文档库 最新最全的文档下载
当前位置:文档库 › 茄科物种全基因组抗病基因鉴定及其进化分析

茄科物种全基因组抗病基因鉴定及其进化分析

茄科物种全基因组抗病基因鉴定及其进化分析
茄科物种全基因组抗病基因鉴定及其进化分析

茄科物种全基因组抗病基因鉴定及其进化分析随着测序技术的快速发展,近年来多个茄科物种的基因组数据相继被释放,这为全基因组范围鉴定抗病基因和物种间比较基因组学的应用提供了平台。植物中大部分(80%)抗病基因属于NBS-LRR类。

本研究通过隐马尔科夫模型(Hidden Markov Model,HMM)和BLAST的方法从栽培番茄Heinz1706、野生番茄LA716、栽培马铃薯DM1-3、栽培辣椒Zunla-1、野生辣椒Chiltepin和栽培烟草TN90中分别鉴定出463、485、1,152、1,665、2,042和374个NBS-LRR类抗病基因。相比已报道的结果,本研究从番茄

Heinz1706和马铃薯DM1-3中鉴定出69和397个新抗病基因。

辣椒基因组内(尤其是野生辣椒Chiltepin)的抗病基因数目在已报道的二

倍体物种中是最大的。使用BLSATN的方法(E值为1e-10),我们将本研究从茄科物种鉴定出的绝大多数抗病基因(>92%)划分到了87个抗病基因亚家族中,其中16个亚家族为TIR-NBS-LRR(TNL)类,71个为non-TNL(n TNL)类。

分析表明,TNL类抗病基因家族的基因结构较n TNL类抗病基因亚家族的基因结构更保守。本研究以番茄基因组的抗病基为对象构建了147个VIGS沉默载体,覆盖番茄Heinz1706中81个抗病基因亚家族的64个,为未来番茄抗病基因的克隆提供了新的途径。

虽然茄科物种间抗病基因数目有巨大的差异(如野生辣椒Chiltepin中有2,042个抗病基因而栽培番茄Heinz1706只有463个),但是各个物种内抗病基因亚家族的数目却差不多(如野生辣椒Chiltepin和栽培番茄Heinz1706分别包含83和81个抗病基因亚家族)。进一步分析发现,茄科物种间抗病基因数目的差异主要是由一些大的抗病基因亚家族造成,例如辣椒中22个大的抗病基因亚家族

包含全基因组约80%的抗病基因,其中在辣椒Zunla-1和辣椒Chiltepin中最大的5个抗病基因亚家族(Rpi-blb2、BS2、SL-0273、Sw5-c和I2)分别包含

832(50.0%)和1,027(50.3%)个抗病基因同源体,而这5个抗病基因亚家族在番茄Heinz1706、番茄LA716和烟草TN90却只含有84(18.1%)、95(19.6%)和73(19.5%)个抗病基因同源体。

辣椒中最大的两个抗病基因亚家族(Rpi-blb2和BS2)在辣椒属和茄属内所包含的抗病基因同源体数目相差巨大,例如BS2抗病基因亚家族在两个辣椒基因组内共包含626个同源体,但是在番茄和马铃薯内只包含10个同源体。进一步分析发现这两个抗病基因亚家族的大部分同源体在茄科物种内没有序列交换,表明它们独立进化。

抗病基因位点I2/R3在茄科内是个抗病基因聚集的热点,很多抗病基因被定位在此位点,其中包括番茄中的Ty-2、SM,马铃薯中的R3、R6和R7等和辣椒中的L。在本研究中,抗病基因Ty-2定位区间的一侧被定位在标记

M-148200(51.63Mb)。

该位点内的I2抗病基因亚家族在番茄Heinz1706和马铃薯DM1-3内分别包含36和71条同源体,数目相差近两倍。这两个基因组内的大部分I2同源体都分布在11号染色体长臂近端粒处的几个Mb区域内。

根据该位点内的I2同源体的分布,可以进一步将该位点划分成9个亚位点,其中大部分的亚位点在两个基因组内所包含的I2同源体数目不同,而且有的亚位点还存在有和无的多态性。通过序列分析,我们发现番茄中的I2同源体有Type I和Type II两种典型的进化模型,但是马铃薯中的I2同源体却没有Type II类进化模式。

对该位点基因结构、复制类型和进化模型的了解可能为以后从该位点克隆抗病基因提供参考帮助。文献报道马铃薯中的R3a(I2同源体)可以被mi R482切割,但是通过生物信息预测和实验验证的方法,我们发现番茄内的I2同源体可以被另一个mi RNAs(mi R6024)切割,并且可以产生21-nt的tasi RNAs。

通过分析十个物种内的mi R6024序列,我们推测mi R6024是茄科特有的mi RNA家族。综上所述,本研究通过对茄科物种全基因组范围内抗病基因的鉴定、番茄抗病基因亚家族的划分、抗病基因的进化分析以及抗病基因VIGS沉默载体的构建,为茄科抗性资源的利用以及抗病基因的快速克隆奠定了基础。

