文档库 最新最全的文档下载
当前位置:文档库 › 高分子材料未来与发展前景

高分子材料未来与发展前景

高分子材料未来与发展前景
高分子材料未来与发展前景

高分子材料相对于传统材料如玻璃、陶瓷、水泥、金属而言是后起之秀,但其发展的速度及应用的广泛性却远远超过了许多传统材料,在当今世界乃至未来的世纪都充当着举足重轻的角色,已成为工业、农业、国防和科技等领域的重要材料,尤其是在开发新型替代能源、节约资源和保护生态环境方面更是发挥着不可替代的作用。新时代的高分子材料已成为现代工程材料的主要支柱,与信息技术、生物技术一起,推动着社会的进步,今天,我将就高分子材料的发展历程及未来趋势做一个简单的概述。

说起高分子材料的发展历程,可能会比我们想象中要长远的多,最早关于高分子材料的应用要追溯到几万年前人类或者类似人类的远古智能生物最先使用的树枝,兽皮,稻草等天然高分子材料。在历史的长河中,纸,树胶,丝绸等从天然高分子加工而来的产品一直同人类文明的发展交织在一起,奏响了一首久远流长的高分子之歌。

然而随着社会的发展,人类已经不满足于对这些材料的简单利用,相应的天然高分子材料的改性和加工工艺应运而生,这其中比较具有代表性的是19世纪中叶,德国人用硝酸溶解纤维素,然后纺织成丝或制成膜,并利用其易燃的特性制成炸药,但是硝化纤维素难于加工成型,因此人们在其中加入樟脑,使其易于加工成型,做成了之后闻名遐迩的“赛璐珞”的塑料材料。再比如,橡胶的改性,早在11世纪美洲的劳动人民已经在长期的生产实践中开始利用橡胶了,但当时橡胶制品遇冷就变硬,加热则发粘受温度的影响比较大。1839年美国科学家发现了橡胶与硫磺一起加热可以消除上述变硬发粘的缺点,并可以大大增加橡胶的弹性和强度。通过硫化改性,有力的推动了橡胶工业的发展,因为硫化胶的性能比生胶优异很多,从而开辟了橡胶制品广泛应用的前景。同时,橡胶的加工方法也在逐渐完善,形成了塑炼、混炼、压延、压出、成型这一完整的加工过程,使得橡胶工业蓬勃兴起,一日千里的突飞猛进。

从二十世纪初开始,高分子材料进入了工业合成高分子的重要阶段,而合成高分子的诞生和发展则是从酚醛树脂开始的。化学家们研究了苯酚与甲醛的反应,发现在不同的反应条件下可以得到两类树脂,一种是在酸催化下生成可融化可溶解的线型酚醛树脂,另一种则是在碱催化下生成的不溶解不熔化的体型酚醛树脂,这种酚醛树脂是人类历史上第一个完全靠化学合成方法生产出来的合成树

脂,自此以后,合成并工业化生产的高分子材料种类迅速扩展。

1920年:杰出的H. Staudinger发表《论聚合》,提出高分子的概念;三十年代则出现热塑性高分子的工业生产,PVC,PS,PMMA,PE等;四十年代则是二战促进合成橡胶的迅猛发展,丁苯胶、丁晴胶结晶理论,X—ray等;五十年代是高分子材料学科发展的“黄金年代”,在这一阶段确定了“高分子物理”的概念,Ziegler—Natta催化剂带来了定向聚合,PP、顺丁胶,PET 工业化;六十年代是工程塑料大规模发展时期,通用塑料具有较高的力学性能,能够接受较高的力学性能,能够接受较宽的温度变化范围和较苛刻的环境条件,并能在此条件下较长时间的使用,且可作为结构材料;在七十年代则是朝着发展大型化生产的方向前进,进入高分子设计及改性阶段;八十年代是高分子设计及改性阶段,全面发展各种高性能、多功能材料,但同时也在这个阶段提出了能源、社会环境这一影响地球生存的人类重大问题问题;而在九十年代,结构性能的研究进入定量、半定量阶段,重视高分子化学、高分子物理及高分子材料工程三个分支的相互交融,交叉设计功能化、高性能材料,重视环境,这就出现了白色污染、塑料回收等一系列研究课题。有机高分子材料的研究正在不断地加强和深人,一方面,对重要的通用有机高分子材料继续进行改进和推广,使它们的性能不断提高,应用范围不断扩大。例如,塑料一般作为绝缘材料被广泛使用,但是近年来,为满足电子工业需求,又研制出具有优良导电性能的导电塑料,导电塑料已用干制造电池等,并可望在工业上获得更广泛的应用。另一方面,与人类自身密切相关、具有特殊功能的材料的研究也在不断加强,并且取得了一定的进展,如仿生高分材料、高分子智能材料等。

目前进入二十一世纪,高分子材料已成为是现代工业和高新技术的重要基石,是国民经济基础产业以及国家安全不可或缺的重要材料。一方面量大面广的通用高分子材料需要不断地升级改造以降低成本、提高材料的使用性能;另一方面各类新型的高分子材料将应运而生,尤其是有机及聚合物分子或少数分子组合体的光、电和磁特性将成为高分子向功能化以及微型器件化发展的重要方向。高分子材料的功能化、智能化、精细化,使其由结构材料向具有光、电、声、磁、生物医学、仿生、催化、物质分离及能量转换等效应的功能材料方向发展,分离材料,智能材料,贮能材料,光导材料,纳米材料,电子信息材料等的发展表明

了这种发展趋势,与此同时,在高分子材料的生产加工中也引进了许多先进技术,如等离子体技术,激光技术,辐射技术等。而且结构与性能研究也由宏观进入微观,从定性进入定量,从静态进入动态,正逐步实现在分子设计水平上合成并制备达到所期望功能的新型材料。同时,随着各项科学技术的发展和进步,高分子材料学科、高分子与环境科学等理论实践相得益彰,材料科学和新型材料技术是当今优先发展的重要技术,高分子材料已成为现代工程材料的主要支柱,与信息技术,生物技术一起,推动着社会的进步。

高分子材料的发展历史不足百年,按体积计,其世界年产量目前已经超过金属类,成为最重要的材料品种之一。高分子材料和复合材料在海、陆、空运输工具、商务和工业装置、医用材料、科学研究用特种装置、航天设备和仪器、体育运动和休闲娱乐用品方面都有出色表现。尤其需要指出的是,高分子材料在开发新型替代能源方面,在节约资源、能源和保护生态环境方面发挥着不可替代的作用。

“材料是技术进步的核心内容”。历史经验一再证明,只有新材料的出现,才能使一些有价值的想法变成现实。人类社会的发展史,材料之间的竞争和替代是其中的重要组成部分。不同材料对于现存市场和新市场的竞争还必然持续下去。展望未来,在新世纪里新技术将更加迅猛发展,与此同时,作为技术革命物质基础的,以合成高分子为代表的新材料的研制和开发,也将越来越起着重要作用。

