文档库 最新最全的文档下载
当前位置:文档库 › 分支界限法解0-1背包问题实验报告

分支界限法解0-1背包问题实验报告

分支界限法解0-1背包问题实验报告
分支界限法解0-1背包问题实验报告

实验5 分支界限法解0-1背包问题

一、实验要求

1.要求用分支界限法求解0-1背包问题;

2.要求交互输入背包容量,物品重量数组,物品价值数组;

3.要求显示结果。

二、实验仪器和软件平台

仪器:带usb接口微机

软件平台:WIN-XP + VC++6.0

三、源程序

#include "stdafx.h"

#include

#include

#include

#include

using namespace std;

int *x;

struct node //结点表结点数据结构

{

node *parent;//父结点指针

node *next; //后继结点指针

int level;//结点的层

int bag;//节点的解

int cw;//当前背包装载量

int cp;//当前背包价值

float ub; //结点的上界值

};

//类Knap中的数据记录解空间树中的结点信息,以减少参数传递及递归调用所需的栈空间class Knap

{

private:

struct node *front, //队列队首

*bestp,*first; //解结点、根结点

int *p,*w,n,c,*M;//背包价值、重量、物品数、背包容量、记录大小顺序关系long lbestp;//背包容量最优解

public:

void Sort();

Knap(int *pp,int *ww,int cc,int nn);

~Knap();

float Bound(int i,int cw,int cp);//计算上界限

node *nnoder(node *pa,int ba,float uub);//生成一个结点ba=1生成左节点ba=0生成右节点

void addnode(node *nod);//向队列中添加活结点

void deletenode(node *nod);//将结点从队列中删除

struct node *nextnode(); //取下一个节点

void display(); //输出结果

void solvebag(); //背包问题求解

};

//按物品单位重量的价值排序

void Knap::Sort()

{

int i,j,k,kkl;

float minl;

for(i=1;i

{

minl=1.0*p[i]/w[i];

k=0;

for(j=1;j<=n-i;j++)

{

if(minl<1.0*p[j]/w[j])

{

minl=1.0*p[j]/w[j];

swap(p[k],p[j]);

swap(w[k],w[j]);

swap(M[k],M[j]);

k=j;

}

}

}

}

Knap::Knap(int *pp,int *ww,int cc,int nn)

{

int i;

n=nn;

c=cc;

p=new int[n];

w=new int[n];

M=new int[n];

for(i=0;i

{

p[i]=pp[i];

w[i]=ww[i];

M[i]=i; //用M数组记录大小顺序关系}

front=new node[1];

front->next=NULL;

lbestp=0;

bestp=new node[1];

bestp=NULL;

Sort();

}

Knap::~Knap()

{

delete []first;

delete []front;

delete []bestp;

delete []p;

delete []w;

}

//取上限最大结点

node *Knap::nextnode()

{

node *p=front->next;

front->next=p->next;

return(p);

}

//将一个新的结点插入到子集树和优先队列中node * Knap::nnoder(struct node *pa,int ba,float uub) {//生成一个新结点

node * nodell=new(node);

nodell->parent=pa;

nodell->next=NULL;

nodell->level=(pa->level)+1;

nodell->bag=ba;

nodell->ub=uub;

if(ba==1)

{

nodell->cw=pa->cw+w[pa->level];

nodell->cp=pa->cp+p[pa->level] ;

}

else

{

nodell->cw=pa->cw;

nodell->cp=pa->cp;

}

return(nodell);

}

//将结点加入优先队列

void Knap::addnode(node *no)

{

node *p=front->next,*next1=front;

float ub=no->ub;

while(p!=NULL)

{

if(p->ubnext=p;next1->next=no;break;}

next1=p;

p=p->next;

}

if(p==NULL){next1->next=no;}

}

// 计算结点所相应价值的上界

float Knap::Bound(int i,int cw,int cp)

{

int cleft=c-cw; //剩余容量

float b=(float)cp; //价值上界

//以物品单位重量价值减序装填剩余容量

while (i

{

cleft-=w[i];

b+=p[i];

i++;

}

//装填剩余容量装满背包

if (i

return b;

}

//计算最优值和变量值

void Knap::display()

{

int i;

cout<

cout<<"当前最优价值为:"<

for(i=n;i>=1;i--)

{

x[M[i-1]]=bestp->bag;

bestp=bestp->parent;