全基因组关联分析的原理和方法

全基因组关联分析(Genome-wide association study;GWAS)是应用基因组中 数以百万计的单核苷酸多态性(single nucleotide ploymorphism ,SNP)为分子 遗传标记,进行全基因组水平上的对照分析或相关性分析,通过比较发现影响复杂性状的基因变异的一种新策略。 随着基因组学研究以及基因芯片技术的发展,人们已通过GWAS方法发现并鉴定了大量与复杂性状相关联的遗传变异。近年来,这种方法在农业动物重要经济性状主效基因的筛查和鉴定中得到了应用。 全基因组关联方法首先在人类医学领域的研究中得到了极大的重视和应用,尤其是其在复杂疾病研究领域中的应用,使许多重要的复杂疾病的研究取得了突破性进展,因而,全基因组关联分析研究方法的设计原理得到重视。 人类的疾病分为单基因疾病和复杂性疾病。单基因疾病是指由于单个基因的突变导致的疾病,通过家系连锁分析的定位克隆方法,人们已发现了囊性纤维化、亨廷顿病等大量单基因疾病的致病基因,这些单基因的突变改变了相应的编码蛋白氨基酸序列或者产量,从而产生了符合孟德尔遗传方式的疾病表型。复杂性疾病是指由于遗传和环境因素的共同作用引起的疾病。目前已经鉴定出的与人类复杂性疾病相关联的SNP位点有439 个。全基因组关联分析技术的重大革新及其应用,极大地推动了基因组医学的发展。(2005年, Science 杂志首次报道了年龄相关性视网膜黄斑变性GWAS结果,在医学界和遗传学界引起了极大的轰动, 此后一系列GWAS陆续展开。2006 年, 波士顿大学医学院联合哈佛大学等多个研究机构报道了基于佛明翰心脏研究样本关于肥胖的GWAS结果(Herbert 等. 2006);2007 年, Saxena 等多个研究组联合报道了与2 型糖尿病( T2D ) 关联的多个位点, Samani 等则发表了冠心病GWAS结果( Samani 等. 2007); 2008 年, Barrett 等通过GWAS发现了30 个与克罗恩病( Crohns ' disrease) 相关的易感位点; 2009 年, W e is s 等通过GWAS发现了与具有高度遗传性的神经发育疾病——自闭症关联的染色体区域。我国学者则通过对12 000 多名汉族系统性红斑狼疮患者以及健康对照者的GWAS发现了5 个红斑狼疮易感基因, 并确定了4 个新的易感位点( Han 等. 2009) 。截至2009 年10 月, 已经陆续报道了关于人类身高、体重、 血压等主要性状, 以及视网膜黄斑、乳腺癌、前列腺癌、白血病、冠心病、肥胖症、糖尿病、精神分 裂症、风湿性关节炎等几十种威胁人类健康的常见疾病的GWAS结果, 累计发表了近万篇 论文, 确定了一系列疾病发病的致病基因、相关基因、易感区域和SNP变异。) 标记基因的选择: 1)Hap Map是展示人类常见遗传变异的一个图谱, 第1 阶段完成后提供了 4 个人类种族[ Yoruban ,Northern and Western European , and Asian ( Chinese and Japanese) ] 共269 个个体基因组, 超过100 万个SNP( 约1

全基因组选择育种策略及在水产动物育种中的应用前景(精)

中国水产科学 2011年7月, 18(4: 936?943 Journal of Fishery Sciences of China 综述 收稿日期: 2011?03?14; 修订日期: 2011?04?10. 基金项目: 国家自然基金资助项目(30730071; 30972245; 农业科技成果转化资金项目(2010GB24910700. 作者简介: 于洋(1987?, 硕士研究生. E-mail: yuy8866@https://www.wendangku.net/doc/4611978292.html, 通信作者: 张晓军, 副研究员. E-mail: xjzhang@https://www.wendangku.net/doc/4611978292.html, DOI: 10.3724/SP.J.1118.2011.00935 全基因组选择育种策略及在水产动物育种中的应用前景 于洋1,2 , 张晓军1 , 李富花1 , 相建海1 1. 中国科学院海洋研究所实验海洋生物学重点实验室, 山东青岛266071; 2. 中国科学院研究生院, 北京 100049 摘要: 全基因组选择的概念自2001年由Meuwissen 等提出后便引起了动物育种工作者的广泛关注。目前, 澳大利亚、新西兰、荷兰、美国的研究小组已经应用该方法进行了优质种牛的选择育种, 并取得了很好的效果。此外在鸡和猪的选择育种中也有该方法的应用, 但在水产动物选育中尚未见该方法使用的报道。本文对“全基因组选择育种”的概念和提出背景进行了归纳, 对全基因组选择育种的优势进行了阐述, 并详细介绍了其具体的策略, 总结了目前全基因组育种所广泛采用的方法以及取得的成果, 旨在为该方法在水产动物育种方面的应用研究提供科学参考。 关键词: 全基因组选择; 水产动物育种; SNP; QTL; 全基因组育种值估计 中图分类号: S96 文献标志码: A 文章编号: 1005?8737?(201104?0935?08 人类对于动物的选择育种由来已久, 最初所进行的只是简单的人工驯化。随着遗传学研究的发展, 尤其是“数量遗传学理论”的提出, 动物育种技术进入快速发展时

全基因组选择及其在奶牛育种中的应用

发表于《中国奶牛》,2011 全基因组选择育种技术及在奶牛育种中应用进展 范翌鹏1孙东晓1* 张勤1张胜利1张沅1刘林2 (1.中国农业大学动物科技学院,北京,100193; 2.北京奶牛中心. 北京. 100085) 摘要:全基因组选择是指基于基因组育种值(GEBV)的选择方法,指通过检测覆盖全基因组的分子标记,利用基因组水平的遗传信息对个体进行遗传评估,以期获得更高的育种值估计准确度。由于可显著缩短世代间隔,全基因组选择作为一种育种新技术在奶牛育种中具有广阔的应用前景,目前已经成为各国的研究热点。不同国家的试验结果表明,在奶牛育种工作,基于GEBV 的遗传评估可靠性在20-67%之间,如果代替常规后裔测定体系,可节省92%的育种成本。本文综述了全基因组选择的基本原理及其在各国奶牛育种中的应用现状和所面临的问题。 关键词:全基因组选择,奶牛育种 Genome-Wide Selection and its Application in Dairy Cattle FAN YiPeng, SUN Dongxiao, ZHANG Qin, ZHANG Shangli, ZHANG Yuan, LIU Lin (College of Animal Science Technology, China Agricultural University, Beijing, 100193) Abstract: Genomic selection refers to selection decisions based on genomic breeding values (GEBV). The GEBV are calculated as the sum of the effects of dense genetic markers, or haplotypes of these markers, across the entire genome, thereby potentially capturing all the quantitative trait loci (QTL) that contribute to variation in a trait. Genomic selection has become a focus of study in many countries as the new breeding method. Reliabilities of GEBV for young bulls without progeny test results in the reference population were between 20 and 67%. By avoiding progeny testing, bull breeding companies could save up to 92% of their costs [1]. In this paper, we first review the progress of genomic selection, including the principle, methods, accuracy and advantages of genomic selection. We then review the application of genomic selection in dairy cattle. Key words: Genomic Selection, Dairy Breeding 全基因组选择(Genomic Selection,GS),即全基因组范围的标记辅助选择(Marker Assisted Selection, MAS),指通过检测覆盖全基因组的分子标记,利用基因组水平的遗传信息对个体进行遗传评估,以期获得更高的育种值估计准确度。研究已表明,标记辅助选择可提高奶牛育种遗传进展[2][3],但是在目前奶牛育种工作中却无法大规模推广应用标记辅助选择。因为奶牛的生产性状和健康性状均受大量基因座位共同影响,通过有限数量的已知标记无法大幅度加快遗传进展;其次,通过精细定位策略鉴定主效基因需花费大量人力物力和时间;而且利用标记信息估计育种值的计算方法也很复杂。全基因组选择基于基因组育种值(Genomic Estimated Breeding Value, GEBV)进行选择,其实施包括两个步骤:首先在参考群体中使用基因型数据和表型数据估计每个染色体片段的效应;然后在候选群体中使用个体基因型数据估计基因组育种值(genomic breeding value,GEBV)[4],模拟研究证明,仅仅通过标记预测育种值的准确性可以达到0.85(指真实育种值与估计育种值之间的相关,而可靠性则指其平方)。如果在犊牛刚出生时即可达到如此高的准确性,对奶牛育种工作则具有深远意义。模拟研究表明:对于一头刚出生的公犊牛而言,如果其GEBV的估计准确性可以达到经过后

