文档库 最新最全的文档下载
当前位置:文档库 › 矩阵可对角化的总结

矩阵可对角化的总结

矩阵可对角化的总结
矩阵可对角化的总结

矩阵可对角化的总结莆田学院数学系02级1班连涵生21041111 [摘要]:主要讨论n级方阵可对角化问题:(1)通过特征值,特征向量和若尔当标准形讨论方阵可对角化的条件;(2)实n 级对称矩阵的可对角化讨论;(3)几个常见n 级方阵的可对角化讨论。

[关键词]:n级方阵;可对角化;相似;特征值;特征向量;若尔当标准形;n级实对称矩阵

说明:如果没有具体指出是在哪一个数域上的n级方阵,都认为是复数域上的。当然如果它的特征多项式在某一数域K上不能表成一次多项式的乘积的话,那么在此数域上它一定不能相似对角阵。只要适当扩大原本数域使得满足以上条件就可以。复数域上一定满足,因此这样假设,就不用再去讨论数域。

引言

所谓矩阵可对角化指的是矩阵与对角阵相似,而说线性变换是可对角化的指的是这个线性变换在某一组基下是对角阵(或者说线性变换在一组基下的矩阵是可对角化的),同样可以把问题归到矩阵是否可对角化。本文主要是讨论矩阵可对角化。

定义1:设A,B是两个n级方阵,如果存在可逆矩阵P,使P-1AP=B,则称B与A相似,记作A~B。矩阵P称为由A

到B的相似变换矩阵。[]1[]2[]3[]4

定义2:设A 是一个n 级方阵,如果有数λ和非零向量X ,使AX=λX 则称λ是矩阵A 的特征值,X 称为A 的对应于λ的特征向量,称{|}V A λααλα==为矩阵对应于特征值λ的特征子空间。[]

1[]2[]3[]

4

定义3:设A 是数域P 上一个n 级方阵,若多项式

()[]f x P X ∈,使()0f A =则称()f x 为矩阵A 的零化多项式。[]

2

定义4:数域P 上次数最低的首项为1的以A 为根的多项式称为A 的最小多项式。[]

1[]2[]

3

一、首先从特征值,特征向量入手讨论n 级方阵可对角化的

相关条件。 定理1:一个n 级方阵A 可对角化的充要条件它有n 个线性无关的特征向量。[]

1[]2[]3[]

4

证明:必要性:由已知,存在可逆矩阵P ,使

1

2

1

n P AP λλλ-?????

?=??????即12n AP P λλλ??

????=?????

?

把矩阵P 按列分块,记每一列矩阵为 12,,,n P P P 即

12[,,,]n P P P P = 于是有

12[,,,]n A P P P ==1

212[,,

,]n n P P P λλλ?????

??????

?

, 即 121122[,,,][,,

,]n n n AP AP AP P P P λλλ=

于是有 ,1

,2,,i i i AP P i n λ==。

由特征值,特征向量定义,表明P 的每一列都是A 的特征向量,因为P 是可逆的,因此12,,,n P P P 是A 的n 个线性

无关特征向量,其中12,,

,n λλλ为A 的特征值。

充分性:若A 有n 个线性无关的特征向量12,,,n P P P 则

有,1,2,,i i i AP P i n λ==,其中i λ是对应于特征向量i P 的

A 的特征值。

以12,,

,n P P P 为列作矩阵12[,,,]n P P P P =,因为

12,,,n P P P 线性无关,所以矩阵P 是可逆的。

由 12[,,

,]n AP A P P P =

=121122[,,

,][,,

,]n n n AP AP AP P P P λλλ=

=1

212[,,

,]n n P P P λλλ????????????=12n P λλλ??

?????????

?

则有 12

1

n P AP λλλ-????

?

?=?????

?

即A 与对角矩阵相似

从以上证明中可知:

(1) 与矩阵A 相似的对角矩阵主对角线上的元素是A

的特征值,而相似变换矩阵P 的列是A 的n 个线性无关特征向量。 (2)

12,,,n λλλ在主对角线上的次序应与其对应的

特征向量在P 中的次序相对应,如果12,,,n

λλλ的次序改变,那么12,,

,n P P P 在P 中的次序也要

作相应的改变。但这时P 就不是原来的P 了。因此相似变换矩阵不是唯一的。若不计k λ的排列顺序,则对角矩阵是唯一的,称它为A 的相似标准

形。

由相似是一种等价关系知:与A 相似的矩阵都有相同的相似标准形。

定理2:矩阵A 的属于不同特征值的特征向量是线性无关的。

[]1[]2[]3[]

4

由此给出了一个推论:n 级方阵可对角化的充分条件A 有

n 个互不相同的特征值。[]

1[]2[]3[]

4

证明:由定理1及定理2可得。但这个推论的逆不成立。例如:n 级单位阵E ,显然它是可对角化的,但它的特征值为1(n 重根)。

那我们要问若有重根时,要满足什么条件才可对角化? 定理3:n 阶矩阵A 可对角化的充要条件是:A 的每个特征值对应的特征向量线性无关的最大个数等于特征值的重数(即A 的每个特征子空间i V λ的维数等于特征值i λ的重数)

[]

4

这个定理又可以这样叙述:矩阵A 的每个特征值的代数重数等于对应子空间的(几何)重数。[]

2[]

3

引理1:如果1,,k λλ是矩阵A 的不同特征值,而12,,,i i i ir ααα

是属于i λ的线性无关的特征向量,12,,

,i k = 那么向量组

1

11121,,,,,k

r kr αααα也线性无关。[]

1[]2[]

