文档库 最新最全的文档下载
当前位置:文档库 › 用有限差分法分析单脊波导中TM波的传输特性

用有限差分法分析单脊波导中TM波的传输特性

第4章-电磁波的传播

第四章 电磁波的传播 1.考虑两列振幅、偏振方向相同、频率分别为ωωd +和ωωd -的线偏振平面波,沿z 轴方向传播。 (a)求合成波,证明波振幅非常数,而是一个波;(b)求合成波的相位传播速度和振幅传播速度。 解:设两列波的电场表达式分别为:)cos()(),(1101t z k t ω-=x E x E ;)cos()(),(2202t z k t ω-=x E x E 则,合成波为12 12 12 12 120(,)(,)2()cos( )cos( )2 2 2 2 k k k k t t z t z t ωωωω++--=+=- - E E x E x E x 其中dk k k +=1,dk k k -=2;ωωωd +=1,ωωωd -=2 所以002()cos()cos(d d )2()exp[()]cos(d d )kz t k z t i kz t k z t ωωωω=-?-?=-?-?E E x E x 相速由t kz ωφ-=确定:d d p z v t k ω = = ;群速由t d z dk ?-?=ωφ'确定,d d d d g z v t k ω= = 2.平面电磁波以=θ45°从真空入射到2=r ε的介质,电场垂直于入射面,求反射系数和折射系数。 解:根据折射定律 222111 sin sin " n μεθθμε= =,可得:30 θ''=o 据菲涅耳公式得:2 1212cos cos "23cos cos "23 R εθεθεθεθ? ?--== ? ?+ +? ? ,23123 T R =-=+ 3.可见平面光波由水入射到空气,入射角为60°,证明这时将会发生全反射,并求折射波沿表面传 播的相速度和透入空气的深度。该波在空气中的波长为501028.6-?=λcm ,水的折射率为n =1.33。 解:由折射定律得,临界角1arcsin 48.75601.33c θθ?? ==?<=? ??? ,所以,将会发生全反射。 由于sin 90sin x k k θ''=o ,所以折射波相速度3sin sin sin 2 p x v c v c k k n ωωθ θ θ ''== = = = ''水 透入空气的深度为15 1 2 2 21 1.710 2sin n λκπ θ--= ≈?-cm 4.频率为ω的电磁波在各向异性介质中传播时,若H B D E ,,,仍按)(t i e ω-?x k 变化,但D 不再与E 平行。 (a)证明0=?=?=?=?E B D B D k B k ,但一般0≠?E k ; (b)证明2 2 [()] k ωμ -?= E k E k D ; (c)证明能流S 与波矢k 一般不在同一方向上。 证明:(a)由0??=B ,得:0) (0)(0=?=?=??=??-?-?B k B k B B x k x k i e i e t i t i ωω,0=?∴B k ,可知:B k ⊥ 由()()000i t i t e i e i ωω?-?-????=?=?=k x k x D =D k D k B 得:0=?D k ,可知:⊥k D 由D H k H H x k ωωi i e t i -=?=??=??-?0)(][,得() 0ωμ ???=-=B k B B D ,可知:B D ⊥ 由B E k E E x k ωωi i e t i -=?=??=??-?0)(][,得()0ω ???= =k E E B E ,可知:B E ⊥ 易知D E k ,,共直于B 的面,又D k ⊥,所以,当且仅当D E //时,k E ⊥。所以,一般0≠?E k 。 (b)2 2 2 () ()k ωμωμ ??-?=- = k k E E k E k D (c)由于ωμ ?= k E H ,2 () ()E ωμωμ ??-?=?= = E k E k k E E S E H 由于一般情况下0≠?E k ,所以能流S 与波矢k 一般不在同一方向上。 5.有两个频率和振幅都相等的单色平面波沿z 轴传播,一个波沿x 方向偏振,另一个沿 y 方向偏振,