}

cout<<"变量值x = ";

for(i=1;i<=n;i++)

cout<

cout<

}

//背包问题求解

void Knap::solvebag()

{

int i;

float ubb;

node *aa; //记录上限最大结点

first=new node[1]; //根结点

first->parent=NULL;

first->next=NULL;

first->level=0; //用level记录结点的层

first->cw=0;

first->cp=0;

first->bag=0;

ubb=Bound(0,0,0);

first->ub=ubb;

front->next=first;

while(front->next!=NULL)

{

aa=nextnode();

i=aa->level;

//当叶子节点处的解>最优解时,更新最优解

if(i==n-1)

{

if(aa->cw+w[i]<=c&&(long)(aa->cp+p[i])>lbestp)

{

lbestp=aa->cp+p[i];

bestp=nnoder(aa,1,(float)lbestp);//将一个新的结点插入到子集树和优先队列中

}

if((long)(aa->cp)>lbestp)

{

lbestp=aa->cp;

bestp=nnoder(aa,0,(float)lbestp);

}

}

//非叶子结点,递归调用Bound函数计算上界

if(i

{

if(aa->cw+w[i]<=c&&Bound(i+1,aa->cw+w[i],aa->cp+p[i])>(float)lbestp)

{

ubb=Bound(i,aa->cw+w[i],aa->cp+p[i]);

addnode(nnoder(aa,1,ubb));//将结点加入到优先队列中

}

ubb=ubb=Bound(i,aa->cw,aa->cp);

if(ubb>lbestp)

addnode(nnoder(aa,0,ubb));

}

}

display();

}

int main()

{

int c,n;

int i=0;

int *p;

int *w;

cout<

cout<<"|***********分支限界法解0-1背包问题***********| "<

cout<

cout<<"请输入物品数量n = ";

cin>>n;

cout<

cout<<"请输入背包容量C = ";

cin>>c;

cout<

x=new int[n]; //变量值

p=new int[n]; //物品价值

w=new int[n]; //物品重量

cout<<"请分别输入这"<

for(i=0;i

cin>>w[i];

cout<

cout<<"请输入这"<

for(i=0;i

cin>>p[i];

Knap knbag(p,w,c,n);

knbag.solvebag();

getch();

return 0;

}

四、运行结果

五、实验小结

回溯法的求解目标是找出解空间树中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。回溯法以深度优先的方式搜索解空间树,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树。

分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。

贪心算法0-1背包问题(算法实验代码)

实验三、0-1背包问题(贪心算法) 实验代码: #include int max(int a,int b) { if(a>b) return a; else return b; } void Knapsack(int *v,int *w,int *x,int c,int n, int m[8][100]) { int i,j; for(j=0;j=1;i--) { for(j=w[i];j<=c;j++) m[i][j]=max(m[i+1][j],m[i+1][j-w[i]]+v[i]); } for(i=1;i

printf("物品总数为:7\n"); printf("物品重量和价值分别为:\n"); printf("\n重量价值\n"); for (i=1;i<=n;i++) printf("%d %d \n",w[i],v[i]); int m=15; int array[8][100]={0}; Knapsack(v,w,x,m,7,array); printf("背包能装的最大价值为: %d\n",array[1][m]); printf("贪心算法的解为: "); for(i=1;i<=n;i++) { if(i==1) printf("%d",x[i]); else printf(" %d",x[i]); } printf("\n"); return 0; } 测试截图为:

算法设计实验_贪心算法背包问题

《算法分析与设计》 课程实验 专业年级:信息与计算科学 学生学号: 学生姓名: 实验题目:用贪婪法求解背包问题 指导老师: 实验时间:20xx年xx月x日 一、实验内容 用贪婪法求解背包问题 要求:用非递归实现 二、实验步骤 2.1、理解算法思想和问题要求; 2.2、写出每个操作的算法 非递归算法: greedbag() { int N; int c;

int[] w; int[] v; Scanner scan=new Scanner(System.in); System.out.print("输入背包的容量:"); c=scan.nextInt(); System.out.print("输入物品的数量:"); N=scan.nextInt(); System.out.print("分别输入物品的价值:"); v=new int[N]; for(int i=0;i

分支限界法求解背包问题

分支限界法求解背包问题 /*此程序实现,分支限界法求解背包问题,分支限界法是根据上界=当前背包的价值+背包 剩余载重* (剩余物品最大价值/质量)*/ 分支r 10 I 分S: 104 1.200060' 6 2.i/eeoe #i nclude #i nclude