[高分子材料] 中国石化联合会傅向升:高分子材料现状与可持续发展

来源:《中国化工信息》 作者:中国石油和化学工业联合会副会长傅向升 中国石油和化学工业联合会副会长傅向升 1 高分子材料规划思路及当前现状 高分子材料因其质轻、高强度、耐温、耐腐蚀等优异的性能,而广泛应用于高端制造、电子信息、交通运输、建筑节能、航空航天、国防军工等诸多领域。所以,高分子材料一直是发达国家和跨国公司十分重视的发展领域,美国、德国、日本等发达国家一直是全球高分子材料的领先者,我们熟悉的巴斯夫、杜邦、陶氏、三菱、LG、SK等跨国公司一直都是高分子材料领域的领航者。自改革开放以来,中国十分重视高分子材料的创新与发展,自“七五”计划以来,高分子材料一直是国家重点科技攻关计划与产业化的重点内容。《石油和化学工AHAHAGAHAGAGGAGAGGAFFFFAFAF

业“十三五”发展规划指南》将高分子材料作为战略新兴产业列为优先发展的领域,对高性能树脂、高性能橡胶、高性能纤维、功能性膜材料等高分子材料的创新与发展都提出了明确的要求;组织专业协会和行业专家编写了《合成树脂行业“十三五”发展规划》,明确高分子材料“十三五”发展的指导思想是:以调整优化产业结构为重点,全面实施科技创新、结构调整、节能减排,加快推进产业转型升级,积极发展高端树脂、生物基树脂和专用料等新型材料,大力推进科技含量高、市场前景广、带动作用强的新产品规模化发展,为战略新兴产业发展、国家重大工程建设和国防科技工业提供支撑和保障。努力开发一批具有自主知识产权并占据行业制高点的关键技术和引领技术,培育一批具有国际竞争优势的大中型企业和企业集团,积极推进行业有序发展,初步形成资源节约型、环境友好型、本质安全型发展模式。 明确的发展目标是:以提高自主创新能力为核心,以树脂专用料、工程塑料、新型功能材料、高性能结构材料和先进复合材料为发展重点,通过产学研相结合的协同创新,突破一批关键技术和共性技术,开发高性能聚烯烃、工程塑料、改性树脂、特种纤维、高端热固性树脂及其树脂基复合材料,以及可降解塑料等新材料制备技AHAHAGAHAGAGGAGAGGAFFFFAFAF

高分子材料在国民经济中的作用及发展趋势

高分子材料在国民经济中的作用及发展趋势 摘要:材料是现代文明进步的基石。自高分子材料的问世以来,其发展突飞猛进,已开发 出许多性能优异,应用范围广的高分子材料,已在信息、生命、工农业以及航空航天等方面应用广泛,使高分子材料对于人们的日常生活以及国民经济社会发展方面都起到了非常重要的作用。本文主要介绍了高分子材料的分类,以及其在国民经济和人们生活中的作用和广泛的应用,同时也分析了高分子材料在未来的发展趋势。 关键词:功能高分子材料医用高分子材料离子交换树脂胶黏剂高分子光纤人造器官1.前言: 1.1 高分子材料的分类: 高分子材料,是指相对分子质量较大的化合物组成的材料。它是以高分子化合物为基体,再配以其它添加剂所构成的一类材料的总称。按其来源来分,可分为天然高分子材料和合成高分子材料。按性能和用途来分又可分为塑料、橡胶、纤维、胶黏剂、涂料,功能高分子材料及聚合物高分子材料。 1.2高分子材料的现状: 在这个科学技术迅猛发展的21世纪,人们对知识的不断探索以及对物质生活的高度要求,使得高分子材料的飞速发展。而高分子新材料的制备以及新应用领域的拓展,对国民经济又有重大的影响,以成为社会进步和发展的重要技术之一。 高分子材料已经普遍应用于生产,生活,科技等各个领域,我们日常生活所用所穿都离不开它,尤其是塑料,橡胶,纤维这三大高分子材料,已广泛存在我们周围。同时在航空、航天、交通运输、生物医学等方面已有突出的贡献,但是有些高分子材料在性能和使用期限,以及环保方面还有待提高,所以开发出新的高性能,高功能以及绿色化的高分子材料已成为现在高分子行业的迫切要求。 2.高分子材料在国民经济中的作用 2.1 通用高分子材料的作用 2.1.1 塑料: 塑料是一类重要的高分子材料,也是现如今人们日常生活不可缺少的一类物质,它具有质轻,绝缘性能好,耐腐蚀新能强,容易加工成型等优点,在某些方面甚至是木材和金属所不及的,可以说,没有塑料,我们今天的生活将会是另一番局面。 应用最广的当属聚乙烯,它具有突出的电绝缘性和节电性能,优良的化学稳定性以及无毒性,广泛的应用于食品包装中,主要制作板材、管、薄膜、贮槽和容器,用于工业、农业及日常生活用品。具有优良的机械性能的聚丙烯则应用于日用器皿,娱乐体育用品,玩具汽车部件,家电零件。聚苯乙烯则以其电绝缘性能好,刚性大,印刷性能好的特点广泛应用于工业装饰,各种仪器仪表零件、灯罩、电子工业等。氟塑料的用途产量最广,在国防、电子、航空航天、化工、冷藏、机械方面占有重要地位。 2.1.2 橡胶: 橡胶是有机高分子弹性体。天然橡胶具有优良的综合性能,大量用于制造各种轮胎及工业橡胶制品,如胶管胶带、胶鞋雨衣及医疗卫生用品等。合成橡胶因其高弹性和耐低温性能好,耐磨性,主要用于制造轮胎,胶鞋等耐磨制品,医疗制品,运动器材等。 2.1.3 纤维:

我国医用高分子材料的发展现状

我国医用高分子材料的发展现状 摘要: 对医用高分子材料的目前需求作了简要分析,介绍了医用高分子材料的主要类别、用途及其特殊要求,并浅谈了医用高分子材料的发展及展望。 关键词: 医用高分子材料;相容性;组织工程 前言: 现代医学的发展,对材料的性能提出了复杂而严格的多功能要求,这是大多数金属材料和无机材料难以满足的;而合成高分子材料与生物体(天然高分子)有着极其相似的化学结构,化学结构的相似性决定了它们在性能上能够彼此接近从而可能用聚合物制作人工器官,作为人体器官的替代物。另外,除人工器官用材料之外,医药用高分子材料、临床检查诊断和治疗用高分子材料的开发研究也在积极地展开,它们被统称为医用高分子材料。 医用高分子材料是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、医学、病理学等多种边缘学科。医用高分子材料是生物材料的重要组成部分。医用高分子材料[1]是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗。 1、医用高分子材料的目前需求 人的健康长寿依赖于医学的发展。现代医学的进步已经越来越依赖于生物材料和器械的发展,没有医用材料的医学诊断和治疗在现代医学中几乎是不可想象的。目前全球大量用于医疗器械的生物医学材料主要有20种,其中医用高分子12种,金属4种,陶瓷2种,其他2种[2]。利用现有的生物医学材料已开发应用的医用植入体、人工器官等近300种,主要包括:起搏器、心脏瓣膜、人工关节、骨板、骨螺钉、缝线、牙种植体,以及药物和生物活性物质控释载体等。近年来,西方国家在医学上消耗的高分子材料每年以10%~20%的速度增长[3],而国内也以20%左右的速度迅速增长。随着现代科学技术的发展,尤其是生物技术的重大突破,生物材料的应用将更加广泛,需求量也随之越来越大。生物医用材料产业发展如此迅猛,主要动力来自于人口老龄化、中青年创伤的增多、疑难疾病患者的增加和高新技术的发展。生物材料的研究与开发被许多国家列入高技术关键新材料发展计划,并迅速成为国际高技术制高点之一。

高分子材料的发展历程及未来趋势

1 什么是高分子材料 高分子材料是由相对分子质量较高的化合物构成的材料。我们接触的很多天然材料通常是高分子材料组成的,如天然橡胶、棉花、人体器官等。人工合成的化学纤维、塑料和橡胶等也是如此。一般称在生活中大量采用的,已经形成工业化生产规模的高分子为通用高分子材料,称具有特殊用途与功能的为功能高分子。 2 高分子材料的发展历程 树枝,兽皮,稻草等天然高分子材料是人类或者类似人类的远古智能生物最先使用的材料。在历史的长河中,纸,树胶,丝绸等从天然高分子加工而来的产品一直同人类文明的发展交织在一起。 2.1从天然树脂到合成树脂 一些树木的分泌物常会形成树脂,不过琥珀却是树脂的化石,虫胶虽然也被看成树脂,但却是紫胶虫分泌在树上的沉积物。由虫胶制成的虫胶漆,最初只用作木材的防腐剂,但随着电机的发明又成为最早使用的绝缘漆。然而进入20世纪后,天然产物已无法满足电气化的需要,促使人们不得不寻找新的廉价代用品。 以煤焦油为原粒的酚醛树脂,在1940年以前一直居各种合成树脂产量之首,每年达20多万吨,但此后随着石油化工的发展,聚合型的合成树脂如:聚乙烯、聚丙烯、聚氯乙烯以及聚苯乙烯的产量也不断扩大,随着众多年产这类产品10万吨以上大型厂的建立,它们已成当今产量最多的四类合成树脂。合成树脂再加上添加剂,通过各种成型方法即得到塑料制品,到今天塑料的品种有几十种,世界年产量在1.2亿吨左右,我国也在500万吨以上,它们已经成为生产、生活及国防建设的基础材料。 2.2从天然纤维到合成纤维

人类使用棉、毛、丝、麻等天然纤维的历史已经有几千年,但由于全球人口的不断增加和对纺织品质量的更高要求,从19世纪起,人们就为寻求新的纺织品原料而努力。 1846年制成硝化纤维;1857年制成铜氨纤维;1865年制成醋酸纤维;1891年制成粘胶纤维。由于粘胶纤维的原料是来源丰富的木材浆粕、棉短绒及棉纱下脚料等,再加上制成的纤维性能好,以至它的产量到20世纪50年代已经超过羊毛。 尽管上述几种称为“纤维素纤维”或“人造纤维”的出现是继纺织机械发明之后的又一次纺织革命,但它仍意味着人只是用化学方法,对天然植物纤维的再加工,而通过化学方法,制取全合成的、性能更为优异的纺织纤维阶段,才迎来了第三次纺织革命。 1928年32岁的美国化学家卡罗塞斯经过6年后的研究,终于在合成的数百种产品中,找到有希望成为优良纺织纤维的聚酰胺-66(即尼龙Nylon)。 1938年德国研制出聚酰胺-6,即聚己内酰胺;1941年英国制出了聚对苯二甲酸乙二醇酯纤维,商品名Dacron、“的确凉”、或涤纶;1939年德国人又研制出聚丙烯腈纤维,但到1949年才在美国投产,商品名Orlon,我国称腈纶,此又出现多种新型合成纤维,满足了多种需要,但从应用范围和技术成熟等方面看,仍以上述几种为主,其产量约占总量的90%。 2.3从天然橡胶到合成橡胶 自然界中虽然含有橡胶的植物很多,但能大量采胶的主要是生长在热带雨区的巴西橡胶树。从树中流出的胶乳,经过凝胶等工艺制成的生橡胶,最初只用于制造一些防水织物、手套、水壶等,但它受温度的影响很大,热时变粘,冷时变硬、变脆,因而用途很少。 1839年美国一家小型橡胶厂的厂主古德易(Goodyear)经过反复摸索,发现生橡胶与硫黄混合加热后能成为一种弹性好、不发粘的弹性体,这一发现推进

高分子材料在各领域的应用与前景

200810230129 许莎莎08材化(一)班(材料合成与加工课程论文) 高分子材料在各领域的应用及前景 1高分子材料的发展现状与趋势 高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。从高分子材料与国民经济、高技术和现代生活密切相关的角度说, 人类已进人了高分子时代。高分子材料工业不仅要为工农业生产和人们的衣食住行用等不断提供许多量大面广、日新月异的新产品和新材料又要为发展高技术提供更多更有效的高性能结构材料和功能性材料。鉴于此, 我国高分子材料应在进一步开发通用高分子材料品种、提高技术水平、扩大生产以满足市场需要的基础上重点发展五个方向:工程塑料,复合材料,液晶高分子材料,高分子分离材料,生物医用高分子材料。近年来,随着电气、电子、信息、汽车、航空、航天、海洋开发等尖端技术领域的发展和为了适应这一发展的需要并健进其进?步的发展, 高分子材料在不断向高功能化高性能化转变方面日趋活跃,并取得了重大突破。 2 高分子材料各领域的应用 (1)高分子材料在机械工业中的应用 高分子材料在机械工业中的应用越来越广泛, “以塑代钢”、