矩形波导中电磁波的传播模式

矩形波导中电磁波的传播模式 [摘要] 人类进入21世纪的信息时代,电子与信息科学技术在飞速发 展,要求人们制造各种高科技的仪器。在电磁学领域,能约束或引导电磁波能量定向传输的传输线或装置是导波系统。.矩形波导适用于频率较高的频段,但当频率足够高的时候,可以使多个波导模式同时工作, 所以我们有必要对波导中的电磁波传播模式参数进行研究 关键词:矩形波导 TM 波 TE 波 矩形波导由良导体制作而成,一般为了提高导电性能和抗腐蚀性能,在波导内壁镀上一层高电导率的金或银, 它是最常见的波导,许多波导元件都是由矩形波导构成的。为了简化分析,在讨论中我们将波导的良导电体壁近似为理想导电壁。由前面的讨论我们知道,矩形波导中不能传输TEM 波,只能传输TE 波和TM 波。设矩形波导宽为a,高为b,(a>b )沿Z 轴放置,如图(1)所示。下面分别求解矩形波导中传输的TE 波和TM 波。 1TM 波 对于TM 波,z z E H ,0=可以表示为; z jk z z e y x E z y x E -=),(),,(0 (1) 式中),(0y x E 满足齐次亥姆霍兹方程,故有 0),(),(02 02 =+?y x E k y x E c (2) 采用分离变量法解此方程,在直角坐标系中,令 ) ()(),(0y Y x X y x E = (3)

0)()(2 ''=+x X k x X x 将(3)式代入(2)式中,并在等式两边同除以)()(y Y x X 得: 0) ()()()(2 ''''=++c k y Y y Y x X x X (4) 上式中第一项仅是X 的函数,第二项仅是Y 的函数,第三项是与X 、Y 无关的常数,要使上式对任何X 、Y 都成立,第一和第二项也应分别是常数,记为: 2 ''2 '') ()()()(y x k y Y y Y k x X x X -=-= 这样就得到两个常微分议程和3个常数所满足的方程: (5) 0)()(2 ''=+y Y k y Y y (6) 222y x c k k k += (7) 常微分方程(5)和(6)的通解为 )sin()cos()(21x k C x k C x Y x x += (8) )sin()cos()(43y k C y k C y Y y y += (9) 将(8)式和(9)式代入(3)式,再代入(1)式,就得到z E 的通解为 [][] z jk y y x x z z e y k C y k C x k C x k C z y x E -++=)sin()cos()sin()cos(),,(4321 由矩形波导理想导电壁的边界条件0=E ,确定上式中的几个常数,在4个理想导电壁上,z E 是切向分量,因此有: (1) 在0=X 的波导壁上,由0),,0(==z y x E z 得01=C ; (2) 在0=Y 的波导壁上,由0),0,(==z y x E z 得03=C ; (3) 在a X =的波导壁上,要使0),,(==z y a x E z 有0)sin(=a k x ,从而必须有 πm a k x =,其中 3,2.,1=m 为整数,由此得 a m k x π = (10) (4)在b X =的波导壁上,要使0),,(==z b y x E z 有,0)sin(=b k y 从而必定有πn b k y =,其中 3,2.,1=n 也为整数,由此得

有限差分法

利用有限差分法分析电磁场边界问题 在一个电磁系统中,电场和磁场的计算对于完成该系统的有效设计师极端重要的。例如,在系统中,用一种绝缘材料是导体相互隔离是,就要保证电场强度低于绝缘介质的击穿强度。在磁力开关中,所要求的磁场强弱,应能产生足够大的力来驱动开关。在发射系统中进行天线的有效设计时,关于天线周围介质中电磁场分布的知识显然有实质性的意义。 为了分析电磁场,我们可以从问题所涉及的数学公式入手。依据电磁系统的特性,拉普拉斯方程和泊松方程只能适合于描述静态和准静态(低频)运行条件下的情况。但是,在高频应用中,则必须在时域或频域中求解波动方程,以做到准确地预测电场和磁场,在任何情况下,满足边界条件的一个或多个偏微分方程的解,因此,计算电池系统内部和周围的电场和磁场都是必要的。 对电磁场理论而言,计算电磁场可以为其研究提供进行复杂的数值及解析运算的方法,手段和计算结果;而电磁场理论则为计算电磁场问题提供了电磁规律,数学方程,进而验证计算结果。常用的计算电磁场边值问题的方法主要有两大类,其每一类又包含若干种方法,第一类是解析法;第二类是数值法。对于那些具有最简单的边界条件和几何形状规则的(如矩形、圆形等)问题,可用分离变量法和镜像法求电磁场边值问题的解析解(精确解),但是在许多实际问题中往往由于边界条件过于复杂而无法求得解析解。在这种情况下,一般借助于数值法求解电磁场的数值解。 有限差分法,微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网络来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 差分运算的基本概念: 有限差分法是指用差分来近似取代微分,从而将微分方程离散成为差分方程组。于是求解边值问题即转换成为求解矩阵方程[5]。 对单元函数 ()x f而言,取变量x的一个增量x?=h,则函数()x f的增量可以表示为 ()x f? = ()h x f+-()x f 称为函数()x f 的差分或一阶差分。函数增量还经常表示为 ()x f? = ? ? ? ? ? + 2 h x f - ? ? ? ? ? - 2 h x f