#include #include #include #define MAXSIZE 20000 //#define BAGWEIGHT 200 int a[MAXSIZE] = {0}; int array[MAXSIZE] = {0}; int weightarray[MAXSIZE] = {0}; /* 存放各物品重量*/ int valuearray[MAXSIZE] = {0}; /* 存放各物品价值*/ int lastweight[MAXSIZE]={0}; int lastvalue[MAXSIZE]={0}; int qq=0; /* 上面的数组,变量都是蛮力法所用到,下面的都是分支限界法所用到*/ int BAGWEIGHT; /* 背包的载重*/ int n; /* 物品的数量*/int weightarrayb[MAXSIZE] = {0}; int valuearrayb[MAXSIZE] = {0}; float costarrayb[MAXSIZE] = {0}; int finalb[MAXSIZE] = {0}; int finalweightb[MAXSIZE] = {0}; /* 从文件读取数据*/ void readb() int nn = 1,ii = 1; int i = 1; FILE *fp; fp = fopen("in.dat","rb"); while(!feof(fp)) {

【精选】贪心算法的应用

贪心算法的应用 课程名称:算法设计与分析 院系:计算机科学与信息工程学院 学生姓名:**** 学号:********** 专业班级:********************************** 指导教师:****** 201312-27

贪心算法的应用 摘要:顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。贪心算法求问题一般具有两个重要性质:贪心选择性质和最优子结构性质。所谓贪心选择性是指所求问题的整体最优解可以通过一系列局部最优解的选择,即贪心选择达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法主要区别。当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 背包问题是一个经典的问题,我们可以采用多种算法去求解0/1背包问题,比如动态规划法、分支限界法、贪心算法、回溯法。在这里我们采用贪心法解决这个问题。 关键词:贪心法背包问题最优化

目录 第1章绪论 (3) 1.1 贪心算法的背景知识 (3) 1.2 贪心算法的前景意义 (3) 第2章贪心算法的理论知识 (4) 2.1 问题的模式 (4) 2.2 贪心算法的一般性描述 (4) 第3章背包问题 (5) 3.1 问题描述 (5) 3.2 问题分析 (5) 3.3算法设计 (5) 3.4 测试结果与分析 (10) 第4章结论 (12) 参考文献 (13) 附件 (13)

蛮力法、动归、贪心、分支限界法解01背包问题剖析

算法综合实验报告 学号: 1004121206 姓名:林 一、实验内容: 分别用蛮力、动态规划、贪心及分支限界法实现对0-1背包问题的求解,并至少用两个测试用例对所完成的代码进行正确性及效率关系上的验证。 二、程序设计的基本思想、原理和算法描述: 1、蛮力法 1.1数据结构 注:结构体obj用来存放单个物品的价值和重量 typedef struct obj { int w;//物品的重量 int v;//物品的价值 }; 1.2 函数组成 void subset(int s[][10],int n):用来生成子集的函数 void judge(int s[][10], obj obj[],int mark[],int n,int c):判断子集的可行性 int getmax(int mark[],int n,int &flag):求解问题的最优解 void outputObj(int flag,int s[][10],int n):输出选择物品的情况 1.3 输入/输出设计 本程序通过键盘进行输入、屏幕进行输出。 1.4 符号名说明

符号说明 S[][]存放子集 mark[]记录子集的可行性 n物品的个数 c物品的容量 max记录背包所能产生的最大价值 flag记录能产生最大价值的子集的编号 1.5 算法描述 算法的伪代码描述如下: 输入:背包的容量c,物品的个数n,n个物品的重量 w[n],价值v[n] 输出:装入背包的物品编号以及产生的最大价值 1.初始化最大价值 max=0,结果子集 s=φ; 2.对集合{1,2,......n}的每一个子集T,执行下述操作: 2.1初始化背包的价值 v=0,背包的重量 w=0; 2.2对子集t的每一个元素j 2.2.1 如果w+wj

背包问题(贪心算法)

算法分析与设计实验报告 第 4 次实验

}

附录:完整代码 #include #include #include struct node{ float value; float weight; }; float Value,curvalue=0; float Weight,curweight=0; //按价重比冒泡排序 void sort(node Node[],int M){ int i,j; node temp; for(i=0;i

