文档库 最新最全的文档下载
当前位置:文档库 › 电磁场和电磁波知识点总结(最新)

电磁场和电磁波知识点总结(最新)

电磁场和电磁波知识点总结

1、麦克斯韦的电磁场理论

(1)变化的磁场能够在周围空间产生电场,变化的'电场能够在周围空间产生磁场。

(2)随时间均匀变化的磁场产生稳定电场。随时间不均匀变化的磁场产生变化的电场。随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场。

(3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场。

2、电磁波

(1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波。

(2)电磁波是横波。

(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.00×108m/s。

【电磁场和电磁波知识点总结】

1

电磁场与电磁波基础知识总结

第一章 一、矢量代数 A ?B =AB cos θ A B ?= AB e AB sin θ A ?(B ?C ) = B ?(C ?A ) = C ?(A ?B ) ()()()C A C C A B C B A ?-?=?? 二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++l e e e d x y z 矢量面元=++S e e e x y z d dxdy dzdx dxdy 体积元d V = dx dy dz 单位矢量的关系?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρ?ρρ?l 矢量面元=+e e z dS d dz d d ρρ?ρρ? 体积元dz d d dV ?ρρ= 单位矢量的关系?=??=e e e e e =e e e e z z z ρ??ρ ρ? 3. 球坐标系 矢量线元d l = e r d r + e θ r d θ + e ? r sin θ d ? 矢量面元d S = e r r 2sin θ d θ d ? 体积元 ?θθd d r r dV sin 2= 单位矢量的关系?=??=e e e e e =e e e e r r r θ? θ??θ 三、矢量场的散度和旋度 1. 通量与散度 =?? A S S d Φ 0 lim ?→?=??=??A S A A S v d div v 2. 环流量与旋度 =??A l l d Γ max n rot =lim ?→???A l A e l S d S 3. 计算公式 ????= ++????A y x z A A A x y z 11()z A A A z ?ρρρρρ?????= ++????A 22111()(s i n )s i n s i n ????= ++????A r A r A A r r r r ? θ θθθθ? x y z ? ????= ???e e e A x y z x y z A A A 1z z z A A A ρ?ρ?ρρ?ρ? ?? ??= ???e e e A

电磁场与电磁波基础知识总结

电磁场与电磁波总结 第一章 一、矢量代数 A ?B =AB cos θ A B ?=AB e AB sin θ A ?(B ?C ) = B ?(C ?A ) = C ?(A ?B ) ()()()C A C C A B C B A ?-?=?? 二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++l e e e d x y z 矢量面元=++S e e e x y z d dxdy dzdx dxdy 体积元d V = dx dy dz 单位矢量的关系?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρ?ρρ?l 矢量面元=+e e z dS d dz d d ρρ?ρρ? 体积元dz d d dV ?ρρ= 单位矢量的关系?=??=e e e e e =e e e e z z z ρ??ρ ρ? 3. 球坐标系 矢量线元d l = e r d r e θr d θ + e ?r sin θ d ? 矢量面元d S = e r r 2sin θ d θ d ? 体积元?θθd drd r dV sin 2= 单位矢量的关系?=??=e e e e e =e e e e r r r θ? θ??θ 三、矢量场的散度和旋度 1. 通量与散度 =?? A S S d Φ 0 lim ?→?=??=??A S A A S v d div v 2. 环流量与旋度 = ?? A l l d Γ max n 0 rot =lim ?→???A l A e l S d S 3. 计算公式 ????= ++????A y x z A A A x y z 11()z A A A z ?ρρρρρ?????=++????A 22111()(sin )sin sin ????=++????A r A r A A r r r r ? θθθθθ? x y z ? ????= ???e e e A x y z x y z A A A 1z z z A A A ρ? ρ?ρρ ?ρ?????=???e e e A 21s i n s i n r r z r r A r A r A ρ?θθθ?θ??? ??=???e e e A 4. 矢量场的高斯定理与斯托克斯定理 ?=??? ?A S A S V d dV ?=?????A l A S l S d d 四、标量场的梯度 1. 方向导数与梯度 00()()lim ?→-?=??l P u M u M u l l cos cos cos ????= ++????P u u u u l x y z αβγ cos ??=?e l u u θ grad ????= =+????e e e +e n x y z u u u u u n x y z 2. 计算公式 ????=++???e e e x y z u u u u x y z 1????=++???e e e z u u u u z ρ?ρρ? 11sin ????=++???e e e r u u u u r r r z θ? θθ 五、无散场与无旋场