电磁波的传播

实验二电磁波的传播 实验目的: 1、掌握时变电磁场电磁波的传播特性; 2、熟悉入射波、反射波和合成波在不同时刻的波形特点; 3、理解电磁波的极化概念,熟悉三种极化形式的空间特点。 实验原理: 平面电磁波的极化是指电磁波传播时,空间某点电场强度矢量E随时间变化的规律。若E的末端总在一条直线上周期性变化,称为线极化波;若E末端的轨迹是圆(或椭圆),称为圆(或椭圆)极化波。若圆运动轨迹与波的传播方向符合右手(或左手)螺旋规则时,则称为右旋(或左旋)圆极化波。线极化波、圆极化波和椭圆极化波都可由两个同频率的正交线极化波组合而成。 实验步骤: 1、电磁波的传播 (1)建立电磁波传播的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中电磁波随时间的传播规律 2、入射波、反射波和合成波 (1)建立入射波、反射波和合成波的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中三种波形在不同时刻的特点和关系 3、电磁波的极化 (1)建立线极化、圆极化和椭圆极化的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中三种极化形式的空间特性 实验报告要求: (1)抓仿真程序结果图 (2)理论分析与讨论

1、电磁波的传播 clear all w=6*pi*10^9; z=0::; c=3*10^8; k=w/c; n=5; rand('state',3) for t=0:pi/(w*4):(n*pi/(w*4)) d=t/(pi/(w*4)); x=cos(w*t-k*z); plot(z,x,'color',[rand,rand,rand]) hold on end title(‘电磁波在不同时刻的波形’) 由图形可得出该图形为无耗煤质中传播的均匀电磁波,它具有以下特点:(1)在无耗煤质中电磁波传播的速度仅取决于煤质参数本身,而与其他因素无关。 (2)均匀平面电磁波在无耗煤质中以恒定的速度无衰减的传播,在自由空间中其行进速度等于光速。 2、入射波、反射波、合成波 (1)axis equal; n=0;%改变n值得到不同时刻的电磁波状态z=0:*pi:10*pi; t=n*pi; B=cos(z-t/4); FB=cos(z+t/4); h=B+FB; plot(z,B,'r',z,FB,'b',z,h,'d'); legend('入射波','反射波','合成波'); axis([0 10 ]); (2)axis equal; n=1/4;;%改变n值得到不同时刻的电磁波状态 z=0:*pi:10*pi; t=n*pi; B=cos(z-t/4); FB=cos(z+t/4); h=B+FB; plot(z,B,'r',z,FB,'b',z,h,'d'); legend('入射波','反射波','合成波'); 电磁波在不同时刻的波形

电动力学_郭芳侠_电磁波的传播

第四章 电磁波的传播 1.电磁波波动方程222 2 2222110,0E B E B c t c t ???-=?-=??,只有在下列那种情况下成 立 A .均匀介质 B.真空中 C.导体内 D. 等离子体中 2.电磁波在金属中的穿透深度 A .电磁波频率越高,穿透深度越深 B.导体导电性能越好, 穿透深度越深 C. 电磁波频率越高,穿透深度越浅 D. 穿透深度与频率无关 答案: C 3.能够在理想波导中传播的电磁波具有下列特征 A .有一个由波导尺寸决定的最低频率,且频率具有不连续性 B. 频率是连续的 C. 最终会衰减为零 D. 低于截至频率的波才能通过. 答案:A 4.绝缘介质中,平面电磁波电场与磁场的位相差为 A .4π B.π C.0 D. 2π 答案:C 5.下列那种波不能在矩形波导中存在 A . 10TE B. 11TM C. m n TEM D. 01TE 答案:C 6.平面电磁波E 、B 、k 三个矢量的方向关系是 A . B E ?沿矢量k 方向 B. E B ?沿矢量k 方向 C.B E ?的方向垂直于k D. k E ?的方向沿矢量B 的方向 答案:A 7.矩形波导管尺寸为b a ? ,若b a >,则最低截止频率为 A . μεπa B. μεπ b C. b a 11+μεπ D. a 2 με π 答案:A 8.亥姆霍兹方程220,(0)E k E E ?+=??=对下列那种情况成立 A .真空中的一般电磁波 B. 自由空间中频率一定的电磁波 C. 自由空间中频率一定的简谐电磁波 D. 介质中的一般电磁波 答案:C 9.矩形波导管尺寸为b a ? ,若b a >,则最低截止频率为

