 互感器是将电网高电压变为低电压或将大电流变为小电流的一种特殊变压器,主要用于测量仪表和继电保护装置。互感器运行和维护的好坏,直接影响电力系统计量的准确性和保护装置动作的可靠性以及电网、设备和人身的安全。 一、电压互感器常见故障及处理: 电压互感器异常运行时有预告警音响信号、“电压回路断线”光字牌亮、表计指示异常、互感器过热冒烟等多种现象。主要包括以下几方面故障: 1、发生下列情况时需要紧急停运电压互感器(电流互感器)(1)严重发热、冒烟、冒油时。 (2)电压互感器高压侧熔断器连续熔断两次。 (3)外壳破裂、严重漏油。 (4)内部有放电声或异常声音。 (5)设备着火。 电压互感器冒烟、着火时的处理方法:如果在冒烟前一次侧熔断器从未熔断,而二次侧熔丝多次熔断,且冒烟不严重无绝缘损伤特征,在冒烟时一次侧熔断器也未熔断,则应判断为二次绕组相(匝)间短路引起冒烟。在二次绕组冒烟而没有影响到一次绝缘损坏之前,立即退出有关保护、自动装置,取下二次侧熔断器,拉开一次侧重隔离开关,停用电压互感器。对充油式电压互感器,如果在冒烟时,又伴随

较浓臭味,电压互感器内部有不正常噪声、绕组与外壳或引线与外壳之间有火花放电、冒烟前一次侧熔断器熔断2~3次等现象之一时,应判断为一次侧绝缘损伤而冒烟,如是母线电压互感器则用停母线方法停用电压互感器,此时决不能用拉开隔离开关的方法停用电压互感器,因隔离开关没有灭弧能力,若用隔离开关切断故障,还可能会引起母线短路,使设备损坏或造成人身事故。电压互感器本体着火时,应立即断开有关电源,将故障电压互感器隔离,再汇报值班长,选用干式灭火器或砂子灭火。 2、电压互感器二次回路断线 现象: (1)三相电压不平衡,故障相相电压指示为零,电度表指示失常(2)相应的有功表、无功表指示降低或到零。 (3)发“电压回路断线”信号发出,故障录波器可能动作处理: (1)在电压互感器二次侧熔丝下端,用万用表分别测量两相之间电压是否都为100伏。如果上端是100伏,下端没达到100伏,则是二次侧熔丝熔断,并且进行更换。如果测量熔丝上端电压没有100伏,有可能是电压互感器隔离开关动静触头接触不良(或没有到工作位置)或一次侧熔丝熔断。如果是电压互感器一次侧熔丝熔断,则拉开电压互感器隔离开关进行更换,如果是电压互感器隔离开关动静触头接触不良(或没有到工作位置)应将电压互感器重新送一次。 (2)对异常的电压互感器二次回路进行检查,有无短路、松动、断