电磁场与电磁波知识点总结

电磁场与电磁波知识点总结 电磁场知识点总结篇一 电磁场知识点总结 电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。 电磁场知识点总结 一、电磁场 麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。 理解:* 均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场 * 均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场 * 电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立 的部分,有机的统一为一个整体,并成功预言了电磁波的存在) 二、电磁波 1、概念:电磁场由近及远的传播就形成了电磁波。(赫兹用实验证实了电磁波的存在,并测出电磁波的波速) 2、性质:* 电磁波的传播不需要介质,在真空中也可以传播 * 电磁波是横波 * 电磁波在真空中的传播速度为光速 * 电磁波的波长=波速*周期 3、电磁振荡 LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B 均随时间周期性变化 振荡周期:T = 2πsqrt[LC]4、电磁波的发射 * 条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间 * 调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。调制分两类:调幅与调频 # 调幅:使高频电磁波的振幅随低频信号的改变而改变 # 调频:使高频电磁波的频率随低频信号的改变而改变 (电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”) 5、电磁波的接收 * 电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。 * 调谐:改变LC振荡电路中的可变电容,是接收电路产生电谐振的过程 * 解调:从接收到的高频振荡电流中分离出所携带的信号的过程,是调制的逆过程,解调又叫做检波 (收音机是如何接收广播的?收音机的天线接收所有电磁波,经调谐选择需要的电磁波(选台),经过解调取出携带的信号,放大后再还原为声音) 5、电磁波的应用

电磁场与电磁波总结

电磁场与电磁波总结 1本章小结 一、矢量代数 A ∙ B =AB c os θ A B ⨯=A B e AB sin θ A ∙( B ⨯ C ) = B ∙(C ⨯A ) = C ∙(A ⨯B ) A ⨯ (B ⨯C ) = B (A ∙C ) – C ∙(A ∙B ) 二、三种正交坐标系 1. 直角坐标系 矢量线元 x y z =++l e e e d x y z 矢量面元 =+ +S e e e x y z d d x d y d z d x d x d y 体积元 d V = dx dy dz 单位矢量的关系 ⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y 2. 圆柱形坐标系 矢量线元 =++l e e e z d d d d z ρϕ ρρϕl 矢量面元 =+e e z dS d dz d d ρρϕρρϕ 体积元 dV = ρ d ρ d ϕ d z 单位矢量的关系 ⨯=⨯⨯=e e e e e =e e e e z z z ρϕϕ ρρ ϕ 3. 球坐标系 矢量线元 d l = e r d r + e θr d θ + e ϕr sin θ d ϕ 矢量面元 d S = e r r 2sin θ d θ d ϕ 体积元 dv = r 2 sin θ d r d θ d ϕ 单位矢量的关系 ⨯=⨯⨯=e e e e e =e e e e r r r θϕ θ ϕ ϕ θ 三、矢量场的散度和旋度 1. 通量与散度 = ⋅⎰ A S S d Φ 0 l i m ∆→⋅=∇⋅= ∆⎰A S A A S v d div v 2. 环流量与旋度 = ⋅⎰ A l l d Γ m ax n 0 rot =lim ∆→⋅∆⎰A l A e l S d S 3. 计算公式 ∂∂∂∇= ++∂∂∂⋅A y x z A A A x y z 11()∂∂∂ ∇= + +∂∂∂⋅A z A A A z ϕ ρρρρ ρϕ

