文档库 最新最全的文档下载
当前位置:文档库 › 水稻全基因组R基因鉴定及候选RGA标记开发

水稻全基因组R基因鉴定及候选RGA标记开发

水稻全基因组R基因鉴定及候选RGA标记开发
水稻全基因组R基因鉴定及候选RGA标记开发

论文第50卷第11期 2005年6月

水稻全基因组R基因鉴定及候选RGA标记开发

汪旭升①吴为人①②*金谷雷②朱军①

(①浙江大学农业与生物技术学院生物信息学研究所, 杭州 310029; ②福建农林大学作物科学学院, 福州 350002.

*联系人, E-mail: wuwr@https://www.wendangku.net/doc/d62907991.html,)

摘要用45个已知功能的植物抗病(R)基因序列对粳稻全基因组序列进行搜索, 共找出2119个R基因同源序列或类似物(RGA), 表明RGA在水稻基因组中成簇存在, 呈非随机分布. 采用隐马尔柯夫模型(HMM), 将这些RGA按其功能域分成了21类. 将粳稻的RGA与籼稻的基因组序列进行比较, 共找到702个两亚种间等位的RGA, 并发现其中有671个(占95.6%)RGA的基因组序列(包括编码区和非编码区)在两亚种间存在长度差异(InDel), 表明水稻RGA在两亚种间存在很高的多态性. 通过在InDel两侧设计引物并进行e-PCR验证, 共开发出402个基于PCR的、表现为共显性的候选RGA标记. 这些候选标记在两亚种间的长度差异在1~742 bp之间, 平均为10.26 bp. 有关数据均可从我们的网站(https://www.wendangku.net/doc/d62907991.html,/RGAs/index.html)上获得.

关键词水稻抗病基因RGA多态性分子标记

植物抗病(R)基因是决定寄主植物对病原菌专化性识别并激发抗病反应的基因, 与病原菌的无毒基因互补. 经典遗传学认为, 植物与病原菌间相互作用的遗传机制是“基因对基因”, 并提出了配体-受体模型来解释这一学说[1,2]. 自1992年以来, 利用图位克隆和转座子标签法, 已经在水稻、拟南芥、玉米、烟草、亚麻等植物中克隆了40多个R基因[3]. 研究发现, 这些R基因存在一些共同的结构. 根据其蛋白结构及在细胞中的位置, R基因大致可分为5类[4,5]: (ⅰ) NBS-LRR, 是含有核苷酸结合位点(NBS)和富亮氨酸重复(LRR)的胞内受体蛋白基因, 包括2个亚类: (1) TIR-NBS-LRR, 以拟南芥的RPP5基因、烟草的N基因及亚麻的L6和M基因为代表; (2) CC-NBS-LRR, 以拟南芥的RPS2和RPM1基因、番茄的I2基因及大麦的Mla1基因为代表. (ⅱ) 细胞间的苏氨酸/丝氨酸蛋白激酶(PK)基因, 包括番茄的Pto基因和大麦的Rpg1基因. (ⅲ) LRR-TM, 是N端存在一个胞外LRR, C端具有由疏水氨基酸组成的跨膜区的受体蛋白基因, 包括番茄抗叶霉病的基因Cf-2, Cf-4, Cf-5和Cf-9等. (ⅳ) PK-LRR-TM, 除含有LRR-TM结构外, 还具有PK结构, 包括水稻的Xa-21基因和拟南芥的FLS2基因. (ⅴ) SA-CC, 包括拟南芥的RPW8.2和RPW8.1基因. 此外, 还有玉米的Hm1及Hsl Pro-1和Asc等其他结构域的R基因.

R基因是一个庞大的基因家族. 尽管已经克隆了40多个R基因, 但对R基因的了解还非常有限. 目前, 对拟南芥和水稻的基因组测序工作皆已基本完成. 水稻籼、粳2个亚种的基因组草图已经完成[6,7], 而且粳稻的1号、4号和10号3条染色体已经发布了精细图[8~10]. 这些成果为在整个基因组水平上研究R基因提供了契机. 利用拟南芥基因组的测序结果, Meyers等人[11]分析了NBS-LRR型R基因在拟南芥基因组中的分布. 对水稻基因组序列的初步分析显示, 水稻基因组中存在大量的R基因[6~7], 且往往成簇存在[12~14]. Monosi等人[15]发现在水稻中存在近500个NBS-LRR的基因, 但没有发现TIR的基因. Chelkowski等人[16]和Koczyk等人[17]利用18个已知的R基因分别对拟南芥和粳稻基因组序列进行分析, 发现拟南芥和水稻分别存在549和1744个R基因, 其中水稻的R基因中有597个属于NBS-LRR类型. 可以看出, 目前这些基于基因组序列的研究主要都集中在对NBS-LRR型R基因的分析上.

分子标记是现代遗传学研究的有力工具. 自1980年首次提出分子标记的概念以来[18], 分子标记已广泛应用于遗传图谱构建、基因定位、基因克隆、基因组比较、遗传多样性分析、标记辅助育种等领域的研究[19~21]. 利用R基因类似物(RGA)作探针, 可以检测相应座位上的限制性片段长度多态性(RFLP), 从而开发成为RFLP标记, 常称为RGA标记. 由于RGA本身可能就是潜在的R基因, 而且R基因常常成簇分布于基因组中, 因此RGA标记对于R基因的克隆和标记辅助选择可能具有特别的应用价值. 但是, 由于RGA标记是基于RFLP分析技术的, 操作上比较麻烦, 因此目前应用得并不多.

第50卷第11期 2005年6月论文

本研究利用已公布的籼稻和粳稻的基因组序列, 采用生物信息学的方法, 通过收集目前所有已知的R 基因序列, 对水稻基因组中RGA的数目、分布和类型进行了更为详尽的分析, 以期在全基因组水平上加深对水稻R基因的了解. 同时, 对RGA在水稻2个亚种间进行了遗传多态性(SNP和InDel)比较、引物设计和e-PCR验证, 为开发方便实用的基于PCR 技术的新型RGA标记奠定基础.

1材料与方法

(ⅰ) 基因组及蛋白质序列的来源. 从TIGR网站(https://www.wendangku.net/doc/d62907991.html,/)和北京基因组学研究所网站(https://www.wendangku.net/doc/d62907991.html,/)分别下载粳稻(Nipponbare)和籼稻(93-11)的基因组及蛋白质序列, 它们的更新时间皆为2004年4月. 所有数据的处理和分析皆在IBM P650的服务器上完成, 使用IBM AIX的Unix 操作系统.

(ⅱ) 水稻RGA的搜索. 搜集已报道的45个R 基因, 然后用它们对粳稻蛋白质数据库进行BLASTP[22]搜索(参数E<+10?10, 最小长度为该基因的80%), 获得所有粳稻的RGA序列. 去除粳稻数据库中存在的克隆重复, 建立一个粳稻RGA蛋白数据库. 同时, 根据每个BLASTP搜索中匹配最好的结果, 得到这些粳稻RGA的核苷酸序列. 为了进一步验证得到的RGA, 我们进行候选RGA序列与TIGR发布的CDS序列进行比较, 去除不符的序列.

(ⅲ) 水稻RGA的结构分类及其在染色体上的分布. 利用Hmmer程序[23]中的hmmsearch部分, 采用前面建立的功能域列表, 在新建立的数据库中搜索基因序列所包含的功能域. 利用pepcoil程序[24]分析序列中CC结构的可能性, 数值大于90%的认为具备该结构. 运用TM-HMMer[25]分析TM跨膜功能域. 依据功能域分布的情况, 对RGA进行分类, 分别统计各类RGA在不同染色体上的分布情况.

(ⅳ) 2个亚种间RGA多态性的鉴定和开发. 将所有粳稻的RGA序列分别与籼稻基因组数据库进行TBLASTN[22]联配, 以确定籼稻中对应的等位基因. 为消除非等位联配, 在TBLASTN搜索中采用了严格的判别标准, 将E值设为1×10?20. 对初筛到的籼、粳稻RGA等位基因, 进一步用sim4程序[26]进行联配分析, 去除匹配率≤85%且2条序列同时间断200 bp以上的结果. 接着运用diffseq程序[27]分析SNP和InDel

在RGA的基因组序列中的分布情况, 将存在InDel

的作为候选的RGA标记. 以粳稻的基因组序列为模

板, 在InDel位置的两侧各取100 bp的序列, 连接成一

条200 bp长的模板序列, 然后利用ePrimer3程序1)在

模板序列上设计引物. ePrimer3程序一般给出5对候选

引物, 我们选取其中设计最合适的一对, 并要求正、反

向引物分别位于InDel的左、右侧, 且扩增出的目标

片段长度不大于1000 bp. 最后, 通过电子PCR(e- PCR)[28]进行验证. 对得到的水稻RGA标记进行命名,

规则为以OSR开头, 后跟4个数字, 例如: OSR0255.