第四章电磁波的传播

第四章 电磁波的传播 §4.1 平面电磁波 1、电磁场的波动方程 (1)真空中 在0=ρ,0=J 的自由空间中,电磁强度E 和磁场强度H 满足波动方程 012222=??-?t E c E (4.1.1) 012 222=??-?t H c H (4.1.2) 式中 80 010997925.21 ?== μεc 米/秒 (4.1.3) 是光在真空中的速度。 (2)介质中 当电磁波在介质内传播时,介质的介电常数ε和磁导率μ一般地都随电磁波 的频率变化,这种现象叫色散。这时没有E 和H 的一般波动方程,仅在单色波 (频率为ω)的情况下才有 012222=??-?t E v E (4.1.4) 012 222=??-?t H v H (4.1.5) 式中

()()() ωμωεω1 = v (4.1.6) 是频率ω的函数。 2、亥姆霍兹方程 在各向同性的均匀介质内,假设0=ρ,0=J ,则对于单色波有 ()()t i e r E t r E ω-= , (4.1.7) ()()t i e r H t r H ω-= , (4.1.8) 这时麦克斯韦方程组可化为 () εμω ==+?k E k E , 02 2 (4.1.9) 0=??E (4.1.10) E i H ??-=μω (4.1.11) (4.1.9)式称为亥姆霍兹方程。由于导出该方程时用到了0=??E 的条件,因此,亥姆霍兹方程的解只有满足0=??E 时,才是麦克斯韦方程的解。 3、单色平面波 亥姆霍兹方程的最简单解是单色平面波 ()()t r k i e E t r E ω-?= 0, (4.1.12) ()()t r k i e H t r H ω-?= 0, (4.1.13) 式中k 为波矢量,其值为 λ π εμω2= =k (4.1.14) 平面波在介质中的相速度为 εμ ω 1 = = k v P (4.1.15) 式中ε和μ一般是频率ω的函数。

第三章传输线理论

第三章传输线理论 本章的目的是概述由集总电路向分布电路表示法过度的物理前提。在此过程中,推导出一个最有用的公式:一般的射频传输线结构的空间相关阻抗表示公式。正如我们知道的,频率的提高意味着波长的减小,该结论用于射频电路,就是当波长可与分立的电路元件的几何尺寸相比拟时,电压和电流不再保持空间不变,必须把它们看做是传输的波。因为基尔霍夫电压和电流定律都没有考虑到这些空间的变化,我们必须对普通的集总电路分析进行重大的修改。本章重点介绍传输线理论,首先介绍传输线理论的实质,再介绍常用的几种传输线,其中重点介绍微带传输线,以及一般的传输线方程及阻抗的一般定义公式。 3.1传输线的基本知识 传输微波能量和信号的线路称为微波传输线。本节主要介绍传输线理论的实质以及理论基础 3.1.1传输线理论的实质 传输线理论是分布参数电路理论,它在场分析和基本电路理论之间架起了桥梁。随着工作频率的升高,波长不断减小,当波长可以与电路的几何尺寸相比拟时,传输线上的电压和电流将随着空间位置而变化,使电压和电流呈现波动性,这一点与低频电路完全不同。传输线理论用来分析传输线上电压和电流的分布,以及传输线上阻抗的变化规律。在射频阶段,基尔霍夫定律不再成立,因而必须使用传输线理论取代低频电路理论。 现在举例说明:分析一个简单的电路,该电路由内阻为R1的正弦电压源V1通过1.6cm的铜导线与负载电阻R2组成。电路图如下: 图3.1 简单电路