直流法判断互感器的极性 (整理

直流法判断互感器的极性(整理) 一、工器具准备及安全检查 1、250V兆欧表1只,万用表1只,兆欧表、万用表测试连接线各两条(红色黑色),电源盒一只,放电棒一根,绝缘手套两只,一字起一把,砂纸一张,抹布一条,裸铜线三根。 2、检查兆欧表、万用表外观是否完好,对兆欧表进行开路、短路检查,检查绝缘手套有无合格证,试验标签是否过期(六个月一次),有无漏气现象;检查放电棒有无合格证,试验标签是否过期(1年一次) 二、询问老师互感器处在什么状态? 老师答:此时互感器处在检修状态。这时检查(电流、电压)互感器有无接地,(注意:不要碰触电流、电压互感器) 三、互感器导通检查 1、取绝缘手套戴上,将放电棒的接地端夹在互感器的外壳接地上,依次用放电棒的顶端(带接地电阻)和直接接地端钮对电流器P1 P2 IS1 IS2桩头进行放电,再对电压互感器A 、B 、a1、b1 、a 2、b2、进行放电。将放电棒放在一侧。(放电棒接地线夹仍然夹在接地不要取下,后面要用。) 2、打磨清扫互感器。 取砂纸对互感器桩头进行打磨,然后取抹布对互感器进行清扫。 3、万用表导通检查。 先将万用表档位拔至“Ω”档*1K档位,再检查万用表,静态调零,在表头正、负极开路的情况下,用罗丝批旋调万用表调零旋钮,使指针指向“0”位;动态调零,在万用表短路状态下,旋调万用表下面“Ω”旋钮调零,使万用表指针指向“0”位。 4、互感器导通检查。 万用表在“Ω*1K”档,用正负极测试夹分别碰及电流互感的P1---P2 ,S1---S2桩头,万用表应显示导通,再碰及电压互感器的A--B 、a1----b1 、a2----b2、桩头,万用表应显示导通,以上说明电流、电压互感器一、二侧无断路现象。 四、进行互感器极性检查。 1、将万用表拔至A档和50μA档位, 2、取电池盒。 3、电流互感器 1、先将电源红色引线夹在P1桩头上(正极),将黑色引线(负极)夹在P2桩头上。 2、将万用表正极引线夹在S1桩头上,负极夹在S2桩头上。 3、按动电源盒红色按钮,连续三次,如果万用表指针向右偏转,说明互感器为“减极性”,向左偏听偏信转说明互感器为“加极性”。 4、电流互感器极性测量完成后,在取下测量线前,先戴绝缘手套,拿放电棒依次对P1 P2 IS1 IS2桩头进行放电,然后取下电源及万用表引线。 4、电压互感器 1、将电源红色引线夹在A桩头上(正极),将黑色引线(负极)夹在B桩头上。 2、万用表正极引线夹在a1桩头上,负极夹在b1桩头上。按动电源盒红色按钮,连续三次,观察万用表指针偏向判断极性;再对电压器进行放电,将万用表正极引线夹在a2桩头上,负极夹在b2桩头上。按动电源盒红色按钮,连续三装表接电技能操作题(高)―8 次,观察万用表指针偏向判断极性。 3、取绝缘手套,拿放电棒对A 、B 、a1、b1 、a2、b2、进行放电。取下电源、万用表引线,将万用表开关关闭,档位旋钮旋至关闭。放回后面的桌子上。

分子极性判断方法

分子极性判断方法 一、共价键的极性判断 化学键有无极性,是相对于共价键而言的。从本质上讲,共价键有无极性取决于共用电子对是否发生偏移,有电子对偏移的共价键即为极性键,无电子对偏移的共价键即为非极性键。 从形式上讲,一般来说,由同种元素的原子形成的共价键即为非极性键,由不同种元素的原 子形成的共价键即为极性键。 在学习共价键的极性判断时,一定要走出这样一种误区由同种元素的原子形成的共价键一 定为非极性键”。 对于化合物来说,象H3C-CH中的C-C”键、CH2=CH中的C=C键、Na20冲的O-0”键等具有 结构对称的分子中同种元素原子间形成的共价键的确是非极性键。但象CH3CH2OHCH3C00H 等结构不对称的分子中的C-C”键却不是非极性键,而是极性键。 对于单质来说,象在H2、02、N2、P4、C60、金刚石、石墨等共价单质中的共价键的确是非极性键。但在03分子中的0-0”键却不是非极性键,而是极性键。这是因为03分子结构呈V' 型(或角型),键长为127.8pm (该键长正好位于氧原子单键键长148 pm与双键键长112 pm 之间),与S02吉构相似,可模仿S0把03称作二氧化氧”,所以03分子中的0-0”键是极性键,其分子是极性分子。 二、分子的极性判断 分子是否存在极性,不能简单的只看分子中的共价键是否有极性,而要看整个分子中的电荷 分布是否均匀、对称。 根据组成分子的原子种类和数目的多少,可将分子分为单原子分子、双原子分子和多原子分 子,各类分子极性判断依据是: 1、单原子分子:分子中不存在化学键,故无极性分子或非极性分子之说,如He Ne等稀有气体分子。 2、双原子分子:对于双原子分子来说,分子的极性与共价键的极性是一致的。若含极性键就是极性分子,如HF HI等;若含非极性键就是非极性分子,如I2、02、N2等。 3、多原子分子: ⑴以非极性键结合的多原子单质分子,都是非极性分子,如P4等。 ⑵以极性键结合的多原子化合物分子,其分子的极性判断比较复杂,可能是极性分子,也可 能是非极性分子,这主要由分子中各键在空间的排列位置来决定。若分子中的电荷分布均匀, 排列位置对称,则为非极性分子,如C02 BF3 CH4等;若分子中的电荷分布不均匀,排列 位置不对称,则为极性分子,如H20 NH3 PCI3等。 三、共价键的极性和分子的极性的关系 空间不对称 极性键极性分子