电磁场与电磁波_知识点总结

已经将文本间距加为24磅, 第18章:电磁场与电磁波 一、知识网络 二、重、难点知识归纳 1.振荡电流与振荡电路 (1)大小与方向都随时间做周期性变化的电流叫振荡电流。能够产生振荡电流的电路叫振荡电路。自由感线圈与电容器组成的电路,就是一种简单的振荡电路,简称LC 回路。在振荡电路里产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流以及跟电荷与电流相联系的电场与磁场都发生周期性变化的现象叫电磁振荡。 (2)LC 电路的振荡过程:在LC 电路中会产生振荡电流,电容器放电与充电,电路中的电流强度从小变大,再从大变小,振荡电流的变化符合正弦规律.当电容器上的带电量变小时,电路中的电流变大,当电容器上带电量变大时,电路中的电流变小 (3) LC 电路中能量的转化 : a 、电磁振荡的过程就是能量转化与守恒的过程.电流变大时,电场能转化为磁场能,电 LC 回路中电磁振荡过程中电荷、电场。 电路电流与磁场的变化规律、电场能与磁场能相互变化。 分类:阻尼振动与无阻尼振动。 振荡周期:LC T π2=。改变L 或C 就可以改变T 。 电磁振荡 麦克斯 韦电磁场理论 变化的电场产生磁场 变化的磁场产生电场 特点:为横波,在真空中的速度为3、0×108m/s 电磁波 电磁场 与电磁波 发射 接收 应用:电视、雷达。 目的 :传递信息 调制:调幅与调频 发射电路:振荡器、调制器与开放电路。 原理:电磁波遇到导体会在导体中激起同频率感应电流 选台:电谐振 检波:从接收到的电磁波中“检”出需要的信号。 接收电路:接收天线、调谐电路与检波电路

流变小时,磁场能转化为电场能。 b 、电容器充电结束时,电容器的极板上的电量最多,电场能最大,磁场能最小;电容器放电结束时,电容器的极板上的电量为零,电场能最小,磁场能最大. c 、理想的LC 回路中电场能E 电与磁场能E 磁在转化过程中的总与不变。回路中电流越大时,L 中的磁场能越大。极板上电荷量越大时,C 中电场能越大(板间场强越大、两板间电压越高、磁通量变化率越大)。 (4) LC 电路的周期公式及其应用 LC 回路的固有周期与固有频率,与电容器带电量、极板间电压及电路中电流都无关,只取决于线圈的自感系数L 及电容器的电容C 。 2、电磁场 麦克斯韦电磁理论:变化的磁场能够在周围空间产生电场(这个电场叫感应电场或涡旋场,与由电荷激发的电场不同,它的电场线就是闭合的,它在空间的存在与空间有无导体无关),变化的电场能在周围空间产生磁场。 a 、均匀变化的磁场产生稳定的电场,均匀变化的电场产生稳定的磁场; b 、不均匀变化的磁场产生变化的电场,不均匀变化的电场产生变化的磁场。 c 、振荡的(即周期性变化的)磁场产生同频率的振荡电场,振荡的电场产生同频率的振荡磁场。 d 、变化的电场与变化的磁场总就是相互联系着、形成一个不可分离的统一体,称为电磁场。电场与磁场只就是这个统一的电磁场的两种具体表现。 3、电磁波: (1)变化的电场与变化的磁场不断地互相转化,并且由近及远地传播出去。这种变化的电磁场在空间以一定的速度传播的过程叫做电磁波。 (2)电磁波就是横波。E 与B 的方向彼此垂直,而且都跟波的传播方向垂直,因此电磁波就是横波。电磁波的传播不需要靠别的物质作介质,在真空中也能传播。在真空中的波速为 c =3、0×108m/s 。 振荡电路发射电磁波的过程,同时也就是向外辐射能量的过程. (3)电磁波三个特征量的关系:v =λf 4、电视与雷达 LC f LC T π频率的决定式:π周期的决定式:21 2= =

电磁场与电磁波课程知识点总结和公式

电磁场与电磁波课程知识点总结与主要公式 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )( ρ 本构关系: E J H B E D σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ????=?=??=?=??=?=??=?=??s s l l s d B B Q s d D D l d E E I l d H J H 0 000 ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-?=-=-?=-=-?==-? ((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0 )0 )(0 )==-?==-?==-?==-? ((

(1)基本方程 00 22=?==?- =?=?=??=?=?????A A p s l l d E Q s d D D l d E E ???ε ρ ?ρ 本构关系: E D ε= (2)解题思路 ● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注 意边界条件的使用)。 ● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能 量ωe =εE 2/2或者电容(C=Q/φ)。 (3)典型问题 ● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算; ● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。 例 : ρ s 球对称 轴对称 面对称

高中物理电磁波电磁场知识点整理

高中物理电磁波电磁场知识点整理 1。麦克斯韦的电磁场理论 (1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场。 (2)随时间均匀变化的磁场产生稳定电场。随时间不均匀变化的磁场产生变化的电场。随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场。 (3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场。 2。电磁波 (1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波。(2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3。00×10 8 m/s。 下面为大家介绍的是2012年高考物理知识点总结电磁感应,希望对大家会有所帮助。 1。电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即 ΔΦ≠0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2。磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb

2023最新-电磁场与电磁波知识点总结通用6篇

电磁场与电磁波知识点总结通用6篇 高中地理知识点总结与篇一高中地理知识点总结人类对宇宙的认识过程天圆地方说、地圆说、地心说、日心说、大爆炸宇宙学说。 宇宙的基本特点由各种形态的物质构成,在不断运动和发展变化。 天体的分类星云、恒星、行星、卫星、彗星、流星体、星际物质。 天体系统的成因天体之间因相互吸引和相互绕转,形成天体系统。 天体系统的级别地月系-太阳系-银河系(河外星系)-总星系。 日地平均距离1.496亿千米。 电磁波的知识点总结篇二电磁波的知识点总结 电磁波: 电磁波(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效地传递能量和动量。 电磁波的产生: 电磁波是由时断时续变化的电流产生的。 电磁波谱: 按照波长或频率的顺序把这些电磁波排列起来,就是电磁波谱。如果把每个波段的频率由低至高依次排列的话,它们是工频电磁波、无线电波、红外线、可见光、紫外线、X射线及γ射线。以无线电的波长最长,宇宙射线的波长最短。 无线电波3000米~0.3毫米。(微波0.1~100厘米) 红外线0.3毫米~0.75微米。(其中:近红外为0.76~3微米,中红外为3~6微米,远红外为6~15微米,超远红外为15~300微米) 可见光0.7微米~0.4微米。 紫外线0.4微米~10纳米 X射线10纳米~0.1纳米 γ射线0.1纳米~1皮米 高能射线小于1皮米 传真(电视)用的波长是3~6米;雷达用的波长更短,3米到几毫米。 微波的基本性质通常呈现为穿透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是穿透而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对于金属类东西,则会反射微波。 电磁波的发现 1、电磁场理论的核心之一:变化的磁场产生电场 在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)◎理解:(1) 均匀变化的磁场产生稳定电场(2) 非均匀变化的磁场产生变化电场 2、电磁场理论的核心之二:变化的电场产生磁场 麦克斯韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场 理解:(1) 均匀变化的电场产生稳定磁场 (2) 非均匀变化的电场产生变化磁场 3、麦克斯韦电磁场理论的理解: 恒定的电场不产生磁场 恒定的磁场不产生电场 均匀变化的电场在周围空间产生恒定的磁场

电磁场与电磁波(知识点重点总结)

电磁场与电磁波 一、本课程应用的三个主要方面: 静电场:利用静电场对带电粒子具有力的作用。如:静电复印、静电除尘以及静电喷漆 静磁场:利用磁场力的作用。如:电磁铁、磁悬浮轴承以及磁悬浮列车等 时变电磁场:利用电磁波作为媒介传输信息。如:无线通信、广播、雷达、遥控遥测、微波遥感、无线因特网、无线局域网、卫星定位以及光纤通信等信息技术、微波炉、电磁炉、卫星通信、蓝牙技术、隐形飞机。 二、 1、卫星通信基本原理: 卫星通信就是地球上(包括地球、水面和低层大气中)的无线电通信站之间利用人造卫星做中继站而进行的通信。 2、电磁炉加热原理: 感应电流(涡流)加热,利用电流通过线圈产生磁场,当磁场内的磁力线通过金属器皿的底部时即会产生无数小涡流,使器皿本身自行高速发热,然后再加热于器皿内的食物。 特点:①锅具自行发热,并煮食锅内食物。 ②炉面不发热,当磁场内的磁力线通过非金属物休,不会产生涡流,故不会产生热。炉面和人 都是非金属物体,本身不会发热,因此没有烧伤的危险。 ③电磁炉的热效率极高,煮食时安全、洁净、无火、无烟。 3、微波炉加热原理: 内加热:微波炉中极性分子接受微波辐射的能量后,通过分子偶极的每秒数十亿次的高速旋转产生热效应,这种加热方式称为内加热。 外加热:把普通热传导和热对流的加热过程称为外加热。 内加热特点:加热速度快、受热体系温度均匀等特点。 4、雷达工作原理: 雷达发出高频电磁波射到物体上,物体把这个电磁波向各个方向反射,当然也有一部分反射回发射点(雷达),在雷达处再设一个接收装置就可接收到回波,根据回波可发现物体。 5、隐形飞机原理: 使雷达无法探测到,飞机达到隐形效果的关键。在于采用隐形材料和隐形设计,尽量把雷达波束吸收掉,或者向偏离原雷达的方向反射,这样飞机就不容易被雷达探测到。