猪基因组研究

猪基因组研究 鉴于猪的经济重要性以及医学研究价值, 猪是一种重要的动物模型, 是未来外源器官 移植的重要来源。由于猪的经济重要性以及医学研究价值, 许多有关猪的研究计划被先后掀起。许多有关猪的研究计划被先后掀起, 其中猪的基因组是研究热点和重点。从猪的基因定位、基因图谱、QTL定位、候选基因分析、测序进展、功能分析和蛋白质组学研究等方面综述了猪基因组研究取得的进展, 为进一步深入研究猪基因组提供理论参考。。PiGMaP 基因定位项目由欧洲经济共同体资助, 共有18 个欧洲实验室及7 个美国、日本和澳大利亚的实验室共同参与; 。此外, 美国农业部(USDA) 展开了二大项目研究: 一是在内布拉斯加州肉用动物 研究中心开展的大规模基因定位计划; 二是国家动物 基因组研究计划, 此项目提供了不同动物基因组的框 架, 促进包括猪在内的所有物种基因定位的互作及简 易化。近几年来, 美国州立、私立大学以及联邦实验室 的科学家们共同成立猪基因组技术委员会, 并积极参 与了动植物基因组会议, 这些研究最终促进了猪基因 图谱和功能基因组学的快速发展。。2004 年9 月在华盛顿主办 的“未来25 年基因组学的需求工作组会议”强烈要求 支持猪的基因组测序及一些高通量技术和仪器的开发 及利用。在过去的10 多年, 已有大量猪基因和QTLs 被分离鉴定及定位, 一些改善猪生产性能的基因测试 已应用到实践中。测序和表达分析的发起为充分了解 猪生物学的复杂性提供了一条新途径。

我国特有三种猪PPAR 分析我国特有三个小型猪品系巴马小型猪、五指山小型猪, 中国农大小型猪过氧化物酶体增 殖物激活受体 ( PPAR )基因exon 5 intron 5 这段序列的单核苷酸多态性( SNPs)分布特点,为我国小型猪在糖尿病和 代谢性疾病的研究中提供基础资料。方法 提取三个品系小型猪血液基因组DNA, 以基因组DNA 为模板, 应用多 聚合酶链式反应( PCR) 技术在合成的特异性引物引导下扩增, 将PCR 产物纯化, 然后进行测序, 再将测序结果在 NCBI中进行BLAST比对分析。结果测序结果显示:在PPAR 基因exon 5 intron 5 中存在12 个单核苷酸位点,分 别为83G→A, 133C→T, 134G→T , 141C→G, 146 T→G, 150 T→G, 179C→A, 196C→T, 205C→T, 212C→T , 218 T→C, 219T→C,其中只有83G→A 这一单核苷酸突变位点位于编码区内,密码子TCA→TCG,氨基酸为Ser163Ser。结论 在三 个品系小型猪中PPAR 基因多态位点的分布存在差异, 表明小型猪的品种不同多态情况不同。 过氧化物酶体增殖物激活受体α( peroxisome roli ferator activated receptor , PPARα) 是一类由配体激活的核转录因子, 属核激素受体超家族成员[ 1 ]。1990 年, Issemann 首次在啮齿类动物的肝脏中克隆出过氧化物酶体增值物激活受体α[ 2], 紧接着由Dreyer克隆出了其同源基因β及γ[ 3 ],从此掀起了研究PPAR 基因的热潮。PP ARα基因是调节糖、脂代谢的重要因子, 在高脂血症、动脉粥样硬化症、肥胖及2 型糖尿病等疾病的发病机制中可能发挥重要作用。近年来国外研究发现, PPARα基因第5 外显子L162V ( CTT→GTT) 多态性与低体重糖尿病或糖尿病脂质代谢异常水平有关。小型猪被认为是 2 型糖尿病的理想模型,本研究选择我国特有的巴马小型猪、五指山小型猪、中国农大小型猪三个品系为研究对象, 对PPARα基因外显子5 到内含子5 这段DNA序列进行多态性分析, 为我国小型猪在糖尿病等代谢性疾病中的应用提供基础资料。