回溯法和分支限界法解决0-1背包题

0-1背包问题 计科1班朱润华2012040732 方法1:回溯法 一、回溯法描述: 用回溯法解问题时, 应明确定义问题的解空间。 问题的解空间至少包含问题的一个 (最 优)解。对于0-1背包问题,解空间由长度为 n 的0-1向量组成。该解空间包含对变量的所 有 0-1 赋值。例如 n=3 时,解空间为: {(0, 0, 0), (0, 1, 0), (0, 0, 1) , (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1 , 1, 1) 然后可将解空间组织成树或图的形式, 0-1背包则可用完全二叉树表示其解空间给定 n 种物品和一背包。物品i 的重量是wi ,其价 值为vi ,背包的容量为 C 。问:应如何选择装入背包的物品,使得装入背包中物品的总价值 最大? 形式化描述:给定 c >0, wi >0, vi >0 , 1 w i < n.要求找一 n 元向量(x1,x2,…,xn,), xi € {0,1}, ? 刀wi xi w c,且刀vi xi 达最大.即一个特殊的整数规划问题。 二、回溯法步骤思想描述: 0-1背包问题是子集选取问题。0-1背包问题的解空间可以用子集树表示。在搜索解空 间树时,只要其 左儿子节点是一个可行节点, 搜索就进入左子树。当右子树中有可能含有最 优解时,才进入右子树搜索。否则,将右子树剪去。设 r 是当前剩余物品价值总和, cp 是 当前价值;bestp 是当前最优价值。当 cp+r<=bestp 时,可剪去右子树。计算右子树上界的 更好的方法是将剩余物品依次按其单位价值排序, 然后依次装入物品, 直至装不下时,再装 入物品一部分而装满背包。 例如:对于 0-1 背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1] 品的单位重量价值分别为[3,2,3,5,4]。以物品单位重量价值的递减序装入物品。 品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装 由此得一个解为[1,0.2,1,1],其相应价值为22。尽管这不是一个可行解,但可以证明其价 值是最优值的上界。因此,对于这个实例,最优值不超过 在实现时,由 Bound 计算当前节点处的上界。类 Knap 的数据成员记录解空间树中的节 点信息,以减少参数传递调用所需要的栈空间。 在解空间树的当前扩展节点处, 仅要进入右 子树时才计算上界 Bound,以判断是否可将右子树剪去。进入左子树时不需要计算上界,因 为上界预期父节点的上界相同。 三、回溯法实现代码: #i nclude "stdafx.h" #in clude using n ames pace std; temp late class Knap { temp latevciass Typ ew,class Typep> friend Typep Knap sack(T ypep [],T ypew [],T yp ew,i nt); private: Typep Boun d(i nt i); 。这4个物 先装入物 0.2的物品2。 22。

背包问题

课程设计报告 课程名称数据结构课程设计 课题名称背包问题 专业信息与计算科学 班级1001班 学号22 姓名王锐 指导教师刘洞波张晓清郭芳 2012年6月9日

课程设计任务书 课程名称数据结构课程设计课题背包问题 专业班级信科1001班 学生姓名王锐 学号22 指导老师刘洞波张晓清郭芳 审批刘洞波张晓清郭芳 任务书下达日期:2012年6月9日 任务完成日期:2012年6月16日

一、设计内容与设计要求 1.设计内容: 1)问题描述 假设有一个能装入总体积为T的背包和n件体积分别为W1,W2,···,Wn的物品,能否从n件物品中挑选若干件恰好装满背包,即使W1+W2+···+Wn=T,要求找出所有满足 上述条件的解。例如:当T=10,共6件物品,物品的体积为{1,2,3,4,5,8},那么 可找到下列4组解:(1,2,3,4)、(1,4,5)、(2,3,5)、(2、8)。 2)实现提示 可利用回溯法的设计思想来解决背包问题。首先,将物品排成一列,然后顺序选取物品装入背包,假设已选取了前i件物品之后背包还没有装满,则继续选取第i+1件物品, 若该件物品“太大”不能装入,则丢弃而继续选取下一件,直至背包装满为止。但如果在 剩余的物品中找不到合适的物品以填满背包,则说明“刚刚”装入背包的那件物品“不合 适”,应将它取出“丢弃一边”,继续再从“它之后”的物品中选取,如此重复,直至求得 满足条件的解,或者无解。 由于回溯求解的规则是“后进先出”,因此要用到栈。 2.设计要求: 课程设计报告规范 1)需求分析 a.程序的功能。 b.输入输出的要求。 2)概要设计 a.程序由哪些模块组成以及模块之间的层次结构、各模块的调用关系;每个模块的功能。 b.课题涉及的数据结构和数据库结构;即要存储什么数据,这些数据是什么样的结构, 它们之间有什么关系等。 3)详细设计 a.采用C语言定义相关的数据类型。 b.写出各模块的类C码算法。 c.画出各函数的调用关系图、主要函数的流程图。