上述步骤主要通过编写perl脚本程序来实现.

2结果与分析

2.1粳稻中RGA的数目、密度及其在染色体上的分布

通过对粳稻蛋白质数据库的搜索, 共获得2119

个RGA(表1). 它们在各染色体上的数量变化在113

(3号染色体)~333个(1号染色体)之间, 平均为176个,

以1, 2, 11号染色体最多. 单条染色体上RGA的平均

密度变化在0.66~2.42或2.68~9.44 个/Mb之间. 无论

是遗传图密度还是物理图密度, 都是以11号染色体

最多, 3号染色体最少. 根据TIGR发布的拼接好的水

稻基因组序列, 分析RGA在染色体上的分布情况,

发现大部分RGA都以成簇形式存在(多数情况下每

簇包含2~12个RGA), 如在1号染色体的AP003209

克隆上发现有10个RGA.

表1 粳稻中RGA在各染色体上的数量和密度

染色体长度 RGA平均密度染色体

/cM /Mb

RGA数目

/cM?1 /Mb?1

2 157.9 39.9217 1.37 5.44

3 166.

4 41.1110 0.66 2.68

4 129.6 38.219

5 1.50 5.10

5 122.3 33.2134 1.09 4.04

6 126.3 31.7190 1.50 5.99

7 118.6 35.0125 1.05 3.57

8 121.2 27.6158 1.30 5.72

9 93.5 21.6133 1.42 6.16

10 83.8 25.7113 1.35 4.40

11 117.9 30.2285 2.42 9.44

12 109.5 30.6126 1.15 4.12

全基因组1528.8399.12119 1.39

5.31 2.2水稻RGA的结构分类

通常将R基因分为5大类, 其中NBS-LRR是最

1) https://www.wendangku.net/doc/d62907991.html,/

论 文

第50卷 第11期 2005年6月

多的一类[4,5]. 我们根据R 基因的结构与功能域, 将水稻RGA 进行了更细致的分类, 共分为21类(图1). 其中PK 类RGA(Pto , Fen , Lr10)数目最多, 占26.7% (566/2119). 第2大类是TM-LRR, 占总数的20.5% (435/2119). 需要指出的是, 在本研究中, 具有NBS 或LRR 功能域的RGA 被分成了9类, 即TM-LRR, PK-LRR, NBS-LRR, CC-NBS-LRR, CC-LRR, CC- NBS, PK-NBS-LRR, PK-NBS 和CC-PK-LRR, 因此每一类都不是最多的, 但若将它们皆计为NBS-LRR 类型, 则其数量占水稻RGA 的半数以上(1091/2119). 第1个被克隆的玉米抗圆斑病基因Hm1所代表的毒素还原酶类RGA 共发现了77个. 这类基因还与CC 结构相结合成为CC-Hm1类, 共发现3个该类型的成员. PK-NBS, CC-PK-LRR, TIR, Hs1和Pad4这几类RGA 在水稻中皆只存在一个成员, 对这些基因进行结构分析后显示, 其中大部分是假基因或没有功能的基因. Pan 等人[29]研究认为, 在双子叶和单子叶植物的分化过程中, NBS-LRR 分化成TIR-NBS-LRR 和CC-NBS-LRR 共2大类. 本研究显示, 水稻中不存在TIR-NBS-LRR 类的RGA, 这与甜菜相似[30], 但在拟南芥中已发现117个这类基因[19]. 本研究发现的水稻RGA 的有关数据可以从我们的网站(https://www.wendangku.net/doc/d62907991.html,. cn/RGAs/index.html)获得.

图1 水稻中RGA 的类型及其数量分布

PK, 苏氨酸-丝氨酸蛋白激酶; TM, 跨膜蛋白; LRR, 富亮氨酸重复; CC, 卷曲螺旋结构; NBS, 核苷酸结合位点; Hm1, 玉米Hm1基因; CHORD, 富半胱氨酸-组氨酸结构域; TIR, 白细胞介素-1受体; Mlo,

Asc, Hs1, Pad4分别代表各自基因的特有结构域

2.3 RGA 在水稻亚种间的多态性

通过用粳稻RGA 序列对籼稻基因组序列进行TBLASTN 联配, 在籼稻上找到1860个 R 基因的同源序列. 经过人工分析后去除重复的或匹配不好(匹

配序列长度<80 bp, 一致性<40%)及与TIGR 数据库中CDS 序列不符的同源序列, 得到861个同源序列. 进一步去除位于不同染色体的非等位基因, 最终获得了702个在籼、粳间等位的RGA. 用sim4程序对这702个RGA 序列进行分析, 发现有671个(占95.6%)在籼、粳间存在InDel 的现象, 说明在籼粳亚种间RGA 存在很高的长度多态性. 用ePrimer3程序在InDel 两侧设计PCR 引物, 并进行e-PCR 验证, 选出能够获得惟一预期扩增产物的引物对, 最终得到402个候选的水稻亚种间RGA 标记. 有269个多态的RGA 未能开发成候选标记, 其原因可能是: (ⅰ) 一些RGA 间的结构相似性, 使得引物的特异性不强, 不能得到惟一的扩增产物; (ⅱ) 我们将e-PCR 产物的长度限制在1000 bp 以内, 有些RGA 的扩增产物可能过大而不能入选; (ⅲ) 引物是依据粳稻Nipponbare 的基因组序列设计的, 有些在籼稻93-11上未能完全匹配. 这些候选RGA 标记的有关信息(包括标记的引物、序列、所在粳稻Nipponbare 的BAC 克隆和籼稻93-11的Scaffold 等)都在我们的网站(https://www.wendangku.net/doc/d62907991.html,. cn/RGAs/index.html)上发布. 根据TIGR 发布的拼接好的水稻基因组序列, 对候选RGA 标记进行了物理定位. 结果显示, 跟全体RGA 的情况一致, 候选RGA 标记在基因组中的分布也是非随机的, 表现为“成簇”分布的现象(图2). 有些染色体区域(如1号染色体的长臂)出现大片的空缺.

候选RGA 标记的等位基因间长度差异(LD)变化在1~742 bp 之间, 平均长度为10.15 bp, 呈指数分布, 大部分(68.16%)<5 bp; 24.88%落在5~30 bp 之间; 仅6.96%>30 bp(图3). 值得指出的是, 我们发现有14个RGA 在2个亚种间的长度差异超过1 kb, 其插入序列都具有独立完整的基因结构. 同源性分析显示, 这14个插入序列的基因功能与受体蛋白密切相关. 由于R 基因本身就是一类受体蛋白, 因此这种在R 基因中插入与受体蛋白相关的基因的现象是否隐含着某种重要的生物学机制, 是一个令人感兴趣的问题.

3 讨论

本研究通过序列同源性比较结合功能域位点分析, 共发现了2119个RGA, 说明水稻基因组中R 基因的数量是十分丰富的, 是一个非常庞大的基因家族. 当然, 在这些RGA 中, 除了包含R 基因外, 还可能包含没有功能的基因或假基因. 为了鉴定其中哪些是真正的R 基因, 我们把所有的RGA 同已发布的

50卷 第11期 2005年6月

论 文

图2 候选RGA 标记在水稻基因组上的分布

横坐标是物理图位置, 纵坐标是每Mb 所含RGA 的个数. 两斜杠表示染色体终止的位置表示着丝粒的位置

32127个水稻全长cDNA [31]进行BLAST 分析, 结果有1851个RGA 能够很好地与cDNA 匹配, 因而可以认为它们可能是真正的R 基因(当然不排除其中有些可能是可表达的假基因). 剩余的268个RGA 可能存在3种情况: (ⅰ) 是cDNA 数据库中未包括的基因, 因为水稻中报道有约5万个基因; (ⅱ) 是不表达的假

基因; (ⅲ) 是特定病原菌诱导表达的基因. 随着水稻全长cDNA 数据库的不断充实和完善, 这部分RGA 的身份将得到进一步的鉴别. 将来的挑战是对水稻中所有R 基因的功能阐明. 利用生物信息学的方法在全基因组范围内获取RGA 的有关信息, 将大大促进对R 基因的功能研究.