“塑代铁”成为目前材料科学研究的热门和重点。这类研究拓宽了材料选用范围,使机械产品从传统的安全笨重、高消耗向安全轻便、耐用和经济转变。如聚氨酉旨弹性体,聚氨醋弹性体的耐磨性尤为突出, 在某些有机溶剂如煤油、砂浆混合液中, 其磨耗低于其它材料。聚氨醋弹性体可制成浮选机叶轮、盖板, 广泛使用在工况条件为磨粒磨损的浮选机械上。又如聚甲醛材料聚甲醛具有突出的耐磨性, 对金属的同比磨耗量比尼龙小, 用聚四氟乙烯、机油、二硫化钥、化学润滑等改性, 其摩擦系数和磨耗量更小, 由于其良好的机械性能和耐磨性, 聚甲醛大量用于制造各种齿轮、轴承、凸轮、螺母、各种泵体以及导轨等机械设备的结构零部件。在汽车行业大量代替锌、铜、铝等有色金属, 还能取代铸铁和钢冲压件。 2 高分子材料在燃料电池中的应用 高分子电解质膜的厚度会对电池性能产生很大的影响, 减薄膜的厚度可大幅度降低电池内阻, 获得大的功率输出。全氟磺酸质子交换 膜的大分子主链骨架结构有很好的机械强度和化学耐久性, 氟素化合物具有僧水特性, 水容易排出, 但是电池运转时保水率降低, 又要影响电解质膜的导电性, 所以要对反应气体进行增湿处理。高分子电解质膜的加湿技术, 保证了膜的优良导电性, 也带来电池尺寸变大增大左右、系统复杂化以及低温环境下水的管理等问题。PEFC的发展离不开新材料的发现及其在燃料电池中的应用, 今后随着高性能、低成木的高分子材料开发研究, 有希望促进实现商业应用, 成为

医药营销的未来与发展

医药营销的未来与发展----杨维民 06-05-05 17:39 发表于:《交论文啦!!!》分类:未分类 21 世纪初期,生物技术的迅速发展与广泛应用推动医药产业进入了一个前所未有的全新发展阶段,使其具有广阔市场前景和巨大增长潜力的“朝阳产业”的特征更加明显,被世界许多国家和国内众多地区竞相列为重点扶持发展的战略产业。(一)“十五”期间我国医药产业发展环境 1、加入 WTO 带来环境变化。近期主要有三个方面。一是药品知识产权保护。我国近年来生产的 837 种西药中 97.4%为仿制。WTO 中知识产权保护条款使我国制药业的发展今后只能走自主开发新药,或仿制国外专利期已过药品的道路。由于仿制专利期已过药品竞争激烈,利润微薄,而开发新药又得面对资金与科研等难题,很可能出现国内制药企业在普药市场激烈竞争、而利润丰厚的新药市场被外资公司控制的格局。二是降低药品进口关税。药品进口关税税率从 14%逐步降低到 2003 年的 6%不会对国内造成冲击。因为一方面我国制剂药市场进口产品与国内产品价格差距很大,降低部分关税不能构成很大冲击。另一方面药品进口关税目前并不太高,从14%降到 6%缺少下降空间。国外制药厂商由于制造成本高,没有价格优势,同时国外制药厂商在中国执行的是高定价、高促销费用的营销策略,目标市场定位为高端市场。因此不会进入国内普药市场与国内制药企业打价格战。三是开放药品分销服务和开放医疗服务市场。中国承诺在 2003 年 1 月 1 日开放药品分销服务业务,外商可在中国从事采购、仓储、运输、配送、批发、零售及售后服务。由于有 3 年的缓冲时间,并采取先合资、后独资,先零售、后批发,先试点、后放开到全国的渐进开放方式,另外,由于国内正在实行医疗保险制度改革,基本医疗保险用药目录只保证基本的医疗需求,价格较高的进口药较少收入其中,因此进口药的市场份额难以大增。 2、国家医药产业政策导向。近年来,国务院调整药品监管机构,重新划分职能,规范医药行业发展方面的政策陆续出台。这些政策总的原则是鼓励创新、强化监管,淘汰落后小规模企业,遏制低水平重复建设引致的恶性竞争,提高行业整体水平。主要的内容是以下几方面:一是鼓励创新,加强知识产权保护。1999 年修订的《新药审批办法》突出了鼓励创新、加强新药保护的精神。首先,延长了 1~5 类新药的保护期限,其中一类新药从 8 年保护期延长到 12 年保护期,其它各类新药的保护期均有所延长。在新药保护期内只允许取得新药证书的企业生产销售新药,其它企业不得仿制,以保护新药研制生产企业享受到创新的利益、不致遭受激烈的价格竞争。其次,在药品价格管理方面,法规规定新药可以在定价时取得更高的毛利率,以使新药生产企业获得更好的利润。第三,

高分子材料研究前沿及发展趋势

高分子材料研究前沿及发展趋势 .通用高分子材料向高性能、多功能、低污染、低成本方向发展 通用高分子材料主要是指塑料、橡胶、纤维三大类合成高分子材料及涂料、黏合剂等精细高分子材料。高性能、多功能、低成本、低污染(环境友好)是通用合成高分子材料显著的发展趋势。在聚烯烃树脂研究方面,如通过新型聚合催化剂的研究开发、反应器内聚烯烃共聚合金技术的研究等来实现聚烯烃树脂的高性能、低成本 2. 在有机/高分子光电信息功能材料领域,光、电、磁等功能高分子材料作为新一代信息技术的重要载体,在21世纪整个信息技术的发展中将占有极其重要的地位。非常值得关注并可能取得突破的重要方向是:有机/高分子显示材料特别是电致发光材料、超高密度高分子存储材料、高分子生物传感材料等。此外,还有新型功能高分子材料的设计、模拟与计算、合成与组装以及分子纳米结构的构筑。高分子的组装、自组装以及在分子电子器件上的应用研究等。

在生物医用材料领域,总的发展趋势是:从简单的植入发展到再生和重建有生命的组织和器官;从大面积的手术损伤发展到微创伤手术治疗;从暂时性的组织和器官修复发展到永久性的修复和替换;从药物缓释发展到控释、靶向释放。生物医用材料研究的重点是:基于生物学原理,赋予材料和植入体生物结构和生物功能的设计;可靠地试验材料生物安全性和预测材料长期寿命的科学基础;先进的工艺制造方法 学。 要化工原料。其中最丰富的资源有纤维素、木质素、甲壳素、淀粉、各种动植物蛋白质以及多糖等。它们具有多种功能基团,可通过化学、物理方法改性成为新材料,也可通过化学、物理及生物技术降解成单体或齐聚物用作化工原料。为解决环境污染问题,一方面生物降解高分子材料的研究已成为研究热点,另一方面废弃高分子材料的回收利用也成为重要研究方向。生物降解高分子材料在20世纪末和21世纪初得到迅速的发展,特别是一些发达国家的政府和企业投入巨资开展生物可降解高

高分子材料的历史与发展趋势(精)