比较基因组学鉴定藏猪和家猪的自然和人工选择的主要内容

《比较基因组学鉴定藏猪和家猪的自然和人工选择》的 主要内容 藏猪主产于青藏高原,包括四川阿坝及甘孜藏猪、云南迪庆藏猪、甘肃合作藏猪以及分布于西藏自治区山南、林芝、昌都等地的藏猪类群。藏猪是世界上少有的高原型猪种,是我国宝贵的地方品种资源。藏猪长期生活于无污染、纯天然的高寒山区,具有适应高海拔恶劣气候环境、抗病、耐粗等特点。藏猪能适应恶劣的高寒气候,在海拔2,500~3,500m的青藏高原半山区,年平均气温7~12℃、冬季最低-15℃、无霜期110~190天、食物资源缺乏的严酷条件下,藏猪仍能很好地生存下来。这种极强的适应能力和抗逆性,是其他猪种所不具备的独特种质特性。2004年,藏猪正式列入《中国畜牧品种志》,被正式确定为地方原始猪种。 该研究利用高通量测序技术及生物信息分析策略,从基因组水平充分揭示了藏猪特有高原环境适应性的分子机理,同时解析了四川盆地家猪在几千年的人工驯化过程中基因组中重要经济性状相关基因的进化方向。该研究主要包括以下两部分内容和发现: 第一部分:藏猪和欧洲家猪的比较基因组学分析 自然选择和人工选择是动物进化和家猪品种形成的重要驱动力之一。该研究首先通过组装我国特有高原型猪种——藏猪的基因组,与欧洲家猪杜洛克猪的参考基因组进行比较基因组学研究。揭示了猪基因组中大量功能基因在高原极端环境和强烈人工选择下出现的差异。嗅觉、能量代谢、低氧适应、紫外线抵抗、血液循环系统的平滑肌发育、子宫内的血液运输和药物转运等基因在藏猪和家猪间呈现出截然不同的进化趋势。 1. 通过基因组大小的比较分析发现藏猪基因组比家猪基因组小了0.09Gb (9千万) 碱基序列,且两者基因组仅有93.41%的部分共线,其差异堪比牦牛和家牛(共线性程度94%)差异程度。此外,藏猪和家猪间186 Mb(1亿8千万)碱基的序列方向相反,其差异可比人与黑猩猩(基因组间反向序列为154 Mb (1亿5千万))。进一步分析发现藏猪和家猪的祖先可能早在690万年前就已经开始各自向不同方向进化,甚至可能早于牦牛和家牛(490万年前),人类和黑

全基因组关联分析在畜禽上的应用

全基因组关联分析在畜禽上的应用 摘要:随着数量遗传学、分子生物学以及计算机水平的高速发展,出现了数量遗传学与分子遗传学的结合,动物育种中也不断出现新的方法,全基因组关联分析(GWAS)以及全基因组选择(GS)。本文主要介绍了GWAS及其在几种畜禽上的应用和问题。 关键字:GWAS,牛,猪,鸡,应用 对畜禽实施标记辅助选择可提高遗传进展,但是我们首先需要找到影响畜禽重要性状的主效基因。候选基因分析和标记QTL连锁分析策略使我们对一些基因的功能和作用方式有所了解,也找到了一些主效基因。但是生物基因组中有庞大的基因数目,很多控制畜禽经济性状的基因还无法分离和鉴定,这就需要一种全新的研究手段,最好能无偏地覆盖所有基因,并能高通量检测和适应不断更新的物种基因组序列。20世纪80年代后期90年代初期,随着数量遗传学理论研究的不断深入、分子生物学的飞跃发展、计算机水平的日新月异,开始出现数量遗传学与分子遗传学结合研究的热潮,发展为现在的分子数量遗传学。动物育种中也在传统育种方法的基础上不断提出新的方法:全基因组关联分析(Genome-Wide Association Studies,GWAS)以及全基因组选择。 GWAS就可以解决以上问题,GWAS是一种对全基因组范围内的常见遗传变异:单核苷酸多态性(Single nucleotide polymorphism,SNP)和拷贝数变异(Copy number variation,CNV)进行总体关联分析的方法,其核心思想是利用全基因组范围的连锁不平衡来确定影响复杂性状或数量性状的基因[1]。 GWAS目前主要是应用在人类的复杂疾病上,2005年,自从《Science》杂志上首次报道了Klein等利用Affymetrix100K的基因芯片对年龄相关性视网膜黄斑变性进行GWAS的结果之后,一大批有关复杂疾病的GWAS报道不断出现。已经陆续报导和公布了视网膜黄斑、乳腺癌、前列腺癌、白血病、冠心病、肥胖症、糖尿病、精神分裂症、风湿性关节炎等几十种疾病全基因组关联研究的结果[2]。 在中国农业大学图书馆SCI数据中输入GWAS的相关词,并分析其检索结果。如表1。虽然这个数据并不是很全面,但是也反映了GWAS的迅速发展。 是什么原因导致GWAS发展这么快速呢?主要原因可以归结于以下3个方面:首先是基础研究的支撑,基因组计划的完成和SNP数据库的建立为GWAS 的开展奠定了基础;第二是技术上的成熟,如高通量SNP芯片检测的发展;第三是统计方法的发展,GWAS因样本量大、数据庞杂,同时还需克服群体混杂、选择偏倚、多重比较等带来的假阳性问题,需要有正确严谨的统计分析方法解决[1]。

基因组学(复习)