C语言版贪心算法背包问题

#include<> #define N 100 typedef struct bao{ int num; float w; float v; }; typedef struct avg{ int num; ( float val; float w; float v; }; struct bao b[N]; struct avg d[N]; int n; float c; ^ void Sort() { int i,j,k; struct avg temp[N]; for(i=0;i

float x[N],sum = 0; for(i=0;ic) break; x[d[i].num] = 1; sum += d[i].v; c -= d[i].w; } if(i

贪心算法背包问题

算法设计与分析实验报告 题目:贪心算法背包问题 专业:JA V A技术xx——xxx班 学号: 姓名: 指导老师:

实验三:贪心算法背包问题 一、实验目的与要求 1、掌握背包问题的算法 2、初步掌握贪心算法 二、实验题: 问题描述:与0-1背包问题相似,给定n种物品和一个背包。物品i的重量是wi,其价值为vi,背包的容量为c。与0-1背包问题不同的是,在选择物品i装入背包时,背包问题的解决可以选择物品i的一部分,而不一定要全部装入背包,1< i < n。 三、实验代码 import java.awt.*; import java.awt.event.*; import javax.swing.*; public class er extends JFrame { private static final long serialVersionUID = -1508220487443708466L; private static final int width = 360;// 面板的宽度 private static final int height = 300;// 面板的高度 public int M; public int[] w; public int[] p; public int length; er() { // 初始Frame参数设置 this.setTitle("贪心算法"); setDefaultCloseOperation(EXIT_ON_CLOSE); setSize(width, height); Container c = getContentPane(); c.setLayout(new BoxLayout(c, BoxLayout.Y_AXIS)); setLocation(350, 150); // 声明一些字体样式 Font topF1 = new Font("宋体", Font.BOLD, 28); Font black15 = new Font("宋体", Font.PLAIN, 20); Font bold10 = new Font("宋体", Font.BOLD, 15); // 声明工具栏及属性设置 JPanel barPanel = new JPanel(); JMenuBar topBar = new JMenuBar(); topBar.setLocation(1, 1); barPanel.add(topBar); // 面板1和顶部标签属性设置 JPanel p1 = new JPanel(); JLabel topLabel = new JLabel("背包问题");

0-1背包问题(分支限界法)

分支限界法——01背包问题 12软工 028 胡梦颖 一、问题描述 0-1背包问题:给定n种物品和一个背包。物品i的重量是Wi,其价值为Vi,背包的容量为C。应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分的物品i。 二、问题分析 分支限界法类似于回溯法,也是在问题的解空间上搜索问题解的算法。一般情况下,分支限界法与回溯法的求解目标不同。回溯法的求解目标是找出解空间中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。由于求解目标不同,导致分支限界法与回溯法对解空间的搜索方式也不相同。回溯法以深度优先的方式搜索解空间,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间。分支限界法的搜索策略是,在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一扩展结点。为了有效地选择下一扩展结点,加速搜索的进程,在每一个活结点处,计算一个函数值(限界),并根据函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间上有最优解的分支推进,以便尽快地找出一个最优解。这种方式称为分支限界法。人们已经用分支限界法解决了大量离散最优化的问题。 三.源代码 #include #include #define MaxSize 100 //结点数的最大值 typedef struct QNode