电流互感器(加极性、减极性)相关知识

极性标志有加极性和减极性,常用的电流互感器一般都是减极性,即当使一次电流自L1端流向L2。时,二次电流自K1端流出经外部回路到K2。L1和K1,L2和K2分别为同极性端。 反之,就是加极性。 低压电流互感器实用技术问答30例(之一) 刘国宏马晓文河北省康保供电分公司(076650) 1.电流互感器铭牌上额定电流比的含义是什么? 答:额定电流比系指一次额定电流与二次额定电流之比。通常用不约分的分数表示。所谓额定电流就是在这个电流下互感器可以长期运行而不会同发热损坏。 2.何为电流互感器的准确等级? 答:电流互感器变换电流存在着一定的误差,根据电流互感器在额定工作条件下所产生的变比误差规定了准确等级。0.l级以上电流互感器主要用于试验,进行精密测量或者作为标准用来校验低等级的互感器,也可以与标准仪表配合用来校验仪表,常被称为标准电流互感器;0.2级和0.5级常川来连接电气计量仪表;3级及以下等级电流互感器主要连接某些继电保护装置和控制设备。 3.电流互感器的极性标志是怎样规定的? 答:极性标志有加极性和减极性,常用的电流互感器一般都是减极性,即当 使一次电流自L 1端流向L 2 。时,二次电流自K 1 端流出经外部回路到K 2 。L 1 和K 1 , L 2和K 2 分别为同极性端。 4.电流互感器额定容量的含义是什么? 答:电流互感器的额定容量就是额定二次电流I 2e 通过额定负载Z 2e 时所消耗 的视在功率,即S2e=。

一般I 2e =5A,因此S 2e =25Z 2e 。在电流互感器的使用中,二次连接及仪表电流 线圈的总阻抗不超过铭牌上规定的额定容量(伏安数或欧姆数)时,才能保证它的准确性。 5.什么是电流互感器误差? 答:由于电流互感器铁芯的结构以及材料性能等原因的影响,电流互感器存在着激磁电流í ,使其产生误差。 从电流互感器一次电流í 1和折算后的二次电流í 2 ’的向量图来看(如图 2 所示),折算后的二次电流旋转180?后一í 2’,与一次电流í 1 相比较,不但大 小不等而且两者相位不重合,即存在着两种误差,称为比差(比值误差)和角差(相角误差)。 6.电流互感器铭牌上标有10%倍数的含义是什么? 答:按规定继电保护装置所用的电流互感器数值误差不允许超过10%,两角度误差不应超过7?。 10%倍数就是在指定的二次负载和任意功率因数下,电流互感器的电流误差为10%时,一次电流对其额定值的倍数。10%倍数一般只与继电保护装置有关。 7.影响电流互感器误差的主要因素是什么? 答:(1)一次电流的影响。当电流互感器一次电流很小时,引起的误差增大;当一次电流长期大于额定电流运行时,也会引起误差增大,因此,一般一次测电流应大于互感器额定电流的25%,小于120%。 (2)二次负载的影响.当电流互感器二次负载增大时,误差(、比差和角差)也随着增大.故在使用中不应使二次负载超过其额定值(伏安数或欧姆数)。 此外电源频率和铁芯剩磁也影响互感器误差。 8.为什么电流互感器二次不可开路? 答:因为当电流互感器二次线圈闭合时,一次、二次绕组的磁势相互抵消,铁芯中的磁通很小,两边的感应电势很低,因此不会影响负载的工作。若二次绕