王前飞: (1)为什么要研究表观遗传学? 答: 表观遗传学主要通过DNA 的甲基化、组蛋白修饰、染色质重塑和非编码RNA 调控等方式控制基因表达。表观遗传学是近几年兴起的而且发展迅速的一个研究遗传的分支学科,其研究和应用不仅对基因表达、调控、遗传有重要作用,而且在肿瘤、免疫等许多疾病的发生和防治以及干细胞定向分化研究、基因芯片中亦具有十分重要的意义。表观遗传学补充了“中心法则”忽略的两个问题,即哪些因素决定了基因的正常转录和翻译以及核酸并不是存储遗传信息的唯一载体;在分子水平上,表观遗传学解释了DNA序列所不能解释的诸多奇怪的现象。如: 同一等位基因可因亲源性别不同而产生不同的基因印记疾病,疾病严重程度也可因亲源性别而异。表观遗传学信息还可直接与药物、饮食、生活习惯和环境因素等联系起来,营养状态能够通过改变表观遗传以导致癌症发生,尤其是维生素和必需氨基酸。 此外,表观遗传学信息的改变,对包括人体在内的哺乳动物基因组有广泛而重要的效应,如转录抑制、基因组印记、细胞凋亡、染色体灭活等。DNA 甲基化模式的改变,尤其是某些抑癌基因局部甲基化水平的异常增加,在肿瘤的发生和发展过程中起到了不容忽视的作用。研究发现,肿瘤细胞DNA 存在广泛的低甲基化和局部区域的高甲基化共存现象,以及总的甲基化能力增高,这3个特征各以不同的机制共同参与甲基化在肿瘤发生、发展中的作用。如胃癌、结肠癌、乳腺癌、肺癌、胰腺癌等众多恶性肿瘤都不同程度地存在一个或多个肿瘤抑制基因CpG 岛甲基化。而表观遗传学改变在本质上的可逆性,又为肿瘤的防治提供了新的策略。所以,随着表观遗传学研究的深入,肯定会对人类生长发育、肿瘤发生以及遗传病的发病机制及其防治做出新的贡献,也必将在其他领域中展示其不可估量的作用和广阔的前景。 (2)表观遗传学涉及到哪些方面? 答: 表观遗传学的研究内容主要包括:DNA甲基化、组蛋白的末端修饰和变异体、DNAaseⅠ高敏感位点、非编码RNA、转录因子及其辅助因子、顺式调控元件和基因组印记等。 (3)什么因素会影响基因表达水平? 答: 基因选择性转录表达的调控( DNA甲基化,基因印记,组蛋白共价修饰,染色质重塑) 基因转录后的调控(基因组中非编码RNA,微小RNA(miRNA),反义RNA、内含子、核糖开关等) 1.转录水平的调控:包括DNA转录成RNA时的是否转录及转录频率的调控,DNA 的序列决定了DNA的空间构型,DNA的空间构型决定了转录因子是否可以顺利的结合到DNA的调控序列上,比如结合到TATA等序列上。 2.翻译水平的调控:翻译水平的调控又可以分成翻译前的调控和翻译后的调控。 a、翻译前的调控主要是RNA编辑修饰。 b、翻译后调控主要是蛋白的修饰,蛋白修饰后可以成为有功能的蛋白或者有隐藏功能的蛋白。 在真核和原核细胞中,从基因表达到蛋白质合成,其间有许多地方受到调控,这

茄科物种全基因组抗病基因鉴定及其进化分析

茄科物种全基因组抗病基因鉴定及其进化分析随着测序技术的快速发展,近年来多个茄科物种的基因组数据相继被释放,这为全基因组范围鉴定抗病基因和物种间比较基因组学的应用提供了平台。植物中大部分(80%)抗病基因属于NBS-LRR类。 本研究通过隐马尔科夫模型(Hidden Markov Model,HMM)和BLAST的方法从栽培番茄Heinz1706、野生番茄LA716、栽培马铃薯DM1-3、栽培辣椒Zunla-1、野生辣椒Chiltepin和栽培烟草TN90中分别鉴定出463、485、1,152、1,665、2,042和374个NBS-LRR类抗病基因。相比已报道的结果,本研究从番茄 Heinz1706和马铃薯DM1-3中鉴定出69和397个新抗病基因。 辣椒基因组内(尤其是野生辣椒Chiltepin)的抗病基因数目在已报道的二 倍体物种中是最大的。使用BLSATN的方法(E值为1e-10),我们将本研究从茄科物种鉴定出的绝大多数抗病基因(>92%)划分到了87个抗病基因亚家族中,其中16个亚家族为TIR-NBS-LRR(TNL)类,71个为non-TNL(n TNL)类。 分析表明,TNL类抗病基因家族的基因结构较n TNL类抗病基因亚家族的基因结构更保守。本研究以番茄基因组的抗病基为对象构建了147个VIGS沉默载体,覆盖番茄Heinz1706中81个抗病基因亚家族的64个,为未来番茄抗病基因的克隆提供了新的途径。 虽然茄科物种间抗病基因数目有巨大的差异(如野生辣椒Chiltepin中有2,042个抗病基因而栽培番茄Heinz1706只有463个),但是各个物种内抗病基因亚家族的数目却差不多(如野生辣椒Chiltepin和栽培番茄Heinz1706分别包含83和81个抗病基因亚家族)。进一步分析发现,茄科物种间抗病基因数目的差异主要是由一些大的抗病基因亚家族造成,例如辣椒中22个大的抗病基因亚家族