算法实验报告

《算法设计与分析》上机实验报告

一、分治与递归 1、问题描述 编写程序,实现线性时间内选择n个元素的中位数的算法。并对于不同的n,测试平均时间效率。 2、问题分析 本问题属于线性选择问题的一个特例,可以使用分治法进行求解。其基本思想是模仿快速排序方法,对输入的数组进行划分,求出中位数所在的子数组,然后用递归的方法进行求解,最终可以求得问题的解。 3、算法设计 将n个输入元素根据随机选择的基准划分成2个子数组,a[p:r]被划分成a[p:i]和a[i+1:r]两组,使得a[p:i]中每个元素都不大于a[i+1:r]中元素。接着算法计算子数组a[p:i]中元素个数j,如果k<=j,则a[p:r]中第k个小元素落在子数组a[p:i]中元素均小于要找的第k小元素,因此要找的a[p:r]中第k小元素是a[i+1:r]中的第k-j小元素。 按照上述的方法递归的执行,直到当前数组中只剩下一个元素,就可以得到问题的解。 4、算法实现 #include"iostream.h" #include"stdlib.h" #include"time.h" #include #include #include"windows.h" #include int randomizedSel(int *,int ,int ,int );

void main() { srand((unsigned int)time(NULL)); _timeb time0,time1; int n; cout << "请输入数组的长度:"; cin >> n; cout << "请输入数组的每一个数:" << endl; int *a=new int[n]; for(int i=0;i> a[i]; DWORD stime=GetTickCount(); _ftime(&time0); int result=randomizedSel(a,0,n-1,(n+1)/2); DWORD Etime=GetTickCount(); _ftime(&time1); cout << "结果为:" << result << endl; cout << https://www.wendangku.net/doc/36835642.html,litm*https://www.wendangku.net/doc/36835642.html,litm*1000<x); if(i>=j) break; swap(a,i,j); } a[p]=a[j]; a[j]=x; return j;

0-1背包问题的算法设计策略对比与讲解

算法设计与分析大作业 班级:电子154 姓名:吴志勇 学号: 1049731503279 任课老师:李瑞芳 日期: 2015.12.25

算法设计与分析课程论文 0-1背包问题的算法设计策略对比与分析 0 引言 对于计算机科学来说,算法的概念是至关重要的。在一个大型软件系统的开发中,设计出有效的算法将起到决定性的作用。通俗的讲,算法是解决问题的一种方法。也因此,《算法分析与设计》成为计算科学的核心问题之一,也是计算机科学与技术专业本科及研究生的一门重要的专业基础课。算法分析与设计是计算机软件开发人员必修课,软件的效率和稳定性取决于软件中所采用的算法;对于一般程序员和计算机专业学生,学习算法设计与分析课程,可以开阔编程思路,编写出优质程序。通过老师的解析,培养我们怎样分析算法的“好”于“坏”,怎样设计算法,并以广泛用于计算机科学中的算法为例,对种类不同难度的算法设计进行系统的介绍与比较。本课程将培养学生严格的设计与分析算法的思维方式,改变随意拼凑算法的习惯。本课程要求具备离散数学、程序设计语言、数据结构等先行课课程的知识。 1 算法复杂性分析的方法介绍 算法复杂性的高低体现在运行该算法所需要的计算机资源的多少上,所需的资源越多,该算法的复杂性越高;反之,所需资源越少,该算法的复杂性越低。对计算机资源,最重要的是时间与空间(即存储器)资源。因此,算法的复杂性有时间复杂性T(n)与空间复杂性S(n)之分。 算法复杂性是算法运行所需要的计算机资源的量,这个量应集中反映算法的效率,并从运行该算法的实际计算机中抽象出来,换句话说,这个量应该只依赖要解决的问题规模‘算法的输入和算法本身的函数。用C表示复杂性,N,I和A表示问题的规模、算法的输入和算法本身规模,则有如下表达式: C=F(N,I,A) T=F(N,I,A) S=F(N,I,A) 其中F(N,I,A)是一个三元函数。通常A隐含在复杂性函数名当中,因此表达式中一般不写A。 即:C=F(N,I) T=F(N,I) S=F(N,I) 算法复杂性中时间与空间复杂性算法相似,所以以下算法复杂性主要以时间复杂性为例: 算法的时间复杂性一般分为三种情况:最坏情况、最好情况和平均情况。下面描述算法复杂性时都是用的简化的复杂性算法分析,引入了渐近意义的记号O,Ω,θ,和o。 O表示渐近上界Ω表示渐近下界: θ表示同阶即:f(n)= O(g(n))且 f(n)= Ω(g(n)) 2 常见的算法分析设计策略介绍 2.1 递归与分治策略 分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。 直接或间接地调用自身的算法称为递归算法。用函数自身给出定义的函数称为递归函数。 由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。 分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。 递归算法举例: 共11页第1页