高分子材料的历史与发展趋势 材料、能源、信息是当代科学技术的三大支柱。材料科学是当今世界的带头学科之一。材料又是一切技术发展的物质基础。人类的生活和社会的发展总是离不开材料,而新材料的出现又推动生活和社会的发展。人们使用及制造材料虽已有几千年的历史,但材料成为一门科学——材料科学,仅有30多年的时间,此为一门新兴学科,是一门集众多基础学科与工程应用学科相互交叉、渗透、融合的综合学科,因而对于材料科学的研究,具有深远的意义。高分子材料是材料领域中的新秀,它的出现带来了材料领域中的重大变革。目前高分子材料在尖端技术、国防建设和国民经济各个领域得到广泛应用,已成为现代社会生活中衣、食、住、行、用各个方面所不可缺少的材料。高分子材料由于原料来源丰富,制造方便,品种繁多,用途广泛,因此在材料领域中的地位日益突出,增长最快,产量相当于金属、木材和水泥的总和。高分子材料不仅为工农业生产及人们的日常生活提供不可缺少的材料,而且为发展高新技术提供更多更有效的高性能结构材料、高功能材料以及满足各种特殊用途的专用材料。 高分子科学是研究高分子化合物的合成、改性、高分子及其聚集态的结构、性能、聚合物的成型加工等内容的一门综合性学科。它由高分子化学、高分子物理学、高分子工程学三个分支学科领域所组成,其主要研究目标是为人类获取高分子新材料提供理论依据和制备工艺。高分子科学具有广阔的开发新材料的背景,二十世纪三十年代首先由有机化学派生出高分子化学,当时恰好处在世界经济飞跃发展的氛围中,对新材料的需求日益迫切,因此高分子化学进而又融合了物理化学、物理学、数学、工程学、医学等有关学科的内容,逐渐形成了高分子科学这门独立的综合性学科,现在的高分子科学已经形成了高分子化学、高分子物理、高分子工程三个分支领域相互交融、相互促进的整体学科。 高分子材料的发展大致经历了三个时期,即:天然高分子的利用与加工,天然高分子的改性和合成,高分子的工业生产(高分子科学的建立。

浅论高分子材料的发展前景

浅论高分子材料的发展前景 摘要:随着生产和科技的发展,以及人们对知识的追求,对高分子材料的性能提出了各种各样新的要求。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。本文主要分析了高分子材料的发展前景和发展趋势。 关键词:高分子材料;发展;前景 作者:韩莹 一高分子材料的发展现状与趋势 高分子材料作为一种重要的材料,经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。从高分子材料与国民经济、高技术和现代生活密切相关的角度说,人类已进人了高分子时代。高分子材料工业不仅要为工农业生产和人们的衣食住行用等不断提供许多量大面广、日新月异的新产品和新材料又要为发展高技术提供更多更有效的高性能结构材料和功能性材料。鉴于此,我国高分子材料应在进

一步开发通用高分子材料品种、提高技术水平、扩大生产以满足市场需要的基础上重点发展五个方向:工程塑料,复合材料,液晶高分子材料,高分子分离材料,生物医用高分子材料。近年来,随着电气、电子、信息、汽车、航空、航天、海洋开发等尖端技术领域的发展和为了适应这一发展的需要并健进其进?步的发展,高分子材料在不断向高功能化高性能化转变方面日趋活跃,并取得了重大突破。 二高分子材料各领域的应用 1高分子材料在机械工业中的应用 高分子材料在机械工业中的应用越来越广泛,“以塑代钢”,“塑代铁”成为目前材料科学研究的热门和重点。这类研究拓宽了材料选用范围,使机械产品从传统的安全笨重、高消耗向安全轻便、耐用和经济转变。如聚氨酉旨弹性体,聚氨醋弹性体的耐磨性尤为突出,在某些有机溶剂如煤油、砂浆混合液中,其磨耗低于其它材料。聚氨醋弹性体可制成浮选机叶轮、盖板,广泛使用在工况条件为磨粒磨损的浮选机械上。又如聚甲醛材料聚甲醛具有突出的耐磨性,对金属的同比磨耗量比尼龙小,用聚四氟乙烯、机油、二硫化钥、化学润滑等改

中国社会未来的发展

中国社会未来的发展 21世纪是一个“文明大转换”的世纪。21世纪的中国社会在变革:社会成分日益复杂,社会结构再度调整,社会利益重新分配,社会生活急剧变化。在社会职能不断转变与完善的过程中,社会工作是现代社会里涉及到在包括物质领域和精神领域的生活、医疗、教育、服务、调节等广泛领域中去实现人与社会和谐一致,促进社会进步的专业与实践。社会工作研究与实践者,面对社会变革带来的新情况、新变化、新问题,必须去了解、去适应、去解决。 中国社会未来在社会工作政策研究上的新发展,要在社会福利、社会救济、社会保障、教育、保健、服务、行政等社会工作政策上不断完善和发展。随着社会各层面的深度改革,稳定、和平、公平、效率等成为全体社会成员包括弱势人群追求,这促使社会稳定机制的必然完善,更意味着作为有效机制的社会工作新政策、新制度的必然安排。根据社会工作的鲜明的自身特点和发展规律,针对我国社会工作现状远远不能满足客观需求的事实,借鉴国外先进的经验模式和政策研究水平,21世纪,中国社会工作在政策上必将有一新发展。 中国社会未来在工作地域研究上的新扩大,一是城市社会工作新生长点、新领域、新天地研究。21世纪,作为城市基本细胞之社区,随着其功能的完善,人们对社区的依赖程度越来越高。无论采取诸如“新老楼区结合”、“现代化小区”、“高层建筑”、“企业封闭小区”等模式,社区都离不开地域条件,因地理环境(自然的、文化的、经济的)、

人员结构的差异而各不相同,社区工作要正常化、健康化、持久化。这是社会工作新的生长点、新领域、新天地。二是农村(包括海岛、山区、水乡)区域社会工作新生长点、新领域、新天地研究。为大多数人谋求利益的社会活动必须在各地方得以实践,像健全农村保障制度的建立,切实保障妇女、儿童、老年人、残疾者的合法权益,社会福利、社会救济、社会服务等农村区域社会工作模式的探究等,都将是社会研究的重要内容。 中国社会未来社会化研究的新趋势,一是加强社会工作对象社会化研究。在人社会化的过程中,社会工作针对上述特点,针对人们在教育、生活、就业、成才、社交等方面的需求,应使“多数人为少数人服务”与“少数人为多数人服务”相结合,遵循个人目标与组织相一致的原则。如社区工作的开展采取联合体、联络站、联谊会等多种形式,不仅仅从管理性、保护性上服务,更从发展性服务着手。二是强调社会工作的社会化工作程度。社会工作主动参与性与社会化工作程度有待提高。如作为21世纪文明标志的环保问题,其关键是建立公众参与的社会环境与社会机制。公众参与环境保护不仅是一种有效的社会监督,更是一种有效的自我教育与社会教育。社会工作的社会化理论,重要一个方面是意欲寻找社会工作的主动参与的准确契合点,以提高人与自然的和谐共处。 中国社会未来国防科技研究趋势,国防科技工业要紧紧抓住我国经济与社会发展的战略机遇期,以邓小平理论和“三个代表”重要思想为指导,按照“四个坚持”的要求,全面贯彻落实科学发展观,