论 文

第50卷 第11期 2005年6月

图3 候选RGA 标记在2个亚种间的长度差异(LD)

的频率分布

其中LD >26的30个标记未标出

传统的RGA 标记是一种RFLP 标记, 应用上不方便, 而且由于开发上成本较高, 所以数量上十分有限. 本研究利用水稻籼、粳亚种的基因组测序数据和生物信息学手段, 开发出了基于PCR 技术的候选RGA 标记, 这将使RGA 长度多态性成为一种实用的分子标记. 我们用相似的方法已成功开发出水稻内含子长度多态性(ILP)标记(结果未显示). 经实验分析, 发现水稻ILP 标记具有明显的亚种特异性. 据此推测, 本研究基于籼、粳亚种间序列比较而开发的候选RGA 标记也将具有较高的亚种特异性. 该特性可望使RGA 标记在水稻亚种间杂交育种和亚种间杂种优势利用方面具有重要的应用价值. 另外, 已知RGA 在水稻基因组中呈簇状非随机分布, 而本研究开发出来的候选RGA 标记在基因组上的分布对全体RGA 的分布具有很好的代表性(图3). 而且, RGA 标记本身就是候选的R 基因. 因此, 利用RGA 标记将有助于快速定位R 基因, 加快R 基因定位和图位克隆的进程.

致谢 本工作为国家高技术研究发展计划(批准号: 2003AA207160, 2002AA234031)和福建省自然科学基金(批准号: B9910011)资助项目.

参 考 文 献

1

Flor H H. The complementary genic systems in flax and flax rust. Adv Genet, 1956, 8: 29~54

2 Flor H H. Current status of the gene-for-gene concept. Annu Rev

Phytopathol, 1971, 9: 275~296

3 Dangl J L, Jones J D. Plant pathogens and integrated defense

responses to infection. Nature, 2001, 411: 826~833 4 Hammond-Kosack K E, Jones J D G. Plant disease resistance

genes. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 575~607 5 Jones J D. Putting knowledge of plant disease resistance genes to

work. Curr Opin Plant Biol, 2001, 4: 281~287

6 Goff S A, Ricke D, Lan T H, et al. A draft seqeunce of the rice

genomes (Oryza sativa L. ssp. japonica ). Science, 2002, 296: 92~100 7 Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome

(Oryza sativa L. ssp. indica ). Science, 2002, 296: 79~92

8 Sasaki T, Matsumoto T, Yamamoto K, et al. The genome sequence and structure of rice chromosome 1. Nature, 2002, 420: 312~316

9 Feng Q, Zhang Y, Hao P, et al. Sequence and analysis of rice chromosome 4. Nature, 420: 316~320

10 The Rice Chromosome 10 Sequencing Consortium. In-depth view

of structure, activity, and evolution of rice chromosome 10. Science, 2003, 300: 1566~1569

11 Meyers B C, Kozik A, Griego A, et al. Genome-wide analysis of

NBS-LRR encoding genes in Arabidopsis. Plant Cell, 2003, 15: 809~834

12 Meyers B C, Dickerman A W, Michelmore R W, et al. Plant

disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J, 1999, 20: 317~332

13 Bai J, Pennill L A, Ning J, Lee S W, et al. Diversity in nucleotide

binding site-leucine rich repeat genes in cereals. Genome Res, 2002, 12: 1871~1884

14 Meyers B C, Kozik A, Griego A, et al. Genome-wide analysis of

NBS-LRR–Encoding genes in Arabidopsis . Plant Cell, 2003, 15: 809~834

15 Monosi B, Wisser R J, Pennill L, et al. Full-genome analysis of

resistance gene homologues in rice. Theor Appl Genet, 2004, 109: 1434~1447

16 Chelkowski J, Koczyk G . Resistance gene analogues of Arabidopsis

thaliana : Recognition by structure. J Appl Gen, 2003, 44: 311~321 17 Koczyk G, Chelkowski J. An assessment of the resistance gene

analogues of Oryza sativa ssp. japonica : Their presence and structure. Cell Mol Biol Lett, 2003, 8: 963~972

18 Botstein D, White R L, Skolnick M, et al. Construction of a

genetic linkage map in the man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32: 314~331

19 McCouch, S R, Chen X, Panaud, O. Microsatellite mapping and

applications of SSLP’s in rice genetics and breeding. Plant Mol Biol, 1997, 35: 89~99

20 Coburn J, Temnykh S, Paul E, et al. Design and application of

microsatellite marker panels for semi-automated genotyping of rice (Oryza sativa L.). Crop Sci, 2002, 42: 2092~2099

21 Ponce, M R, Robles P, Micol J L. High throughput genetic

mapping in Arabidopsis thaliana . Mol Gen Genet, 1999, 261: 408~415

22 Altschul S, Madden T, Schaffer A, et al. Gapped BLAST and

PSI-BLAST: A new generation of protein database search programs. Nucl Acids Res, 1997, 25: 3389~3402

23 Eddy S R. Profile hidden Markov models. Bioinformatics, 1998,

14: 755~763

24 Lupas A, van Dyke M, Stock J. Predicting coiled coils from

protein sequences. Science, 1991, 252: 1162~1164

25 Krogh A, Larsson B, von Heijne G, et al. Predicting

transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol, 2001, 305: 567~580 26 Florea L, Hartzell G, Zhang Z, et al. A computer program for

aligning a cDNA sequence with a genomic DNA sequence. Genome Res, 1998, 8: 967~974.

27 Rice P, Longden I, Bleasby A J. Internet Resources: EMBOSS.

Trends Genet, 2000, 16: 276~277

28 Schuler G D. Sequence mapping by electronic PCR. Genome Res,

1997, 7: 541~550

29 Pan Q L, Wendel J, Fluhr R. Divergent evolution of plant

NBS–LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol, 2000, 50: 203~213

30 Tian Y, Fan L, Thurau T, et al. The absence of TIR-type resistance

gene analogues in the sugar beet (Beta vulgaris L.) genome. J Mol Evol, 2004, 58: 40~53

31 Kikuchi S, Satoh K, Nagata T, et al. Collection, mapping, and

annotation of over 28,000 cDNA clones from japonica rice. Science, 2003, 301: 376~379

(2005-02-05收稿, 2005-04-25收修改稿)

全基因组关联分析的原理和方法

全基因组关联分析(Genome-wide association study;GWAS)是应用基因组中 数以百万计的单核苷酸多态性(single nucleotide ploymorphism ,SNP)为分子 遗传标记,进行全基因组水平上的对照分析或相关性分析,通过比较发现影响复杂性状的基因变异的一种新策略。 随着基因组学研究以及基因芯片技术的发展,人们已通过GWAS方法发现并鉴定了大量与复杂性状相关联的遗传变异。近年来,这种方法在农业动物重要经济性状主效基因的筛查和鉴定中得到了应用。 全基因组关联方法首先在人类医学领域的研究中得到了极大的重视和应用,尤其是其在复杂疾病研究领域中的应用,使许多重要的复杂疾病的研究取得了突破性进展,因而,全基因组关联分析研究方法的设计原理得到重视。 人类的疾病分为单基因疾病和复杂性疾病。单基因疾病是指由于单个基因的突变导致的疾病,通过家系连锁分析的定位克隆方法,人们已发现了囊性纤维化、亨廷顿病等大量单基因疾病的致病基因,这些单基因的突变改变了相应的编码蛋白氨基酸序列或者产量,从而产生了符合孟德尔遗传方式的疾病表型。复杂性疾病是指由于遗传和环境因素的共同作用引起的疾病。目前已经鉴定出的与人类复杂性疾病相关联的SNP位点有439 个。全基因组关联分析技术的重大革新及其应用,极大地推动了基因组医学的发展。(2005年, Science 杂志首次报道了年龄相关性视网膜黄斑变性GWAS结果,在医学界和遗传学界引起了极大的轰动, 此后一系列GWAS陆续展开。2006 年, 波士顿大学医学院联合哈佛大学等多个研究机构报道了基于佛明翰心脏研究样本关于肥胖的GWAS结果(Herbert 等. 2006);2007 年, Saxena 等多个研究组联合报道了与2 型糖尿病( T2D ) 关联的多个位点, Samani 等则发表了冠心病GWAS结果( Samani 等. 2007); 2008 年, Barrett 等通过GWAS发现了30 个与克罗恩病( Crohns ' disrease) 相关的易感位点; 2009 年, W e is s 等通过GWAS发现了与具有高度遗传性的神经发育疾病——自闭症关联的染色体区域。我国学者则通过对12 000 多名汉族系统性红斑狼疮患者以及健康对照者的GWAS发现了5 个红斑狼疮易感基因, 并确定了4 个新的易感位点( Han 等. 2009) 。截至2009 年10 月, 已经陆续报道了关于人类身高、体重、 血压等主要性状, 以及视网膜黄斑、乳腺癌、前列腺癌、白血病、冠心病、肥胖症、糖尿病、精神分 裂症、风湿性关节炎等几十种威胁人类健康的常见疾病的GWAS结果, 累计发表了近万篇 论文, 确定了一系列疾病发病的致病基因、相关基因、易感区域和SNP变异。) 标记基因的选择: 1)Hap Map是展示人类常见遗传变异的一个图谱, 第1 阶段完成后提供了 4 个人类种族[ Yoruban ,Northern and Western European , and Asian ( Chinese and Japanese) ] 共269 个个体基因组, 超过100 万个SNP( 约1