实验4用分支限界法实现0-1背包问题

实验四用分支限界法实现0-1背包问题 一.实验目的 1.熟悉分支限界法的基本原理。 2.通过本次实验加深对分支限界法的理解。 二.实验内容及要求 内容:?给定n种物品和一个背包。物品i的重量是w,其价值为v,背包容量为c。问应该如何选择装入背包的物品,使得装入背包中物品的总价值最大? 要求:使用优先队列式分支限界法算法编程,求解0-1背包问题 三.程序列表 #inelude #include using namespacestd; #defi ne N 100 class HeapNode // 定义HeapNode结点类 { public : double upper, price, weight; //upper 为结点的价值上界,price 是结点所对应的价值,weight 为结点所相应的重量 int level, x[ N]; //活节点在子集树中所处的层序号 }; double MaxBound(int i); double Kn ap(); void AddLiveNode( double up, double cp, double cw, bool ch, int level); //up 是价值上界, cp是相应的价值,cw是该结点所相应的重量,ch是ture or false

stack High; // 最大队High double w[ N], p[ N;〃把物品重量和价值定义为双精度浮点数 double cw, cp, c; 〃cw为当前重量,cp为当前价值,定义背包容量为 c int n; //货物数量为 int main() { cout << "请输入背包容量:"<< endl; cin >> c; cout << "请输入物品的个数:"<< endl; | cin >> n; cout << "请按顺序分别输入物品的重量:"<< endl; int i; for (i = 1; i <= n; i++) cin >> w[i]; //输入物品的重量 cout << "请按顺序分别输入物品的价值:” << endl; for (i = 1; i <= n; i++) cin >> p[i]; //输入物品的价值 cout << "最优值为:";| cout << Knap() << endl; //调用knap函数输岀最大价值 return 0; } double MaxBound(int k) //MaxBound 函数求最大上界 { double cleft = c - cw; // 剩余容量

0-1背包问题

课程设计说明书 设计题目: 0-1背包问题的动态规划算法设计 专业:班级: 设计人: 山东科技大学 2013年12月5日

课程设计任务书 学院:专业:班级:姓名: 一、课程设计题目: 二、课程设计主要参考资料 (1)计算机算法设计与分析(第3版)王晓东著 (2) 三、课程设计应解决的主要问题 (1) 0-1背包问题的动态规划算法设计 (2) (3) 四、课程设计相关附件(如:图纸、软件等): (1) (2) 五、任务发出日期: 2013-11-21 课程设计完成日期: 2013-12-5 指导教师签字:系主任签字:

指导教师对课程设计的评语 成绩: 指导教师签字: 年月日

0-1背包问题的实现 一、设计目的 1.运用动态规划思想,设计解决上述问题的算法,找出最大背包价值的装法。 2.掌握动态规划的应用。 二、设计要求 给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 在选择装入背包的物品时,对每种物品i只有两种选择,即装入背包或不装入背包。不能将物品装入背包多次,也不能只装入部分的物品。0-1背包问题是一个特殊的整数规划问题。 三、设计说明 (一)、需求分析 1、问题描述: 形式化描述:给定c >0, w i>0, v i>0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ?∑w i x i≤c,且∑v i x i达最大.即一个特殊的整数规划问题。 2、最优子结构性质: 设(y1,y2,…,y n)是(3.4.1)的一个最优解.则(y2,y3,…,y n)是下面相应子问题的一个最优解: 证明:使用反证法。若不然,设(z2,z3,…,z n)是上述子问题的一个最优解,而(y2,y3,…,y n)不是它的最优解。显然有 ∑v i z i> ∑v i y i(i=2,…,n) 且w1y1+ ∑w i z i<= c

贪心算法详解分析

贪心算法详解 贪心算法思想: 顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。 贪心算法的基本要素: 1.贪心选择性质。所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。 动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。 对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。 2. 当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的 最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 贪心算法的基本思路: 从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到算法中的某一步不能再继续前进时,算法停止。 该算法存在问题: 1. 不能保证求得的最后解是最佳的; 2. 不能用来求最大或最小解问题; 3. 只能求满足某些约束条件的可行解的范围。 实现该算法的过程: 从问题的某一初始解出发; while 能朝给定总目标前进一步do 求出可行解的一个解元素; 由所有解元素组合成问题的一个可行解; 用背包问题来介绍贪心算法: 背包问题:有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。要 求尽可能让装入背包中的物品总价值最大,但不能超过总容量。