并且我们假设导线的方向与z轴方向一致,且它们的电阻可以忽略。我们假设振荡器的频率是1MHz,由公式 (3.1) 10m/s, rε=10, rμ=1 因此可以得到波长其中是相速度,=9.49×7 λ=94.86m.连接源和负载的1.6cm长的导线,在如此小的尺度内感受的电压空间变化是不明显的。 但是当频率提高到10GHz时情况就明显的不同了,此时波长降低到λ=p v/10 10=0.949cm,近似为导线长度的2/3,如果沿着1.6cm的导线测量电压,确定信号的相位参考点所在的位置是十分重要的。经过测量得知电压随着相位参考点的不同而发生很大的不同。 现在我们面临着不同的选择,在上图所示的电路中,假设导线的电阻可以忽略,当连接源和负载的导线不存在电压的空间变化时,如低频电路情况,才能有基尔霍夫电压定律进行分析。但是当频率高到必须考虑电压和电流的空间特性时,基尔霍夫电路定律将不能直接用。但是这种情况可以补救,假如该线能再细分为小的线元,在数学上称为无限小长度在该小线元上假定电压和电流保持恒定值。对于每一段小的长度的等效电路为: 图3.2 微带线的等效电路 但是具体到什么时候导线或者分立元件作为传输线处理,这个问题不能用简单的数字还给以确切的回答。从满足基尔霍夫要求的集总电路分析到包含有电压和电流的分布电路理论的过度与波长有关。此过度是在波长变得越来越与电路的平均尺寸可比拟的过程中,逐渐发生。根据一般的科研经验,当分立的电路元件平均尺寸长度大于波长的1/10时,就应该用传输线理论。例如在本例中1.6cm的导线我们能估算出频率为:

电动力学复习总结第四章 电磁波的传播2012答案

第四章 电磁波的传播 一、 填空题 1、 色散现象是指介质的( )是频率的函数. 答案:,εμ 2、 平面电磁波能流密度s 和能量密度w 的关系为( )。答案:S wv = 3、 平面电磁波在导体中传播时,其振幅为( )。答案:0x E e α-? 4、 电磁波只所以能够在空间传播,依靠的是( )。 答案:变化的电场和磁场相互激发 5、 满足条件( )导体可看作良导体,此时其内部体电荷密度等于( ) 答案: 1>>ωε σ , 0, 6、 波导管尺寸为0.7cm ×0.4cm ,频率为30×109HZ 的微波在该波导中能以 ( )波模传播。答案: 10TE 波 7、 线性介质中平面电磁波的电磁场的能量密度(用电场E 表示)为 ( ),它对时间的平均值为( )。答案:2E ε, 202 1E ε 8、 平面电磁波的磁场与电场振幅关系为( )。它们的相位( )。 答案:E vB =,相等 9、 在研究导体中的电磁波传播时,引入复介电常数='ε( ),其中虚部 是( )的贡献。导体中平面电磁波的解析表达式为( )。 答案: ω σεεi +=',传导电流,)(0),(t x i x e e E t x E ωβα-??-= , 10、 矩形波导中,能够传播的电磁波的截止频率= n m c ,,ω( ),当电磁 波的频率ω满足( )时,该波不能在其中传播。若b >a ,则最低截止频率为( ),该波的模式为( )。 答案: 22,,)()(b n a m n m c += μεπω,ω<n m c ,,ω,με πb ,01TE

11、 全反射现象发生时,折射波沿( )方向传播.答案:平行于界面 12、 自然光从介质1(11με,)入射至介质2(22με,),当入射角等于( ) 时,反射波是完全偏振波.答案:2 01 n i arctg n = 13、 迅变电磁场中导体中的体电荷密度的变化规律是( ). 答案:0t e σε ρρ-= 二、 选择题 1、 电磁波波动方程22222222110,0E B E B c t c t ???-=?-=?? ,只有在下列那种情况下 成立( ) A .均匀介质 B.真空中 C.导体内 D. 等离子体中 答案: A 2、 电磁波在金属中的穿透深度( ) A .电磁波频率越高,穿透深度越深 B.导体导电性能越好, 穿透深度越深 C. 电磁波频率越高,穿透深度越浅 D. 穿透深度与频率无关 答案: C 3、 能够在理想波导中传播的电磁波具有下列特征( ) A .有一个由波导尺寸决定的最低频率,且频率具有不连续性 B. 频率是连续的 C. 最终会衰减为零 D. 低于截至频率的波才能通过. 答案:A 4、 绝缘介质中,平面电磁波电场与磁场的位相差为( ) A .4π B.π C.0 D. 2π 答案:C 5、 下列那种波不能在矩形波导中存在( ) A . 10TE B. 11TM C. mn TEM D. 01TE 答案:C 6、 平面电磁波E 、B 、k 三个矢量的方向关系是( ) A . B E ?沿矢量k 方向 B. E B ?沿矢量k 方向 C.B E ?的方向垂直于k D. k E ?的方向沿矢量B 的方向 答案:A 7、 矩形波导管尺寸为b a ? ,若b a >,则最低截止频率为( )