转基因作物的研究进展

生物与环境工程学院课程论文 转基因作物的研究进展 学生姓名:魏斌聪 学号:200806016139 专业/班级:生物工程081班 课程名称:生物工程原理 指导教师:陈蔚青教授 浙江树人大学生物与环境工程学院 2011年5月

转基因作物的研究进展 魏斌聪 (浙江树人大学生物与环境工程学院生工081班浙江杭州310015) 摘要:人们将所需要的外源基因(如高产、抗病虫害优质基因) 定向导入作物细胞中, 使其在新的作物中稳定遗传和表现,产生转基因作物新品种, 是大幅度提高作物产量的一项新技术。本文先描述了转基因作物的发展进程,对其基因问题的研究作了讨论,并列出转基因作物目前存在的主要问题并作分析,最后对此项技术作出展望。 关键词:转基因作物;DNA技术;基因导入;安全性 前言 转基因植物(transgenic plant),是指基因工程中运用DNA 技术将外源基因整合于受体植物基因组、改变其遗传组成后产生的植物及其后代。转基因植物的研究主要在于改进植物的品质,改变生长周期等提高其经济价值或实用价值。[ 1 ]其主要范围是在作物方面,如可食用的大豆、玉米等,或者可投入生产的棉花等作物。 从表面上看来,转基因作物同普通植物似乎没有任何区别,它只是多了能使它产生额外特性的基因。从1983年以来,生物学家已经知道怎样将外来基因移植到某种植物的脱氧核糖核酸中去,以便使它具有某种新的特性:抗除莠剂的特性,抗植物病毒的特性,抗某种害虫的特性。[ 2 ]这个基因可以来自于任何一种生命体:细菌、病毒、昆虫等。这样,通过生物工程技术,人们可以给某种作物注入一种靠杂交方式根本无法获得的特性,这是人类9000年作物栽培史上的一场空前革命。[ 3 ] 1 转基因作物的发展进程 转基因作物的研究最早始于20世纪80年代初期。1983年,全球第一例转基因烟草在美国问世。1986年,首批转基因抗虫和抗除草剂棉花进入田间试验。1996年,美国最早开始商业化生产和销售转基因作物(包括大豆、玉米、油菜、

籼型水稻不育系选种培育

籼型水稻不育系选种培育 1选育经过 随着国民生活水平的提升,消费者对稻米品质有了更高的要求。优质、多抗、高配合力的不育系是选育优质、抗病、高产杂交水稻新品种的 前提条件。为此,作者于1999年早季在福州用稻米品质优异的佳禾系 统材料Y27作母本,与抗稻瘟病的保持系福伊B杂交配组;晚季种植 杂种一代13株,成熟时混收。2000年,早季种植分离群体,成熟时选择长粒形的优良单株;晚季在福州种植F3,上选单株每个小区种植60株,抽穗时选择柱头外露率高,株叶形态理想的单株与福伊A测交。2001年早季将测交的F1与对应的父本F4成对种植,每个小区母本种 24株,父本种36株;同时,将父本种子各送1份到上杭县茶地乡稻瘟病重发区实行田间稻瘟病自然诱发鉴定,以筛选抗稻瘟病的材料;在 室内对父本种子实行人工剥壳,观察垩白和透明度,以筛选外观品质 优的材料;在田间测交F1及其对应的父本抽穗期间,对测交F1实行 花粉育性镜检,每个小区随机取样10株,严格淘汰花粉黑染率超过 0.1%的小区,结合抗稻瘟病鉴定、米质观察结果,选择株叶形态优良、丰产性好的单株回交。经过连续多代实行抗稻瘟病、米质、育性筛选 和回交转育,至2004年早季育成回交6代群体整齐一致、性状稳定的 长丰A。于2004年9月通过福建省科技成果鉴定。 2主要特征特性 2.1育性表现长丰A群体整齐一致,花药瘦小、白色,不育株率100%,花粉不育度99.98%,典败花粉率占98.5%以上,套袋自交结实率为0。 2.2生育期长丰A属感温性强的迟熟早籼类型三系不育系。在福州3 月中旬播种,6月下旬始穗,播始历期98d左右;7月中旬播种,9月 下旬始穗,播始历期68d左右。在将乐6月中、下旬播种,播始历期 70d左右。

水稻基因组学的的研究进展

基因组学课程论文 所在学院生命科学技术学院 专业14级生物技术(植物方向) 姓名金祥栋 学号2014193012

水稻基因组学的研究进展 摘要:随着模式植物——拟南芥和水稻基因组测序的完成,近年来关于植物基因组学的研究越来越多。水稻是世界上重要的粮食作物之一,养活着全世界近一半的人口。同时南于水稻基冈组较小、易于转化及与其他禾本科植物基因组的同线性和共线性等特点,一直被作为禾本科植物基因组研究的模式作物。水稻基因组测序的完成及种质资源的基因组重测序,为水稻功能基因组研究奠定了基础。现综述我国水稻基因组测序和功能基因组研究历史,重点介绍了近年来在水稻基因组序列分析中获得的几项最新的研究结果。 关键词:水稻;基因组测序;功能基因组;研究历史;基因组学;研究进展 The recent progress in rice genomics research Abstract: With the completion of genome sequencing ofthe model plant-- Arabidopsis and rice,more and more researches on plant genomics emerge in recent years. Rice i s one of the most important crops in the world, raised nearly half of the world popul ation. At the same time in south rice Keegan group is smaller, with linear and linear features such as easy transformation and other gramineous plant genome, has been use d as a model crop for plant genome research of Gramineae. Genome sequencing and germplasm resources the rice genome sequencing completed laid the foundation for ric e functional genomics research. This article reviews the history and function of our ge nome sequencing of rice genome research, introduces several latest research results in recent years in the analysis of rice genome sequences. 前言 基因组是1924年提出用于描述生物的全部基因和染色体组成的概念,是研究生物基因结构与功能的学科,是在遗传学的基础上发展起来的一门现代生物技术前沿科学,也是现代分子生物学和遗传工程技术所必要学科,是当今生物学研究领域最热门、最有生命力、发展最快的前沿科学之一。基因组学的主要任务是研究探索生物基因结构与功能,生物遗传和物理图谱构建,建立和发展生物信息技术,为生物遗传改良及遗传病的防治提供相关技术依据。 进入21 世纪,随着全球化、市场化农业产业发展和全球贸易一体化格局的逐步形成,我国种业正面临前所未有的严峻挑战,主要表现在:依靠传统育种技术难以大幅度提高粮食单产;土地资源短缺,农业环境污染日益突出;种质资源发掘、基因组育种技术亟需创新等。水稻不仅是重要的粮食作物,由于其基因组较小且与其他禾本科作物基因组存在共线性,以及具有成熟高效的遗传转化体系,已成为作物功能基因组研究的模式植物。因此,水稻基因组研究对发展现代农作物育种技术、提升种业国际竞争力和保障粮食有效供给具有重大战略意义。 基因组研究主要包括三个层次:①结构基因组学,以全序列测序为目标,构建高分辨率的以染色体重组交换为基础的遗传图谱和以DNA 的核苷酸序列为基础的物理图谱。②功能