高考物理电磁感应及电磁场(波)知识点总结

高考物理电磁感应及电磁场(波)知 识点总结_ 高中物理电磁场和电磁波知识点总结。你要清楚地知道你到底是谁,要去哪里。要成为一个什么样的人,很多人浑浑噩噩,得过且过。你能清楚地意识到,或者梦想去到达彼岸,有时候,人生境遇就是如此,轻而易举滴到达你的彼岸。下面是为同学们精心整理的高考物理知识点总结 1.麦克斯韦的电磁场理论 (1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场. (2)随时间均匀变化的磁场产生稳定电场.随时间不均匀变化的磁场产生变化的电场.随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场. (3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场.

2.电磁波 (1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波. (2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长和频率f 的乘积,即v=f,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.0010 8 m/s. 下面为大家介绍的是2021年高考物理知识点总结电磁感应,希望对大家会有所帮助。 1. 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流. (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源. (2)电磁感应现象的实质是产生感应电动势,如果回路闭合,

电磁场与电磁波课程知识点总结和公式

电磁场与电磁波课程知识点总结与主要公式1麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 - -cD ∖ H=J _ Ct -

高中物理电磁场和电磁波知识点总结

高中物理电磁场和电磁波知识点总结 1.麦克斯韦的电磁场理论 (1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场. (2)随时间均匀变化的磁场产生稳定电场.随时间不均匀变 化的磁场产生变化的电场.随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场. (3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场. 2.电磁波 (1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波. (2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速 c=3.00×10 8 m/s. 下面为大家介绍的是2019年高考物理知识点总结电磁感应,希望对大家会有所帮助。 1. 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流. (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,

即ΔΦ≠0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源. (2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流. 2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS.如果面积S 与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数.任何一 个面都有正、反两个面;磁感线从面的正方向穿入时,穿过 该面的磁通量为正.反之,磁通量为负.所求磁通量为正、反两面穿入的磁感线的代数和. 3. 楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化.楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便. (2)对楞次定律的理解 ①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的 磁通量.

电磁场与电磁波

电磁场与电磁波 电磁波是电磁场的一种运动形态。电与磁可说是一体两面,变动的电场会产生磁场,变动的磁场则会产生电场。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。 在电磁学里,电磁场(electromagnetic field)是一种由带电物体产生的一种物理场。 处于电磁场的带电物体会感受到电磁场的作用力。电磁场与带电物体(电荷或电流)之间的相互作用可以用麦克斯韦方程和洛伦兹力定律来描述。 定义编辑 有内在联系、相互依存的电场和磁场的统一体的总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒介,具有能量和动量,是物质的一种存在形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。 随时间变化着的电磁场(electromagncfic field)。时变电磁场与静态的电场和磁场有显著的差别,出现一些由于时变而产生的效应。这些效应有重要的应用,并推动了电工技术的发展。 电磁波是电磁场的一种运动形态。然而,在高频率的电振荡中,磁电互变甚快,能量不可能全部返回原振荡电路,于是电能、磁能随着电场与磁场的周期转化以电磁波的形式向空间传播出去。电磁波为横波,电磁波的磁场、电场及其行进方向三者互相垂直。电磁波的传播有沿地面传播的地面波,还有从空中传播的空中波。波长越长的地面波,其衰减也越少。 电磁波的波长越长也越容易绕过障碍物继续传播。中波或短波等空中波则是靠围绕地球的电离层与地面的反复反射而传播的(电离层在离地面50~400公里之间)。振幅沿传播方向的垂直方向作周期性变化,其强度与距离的平方成反比,波本身带有能量,任何位置之能量、功率与振幅的平方成正比,其速度等于光速(每秒30万公里)。光波也是电磁波,无线电波也有和光波同样的特性,如当它通过不同介质时,也会发生折射、反射、绕射、散射及吸收等。在空间传播的电磁波,距离最近的电场(磁场)强度方向相同、且量值最大的两点之间的距离,就是电磁波的波长λ。电磁波的频率γ即电振荡电流的频率,无线电广播中用的单位是千赫,速度是c。根据λγ=c,求出λ=c/γ。 电可以生成磁,磁也能带来电,变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播即形成了电磁波,所以电磁波也常称为电波。1864年,英国科学家麦克斯韦在总结前人研究电磁现象取得的成果的基础上,建立了