电流互感器极性、接线方式及其应用

电流互感器极性、接线方式及其应用 引言 在电力系统中电流互感器的作用是把大电流变成小电流,将连接在继电器及测量仪器仪表的二次回路与一次电流的高压系统隔离,并将一次电流变换到5A 或1A 两种标准的二次电流值。电流互感器的极性与电流保护密切相关,特别是在农电系统中,电流保护起主导作用,因此必须掌握好极性与保护的关系。本文分析了电流互感器的极性和常用电流保护的关系,以及易出错的二次接线。 2 电流互感器的极性 电流互感器在交流回路中使用,在交流回路中电流的方向随时间在改变。电流互感器的极性指的是某一时刻一次侧极性与二次侧某一端极性相同,即同时为正、或同时为负,称此极性为同极性端或同名端,用符号"*"、"-" 或"."表示。(也可理解为一次电流与二次电流的方向关系)。按照规定,电流互感器一次线圈首端标为L1,尾端标为L2;二次线圈的首端标为K1,尾端标为K2。在接线中L1 和K1 称为同极性端,L2 和K2 也为同极性端。其三种标注方法如图1 所示。电流互感器同极性端的判别与耦合线圈的极性判别相同。较简单的方法例如用 1.5V 干电池接一次线圈,用一高内阻、大量程的直流电压表接二次线圈。当开关闭合时,如果发现电压表指针正向偏转,可判定 1 和 2 是同极性端,当开关闭合时,如果发现电压表指针反向偏转,可判定1 和 2 不是同极性端。 3 电流互感器的极性与常用电流保护以及易出错的二次接线 3.1 一相接线 图1 电流互感器的三种极性标注

图2 一相接线 一相式电流保护的电流互感器主要用于测量对称三相负载或相负荷平衡度小的三相装置中的一相电流。电流互感器的接线与极性的关系不大,但需注意的是二次侧要有保护接地,防止一次侧发生过电流现象时,电流互感器被击穿,烧坏二次侧仪表、继电设备。但是严禁多点接地。两点接地二次电流在继电器前形成分路,会造成继电器无动作。因此在《继电保护技术规程》中规定对于有几组电流互感器连接在一起的保护装置,则应在保护屏上经端子排接地。如变压器的差动保护,并且几组电流互感器组合后只有一个独立的接地点。 3.2 两相式不完全星形接线 两相式不完全星形接线用于相负荷平衡和不平衡的三相系统中。如图 3 所示。若有一相二次极性那么流过3KA 的电流为I A I e ,由向量差得其电流值为Ia 的 3 倍,相位滞后I a 300 角,如果三只继电器整定值是一样的,3KA 会提前动作,造成保护误动。

电流互感器的极性关系

电流互感器在交接及大修前后应进行极性试验,以防在接线时将极性弄错,造成在继电保护回路上和计量回路中引起保护装置错误动作和不能够正确的进行测量,所以必须在投运前做极性试验。 极性关系表征: 标有L1、K1和C1的各出线端子在同一瞬间具有同一极性。 测量电流互感器的极性的方法很多,我们在工作时常采用的有以下三种试验方法:①直流法;②交流法;③仪器法。 1 直流法 用1.5~3V干电池将其正极接于互感器的一次线圈L1,L2接负极,互感器的二次侧K1接毫安表正极,负极接K2,接好线后,将K合上毫安表指针正偏,拉开后毫安表指针负偏,说明互感器接在电池正极上的端头与接在毫安表正端的端头为同极性,即L1、K1为同极性即互感器为减极性。如指针摆动与上述相反为加极性。 2 交流法 将电流互感器一、二次线圈的L2和二次侧K2用导线连接起来,在二次侧通以1~5V的交流电压(用小量程),用10V以下的电压表测量U2及U3的数值若U3=U1-U2为减极性。 U3=U1+U2为加极性。注意:在试验过程中尽量使通入电压低一些,以免电流太大损坏线圈,为了读数清楚电压表尽量选择小一些,变流比在5以下时采用交流法测量比较简单准确,对变流比超过10的互感器不要采用这种方法进行测量,因为U2的数值较小U3与U1的数值接近,电压表的读数不易区别大小,所以在测量时不好辨别,一般不宜采用此法测量极性。 3 仪表法 一般的互感器校验仪都有极性指示器,在测量电流互感器误差之前仪器可预先检查极性,若指示器没有指示则说明被试电流互感器极性正确(减极性)。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关电流互感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.wendangku.net/doc/1015922381.html,。

相关文档
相关文档 最新文档