基因组选择育种在草原家畜育种中的应用前景

作者简介: 刘金(1971-),男,内蒙古通辽人,畜牧师,主要从事动物防疫、检疫及畜牧改良工作。 *通讯作者:吴金亮(1970-),内蒙古通辽人,主要从事动物防疫、检疫及畜牧改良工作。收稿日期:2013-11-07 基因组选择育种方法已经在奶牛、 肉牛、猪、鱼等动物育种获得了革命性突破。基因组选择可以允许育种者提前选择那些获得优越染色体片段的种畜,加快和提高遗传改良的速度和效率,降低后裔测定的成本,甚至最终取代整个后裔测定方法。基因组选择能有效提高畜禽育种的遗传进展,同时还能降低群体的近交量,是近年畜禽育种界的研究热点。 1基因组选择育种 基因组选择育种是分子育种在高通量测序时代的产物,即用高通量测序技术对群体进行研究,定位到控制某个目标性状的基因,然后通过序列辅助筛选或者转基因的方法来选育新的品种。 基因组选择育种的基本思想:育种值估计是动物遗传育种的核心内容之一。育种值估计方法的实质就是利用个体本身和(或)亲属的性状记录,进行适当加权来提高选择的准确性[1]。标记辅助选择主要是将影响目标性状的基因或标记信息加入到遗传评估中来提高育种值估计的准确性。然而,标记信息所能带来的额外准确性主要取决于它能够解释的遗传变异。畜禽遗传改良的多数目标性状都是数量性状,受多个基因控制,每个基因只能解释很小比例的遗传变异。因此,通过候选基因(candidategene)、数量性状基因座定位(quantitativetraitlocimapping,QTLmapping)和全基因组关联分析(genome-wideassociationstudy,GWAS)等策略发现的基因或标记也只能解释较小比例的遗传变异。显然,通过此策略实施标记辅助选择难以显著提高育种值估计的准确性[2]。基因组选择育种方法的提出解决了标记辅 助选择所面临的上述问题。基因组选择也是一种标记辅助选择,但与常规的标记辅助选择中只使用少数标记不同的是,基因组选择同时使用覆盖全基因组的标记进行育种值估计,由此得到的估计育种值称为基因组育种值(genomicestimatedbreedingvalue,GEBV)。基因组选择的一个基本假设是,影响数量性状的每一个QTL都与高密度全基因组标记图谱中的至少一个标记处于连锁不平衡(linkagedise-quilibrium,LD)状态[3]。因此,基因组选择能够追溯到所有影响目标性状的QTL,从而克服传统标记辅助选择中标记解释遗传方差较少的缺点,实现对育种值的准确预测。 在育种史上,有3个时代: 第1个时代:根据性状来选育品种。人们有意识地根据性状对后代进行选择,包括传统的杂交育种,例如对高产易感病水稻和产量较低但抗病性较强的水稻杂交,从后代中筛选出高产且抗病较强的水稻来繁殖。其特点是不需要了解性状形成的机理,直接对性状进行选择。但是由于性状受环境影响很大,所以直接对性状进行选择并不一定总能够选择到控制优良性状的基因,育成一个品种需要较长的时间。 第2个时代:根据分子标记来选育品种。在这个时代,人们已经了解性状的形成是由染色体上某段DNA序列决 基因组选择育种在草原家畜育种中的应用前景 刘金1,许艳玲1,包玉霞1,刘玉珍1,吴迎朝2,吴金亮3* 1.内蒙古通辽市扎鲁特旗乌额格其牧场畜牧兽医站,内蒙古通辽029109 2.内蒙古农业大学动物科学学院,内蒙古呼和浩特 010018 3.内蒙古通辽市扎鲁特旗嘎达苏种畜场兽医站,内蒙古通辽029109 摘 要:文章综述了基因组选择育种的研究进展,并分析了基因组选择育种在奶牛和内蒙古绒山羊上的应用前景和面临的 挑战。利用基因组选择育种对奶牛和内蒙古绒山羊的遗传改良进展速度尤为重要。关键词:基因组选择育种;奶牛;内蒙古绒山羊;应用前景中图分类号:S813 文献标识码:A 文章编号:1002-204X (2014)02-0042-03 ProspectofApplicationofGenomicSelectionBreedingtoGrasslandLivestockBreeding LIUJinetal.(AnimalHusbandryandVeterinaryStationofWuegeqiPastureinZhaluteCountyinTongliaoMunicipality,Tongliao,InnerMongolia029109) AbstractTheadvancesintheresearchofthegenomicselectionbreedingaresummarizedandtheprospectsandthechallengefacedinapplicationofthegenomicselectionbreedingtothecowsandInnerMongoliacashmeregoatsareanalyzed.TousethegenomicselectionbreedingisespeciallyimportanttotheprogressofthegeneticimprovementofcowsandInnerMongoliacashmeregoats. KeywordsGenomicselectionbreeding;Cows;InnerMongoliacashmeregoats;Prospectofapplication 宁夏农林科技,NingxiaJournalofAgri.andFores.Sci.&Tech.2014,55(02):42-44 42

全基因组选择在猪育种上的研究进展

全基因组选择在猪育种上的研究进展 自野生动物被驯化以来,科学家一直致力于提高畜禽育种值的研究。近半个世纪来,畜禽育种值估计的方法主要经历了综合选择指数法、同期群体比较法、最佳线性无偏预测法(Best LinearUnbiased Prediction,BLUP)、分子标记辅助选择育种(MAS)以及近几年快速发展的GS 法。同时,随着高密度基因芯片的出现和高通量测序技术的快速发展,单核苷酸多态性(SingleNucleotide Polymorphism,SNP)分型成本快速下降,GS 才逐渐引起畜禽界的关注。特别是Schaeffer发现,在奶牛育种中利用GS比后裔测定可节约成本97%,且遗传进展可提高3~4倍后,全球掀起了一股研究GS的热潮。 全基因组选择(GS) 什么是GS 2001年,Meuwissen等人最先提出GS,实质为全基因组范围的标记辅助选择。其理论基础是应用整个基因组的标记信息和各性状值来估计每个标记或染色体片段的效应值,然后将效应值加和即得到基因组育种值(GenomicEstimated Breeding Value,GEBV)。GS在某种程度上是MAS的延伸,弥补了在MAS 中标记数量只能解释一部分遗传方差以及数量性状位点(QuantitativeTrait Locus,QTL) 定位困难的缺点。其中心任务是提高GEBV值的准确性,并尽可能准确地估计每个标记的效应。而估计标记效应的方法在实际运用中以BLUP法为主;Bayes法虽其准确性高于BLUP,但因其计算复杂,需在超级计算机上运行而限制其应用。不过随着快速算法的开发和计算机硬件的改进,Bayes法的运算效率有望提高。 为什么选用GS GS的优势 与MAS相比,GS的优势主要表现在: 1)能对所有的遗传和变异效应做出准确的估计。而MAS 只能对部分遗传变异进行检测,且容易高估其遗传效应。 2)缩短世代间隔、提高畜禽年遗传进展、降低生产成本等,这在需要后裔测定的家畜中尤为明显。如GS给奶牛育种带来了巨大经济效益。 3)早期选择准确率高。 4)对于较难实施选择的性状具有重大影响。如低遗传力性状、难以测定的性状等。 5)GS在提高种群的遗传进展前提下,还能降低群体的近交增量。 GS的可靠性