全基因组选择及其在奶牛育种中的应用

发表于《中国奶牛》,2011 全基因组选择育种技术及在奶牛育种中应用进展 范翌鹏1孙东晓1* 张勤1张胜利1张沅1刘林2 (1.中国农业大学动物科技学院,北京,100193; 2.北京奶牛中心. 北京. 100085) 摘要:全基因组选择是指基于基因组育种值(GEBV)的选择方法,指通过检测覆盖全基因组的分子标记,利用基因组水平的遗传信息对个体进行遗传评估,以期获得更高的育种值估计准确度。由于可显著缩短世代间隔,全基因组选择作为一种育种新技术在奶牛育种中具有广阔的应用前景,目前已经成为各国的研究热点。不同国家的试验结果表明,在奶牛育种工作,基于GEBV 的遗传评估可靠性在20-67%之间,如果代替常规后裔测定体系,可节省92%的育种成本。本文综述了全基因组选择的基本原理及其在各国奶牛育种中的应用现状和所面临的问题。 关键词:全基因组选择,奶牛育种 Genome-Wide Selection and its Application in Dairy Cattle FAN YiPeng, SUN Dongxiao, ZHANG Qin, ZHANG Shangli, ZHANG Yuan, LIU Lin (College of Animal Science Technology, China Agricultural University, Beijing, 100193) Abstract: Genomic selection refers to selection decisions based on genomic breeding values (GEBV). The GEBV are calculated as the sum of the effects of dense genetic markers, or haplotypes of these markers, across the entire genome, thereby potentially capturing all the quantitative trait loci (QTL) that contribute to variation in a trait. Genomic selection has become a focus of study in many countries as the new breeding method. Reliabilities of GEBV for young bulls without progeny test results in the reference population were between 20 and 67%. By avoiding progeny testing, bull breeding companies could save up to 92% of their costs [1]. In this paper, we first review the progress of genomic selection, including the principle, methods, accuracy and advantages of genomic selection. We then review the application of genomic selection in dairy cattle. Key words: Genomic Selection, Dairy Breeding 全基因组选择(Genomic Selection,GS),即全基因组范围的标记辅助选择(Marker Assisted Selection, MAS),指通过检测覆盖全基因组的分子标记,利用基因组水平的遗传信息对个体进行遗传评估,以期获得更高的育种值估计准确度。研究已表明,标记辅助选择可提高奶牛育种遗传进展[2][3],但是在目前奶牛育种工作中却无法大规模推广应用标记辅助选择。因为奶牛的生产性状和健康性状均受大量基因座位共同影响,通过有限数量的已知标记无法大幅度加快遗传进展;其次,通过精细定位策略鉴定主效基因需花费大量人力物力和时间;而且利用标记信息估计育种值的计算方法也很复杂。全基因组选择基于基因组育种值(Genomic Estimated Breeding Value, GEBV)进行选择,其实施包括两个步骤:首先在参考群体中使用基因型数据和表型数据估计每个染色体片段的效应;然后在候选群体中使用个体基因型数据估计基因组育种值(genomic breeding value,GEBV)[4],模拟研究证明,仅仅通过标记预测育种值的准确性可以达到0.85(指真实育种值与估计育种值之间的相关,而可靠性则指其平方)。如果在犊牛刚出生时即可达到如此高的准确性,对奶牛育种工作则具有深远意义。模拟研究表明:对于一头刚出生的公犊牛而言,如果其GEBV的估计准确性可以达到经过后

浅谈我国转基因水稻的研究(一)

浅谈我国转基因水稻的研究(一) 论文关键词]水稻转基因论文摘要]稻转基因研究是国内外植物分子遗传学研究的热点之一。目前,水稻转基因研究在我国已取得显著进展。详细介绍转基因技术,并阐明我国转基因技术在水稻上的应用及研究进展, 水稻是我国的重要经济作物和粮食作物。水稻分布极其广泛,由于生态环境的复杂性和所处地理环境的影响,水稻在漫长的进化过程中,形成了极其丰富的遗传多样性,染色体组型和数目复杂多样,成为研究稻种起源、演化和分化必不可少的材料。 植物转基因技术是利用遗传工程手段有目的地将外源基因或DNA构建,并导入植物基因组中,通过外源基因的直接表达,或者通过对内源基因表达的调控,甚至通过直接调控植物相关生物如病毒的表达,使植物获得新性状的一种品种改良技术。它是基因工程、细胞工程与育种技术的有机结合而产生的一种全新的育种技术体系。转基因技术可以将水稻基因库中不具备的各种抗性或抗性相关基因转入水稻,进一步拓宽了水稻抗病基因源,为抗病育种提供了一条新途径。 一、国内外的转基因技术 转基因技术自20世纪70年代诞生以来,已经取得迅速的发展。到目前为止,中国已经是全球第4大转基因技术应用国。 转基因生物技术的应用,大多分布在抗虫基因工程、抗病基因工程、抗逆基因工程、品质基因工程、品质改良基因工程、控制发育的基因工程等领域。中国是继美国之后育成转基因抗虫棉的第二个国家。现在河北省与美国孟山都合作育成33B抗虫棉(高抗棉铃虫、抗枯萎病、耐黄萎病)。由中国农科院生物中心、江苏省农科院导入Bt基因,由安徽省种子公司,安徽省东至县棉种场共同选育的抗虫棉“国抗1号”在安徽省已通过审定。国际水稻所将抗虫基因导入水稻,育成抗二化螟、纵卷叶螟的转基因水稻。中国农科院、中国农业大学、中国科学院、河南农科院等许多科研单位和高校将几丁质酶和葡聚糖酶双价基因导入小麦育成抗病转基因小麦、转基因烟草、转基因水稻等等。英国爱丁堡大学将水母发光基因导入烟草、芹菜、马铃薯等作物,获得发光作物,驱赶害虫。 至于油菜方面利用转基因工程培育雄性不育系及其恢复系的研究,亦取得了突破性的进展。比利时为了提高菜饼粗蛋白质的含量,将一种草控制的蛋白质基因转移到油菜上来,选出高蛋白质含量的转基因油菜品种。瑞典Svalow-Weibull等公司利用基因工程技术将外源基因导入甘蓝型油菜,培育成抗除草剂油菜新品种;比利时PGS公司采用基因工程手段创造出新的油菜授粉系统;法国应用原生质体融合技术将萝卜不育细胞质的恢复基因引入甘蓝型油菜,充分利用萝卜不育细胞质不育彻底的特性,实现了萝卜不育细胞质的三系配套,对推动全球杂交油菜育种具有革命性的影响。 二、我国转基因技术在水稻上的应用及研究进展 我国是农业超级国,因此,中国人吃饭问题的关键是水稻问题(高产和抗性问题),而水稻问题的核心便是转基因技术在水稻中的成功应用。 近年来,植物抗病毒基因工程的技术路线已趋向成熟,国内外相继开展了水稻东格鲁病、条纹叶枯病、黄矮病、矮缩病等8种病毒病的转基因育种研究,将各病原病毒的外壳蛋白基因、复制酶基因、编码结构或非结构蛋白基因干扰素CDNA等分别导入水稻,获得了抗不同病毒病的转基因株系或植株。在我国,转基因技术在水稻中的应用已经取得了惊人的成果。(一)转基因技术在提高水稻植株的抗Basra除草剂的成果 王才林等利用花粉管通道法将抗Basta除草剂的bar基因导入水稻品系“E32”,获得转基因植株。抗性鉴定表明,转基因植株能充分表达对Basta除草剂的抗性;通过对转基因植株后代PCR分析,证实bar基因已整合到受体植株的基因组中,遗传分析表明,bar基因能在有性生殖过程中传递给后代,并在T代开始分离出抗性一致的稳定株系。段俊等利用转基因技术,