第四章电磁波的传播

第四章 电磁波的传播 1.考虑两列振幅相同偏振方向相同,频率分别为ωωd +和ωωd -的线偏振平面波。它们都沿z 轴方向传播 (1) 求合成波。求证波的振幅不是常数。而是一个波。 (2) 求合成波的相位传播速度和振幅传播速度。 解:(1) ()??? ??+-+=t d z c d cos A A 01ωωωωρρ ()d A A cos z d t 20c ωωωω-?? =-- ??? r r ()()??? ?????? ??---+??? ??+-+=+t d z c d cos t d z c d cos A A A 021ωωωωωωωωρρρ ??? ???? ????????????? ??-??????? ??-=2z 2d c 2d cos 2t 2c 2cos A 20ωωωωρ ()()[] t k z i 0e t d dkz cos A 2ωω--=ρ 所以振幅为()[]t d dkz cos A 20ω-ρ 不是常数。而是一列波。 (2)相速度 t 时刻 1c t kz =-ω t t ?+时刻. ()()1c t t z z k =?+-?+ω ()()t kz t t z z k ωω-?+-?+ t z k ?=?ω k v t z p ω ==??∴ 群速度 1c t d z dk =?-?? ()()1c t t d -z z dk =?+?+? ()()t t d z -z dk t d dkz ?+-?=-∴??

t d z dk ?=?∴? dk d v t z j ? = =?? 2.以平面电磁波以045=θ从真空入射到24=ε的介质。电场强度垂直于入射面。求反射系数和折射系数。 解:由 1 122sin sin εμεμθθ = ' ' 1r 2r 12sin sin εεεεθθ = ='' 12 sin sin450= ''∴θ 解得 030=''θ 由菲涅耳公式: θεθεθεθε' '+''-=' sin sin sin sin E E 2121 o o o o = =+= 3 12cos cos cos 2E E 211+= ''+=' 'θεθεθε 由定义:

有限差分法

有限差分法 有限差分法有限差分法 finite difference method 微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散 点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函 数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差 分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便 可以从离散解得到定解问题在整个区域上的近似解。 有限差分法的主要内容包括:如何根据问题的特点将定解区域作网格剖分;如何把原 微分方程离散化为差分方程组以及如何解此代数方程组。此外为了保证计算过程的可行和 计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分 格式的相容性、收敛性和稳定性。对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。另外,一个差分格 式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。此外,还有一个重要的概念必须考虑,即差分格式的稳定性。因为差分格式的计算过 程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致 差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以 控制的,就认为格式是稳定的。只有在这种情形,差分格式在实际计算中的近似解才可能 任意逼近差分方程的精确解。关于差分格式的构造一般有以下3种方法。最常用的方法是 数值微分法,比如用差商代替微商等。另一方法叫积分插值法,因为在实际问题中得出的 微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。此外还可以用 待定系数法构造一些精度较高的差分格式。 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法 将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor 级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从 而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数 问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分 的空间形式来考虑,可分为中心格式和逆风格式。 考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目 前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分 方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

电磁波的在规则波导中的传播

讨论电磁波的在规则波导中的传播特性,就是确定在给定的边界条件下,满足麦克斯韦方程组的解,这个解的不同形式就表示不同的波型,这个解随时空的变化规律,便是电磁波在波导中传播规律。本节讨论在任意截面波导中的波动方程的求解方法以及电磁波在波导中传播的一般特性。 一、麦克斯韦方程组及边界条件 1.一般边界条件 2.理想导体表面的边界条件 二、规则波导中电磁场的求解方法 1.直接求解法 在给定边界条件下求解上述波动方程,便可得波导中电磁场的解。

2.赫兹矢量位法 (1)赫兹电矢量位引入赫兹电矢量位 (2)赫兹磁矢量位引入赫兹磁矢量位 3.纵向分量法 先求解满足标量波动方程的z方向分量(纵向分量);然后,由各分量间的关系求出其他分量 (横向分量) 三、导行波波型的分类 波型也称模式,它指的是能够单独在波导传输线中存在的电磁场结构的型式。 1.横电磁波:即没有纵向电场又没有纵向磁场分量,即和的波,并以TEM 表示。TEM波只能存在于多导体传输线中,而不能存在于空心波导中。 2.横电波:凡是磁场矢量既有横向分量又有纵向分量,而电场矢量只有横向分量,即 的波称为磁波或横电波,通常表示为H波或TE波。 3.横磁波:凡其电场矢量除有横向分量外还有纵向分量,而磁场矢量只有横向分量,即 的波称为电波或横磁波,通常表示为E波或TM波。