高分子材料行业现状及发展前景趋势展望分析报告(2017-2018年版)

2017年高分子材料行业分析报告Array 2017年9月出版

文本目录 一、行业发展状况 (4) 1、热塑性弹性体(TPE) (4) 2、改性塑料 (6) 二、行业监管体系 (7) 1、行业主管部门 (7) 2、行业政策 (8) 三、上下游关系 (10) 1、上游行业 (10) 2、下游行业 (11) 四、行业壁垒 (12) 1、技术壁垒 (12) 2、市场壁垒 (13) 3、资本壁垒 (14) 五、行业发展特点 (14) 1、行业的周期性特征 (14) 2、具有明显的客户锁定效应 (14) 3、专业化开发和服务要求高 (15) 六、市场规模与发展趋势 (16) 1、市场规模 (16) (1)热塑性弹性体 (16) (2)改性塑料 (18) 2、发展趋势 (19) 七、行业风险特征 (20)

1、原材料价格波动风险 (20) 2、技术人员流失和技术泄密风险 (21) 3、市场竞争加剧风险 (21) 八、行业竞争格局 (22) 1、竞争地位 (22) 2、相关公司简介 (22) 1)金发科技股份有限公司 (22) 2)广东银禧科技股份有限公司 (23) 3)深圳市富恒新材料股份有限公司 (23) 4)广东顺德顺炎新材料股份有限公司 (24)

一、行业发展状况 我国是世界高分子合成材料生产大国,以各类基础聚合物计,三大合成材料(合成树脂、合成橡胶、合成纤维)生产总规模已居世界首位;合成材料的成型加工总能力也已多年位居世界第一。 高分子材料是分子量极大的一类化合物构成的材料。高分子材料包括塑料、橡胶、纤维、胶粘剂及涂料等,其为石化基本原料所生产的石化中间原料合成,并可作为下游塑料、橡胶、树脂、纺织等制品产业的原料,因此其应用非常广泛,汽车、电子电器、纺织、建筑、医疗等日常生活所需的各行各业都需要用到高分子材料。 1、热塑性弹性体(TPE) 热塑性弹性体(Thermoplastic Elastomer)是一种既具有橡胶的特性(高弹性、压缩永久变形等),又有塑料加工特征(工艺简单)的环保低碳性高分子复合材料。 热塑性弹性体是新材料产业“十二五”重点产品,不但能够从根本上解决传统热固性橡胶难以回收再利用的问题,缓解石油资源危机和实现可持续发展的目标,还能够从很大程度上实现节能的目的。

高分子材料的应用

高分子材料的应用——防水防尘新型材料等方面的研究进展的介绍 高分子材料是门内容广泛,与其他许多学科交叉渗透,相互关联的综合性新兴学科随着社会的发展,普通的材料已经不能满足需求,高分子材料则越来越多的用于人们的日常生活.目前高分子材料的发展迅猛,应用的方面也越来越多,越来越广!下面就高分子材料用于防水方面的研究进展进行介绍! 一开始想到这个方面是由于一年前班主任开班会时候对高分子进行的介绍,其中有一点就是应用于防水方面。当时他举了个列子——荷叶.众所周知,荷叶表面的水可以聚成水珠,不会粘在荷叶上,从这个出发研究荷叶的结构从而得到防水防尘方面的启发! 荷叶的叶面上布满了一个紧挨一个的“小山包”,“山包”上长满绒毛,好像山上密密的植被,“山包”的顶上又长出一个馒头状的“碉堡”凸顶。因此,在“山包”的凹陷处充满了空气,这样就在紧贴的叶面上形成一层极薄的只有纳米级的空气层。由于雨水和灰尘对于荷叶叶面上的这些微结构来说,无异于庞然大物,于是,当雨水和灰尘降落时,隔着一层纳米空气,它们只能同“小山包”上的“碉堡”凸顶构成几个点的接触,无法进一步“入侵”。水形成水珠,滚动着洗去了叶面的尘埃。荷叶的这种纳米级的超微结构,不仅有利于它自洁,还有利于防止空气中飘浮的大量的各种有害细菌和真菌对它的侵害! 对于这方面我从一些文献中找出了一点将荷叶的功能应用的实际的列子——德国Sto 上市公司下属ISPO 公司,根据荷叶效应机理和硅树脂外墙涂料的实际应用结果,经过3 年研究工作,成功地把荷叶效应移植到外墙乳胶漆中,开发了微结构有机硅乳胶漆,即荷叶效应乳胶漆。这种荷叶效应乳胶漆采用具有持久憎水性的少乳化剂有机硅乳液等一些专门物质,并形成一个纳米级显微结构,从而使其涂膜具有类似荷花叶子的表面结构,达到拒水保洁功能 但是荷叶的防水防尘功能是有限的,我们需要做的就是从荷叶的结构方面进行改进,用高分子技术做出更加全面的防水防尘材料!荷叶只是一个列子,只是给我们一个启发。真正要研究的是高分子的结构和结构所表现出来的功能! 1防水方面 世界各地对高分子的研究都是积极的。以前用于防水的材料主要是沥青和砂浆虽然这2种方法能起到防水作用但是作用远远没有高分子的作用好台湾一流的防水中心{张百兴张凯然}在土木建筑工程中使用了一种新型的施工方法——高分子涂膜防水!