水稻全基因组R基因鉴定及候选RGA标记开发

论文第50卷第11期 2005年6月 水稻全基因组R基因鉴定及候选RGA标记开发 汪旭升①吴为人①②*金谷雷②朱军① (①浙江大学农业与生物技术学院生物信息学研究所, 杭州 310029; ②福建农林大学作物科学学院, 福州 350002. *联系人, E-mail: wuwr@https://www.wendangku.net/doc/4611978292.html,) 摘要用45个已知功能的植物抗病(R)基因序列对粳稻全基因组序列进行搜索, 共找出2119个R基因同源序列或类似物(RGA), 表明RGA在水稻基因组中成簇存在, 呈非随机分布. 采用隐马尔柯夫模型(HMM), 将这些RGA按其功能域分成了21类. 将粳稻的RGA与籼稻的基因组序列进行比较, 共找到702个两亚种间等位的RGA, 并发现其中有671个(占95.6%)RGA的基因组序列(包括编码区和非编码区)在两亚种间存在长度差异(InDel), 表明水稻RGA在两亚种间存在很高的多态性. 通过在InDel两侧设计引物并进行e-PCR验证, 共开发出402个基于PCR的、表现为共显性的候选RGA标记. 这些候选标记在两亚种间的长度差异在1~742 bp之间, 平均为10.26 bp. 有关数据均可从我们的网站(https://www.wendangku.net/doc/4611978292.html,/RGAs/index.html)上获得. 关键词水稻抗病基因RGA多态性分子标记 植物抗病(R)基因是决定寄主植物对病原菌专化性识别并激发抗病反应的基因, 与病原菌的无毒基因互补. 经典遗传学认为, 植物与病原菌间相互作用的遗传机制是“基因对基因”, 并提出了配体-受体模型来解释这一学说[1,2]. 自1992年以来, 利用图位克隆和转座子标签法, 已经在水稻、拟南芥、玉米、烟草、亚麻等植物中克隆了40多个R基因[3]. 研究发现, 这些R基因存在一些共同的结构. 根据其蛋白结构及在细胞中的位置, R基因大致可分为5类[4,5]: (ⅰ) NBS-LRR, 是含有核苷酸结合位点(NBS)和富亮氨酸重复(LRR)的胞内受体蛋白基因, 包括2个亚类: (1) TIR-NBS-LRR, 以拟南芥的RPP5基因、烟草的N基因及亚麻的L6和M基因为代表; (2) CC-NBS-LRR, 以拟南芥的RPS2和RPM1基因、番茄的I2基因及大麦的Mla1基因为代表. (ⅱ) 细胞间的苏氨酸/丝氨酸蛋白激酶(PK)基因, 包括番茄的Pto基因和大麦的Rpg1基因. (ⅲ) LRR-TM, 是N端存在一个胞外LRR, C端具有由疏水氨基酸组成的跨膜区的受体蛋白基因, 包括番茄抗叶霉病的基因Cf-2, Cf-4, Cf-5和Cf-9等. (ⅳ) PK-LRR-TM, 除含有LRR-TM结构外, 还具有PK结构, 包括水稻的Xa-21基因和拟南芥的FLS2基因. (ⅴ) SA-CC, 包括拟南芥的RPW8.2和RPW8.1基因. 此外, 还有玉米的Hm1及Hsl Pro-1和Asc等其他结构域的R基因. R基因是一个庞大的基因家族. 尽管已经克隆了40多个R基因, 但对R基因的了解还非常有限. 目前, 对拟南芥和水稻的基因组测序工作皆已基本完成. 水稻籼、粳2个亚种的基因组草图已经完成[6,7], 而且粳稻的1号、4号和10号3条染色体已经发布了精细图[8~10]. 这些成果为在整个基因组水平上研究R基因提供了契机. 利用拟南芥基因组的测序结果, Meyers等人[11]分析了NBS-LRR型R基因在拟南芥基因组中的分布. 对水稻基因组序列的初步分析显示, 水稻基因组中存在大量的R基因[6~7], 且往往成簇存在[12~14]. Monosi等人[15]发现在水稻中存在近500个NBS-LRR的基因, 但没有发现TIR的基因. Chelkowski等人[16]和Koczyk等人[17]利用18个已知的R基因分别对拟南芥和粳稻基因组序列进行分析, 发现拟南芥和水稻分别存在549和1744个R基因, 其中水稻的R基因中有597个属于NBS-LRR类型. 可以看出, 目前这些基于基因组序列的研究主要都集中在对NBS-LRR型R基因的分析上. 分子标记是现代遗传学研究的有力工具. 自1980年首次提出分子标记的概念以来[18], 分子标记已广泛应用于遗传图谱构建、基因定位、基因克隆、基因组比较、遗传多样性分析、标记辅助育种等领域的研究[19~21]. 利用R基因类似物(RGA)作探针, 可以检测相应座位上的限制性片段长度多态性(RFLP), 从而开发成为RFLP标记, 常称为RGA标记. 由于RGA本身可能就是潜在的R基因, 而且R基因常常成簇分布于基因组中, 因此RGA标记对于R基因的克隆和标记辅助选择可能具有特别的应用价值. 但是, 由于RGA标记是基于RFLP分析技术的, 操作上比较麻烦, 因此目前应用得并不多.

关于内参基因的选择

关于内参基因的选择 实验内参,即是在检测细胞内分子表达变化时选择的参照物,其在细胞内的表达相对恒定,在处理因素作用条件下不会发生表达改变的基因。内参同样可以校正上样量、上样过程中存在的实验误差,保证实验结果的准确性。 1、管家基因 最普通的内参是内源性参照基因,也就是管家基因(持家基因,house keeping gene)。 管家基因是一类始终保持着低水平的甲基化并且一直处于活性转录状态的基因,高度保守并且在大多数情况下持续表达。其表达水平受环境因素影响较小,而且是在个体各个生长阶段的大多数,或几乎全部组织中持续表达,或变化很小,因此常存在于生物细胞核的常染色质中。它的表达只受启动序列或启动子与RNA 聚合酶相互作用的影响,而不受其他机制调节。 管家基因维持细胞最低限度功能所不可少的基因, 如编码组蛋白基因、编码核糖体蛋白基因、线粒体蛋白基因、糖酵解酶的基因等。这类基因在所有类型的细胞中都进行表达,因为这些基因的产物对于维持细胞的基本结构和代谢功能是必不可少的。