电磁场与电磁波总结

电磁场与电磁波总结 电磁场与电磁波是物理学中的重要概念,它们是描述电磁现象的理论基础。电磁场是指电荷或电流在空间中产生的具有能量和动量的场,它包括静电场和静磁场,以及相互作用后的电磁场。电磁波是电磁场在空间中传播的波动现象,它是由变化的电场和磁场耦合产生的。 电磁场的产生与电荷和电流密切相关。根据库仑定律,电荷之间存在相互作用力,这种相互作用力可以通过电场来描述。电场是指电荷在周围空间中产生的场,它由电荷所带来的力场引起。电场的强度可以通过电场线来表示,电场线是指沿着电场方向的曲线。电场线越密集,电场强度越大。 电场的另一种表达方式是电势。电势是指单位正电荷在电场中所具有的能量。电势的计算可以通过电势差来实现,电势差是指单位正电荷从一个点移动到另一个点所做的功。电势差也可以通过电势面来表示,电势面是指电势相等的点所组成的曲面。电势是标量量,它没有方向。 静电场是指电荷分布不变的电场。根据高斯定律,静电场满足库仑定律,即电场强度与电荷量正比,与距离的平方成反比。静磁场是指电流分布不变的磁场。根据比奥-萨伐尔定律,静磁场满足安培定律,即磁场强度与电流正比,与距离成反比。静电场和静磁场可以通过麦克斯韦方程组来描述。 根据电磁波的频率,可以将其分为不同的波段。其中,频率低于3000Hz的电磁波称为低频电磁波,主要包括工频电磁波和无线电波;频率在3000Hz到300GHz之间的电磁波称为射频电磁波,主要包括微波和雷

达波;频率高于300GHz的电磁波称为高频电磁波,主要包括红外线、可 见光、紫外线、X射线和γ射线。 电磁波在生活中有广泛的应用。无线通信、广播电视、雷达导航、医 学影像、光纤通信等都是基于电磁波的技术。此外,电磁波还有助于人类 对宇宙的认知,天文学家利用电磁波对星系、恒星和行星进行观测和研究。 总结起来,电磁场与电磁波是物理学中重要的概念。电磁场是由电荷 和电流产生的具有能量和动量的场,它包括静电场和静磁场,以及相互作 用后的电磁场。电磁波是电磁场在空间中传播的波动现象,它是由变化的 电场和磁场耦合产生的。电磁波具有电场和磁场的振荡,且传播速度为光速。电磁波在生活中有广泛的应用,包括通信、广播、导航、医学影像等 领域。通过对电磁场和电磁波的研究,我们可以更好地理解和应用电磁现象。

电磁场与电磁波公式总结

电磁场与电磁波复习 第一部分知识点归纳 第一章矢量分析 1、三种常用的坐标系 (1)直角坐标系 微分线元:面积元:,体积元: (2)柱坐标系 长度元:,面积元,体积元: (3)球坐标系 长度元:,面积元:,体积元: 2、三种坐标系的坐标变量之间的关系 (1)直角坐标系与柱坐标系的关系 (2)直角坐标系与球坐标系的关系 (3)柱坐标系与球坐标系的关系 3、梯度 (1)直角坐标系中: (2)柱坐标系中: (3)球坐标系中: 4。散度 (1)直角坐标系中: (2)柱坐标系中: (3)球坐标系中: 5、高斯散度定理:,意义为:任意矢量场的散度在场中任意体积内的体积分等于矢量场在限定该体积的闭合面上的通量。 6,旋度 (1)直角坐标系中: (2)柱坐标系中: (3)球坐标系中: 两个重要性质:①矢量场旋度的散度恒为零,②标量场梯度的旋度恒为零, 7、斯托克斯公式: 第二章静电场和恒定电场 1、静电场是由空间静止电荷产生的一种发散场。描述静电场的基本变量是电场强度、电 位移矢量和电位。电场强度与电位的关系为:。 2、电场分布有点电荷分布、体电荷分布、面电荷分布和线电荷分布.其电场强度和电位的计算公式如下: (1)点电荷分布 (2)体电荷分布 (3)面电荷分布 (4)线电荷分布 3、介质中和真空中静电场的基本方程分别为 在线性、各向同性介质中,本构方程为: 4、电介质的极化 (1)极化介质体积内的极化体电荷密度为:。 (2)介质表面的极化面电荷密度为: 5、在均匀介质中,电位满足的微分方程为泊松方程和拉普拉斯方程,即 6、介质分界面上的边界条件 (1)分界面上的边界条件