高分子材料发展史

高分子材料发展史 随着生产和科学技术的发展,人们不断对材料提出各种各样的新要求。而高分子材料的出现逐渐满足了人们的需要。并对人类的生产生活产生了巨大的影响。 高分子材料是以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。 高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1870年,美国人Hyatt用硝化纤维素和樟脑制得的赛璐珞塑料,是有划时代意义的一种人造高分子材料。1907年出现合成高分子酚醛树脂,真正标志着人类应用合成方法有目的的合成高分子材料的开始。1953年,德国科学家Zieglar和意大利科学家Natta,发明了配位聚合催化剂,大幅度地扩大了合成高分子材料的原料来源,得到了一大批新的合成高分子材料,使聚乙烯和聚丙烯这类通用合成高分子材料走人了千家万户,确立了合成高分子材料作为当代人类社会文明发展阶段的标志。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。并且高分子材料资源丰富、原料广,轻质、高强度,成形工艺简易。很容易为人所用。 高分子材料包括塑料、橡胶、纤维、薄膜、胶粘剂和涂料等。其中,被称为现代高分子三大合成材料的塑料、合成纤维和合成橡胶已经成为国民经济建设与人民日常生活所必不可少的重要材料。尽管高分子材料因普遍具有许多金属和无机材料所无法取代的优点而获得迅速的发展,但目前业已大规模生产的还是只能寻常条件下使用的高分子物质,即所谓的通用高分子,它们存在着机械强度和刚性差、耐热性低等缺点。而现代工程技术的发展,则向高分子材料提出了更高的要求,因而推动了高分子材料向高性能化、功能化和生物化方向发展,这样就出现了许多产量低、价格高、性能优异的新型高分子材料。 高分子材料是材料领域之中的后起之秀,是在人们长期的生产实践和科学实验的基础上逐渐发展起来的。几千年前,人们就开始使用棉、麻、丝、毛等天然高分子作丝织物材料。有些加工方法还改变了天然高分子的化学组成,如:天然橡胶硫化,皮革鞣制,天然纤维制成人造丝等。但由于当时受科学技术发展的限制,直到19世纪中叶,人们仍未能探究到高分子材料的本质。高分子材料科学的发展萌芽于19世纪后期和20世纪初。当时天然橡胶由异戊二烯,纤维素和淀粉由葡萄糖残体,蛋白质由氨基酸组成的确立,使高分子的长链概念获得了公认,孕育了高分子的思想。1872年德国化学家拜耳(A.Bayer)首先发现苯酚与甲醛在酸性条件下加热时能迅速结成红褐色硬块或粘稠物,但因它们无法用经典方法纯化而停止实验。20世纪以后,苯酚已经能从煤焦油中大量获得,甲醛也作为防腐剂大量生产,因此二者的反应产物更加引人关注。1907年贝克兰和他的助手不仅制出了绝缘漆,而且还制出了真正的合成可塑性材料—Bakelite,它就是人们熟知的“电木”、“胶木”或酚醛树脂。Bakelite一经问世, 很快厂商发现,它不但可以制造多种电绝缘品,而且还能制日用品,于是一时间把贝克兰的发 明誉为20世纪的“炼金术”。20世纪30~40年代是高分子材料科学的创立时期。新的聚合物单体不断出现,具有工业化价值的高效催化聚合方法不断产生,加工方法及结构性能不断改善。美国化学家卡罗塞斯(W.H.Carothers)于1934年合成了优良纺织纤维的聚酰胺-66,尼龙(Nylon)是它在1939年投产时公司使用的商品名。这一成功不仅是合成纤维的第一次重大

高分子液晶材料的应用及发展趋势讲解

# 16 #陶瓷2009. No. 3 高分子液晶材料的应用及发展趋势 王瑾菲蒲永平杨公安杨文虎 ( 陕西科技大学材料科学与工程学院西安710021) 摘要液晶相是不同于固相和液相的一种中介相态。系统地阐述了液晶的发现、形成机制以及分类,简单介绍了液晶高分子的结构特点,介绍了主链型和侧链型液晶高分子研究的新进展,并对液晶在各个领域的应用研究和潜在性能进展作了简要的阐述。 关键词液晶高分子液晶研究进展 Application and the Development of Liquid Crystal Polymer Materials Wang Jinfei, Pu Yongping, Yang Gongan, Yang Wenhu( School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi. an, 710021) Abstract: Liquid crystal phase is different from the solid phase and an intermediate liquid phase. This paper described the discovery of the LCD, and the mechanism for the formation and classification, briefly introducd the liquid crystalline polymer structural, researched new progress of the main- chain and side- chain type liquid crystal polymer and indicated the application progress and potential properties of LCD in all fields. Key words: Liquid crystalline polymer; Liquid crystal; Study progress 1 液晶的发现 液晶是某些物质在熔融态或在溶液状态下形成的有序流体的总称。液晶的发现可以追溯到1888年,奥 地利植物学家 F Reinitzer发现,把胆甾醇苯酸脂( Cho-l esteryl Benzoate, C6 H5 CO2 C27 H45 , 简称 CB) 晶体加热到145. 5 e 会熔融成为混浊的液体, 145. 5 e 就是该物质的熔点。继续加热到178. 5e,混浊的液体会突然变成清亮的液体,而且这种由混浊到清亮的过程是可逆的。O Lehmann经过系统地研究指出,在一定的温度范围内,有些物质的机械性能与各向同性液体相似;但是它们的光学性质却和晶体相似,是各向异性的。因此,这些介于液体和晶体之间的相被称为液晶相[ 1]。 2 液晶高分子的分类 液晶是一类具有特殊性质的液体,既有液体的流动性又有晶体的各向异性特征。现在研究及应用的液晶主要为有机高分子材料。一般聚合物晶体中原子或

未来计算发展演变2020

未来计算发展演变、全球竞争态势分析与发 展趋势判断 第01讲未来计算发展演变、全球竞争态势分析 与发展趋势判断 什么是未来计算?? 未来计算是人们为了突破目前计算技术的能力瓶颈,对现有计算技术持续进行全方位创新而发展出来的一系列计算新原理、新材料、新器件、新设备、新算法,如高性能计算(HPC)、量子计算、认知计算、异构计算、类脑计算等,代表着信息技术发展前沿。 未来计算是各领域重点发展核心技术之一 第一部分:未来计算发展演变 《数据爆炸凸显计算能力瓶颈 ●数据爆炸增长的现实: ●全球已经有大约30亿人联入互联网。在Web2.0时代,人们不仅是信息的接受者,也是信息的生产者,每个人都成为了数据源,都在用智能终端拍照、录

●数据处理成为难题: ●主要表现是:一是速度跟不上数据处理分析的需求;二是功耗高。三是计算算法智能性不足,无法胜任智能型的工作。

对新计算技术探索持续加强 人类提升计算能力的步伐从未停止: ●在数据爆炸暴露计算能力瓶颈后,人类已在多领域着重开展计算方面的突破和创新。放眼当下,大计算时代已经近在眼前,因此,未来计算今后十年新的转变不仅仅是当前计算模式下性能的逐步提升,更将是大计算模式的转换。现在,人类正在计算机原理、材料、工艺、器件、设备、系统算法和应用上试图进行全链条和全体系突破创新。

未来计算全链条突破概览图 第二部分:全球竞争态势分析 发达国家和地区强化领先优势 美国国家战略性计算计划(NSCI) ●加快开发百亿亿次级计算系统 ●提高建模仿真技术基础与数据分析计算技术基础之间的连贯性 ●突破半导体技术发展限制,探索未来高性能计算系统发展路径 ●增强美国国家高性能计算生态系统可持续发展能力 ●构建长效的公私合作机制,以确保政府、工业及学术界能够最大限度地共享高性能计算项目的研发成果 2015财年预算 高端计算基础设施与应用:9.74亿美元 高端计算研究与开发:5.35亿美元 美国国防高级研究计划局(DARPA):2015新版规划 为未来“网络中心战”提供安全,高效、功能强大和通用的计算基础,建立全新的、能使指挥官和作战人员进行更有效作战的计算能力。 国防部(DoD):2013-2017年科技发展计划 重点研究量子计算,量子传感、量子计量与量子成像,量子仿真,量子通信等技术