转基因育种研究进展

作物转基因育种研究进展 摘要:近年来,植物基因工程取得了辉煌的成就,而转基因技术由于其巨大的产业价值,特别是在作物品质改良、产量和抗逆性提高等方面的明显优势,一直是国际农业高新技术竞争的焦点和热点。本文主以棉花、玉米、水稻为例就转基因育种技术在作物上的研究进展进行相关的介绍。 关键词:作物,棉花,玉米,水稻,转基因育种,研究进展 植物转基因技术是指利用重组技术、细胞DNA培养技术或种质系统转化技术将目的基因导入植物基因组,并能在后代中稳定遗传,同时赋予植物新的农艺性状,如抗虫、抗病、抗逆、高产、优质等。常规育种常常受有性杂交亲和性的制约,而利用转基因技术可以打破物种界限、克服有性杂交障碍,快速有效地创造遗传变异,培育新品种、创造新类型,大大缩短新品种育成的时间。因此,随着现代生物技术的迅速发展,植物转基因技术也蓬勃发展[1]。 1 转基因棉花育种的研究与进展 近年来,随着基因工程技术的不断发展,利用生物技术来创新棉花种质资源和培育新品种是一条非常有效的途径,极大地推动了棉花遗传育种的发展[2]。中棉所是世界上唯一可以同时采用农杆菌介导法、花粉管通道法、基因枪轰击法快速获得转基因抗虫棉新材料的技术平台,能将植物嫁接技术成功应用于转基因棉花的快速移栽,成活率超过90%。未来3~5年,中棉所将挖掘、整合与优化抗病、抗除草剂等基因10个,筛选高产因子、高品质纤维等基因或分子标记150个,创造转基因棉花育种新材料100份以上,培育重大新品种(组合)3~5个。 1.1转抗虫基因 1991年成功将外源Bt基因导人棉株中,1992年人工合成了全长1824bp的CrylAb和CrylAc融合的GFMCry1A基因,并于1993年采用农杆菌介导法和外源基因胚珠直接注射法成功导入晋棉7号、中棉12、泗棉3号等主栽品种,获得了高抗棉铃虫的转基因棉花株系;包含CryIAc和AP基因双价抗虫基因载体,通过农杆菌介导转化冀合321胚性愈伤组织,经6代筛选后培育出抗棉铃虫90%的纯合品系,且农艺性状均优于对照。 1.2转抗黄萎病相关基因 利用花粉管通道法和农杆菌介导转化法将菜豆中的几丁质酶和烟草中的葡聚糖酶基因转入棉花,并从转基因高世代材料中筛选出了高抗黄萎病的品系;将天麻抗真菌蛋白基因用花粉管通道法转化天然彩色棉主栽品种,从高世代系中选育出既抗枯萎病又抗黄萎病的兼抗材料;将葡萄糖氧化酶基因(GO)转入棉花,转基因后代对枯萎病和黄萎病抗性均有显著提高,部分材料抗性达到抗病水平。1.3转抗除草剂基因 1997年由美国孟山都公司推出抗除草剂棉花抗性品种,他们从土壤农杆菌变种CP4中分离到编码抗草甘膦酶的基因,并通过农杆菌介导法转化珂字棉312,把该基因导入棉花植株,从而使其对草甘膦产生抗性。采用中棉35下胚轴为材料,将草甘膦突变基因aroAM12导入到棉花中,获得65棵再生植株,通过Southern及Western试验验证了该基因的导入和表达状况,结果表明,转化株对草甘膦具有很高的抗性;将抗草甘膦基因aroAM12和抗虫基因Btslm一起整合到一个载体中,并以抗草甘膦基因作为选择标记,通过转化棉花品种石远321后获得了抗草甘膦和抗棉铃虫的再生株。

水稻籼粳交DH群体的构建及其基因型偏态分离分析

农业生物技术学报 Journal of Agricultural Biotechnology 2008,16(2):315~319 *基金项目: 国家高技术研究与发展计划 (863) 项目 (No.2006AA10Z1B5)、 浙江省自然科学基金 (No.Y305160) 和中国水稻研究所青年创新基金资助。 **通讯作者。Author for correspondence.研究员, 硕士生导师, 主要从事水稻新品种选育及生物技术研究。 Tel:0571-63370367?E-mail:. 收稿日期: 2007-08-26 接受日期: 2007-10-17 ·研究论文 · 水稻籼粳交 DH 群体的构建及其基因型偏态分离分析 * 季芝娟 1 , 叶胜海 1,2 , 马良勇 1 , 李西明 1 , 王晓光 1 , 蔡 晶 1 , 别文力 3 ,杨长登 1 ** (1.中国水稻研究所水稻生物学国家重点实验室, 杭州 310006; 2.浙江省农业科学院作物与核技术利用研究所, 杭州 310021; 3.长江大学农学院,荆州 430025) 摘要: 对籼 ( L. ) 粳 ( L.ssp. ) 杂交组合中花11 (粳) /中组 14 (籼 ) F1进行花药培养, 共 获得112个加倍单倍体 (DH ) 再生植株。 利用亲本间多态性SSR 分子标记对该DH 群体再生植株进行纯合性鉴定, 并分析该群 体的基因型偏离情况。选用22个多态性SSR 标记分析的结果表明, 所得再生植株都来自花粉母细胞的纯合植株, 不存在来自 体细胞的杂合株, 确保了DH 群体的准确性。带型分析结果显示, 该群体未发生异常的基因型偏态分离。因此在组织培养体系 中引进 SSR 标记, 可以快速而准确地构建DH 群体, 基因型的偏态分离分析保证了群体的质量。 关键词: 水稻; DH 群体; SSR 标记; 纯合; 基因型; 偏态分离 中图分类号: S188 文献标识码:A 文章编号: 1006-1304(2008)02-0315-05 Construction and Distorted-segregation Analysis in Genotype of DH Population from - Cross JI Zhi-juan 1 ,YE Sheng-hai 1,2 ,MA Liang-yong 1 ,LI Xi-ming 1 ,WANG Xiao-guang 1 ,CAI Jin 1 , BIE Wen-li 3 ,YANG Chang-deng 1 ** F 1 anther of Zhonghua 11/Zhongzu 14( ) combination was cultured and one hundred and twelve double haploid (DH)regenerant plants were obtained.All of the DH plants were analysed for their homozygosity using 22polymorphic SSR markers between the two parents.Distorted segregation analysis in genotype for the population was carried out.Polymorphic SSR analysis suggested that the regenerant plants were all originated from microspore and no heterozygots from somatic cells.Band pattern analysis with polymorphic SSRs showed that there was no abnormal distribution in genotype for the population. The results indicated that the DH population consisted accurately of microspore-originated regenerants and quality of the population was guaranteed via distorted segregation analysis in genotype with SSR markers. rice?DH population?SSR markers?homozygous?genotype?distorted segregation 水稻 ( L.) 花药培养是当今生物技 术中较为成熟、 实用和有效的育种新技术, 应用花药 培养构建加倍单倍体 (doubled haploid , DH ) 群体, 构 建速度快, 可一次性形成基本群体。 籼稻和粳稻是水 稻的两个亚种,具有较远的亲缘关系,但无杂交障 碍,因此籼粳交 F 1 是建立 DH 群体的理想材料。 Guiderdini . ( 1991)从热带粳稻 IRT177 和籼稻 Apura 之间的 F 1 经花培建立了样本容量为 90 个株 系的 DH 群体, 并对其稳定性进行了分析, 发现一些 同工酶在该群体中存在着严重的偏态,并认为是籼 粳交 “杂种不育崩溃” 所致。陈 英等 (1997) 对籼稻 品种窄叶青 8 号与粳稻品种京系 17 杂交 F 1 花培产