§2.2 导行波的传输特性 各种不同横截面的波导系统传输导行波时,尽管横向场分布彼此各异,但它们有着共同的纵向传输特性。导行波的传输特性包括六个方面: 截止波长、波导波长、相速群速和色散、波阻抗、传输功率以及导行波的衰减 一、截止波长 在即的情况下,称为传输状态。 在即的情况下,这是传输系统的截止状态。 就是介于传输状态和截止状态之间的临界状态。 临界频率或截止频率: 临界波长或截止波长: 截止波数: 二、波导波长 波导中的波长称为波导波长,并记为 为真空中的波长。 对于TEM波, 三、相速、群速和色散 1、相速度——波导中传输的波的等相位面沿轴向移动的速度。 TE、TM波的相速度公式为 对于TEM波, 则

有限差分法

有限差分法有限差分法 finite difference method 微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 有限差分法的主要内容包括:如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。此外为了保证计算过程的可行和计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分格式的相容性、收敛性和稳定性。对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。另外,一个差分格式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。此外,还有一个重要的概念必须考虑,即差分格式的稳定性。因为差分格式的计算过程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以控制的,就认为格式是稳定的。只有在这种情形,差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解。关于差分格式的构造一般有以下3种方法。最常用的方法是数值微分法,比如用差商代替微商等。另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。此外还可以用待定系数法构造一些精度较高的差分格式。 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛

电动力学复习总结第四章 电磁波的传播2012答案

电动力学复习总结第四章电磁波的传播2012答案 第四章电磁波的传播 一、填空题 1、色散现象是指介质的( )是频率的函数. 答案:?,? ???s2、平面电磁波能流密度和能量密度w的关系为( )。答案:S?wv ???3、平面电磁波在导体中传播时,其振幅为( )。答案:E0e???x 4、电磁波只所以能够在空间传播,依靠的是( )。 答案:变化的电场和磁场相互激发 5、满足条件( )导体可看作良导体,此时其内部体电荷密度等于( ) 答案:???1, 0, ?? 6、波导管尺寸为0.7cm×0.4cm,频率为30×109HZ的微波在 该波导中能以 ( )波模传播。答案:TE10波 ?E7、线性介质中平面电磁波的电磁场的能量密度(用电场表示)为 ( ),它对时间的平均值为( )。答案:?E2, 12?E0 2 8、平面电磁波的磁场与电场振幅关系为( )。它们的相位( )。答案:E?vB,相等 9、在研究导体中的电磁波传播时,引入复介电常数???( ),

其中虚部 是( )的贡献。导体中平面电磁波的解析表达式为( )。 ???????????xi(??x??t)答案:?????i,传导电流,E(x,t)?E0ee, ? ??10、矩形波导中,能够传播的电磁波的截止频率 c,m,n( ),当电磁 波的频率?满足( )时,该波不能在其中传播。若b>a,则最低截止频率为( ),该波的模式为( )。 答案:?c,m,n?? ??mn?()2?()2,?<?c,m,n,,TE01 abb?? 1 11、全反射现象发生时,折射波沿( )方向传播.答案:平行于界面 12、自然光从介质1(?1,?1)入射至介质2(?2,?2),当入射角等于( ) 时,反射波是完全偏振波.答案:i0?arctgn2 n1 13、迅变电磁场中导体中的体电荷密度的变化规律是( ). 答案:???0e?t? ? 二、选择题 ??22??1?E1?B1、电磁波波动方程?2E?22?0,?2B?22?0,只有在下列那种情况下c?tc?t

矩形波导中电磁波截止波长的计算(1)(1)