高分子材料发展前沿及趋势2019

高分子材料研究前沿及发展趋势 1.通用高分子材料向高性能、多功能、低污染、低成本方向发展 通用高分子材料主要是指塑料、橡胶、纤维三大类合成高分子材料及涂料、黏合剂等精细高分子材料。高性能、多功能、低成本、低污染(环境友好)是通用合成高分子材料显著的发展趋势。在聚烯烃树脂研究方面,如通过新型聚合催化剂的研究开发、反应器内聚烯烃共聚合金技术的研究等来实现聚烯烃树脂的高性能、低成本化。高性能工程塑料的研究方向主要集中在研究开发高性能与加工性兼备的材料。通过分子设计和材料设计,深入、系统地研究芳杂环聚合物材料制备中的基本化学和物理问题,研究其多层次结构及控制技术,认识结构与性能之间的本质联系,寻求在加工性能和高性能两方面都适合的材料。合成橡胶方面,如通过研究合成方法、化学改性技术、共混改性技术、动态硫化技术与增容技术、互穿网络技术、链端改性技术等来实现橡胶的高性能化。在合成纤维方面,特种高性能纤维、功能性、差别化、感性化纤维的研究开发仍然是重要的方向。同时生物纤维、纳米纤维、新聚合物纤维德研究和开发也是纤维研究的重要领域。在涂料和黏合剂方面,环境友好及特殊条件下使用的高性能涂料和黏合剂是发展的两个主要方向。 2.功能高分子材料发展迅速,应用领域不断扩大,越来越多的功能高分子材料将从科学发明、发现走向实际应用在有机/高分子光电信息功能材料领域,光、电、磁等功能高分子材料作为新一代信息技术的重要载体,在21世纪整个信息技术的发展中将占有极其重要的地位。非常值得关注并可能取得突破的重要方向是:有机/高分子显示材料特别是电致发光材料、超高密度高分子存储材料、高分子生物传感材料等。此外,还有新型功能高分子材料的设计、模拟与计算、合成与组装以及分子纳米结构的构筑。高分子的组装、自组装以及在分子电子器件上的应用研究等。 在生物医用材料领域,总的发展趋势是:从简单的植入发展到再生和重建有生命的组织和器官;从大面积的手术损伤发展到微创伤手术治疗;从暂时性的组织和器官修复发展到永久性的修复和替换;从药物缓释发展到控释、靶向释放。生物医用材料研究的重点是:基于生物学原理,赋予材料和植入体生物结构和生物功能的设计;可靠地试验材料生物安全性和预测材料长期寿命的科学基础;先进的工艺制造方法学。 在吸附分离材料领域,分离膜的发展重点是在研究聚合物分离膜制备、成膜机理及其与聚合物结构关系基础上实现膜结构与膜分离性能的预测、调控与优化;通过分离膜与生化技术的集成,实现合成高分子膜材料的强度与可加工性能以及天然生物膜的特殊选择性与生物活性的有机组合。对于吸附分离树脂,不直接利用生物配体,而是通过模拟亲和作用及超分子化学的多重作用(分子识别)来设计合成具有分子识别特征的高选择性吸附树脂材料,具有重要的理论意义和实用价值。新型印迹聚合物材料的设计与制备及选择性分离功能的研究也是重要的发展方向。 3.高分子材料科学与资源、环境的协调发展越来越受到重视 基于石油资源的合成高分子材料已得到了大规模的应用,在带给我们方便的同时也带来了环境污染的问题,而且50年后将面临石油资源逐渐枯竭的威胁。因此,基于可再生的动物、植物和微生物资源的天然高分子将有可能成为未来高分子材料的主要化工原料。其中最丰富的资源有纤维素、木质素、甲壳素、淀粉、各种动植物蛋白质以及多糖等。它们具有多种功能基团,可通过化学、物理方法改性成为新材料,也可通过化学、物理及生物技术降解成单体或齐聚物用作化工原料。为解决环境污染问题,一方面生物降解高分子材料的研究已成为研究热点,另一方面废弃高分子材料的回收利用也成为重要研究方向。生物降解高分子材料在20世纪末和21世纪初得到迅速的发展,特别是一些发达国家的政府和企业投入巨资开展生物可降解高分子材料的研究与开发,已取得可喜的进展。生物降解高分子材料要求具

高分子材料未来与发展前景

高分子材料相对于传统材料如玻璃、陶瓷、水泥、金属而言是后起之秀,但其发展的速度及应用的广泛性却远远超过了许多传统材料,在当今世界乃至未来的世纪都充当着举足重轻的角色,已成为工业、农业、国防和科技等领域的重要材料,尤其是在开发新型替代能源、节约资源和保护生态环境方面更是发挥着不可替代的作用。新时代的高分子材料已成为现代工程材料的主要支柱,与信息技术、生物技术一起,推动着社会的进步,今天,我将就高分子材料的发展历程及未来趋势做一个简单的概述。 说起高分子材料的发展历程,可能会比我们想象中要长远的多,最早关于高分子材料的应用要追溯到几万年前人类或者类似人类的远古智能生物最先使用的树枝,兽皮,稻草等天然高分子材料。在历史的长河中,纸,树胶,丝绸等从天然高分子加工而来的产品一直同人类文明的发展交织在一起,奏响了一首久远流长的高分子之歌。 然而随着社会的发展,人类已经不满足于对这些材料的简单利用,相应的天然高分子材料的改性和加工工艺应运而生,这其中比较具有代表性的是19世纪中叶,德国人用硝酸溶解纤维素,然后纺织成丝或制成膜,并利用其易燃的特性制成炸药,但是硝化纤维素难于加工成型,因此人们在其中加入樟脑,使其易于加工成型,做成了之后闻名遐迩的“赛璐珞”的塑料材料。再比如,橡胶的改性,早在11世纪美洲的劳动人民已经在长期的生产实践中开始利用橡胶了,但当时橡胶制品遇冷就变硬,加热则发粘受温度的影响比较大。1839年美国科学家发现了橡胶与硫磺一起加热可以消除上述变硬发粘的缺点,并可以大大增加橡胶的弹性和强度。通过硫化改性,有力的推动了橡胶工业的发展,因为硫化胶的性能比生胶优异很多,从而开辟了橡胶制品广泛应用的前景。同时,橡胶的加工方法也在逐渐完善,形成了塑炼、混炼、压延、压出、成型这一完整的加工过程,使得橡胶工业蓬勃兴起,一日千里的突飞猛进。 从二十世纪初开始,高分子材料进入了工业合成高分子的重要阶段,而合成高分子的诞生和发展则是从酚醛树脂开始的。化学家们研究了苯酚与甲醛的反应,发现在不同的反应条件下可以得到两类树脂,一种是在酸催化下生成可融化可溶解的线型酚醛树脂,另一种则是在碱催化下生成的不溶解不熔化的体型酚醛树脂,这种酚醛树脂是人类历史上第一个完全靠化学合成方法生产出来的合成树

相关文档