水稻基因组进化的研究进展

水稻基因组进化的研究进展 水稻是世界上重要的粮食作物之一,养活着全世界近一半的人口。同时南于水稻基冈组较小、易于转化及与其他禾本科植物基因组的同线性和共线性等特点,一直被作为禾本科植物基因组研究的模式作物。水稻是第一个被全基因组测序的作物,目前栽培稻2个亚种全基因组测序工作已经完成:粳稻品种日本晴(Nipponbare)通过全基因组鸟枪法和逐步克隆法被测序,籼稻品种扬稻6号(9311)通过全基因组鸟枪法被测序。除核基因组外,水稻叶绿体和线粒体基因组也于1989年和2002年分别被测序。水稻2个亚种的全基因组测序完成,一方面开启了植物比较基因组学的大门,另一方面为人们在基冈组水平上鉴定出所有水稻基因并分析其功能奠定了基础,同时也使得人们对植物进化的认识,尤其是对禾本科植物进化的了解,逐步从系统分类和分子标记水平进入到了基因组序列水平。许多研究者通过对水稻基因组序列的分析,利用生物信息学工具,对水稻在基因组水平上的进化进行了大量研究。 1 水稻及其他禾本科植物基因组的古多倍体化过程 水稻是典型的二倍体植物,其核基因组中共有12条染色体。在水稻基因组被完整测序之前,人们就已经采用分子标记、DNA重复元件等方法探究水稻基因组的古多倍体化(polyploidization)过程,并发现了一些重复的染色体片段。随着水稻基因组测序计划的完成,越来越多的证据表明水稻基因组曾发生过全基因组复制(whole genome duplication),即古多倍体化过程。 Golf等利用鸟枪法完成了粳稻品种日本晴全基因组的测序工作,并利用同义替换率分布方法(Ks- based age distribution)提出水稻基因组可能发生过一次全基因组复制过程。此后多家研究机构和一些研究者对水稻基因组中的重复片段进行了研究,虽然得出的结论不尽相同,但均发现水稻基因组中存在大量的重复片段。根据所采用方法和参数的不同,这些重复片段占整个水稻基因组的15%~62%。Yu 等在水稻基因组中发现了18对大的重复片段,大约占整个基因组的65.7%。其中17对重复片段形成的时间很相近,发生在禾本科物种分化之前;最近的一次片段复制事件发生在水稻11和12号染色体之间,在禾本科物种分化之后。 水稻基因组被测序之后,许多科研机构对基因组数据进行了详尽的注释。其中应用比较广泛的是美国基因组研究院(the institute for genome research,TIGR)和日本农业生物科学研究所(national in- stitute of agrobiological sciences,NIAS)的水稻基因组注释信息。TIGR根据其注释的结果和基因相似性矩阵(gene homology matrix,GHM)方法,检测到大量染色体间的重复片段,这些重复片段几乎覆盖了整个水稻基因组。TIGR水稻基因组注释数据库从第4版开始便增加了对片段重复的注释,该分析是利用DAGChainer程序进行的,重复片段采用100 kb和500 kb 2种参数模型进行了染色体片段的基因共线性分析(图1),这是全基因组复制的有力证据。根据复制片段上同源基因的分子进化分析,估计全基因组复制发生在大约7 000万年前,在禾本科物种分化之前。此外,Zhang等利用TIGR更新的数据进行分析,采用同义替换率分布方法检测到另一次更古老的(单、双子叶植物分化前)基因组复制事件,说明水稻基因组至少经历了2次全基因组复制过程。 全基因组复制或多倍体化是植物尤其是禾本科作物物种形成和进化过程中非常重要的事件,大部分开花植物在进化过程中均经历了多倍体化过程。基因组加倍后,再经历所谓的二倍体化过程(diploidization),进化成当代的二倍体物种,并造成大量重复片段中基因的重排和丢失。Salse等研究发现基因组复制事件对禾本科植物的物种形成和演变具有重要作用。他们认为禾本科植物的祖先物种是一个基因组内包含5条染色体的物种,在进化过程中,首先在距今5 000~7 000万年前经基因组复制产生了10条染色体;此后,在基因组内发生了2次染色体置换和融合而形成了12条中间态染色体。以这12条中间态染色体为基础,逐渐分化出水稻、小麦、玉米和高粱的基因组,其中水稻基因组保留了原有的12条中间态染色体,而小麦、玉米和高粱均又发生了染色体丢失和融合才形成了现有的基因组。水稻全基因组复制片段是至今为止在动、植物基因组中发现的最为清晰、完整的基因组复制的遗迹。水稻之所以保存这么完整,一方面是水稻基因组保持了12条中间态染色体的基本形态,另一方面可能与水稻基因组相对较稳定有关。 2水稻籼粳2个亚种的分化 水稻是世界上最重要的粮食作物之一,在其11 500多年的栽培历史中,因适应不同的农业生态环境而产生了丰富的遗传多样性和明显的遗传分化。长期以来,基于形态性状、同工酶以及对一些化合物不同反应的研究,把亚洲栽培稻(Oryza sativa L.)分为籼稻(indica)和粳稻(japonica)2个亚种。其中籼亚种耐湿耐热,主要适应于热带和亚热带等低纬度地区,而粳亚种则耐寒耐弱光,适应于高纬度和高海拔地区种植。这2个亚种间不仅产生了生殖隔离的基因库,还在形态特征、农艺性状和生理生化反应等方面存在明显的差异。近期群体

全基因组选择育种策略及在水产动物育种中的应用前景(精)

中国水产科学 2011年7月, 18(4: 936?943 Journal of Fishery Sciences of China 综述 收稿日期: 2011?03?14; 修订日期: 2011?04?10. 基金项目: 国家自然基金资助项目(30730071; 30972245; 农业科技成果转化资金项目(2010GB24910700. 作者简介: 于洋(1987?, 硕士研究生. E-mail: yuy8866@https://www.wendangku.net/doc/d62907991.html, 通信作者: 张晓军, 副研究员. E-mail: xjzhang@https://www.wendangku.net/doc/d62907991.html, DOI: 10.3724/SP.J.1118.2011.00935 全基因组选择育种策略及在水产动物育种中的应用前景 于洋1,2 , 张晓军1 , 李富花1 , 相建海1 1. 中国科学院海洋研究所实验海洋生物学重点实验室, 山东青岛266071; 2. 中国科学院研究生院, 北京 100049 摘要: 全基因组选择的概念自2001年由Meuwissen 等提出后便引起了动物育种工作者的广泛关注。目前, 澳大利亚、新西兰、荷兰、美国的研究小组已经应用该方法进行了优质种牛的选择育种, 并取得了很好的效果。此外在鸡和猪的选择育种中也有该方法的应用, 但在水产动物选育中尚未见该方法使用的报道。本文对“全基因组选择育种”的概念和提出背景进行了归纳, 对全基因组选择育种的优势进行了阐述, 并详细介绍了其具体的策略, 总结了目前全基因组育种所广泛采用的方法以及取得的成果, 旨在为该方法在水产动物育种方面的应用研究提供科学参考。 关键词: 全基因组选择; 水产动物育种; SNP; QTL; 全基因组育种值估计 中图分类号: S96 文献标志码: A 文章编号: 1005?8737?(201104?0935?08 人类对于动物的选择育种由来已久, 最初所进行的只是简单的人工驯化。随着遗传学研究的发展, 尤其是“数量遗传学理论”的提出, 动物育种技术进入快速发展时

转基因作物安全评价研究进展

转基因作物安全评价研究进展 转基因技术是现代生物技术的核心。推进转基因技 术研究与应用,是着眼于未来国际竞争和产业分工的重大发展战略,是解决粮食短缺、人口问题、确保国家粮食安全的必然要求和重要途径。温家宝总理2010年政府工作报告中 明确指出要重点抓好“以良种培育为重点,加快农业科技创新和推广,实施好转基因生物新品种培育科技重大专项”工作。“农业转基因生物新品种培育科技重大专项”的实施,标志着转基因技术已成为我国抢占科技制高点和增强农业国际竞争力的战略重点。转基因技术自诞生以来,生物安全问题相伴而生。在转基因作物的研究和产业化过程中,转基因作物的安全性成为亟待解决的关键问题。 1 国内外转基因作物安全评价原则 全球各国都加强了对转基因作物安全性评价的研究工作,主要国际组织和研究机构都制定了相关“基于实质等同性”的安全评价原则和标准,在遵循这一原则的基础上对转基因作物进行安全性评价…。 2转基因作物安全评价体外实验研究现状 目前,转基因作物食用安全性评价主要方法是实验研究法。实验研究法有体外实验和体内实验两种研究途径。体外实验是通过各种物理化学方法对转基因作物及其产品进行评价分析。主要有关键成分分析和营养学评价:如蛋白质及氨基酸、脂肪及脂肪酸、碳水