(为分界面上的自由电荷面密度),当分界面上没有 自由电荷时,则有: ,它给出了的法向分量在 介质分界面两侧的关系: (I)如果介质分界面上无自由电荷,则分界面两侧的法向分量连续; (II)如果介质分界面上分布电荷密度,的法向分量从介质1跨过分界面进入介质2时将有一增量,这个增量等于分界面上的面电荷密度。 用电位表示: (2)分界面上的边界条件(切向分量) ,电场强度的切向分量 在不同的分界面上总是连续的. 由于电场的切向分量在分界面上总连续,法向分量 有限,故在分界面上的电位函数连续,即 . 电力线折射定律:。 7、静电场能量 (1)静电荷系统的总能量 ①体电荷:; ②面电荷:; ③线电荷:。 (2)导体系统的总能量为:。 (3)能量密度 静电能是以电场的形式存在于空间,而不是以电荷或电位的形式存在于空间中的。场中任意一点的能量密度为: 在任何情况下,总静电能可由来计算。 8、恒定电场存在于导电媒质中由外加电源维持。描述恒定电场特性的基本变量为电场强度和电流密度,且.为媒质的电导率。 (1)恒定电场的基本方程 电流连续性方程: 恒定电流场中的电荷分布和电流分布是恒定的.场中任一点和任一闭合面内都不能有电荷的增减,即。因此,电流连续性方程变为:,再加上,这变分别是恒定电场基本方程的积分形式和微分形式. (2)恒定电场的边界条件 应用欧姆定律可得:。 此外,恒定电场的焦耳损耗功率密度为,储能密度为. 第四章恒定磁场 1、磁场的特性由磁感应强度和磁场强度来描述,真空中磁感应强度的计算公式为:(真空磁导率:) (1)线电流: (2)面电流: (3)体电流: 2、恒定磁场的基本方程 (1)真空中恒定磁场的基本方程为: A、磁通连续性方程:, B、真空中安培环路定理: (2)磁介质中恒定磁场的基本方程为: A、磁通连续性方程仍然满足:, B、磁介质中安培环路定理: C、磁性媒质的本构方程:。 恒定磁场是一种漩涡场,因此一般不能用一个标量函数的梯度来描述。 3、磁介质的磁化 磁介质在磁场中被磁化,其结果是磁介质内部出现净磁矩或宏观磁化电流.磁介质的磁化

高考物理电磁场和电磁波知识点

高考物理电磁场和电磁波知识点 1.麦克斯韦的电磁场理论 1变化的磁场可以在周围空间产生电场,变化的电场可以在周围空间产生磁场。 2随时间均匀变化的磁场产生稳定电场。随时间不均匀变化的磁场产生变化的电场。 随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场。 变化的电场和变化的磁场总是相互联系,形成一个不可分割的统一体,即电磁场。 2.电磁波 周期性变化的电场和磁场总是交替变换、激发和产生,并从发生区域传播到周围空间,形成电磁波。2电磁波是横波。3.电磁波可以在真空中传播。电磁波从一种介质进入另一 种介质。频率不变,波速和波长变化。电磁波的传播速度V等于波长λ和频率f,即 V=λf。真空中任何频率的电磁波的传播速度等于真空中的光速,C=3。00×108m/s 1.磁场 磁场:磁场是一种存在于磁铁、电流和运动电荷周围的物质。永磁体和电流都能在太 空中产生磁场。变化的电场也能产生磁场。 2磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用。 3磁现象的电学本质:所有磁现象都可以归因于通过磁场的移动电荷或电流之间的相 互作用。 4安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分 子电流,分子电流使每个物质微粒成为微小的磁体。 5磁场方向:指定磁场中任何点上小磁针N极上的力的方向,或小磁针静止时N极的 方向是该点的磁场方向。 2.磁感线 在磁场中人工绘制一系列曲线。曲线的切线方向表示该位置的磁场方向,曲线的密度 可以定性地表示磁场的强弱。这一系列曲线被称为磁感应线。 2磁铁外部的磁感线,都从磁铁n极出来,进入s极,在内部,由s极到n极,磁感 线是闭合曲线;磁感线不相交。 3几种典型磁场的磁感应线分布: ①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱。

相关文档
相关文档 最新文档