贪心算法实现背包问题算法设计与分析实验报告

算法设计与分析实验报告 实验名称贪心算法实现背包问题评分 实验日期年月日指导教师 姓名专业班级学号 一.实验要求 1. 优化问题 有n个输入,而它的解就由这n个输入满足某些事先给定的约束条件的某个子集组成,而把满足约束条件的子集称为该问题的可行解。可行解一般来说是不唯一的。那些使目标函数取极值(极大或极小)的可行解,称为最优解。 2.贪心法求优化问题 算法思想:在贪心算法中采用逐步构造最优解的方法。在每个阶段,都作出一个看上去最优的决策(在一定的标准下)。决策一旦作出,就不可再更改。作出贪心决策的依据称为贪心准则(greedy criterion)。 3.一般方法 1)根据题意,选取一种量度标准。 2)按这种量度标准对这n个输入排序 3)依次选择输入量加入部分解中。如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。 procedure GREEDY(A,n) /*贪心法一般控制流程*/ //A(1:n)包含n个输入// solutions←φ //将解向量solution初始化为空/ for i←1 to n do x←SELECT(A) if FEASIBLE(solution,x) then solutions←UNION(solution,x) endif repeat return(solution) end GREEDY 4. 实现典型的贪心算法的编程与上机实验,验证算法的时间复杂性函数。 二.实验内容 1. 编程实现背包问题贪心算法。通过具体算法理解如何通过局部最优实现全局最优,

并验证算法的时间复杂性。 2.输入5个的图的邻接矩阵,程序加入统计prim算法访问图的节点数和边数的语句。 3.将统计数与复杂性函数所计算比较次数比较,用表格列出比较结果,给出文字分析。 三.程序算法 1.背包问题的贪心算法 procedure KNAPSACK(P,W,M,X,n) //P(1:n)和W(1;n)分别含有按 P(i)/W(i)≥P(i+1)/W(i+1)排序的n件物品的效益值 和重量。M是背包的容量大小,而x(1:n)是解向量 real P(1:n),W(1:n),X(1:n),M,cu; integer i,n; X←0 //将解向量初始化为零 cu←M //cu是背包剩余容量 for i←1 to n do if W(i)>cu then exit endif X(i) ←1 cu←cu-W(i) repeat if i≤n then X(i) ←cu/ W(i) endif end GREEDY-KNAPSACK procedure prim(G,) status←“unseen” // T为空 status[1]←“tree node” // 将1放入T for each edge(1,w) do status[w]←“fringe” // 找到T的邻接点 dad[w] ←1; //w通过1与T建立联系 dist[w] ←weight(1,w) //w到T的距离 repeat while status[t]≠“tree node” do pick a fringe u with min dist[w] // 选取到T最近的节点 status[u]←“tree node” for each edge(u,w) do 修改w和T的关系 repeat repeat 2.Prim算法

回溯法和分支限界法解决0-1背包题

0-1背包问题 计科1班朱润华 2012040732 方法1:回溯法 一、回溯法描述: 用回溯法解问题时,应明确定义问题的解空间。问题的解空间至少包含问题的一个(最优)解。对于0-1背包问题,解空间由长度为n的0-1向量组成。该解空间包含对变量的所有0-1赋值。例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。 二、回溯法步骤思想描述: 0-1背包问题是子集选取问题。0-1 背包问题的解空间可以用子集树表示。在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。当右子树中有可能含有最优解时,才进入右子树搜索。否则,将右子树剪去。设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。当cp+r<=bestp时,可剪去右子树。计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。 例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。这4个物品的单位重量价值分别为[3,2,3,5,4]。以物品单位重量价值的递减序装入物品。先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。由此得一个解为[1,0.2,1,1],其相应价值为22。尽管这不是一个可行解,但可以证明其价值是最优值的上界。因此,对于这个实例,最优值不超过22。 在实现时,由Bound计算当前节点处的上界。类Knap的数据成员记录解空间树中的节点信息,以减少参数传递调用所需要的栈空间。在解空间树的当前扩展节点处,仅要进入右子树时才计算上界Bound,以判断是否可将右子树剪去。进入左子树时不需要计算上界,因为上界预期父节点的上界相同。 三、回溯法实现代码: #include "stdafx.h" #include using namespace std; template class Knap { template friend Typep Knapsack(Typep [],Typew [],Typew,int); private: Typep Bound(int i);

相关文档
相关文档 最新文档