化合物、矿物质、维生素等营养成分分析;抗营养因子和酶抑制剂等抗营养成分和天然毒素分析;因基因修饰生成的新成分和其他可能产生的非预期成分分析等。还有转基因作物主要成分稳定性分析:如 加工贮存过程中转基因作物稳定性的研究;转基因作物在动物体内消化稳定性的研究等。 现有研究表明转基因大豆、豆粕中干物质、粗脂肪、粗蛋白、中性洗涤纤维、酸性洗涤纤维、灰分、钙和总磷8种普通营养成分与普通大豆含量较接近,无显著差异;转基因大豆中氨基酸、微量元素铁、铜、锰、锌含量与普通大豆相近。转基因大豆中转基因植酸磷、胰蛋白酶抑制因子、脲酶活性和蛋白溶解度等抗营养因子未发生变化,大豆异黄酮和大豆凝集素等在二者之间也具有实质等同性[10]。研究者 还认为尽管转基因大豆中转基因豆粕C14:1脂肪酸、C22:0 脂肪酸、共轭亚油酸含量存在差异,但二者差异没有实际意义,饱和脂肪酸、不饱和脂肪酸含量及各种脂肪酸含量与传统常规大豆间无显著差异。转基因大豆与常规大豆具有实质等同性。部分研究也表明转基因玉米、转基因大米与普通作物具有实质等同性。 3转基因作物安全评价体内实验研究现状 体内实验主要是通过先饲喂动物转基因产品,然后通过研究实验动物身体各方面机能参数(日常活动、体液指标、器官发育、病理检查等)来评价转基因作物的安全性。一些研究表明转基因作物对动物的影响与传统非转基因作物相同。如有研究证实:转基因大豆

水稻转基因育种研究进展 7

水稻转基因育种研究进展 王彩芬,安永平,韩国敏,张文银,马 静 (宁夏农林科学院农作物研究所,宁夏永宁 750105) 摘要:对水稻转基因技术在抗虫、抗病、抗逆及改良米质等方面的进展进行了综述。 关键词:水稻; 转基因育种; 进展 中图分类号:S511.035.3 文献标识码:A 文章编号:1002-204X(2005)06-0055-03 20世纪下半叶以来,由于分子生物学研究的巨大成就,使生物学成为自然科学的带头学科,它的理论和方法已渗透到生命科学的许多领域,为生命科学的研究带来新的思维方式和研究手段。基因工程技术在植物遗传育种上应用很广泛,并取得了显著成就。 水稻是最重要的粮食作物之一,世界上约有一半以上的人口以稻米为主食。据专家预测,到2025年在现有稻谷产量的基础上再增加60%才能满足需要(K hush,1995)。随着人口的增长和耕地面积的减少,世界尤其是我国将面临粮食问题的严峻挑战,培育优良品种是提高稻谷产量的主要途径。传统的育种技术已为培育水稻新品种做出了巨大贡献,并将在今后继续发挥主导作用,但由于品种资源的贫乏,单靠传统育种已很难有大的突破。基因工程技术为水稻分子标记辅助育种、水稻转基因育种提供了一条新途径。转基因技术可以将水稻基因库中不具备的抗病、抗虫、抗除草剂、抗旱、耐盐、改善品质、提高产量等基因转入水稻,从而实现水稻种质创新和为生产提供优良品种。自1988年以来,国内外已得到了许多水稻转基因植株,涉及到抗虫、抗病、抗除草剂、抗旱、耐盐、改良品质等重要农艺性状,有些已进入田间试验和应用阶段。 1 水稻转基因育种进展 植物转基因育种是利用遗传工程的手段,有目的地将外源基因或DNA构建导入植物基因组,通过外源基因的直接表达,或通过对内源基因表达的调控,甚至通过直接调控植物相关生物如病毒的表达,使植物获得新的性状的一种品种改良技术。在植物分子生物学研究的众多材料中,水稻不仅是世界重要粮食作物,而且由于其基因组较小、重复序列较少的优点而成为一种重要的分子遗传学研究的单子叶模式植物,基因组测序已完成。自1988年首次获得转基因水稻以来,水稻转基因技术已获得突飞猛进的发展,目前已成功获得籼稻、粳稻、爪哇稻的转基因植物。随着基因枪转化技术的建立和根癌农杆菌介导转化法的成功,水稻基因转化技术日益完善。而且转移目标基因已从报告基因或筛选标记基因进入改良水稻抗性和适应性,以及改善品质,提高产量等重要基因的利用。 1.1 抗虫转基因水稻育种 水稻是虫害最多的大田作物,稻螟虫和稻飞虱危害最为严重,水稻中抗虫资源贫乏,转基因技术为抗虫品种的培育提供了一条新途径。自从1989年实现苏云金杆菌(Bacillus thuringiensis,简称Bt)抗虫基因转化水稻并得到再生植株以来,转抗虫基因水稻的研究取得了很大进展。转抗虫基因水稻包括转Bt基因、转蛋白酶抑制基因和转凝集素基因。在转Bt基因的研究方面,中国农科院生物技术中心杨虹等(1989)将Bt基因导入水稻品种台北309、中花8号的原生质体并获得再生植株;Fujim oto等(1993)通过电激法将cry LAb 基因导入水稻,首次报道了转Bt基因水稻对二化螟和稻纵卷叶螟的抗性。项友斌等(1999)利用农杆菌介导实现了苏云金杆菌抗虫基因cryI A(b)和cryI A(c)在水稻中的转化;黄健秋等(2000)利用农杆菌介导获得转(Bt)基因秀水11和春江11植株;薛庆中等(2002)利用农杆菌介导获得转双价抗虫基因(cryI Ac和豇豆胰蛋白酶抑制基因C pTI)浙大19植株;朱常香等(2002)获得Bt和X a21共转化水稻(C48)植株。近几年转Bt基因研究越来越多,进展很快,在籼稻、香稻、爪哇稻、杂交稻、深水稻中获得成功,选育出克螟稻1号、2号、3号(舒庆尧等,1998)。转Bt基因水稻在我国已进入环境释放阶段,有望培育出应用于生产的抗虫品种。 在转蛋白酶抑制剂基因水稻研究方面,通过电激介导原生质体转化,Xu等(1996)把豇豆胰蛋白酶抑制剂基因C pT i转入粳稻品种台北309,转基因植株对大螟和二化螟2种水稻虫害都具有抗性;通过基因枪介导马铃薯蛋白酶抑制剂基因PinⅡ转化水稻,Duan等(1996)获得了Nipponbare、台南67和Pi4等3个粳稻品种的抗大化螟转基因株系;Lee等(1999)利用PEG介导法将大豆K units胰蛋白酶抑制剂(SK TI)的cDNA转入粳稻Nagdongbyeo的原生质体,再生转基因植株的后代抗褐飞虱。曾黎琼等(2004)利用农杆菌介导将马铃薯蛋白酶抑制剂基因(PinⅡ)导入玉优1号、HT-7中;孔维文等(2004)利用农杆菌介导将PT A和马铃薯高赖氨酸蛋白基因(S B401)同时转入超级杂交稻亲本材料1826中。在转凝集素基因水稻研究中,主要是转雪莲花凝集素(G NA)基因,采用基因枪法,英国John Innes Centre(Maqbool等,1999;Rao等,1998;Sudhakar等,1998)把G NA基因导入AS D16、M5、M7、M12、FX92D、Basmati370等籼稻品种中,得到200多株转基因植株,G NA在水稻中呈高水平的组成性表达(用Ubi启动子)或韧皮部专一性表达(用Rssl启动子),转基因植株抗褐飞虱。在我国,傅向东等(1997)用G NA基因枪转化水稻IR72、IR76、珍汕97和秀水11等品种,部分转基因植株子代对褐飞虱有一定抗性;T ang(唐克轩等,1999)通过基因枪介导实现了G NA 基因和X a21基因的共转化,得到了转基因植株。唐克轩等(2003)利用农杆菌介导将半夏凝集素基因(pta)导入粳稻鄂宛105、中花12和籼稻E优532中,获得7个转基因纯系。 1.2 抗病转基因水稻育种 抗病转基因水稻包括转抗病毒基因、抗真菌病害基因和抗细菌病害基因。抗病毒转基因已开展了8种病毒的转基因研究,包括水稻通枯罗病毒(rice tungro disease)、水稻齿叶矮缩病毒(rice ragged 收稿日期:2005-07-21 作者简介:王彩芬(1968-),女,副研究员,从事水稻花培育种研究。T el:0951-*******E-mail:caifen-68@https://www.wendangku.net/doc/d62907991.html,

相关文档