矩形波导中电磁波截止波长的计算 周和伟 物理与电子信息工程学院 07物理学 07234030 [摘要]:本文从麦克斯韦方程组出发,从理论上推导了电磁场遵循的波动方程和时谐电磁波遵循的波动方程;根据边值关系从理论上求出了时谐电磁波在矩形波导中的解,并对矩形波导管中传播的电磁波波解进行了讨论;计算了不同尺寸的矩形波导管的截止波长,截止波长大多属于厘米量级,说明波导管只适用于传播微波。 [关键词]:矩形波导电磁波截止波长 1 绪言 波导是一种用来约束或引导电磁波传输的装置,矩形波导是指横截面是矩形的波导,一般是中空的金属管。也有其他形式的波导装置,如介质棒或由导电材料和介质材料组成的混合构件[1]。因此,在广义的定义下,波导不仅是指矩形中空金属管,同时也包括其他波导形式如矩形介质波导等,还包括双导线、同轴线、带状线、微带和镜像线、单根表面波传输线等。根据波导横截面的形状不同还有其他形状波导,如圆波导等。尽管已存在很多不同波导形式,且新的形式还不断出现,但直到目前,在实际应用中矩形波导是一种最主要的波导形式。由于无线信号传输媒介,具有传输频带宽、传输损耗小、可靠性高、抗干扰能力强等特点,因此波导技术在电子技术领域运用非常广泛,主要用于铁氧体结环形器,窄壁缝隙天线阵[2],速调管矩形波导窗,高精度矩形弯铜波导管加工研究【3】等器件设备的制造生产,以及在地铁信号系统中的应用都很广泛。为了加深对波导传输特性的理解,本文从麦克斯韦方程组出发,推导了电磁场遵循的波动方程和时谐电磁波遵循的波动方程;根据边值关系从理论上求出了时谐电磁波在矩形波导中的解,并对矩形波导管中传播的电磁波波解进行了讨论;计算了不同尺寸的矩形波导管的截止波长,发现其截止波长都在厘米量级,说明波导管只适用于传播微波。

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定

矩形波导中电磁波的传播模式

矩形波导中电磁波的传播模式 [摘要]人类进入21世纪的信息时代,电子与信息科学技术在飞速发展,要求人们制造各种高科技的仪器。在电磁学领域,能约束或引导电磁波能量定向传输的传输线或装置是导波系统。?矩形波导适用于频率较高的频段,但当频率足够高的时候,可以使多个波导模式同时工作,所以我们有必要对波导中的电磁波传播模式参数进行研究 关键词:矩形波导TM波TE波 矩形波导由良导体制作而成,一般为了提高导电性能和抗腐蚀性能,在波导内壁镀上一层高电导率的金或银,它是最常见的波导,许多波导元件都是由矩形波导构成的。为了简化分析,在讨论中我们 将波导的良导电体壁近似为理想导电壁。 由前面的讨论我们知道,矩形波导中不能 传输TEM 波,只能传输TE波和TM波。 设矩形波导宽为a,高为b, (a>b)沿Z轴 放置,如图(1)所示。下面分别求解矩形波 导中传输的TE波和TM波 仃M波 对于TM波,H z=O, E z可以表示为; E z(x, y,z) = E°(x, y)e*z(1) 式中E o(x,y)满足齐次亥姆霍兹方程,故有 ' 2E o(x,y) k C?°(x,y) = O ⑵ 采用分离变量法解此方程,在直角坐标系中,令 E°(x,y)=X(x)Y(y) ⑶

将(3)式代入(2)式中,并在等式两边同除以 X(χ)Y(y)得: XW Xiy) k 2 C x(χ) Y(y) 上式中第一项仅是X 的函数,第二项仅是Y 的函数,第三项是与X 、Y 无关的 常数,要使上式对任何 X 、Y 都成立,第一和第二项也应分别是常数,记为: X ''(X) k χJ X(X^ 0 ⑸ Y ''(y) k :Y(y 「0 ⑹ 2 2 2 k c = kχ + ky ⑺ 常微分方程(5)和(6)的通解为 Y(X)=C i cos(k χX) C 2Sin(k χX) Y(y) =C 3C0s(k y y) C 4Sin(k y y) 将(8)式和(9)式代入(3)式,再代入(1)式,就得到 E z 的通解为 E z (x, y, z) - C 1 cos(k χX) C 2 sin( k χX) IC 3 cos( k y y) C 4 sin( k y y) ^jkZZ 由矩形波导理想导电壁的边界条件 E = 0,确定上式中的几个常数,在4个理想 导电壁上,E Z 是切向分量,因此有: (1) 在X "的波导壁上,由E Z (X =O,y,z)=0得C 1 =0 ; (2) 在Y=0的波导壁上,由E z (x,y =0,z) =0得C^0; (3) 在X = a 的波导壁上,要使E z (x = a, y, z) = 0有Sin(k x a) = 0,从而必须有 k χa =m 二,其中m =1.,2,3^为整数,由此得 (4) 在 X = b 的波导壁上,要使 E z (x,y =b, z) =0有,Sin(k y b) =0 从而必定有 k y b = n 二,其中n =1.,2,3…也为整数,由此得 x ''(χ) X(χ) -k 这样就得到两个常微分议程和 Y ''(y) _ Y (y) 3个常数所满足的方程: (8) (9) k χ m? (10)

相关文档
相关文档 最新文档