2、内参基因选择的条件 1、不存在假基因,以免基因组DNA的扩增; 2、高度或中度表达,避免太高或太低的丰度; 3、稳定表达于不同类型的细胞和组织中,表达量无明显差异; 4、表达水平与细胞周期、活化等无关; 5、不受外源性或内源性因素的影响。 3、不同管家基因 在选择管家基因作为内参时,首先要按不同类型的分子选择正确的内参。曾看到有人用检测miRNA时选择了GAPDH作为内参呢。 a、检测mRNA时的内参 通常使用的是GAPDH、beta-actin、tubulin GAPHD

GAPDH GAPDH是糖酵解反应中的一个酶,由4个30-40kDa的亚基组成,分子量 146kDa。该酶基因为管家(house keeping)基因,几乎在所有组织中都高水平表达,在同种细胞或者组织中的蛋白质表达量一般是恒定的,且不受含有的部分识别位点、佛波脂等的诱导物质的影响而保持恒定,故被广泛用作抽提total RNA,poly(A)+ RNA,Western blot等实验操作的标准化的内参。 beta-actin β-Actin是PCR常用的内参,β-Actin抗体是Western Blot很好的内参指数。β-Actin是横纹肌肌纤维中的一种主要蛋白质成分,也是肌肉细丝及细胞骨架微丝 的主要成分,具有收缩功能,分布广泛。

育种考试题

思考题 1、数量性状QTL定位及应用存在的主要瓶颈有哪些?如何有效地克服?举实例说明。 瓶颈:(1)QTL定位不精准,QTL效应和数目夸大估计,存在QTL环境互作。 (2)QTL作图群体与育种群体的脱节:由于QTL表达存在很强的遗传背景效应,作图群体定位结果难以直接应用于育种群体; (3)无法获得优异等位基因:绝大多数的QTL定位都是以来自两个亲本组合的分离群体为基础的。对某一QTL位点上的两个等位基因间的比较,只知较好,不知最好,因而不能鉴别出用于MAS的最佳有利等位基因. 克服方法:(1)AB-QTL定位策略(2)回交和分子标记技术相结合(吉粳88抗旱目标性状选择导入系定位)利用高代回交群体的目标性状选择导入系进行基因QTL定位,可以有效消除QTL 之间以及QTL 与背景遗传效应间的互作,定位的成果能够直接用于遗传育种实践,从而将基因研究紧密结合起来. 2、设计一套绿色性状(高产、抗旱、氮高效利用和抗病,从中任选3种性状)基因/QTL发掘和聚合的育种技术路线,并简要阐述其研究方案。(参考以下方案) 1 举例说明如何应用比较基因组学方法发掘和验证基因特异性标记。 比较基因组学:在基因组图谱和序列分析的基础上,对已知基因和基因的结构进行比较,了解基因的功能,表达调控机制和物种进化过程的学科。如利用模式之物拟南芥在其功能研究深入方面与玉米等作物进行比较,从而发掘基因特异性标记。

2分子育种存在的主要问题有哪些? (1)与育种目标密切相关性状的标记数量少(2)分子标记与目标基因距离远, 选择准确性差, 标记在其它材料中无法应用(3)重标记发掘, 轻标记优化与应用(4)缺乏标记服务平台, 成本高(5)分子标记研究与主流育种项目结合不紧密 1、棉花育种主要方法有哪些?是举例说明选择育种的特点,过程以及局限性。 (1)主要育种方法:选择育种,杂交育种,远缘杂交育种,杂种优势利用,诱变育种,生物技术育种。 (2)选择育种是从现有品种(系)中,选择优良变异个体(单株或单铃),经后裔鉴定、比较而育成新品种的方法。又称系统育种。 特点:(1)优中选优,简单易行。(2)连续选优,性状不断改进提高。 以徐州1818为例:徐州209(70万株)2600单株决选808单株决选12株系经品系预备实验决选4株系经品系比较实验决选3株系… 徐州1818 (徐州209→多次单株选择→徐州1818)局限性:选择效率不高。遗传基础较窄。 2 请以转基因抗虫棉的研制为例,阐述基因工程育种的特点,关键过程及重要意义。 特点:(1)目的性强,准确,迅速,高效。(2)使用单一目标基因,没有遗传累赘(3)克服种间障碍,实现基因跨物种表达 过程:(1)合成目的基因:直接使用野生型目的基因,第一批转Bt杀虫晶体蛋白基因植物抗虫性差,要对目的基因进行改造或全部人工合成.(2)构建载体:构建利于筛选,高效表达的载体.(3)目的基因导入棉花:花粉管通道法,农杆菌介导法.(4)选育抗虫品种: 生物杀虫试验,DNA水平,Bt蛋白检测等方法,进行抗虫鉴定选择。 应用生产 重要意义:(1)减少农药的使用量,保护环境(2)提高产量,改善品质(3)节约人力物力成本,带来实在的经济效益,社会效益,环境效益。(4)减少病虫害。 1.试论大豆杂交育种过程中,如何根据性状的遗传方式确定合适的后代选择策略

基于GBLUP与惩罚类回归方法的猪血液性状基因组选择研究

基于GBLUP与惩罚类回归方法的猪血液性状基因组选择研究 目录 目录 ...................................................................................................................................... I 摘要 .. (i) ABSTRACT ....................................................................................................................... i ii 缩略词表(ABBREVIATIONS).. (v) 1 前言 (1) 1.1 研究问题的由来 (1) 1.2 文献综述 (2) 1.2.1 基因组选择的概念 (2) 1.2.2 基因组选择研究进展 (3) 1.2.3 基因组选择在畜禽育种中的应用 (4) 1.2.4 用于GEBV预测的方法 (5) 1.2.5 猪血液性状与抗病育种进展概述 (8) 1.3 研究目的与意义 (9) 2 材料与方法 (10) 2.1 技术路线 (10) 2.2 材料 (11) 2.2.1 主要数据 (11) 2.2.2 主要硬件 (11) 2.2.3 主要软件 (12) 2.3 方法 (15) 2.3.1 数据预处理 (15) 2.3.2基因组预测的参数设置 (15) 2.3.3 估计芯片遗传力(chip heritability) (16) 2.3.4 复合基因组预测方法 (17) 3 结果 (18) 3.1 各性状表型的描述性统计分析结果 (18) 3.2 各性状芯片遗传力的估计结果 (19)

相关文档