3

即:给出一个n 级矩阵,求出属于每个特征值的线性无关向量,把它们合在一起也是线性无关的。

引理2:设0λ是n 阶矩阵A 的一个k 重特征值,对应于0λ的特征向量线性无关的最大个数为l ,则k l ≥。[]4

证明:反证法。设 l k < ,

由已知 0012,,,,,i i i A i l αλαα=≠=。 (1) 12,,,l ααα 线性无关。将 12,,,l ααα 扩充为n 维向量空间 V 的一组基:121,,,,,,l l n ααααα+ 其中 1,,l n αα+一般不 是A 的特征向量,但1,,,m A V m l n α∈=+ ,可用上述的一 组基线性表示,即 1111'''',,,,m m l m l l m l n m n A a a a a ααααα++=+

++++ 其中

1(,

,)m l n =+ (2)

用矩阵可表示为:

()121,,

,,,

,l l n A ααααα+

()0

11100

112111110'

',,'',,'

',,'

',,,,

,,,

,l n l l l n l l n l l l n n l n n a a a a a a a a λλλααααα+++++++??

? ? ? ? ?

=

?

? ?

? ? ??

?

(3)

记 ()121,,

,,,

,l l n P ααααα+= 则P 是可逆的。

因此上式可表为 01011

220

l l E A E A AP P P AP A A λλ-????=?=

? ?????

根据相似矩阵有相同的特征多项式,得

111()n n n n E A P E A P P E A P E P AP λλλλ----=-=-=-

01

022

()()l

l n l n l E A E E A E A λλλλλλ----=

=---

02()l n l E A λλλ-=-- (4)

令2()n l g E A λλ-=-是λ的n l -次多项式,由(4)式知

0λ至少是A 的l (l k >)重特征值。与0λ为A 的k 重特征

值,矛盾,所以l k ≤。

由上面的两个引理作基础,下证定理3:

证明:不妨设1()i m

r i i E A λλλ=-=-∏其中1,

,m K λλ∈

1

m

i i r n ==∑。(在复数域中)

充分性:由于对应于i λ的特征向量有i r 个线性无关,又m 个特征值互异。由引理1知A 有n 个线形无关的特征向量,依据定理1,A 与对角阵相似。

必要性:用反证法:设有一个特征值i λ所对应的线性无

关的特征向量的最大个数i i l λ<的重数为i r ,则由引理2知, A 的线性无关的特征向量个数小于n ,故A 不能对角化,与题设矛盾,假设不成立。即A 的每个特征值对应的特征向量

线性无关的最大个数i l 等于特征值的重数i r 。[]4

推论:n 级方阵A 可对角化的充要条件是对于A 的每一个特征根λ,有秩()E A n S λ-=-,其中s 是λ的重数。[]2 证明:()0E A X λ-=的解空间V λ的维数等于特征值λ的重数即维()V S λ=(由定理3知)。又维()V n λ=-秩()E A λ-。所以,秩()E A n S λ-=- 成立。

以上给出的可对角化的几个条件都是以特征值,特征向量为基础。其中条件1(也是定理1)是最基础的,可以把它看作是矩阵可对角化的实质。其它条件都是它的扩展。

下面我们用λ-矩阵及若尔当标准形来讨论矩阵可对角化。 定理4:复数域上每一个n 阶矩阵A 都与一个若尔当标准形相似。这个若当形矩阵除去其中若当块的排列次序外是被矩阵A 唯一决定的。它称为A 的若尔当标准形。[]

1

[]2[]3[]

4

由相似是一个等价关系知,与A 相似的矩阵都有相同的若尔当标准形。从这个意义上讲,我们可以把n 级方阵划分为以若当标准形为代表元素的等价类。等价类中的每个元素是

相似的。由若尔当标准形的构造知,它包含对角形矩阵为它的特殊情况。那么当它满足什么条件时,一个若尔当标准形是一个对角矩阵,也就是可对角化的条件。

由于每个初等因子对应一个若当块,例如初等因子为

()i

r i λλ-,那它对应的若当块为1

1

i i

i i

i i r r

J λλλ?????

?

?=?????

?, 而若当形矩阵是由这样的若当块组成的。

例: 12

S J J J J ???

?

?

?=?????

?

, 所以如果每一个若当块都是1阶,那么,这个若当形矩阵J 就成了对角阵,那么与之对应的初等因子都是一次的。

由上面讨论给出矩阵可对角化的几个条件:

定理5:n 级方阵可对角化的充要条件它的初等因子都是一次的。[]

1[]2[]

3

推论1:n 级方阵可对角化的充要条件它的不变因子无重根。[]1[]2[]

3 推论2:n 级方阵可对角化的充要条件它的最小多项式无重根。[]1[]2[]3

这三个充要条件充分利用了不变因子,初等因子及最小多项

式之间的关系,但在具体的解题过程中很少直接去求不变因子和初等因子,一般情况下是通过求最小多项式来解题的。例:由最小多项式的定义知,对于任一个零化多项式()f x 都满足()|()A m x f x ,()A m x 表示矩阵A 的最小多项式。因此若()f x 无重根,则()A m x 一定无重根。当然这只是一种方法。 由此给出推论3:n 级方阵可对角化的充分条件是它的零化多项式无重根。

由哈密尔顿—凯莱定理知,特征多项式是一个零化多项式。[]

1[]2[]3[]

4

推论4:n 级方阵可对角化充分条件特征多项式无重根。 以上讨论的这些n 级方阵可对角化的条件是相对比较常见到的。

二、n 级实对称矩阵的可对角化讨论。

前面我们讨论了n 级方阵可对角化条件,同时也看出不是任何矩阵都与对角阵相似,但实用中很重要的一类矩阵—n 级实对称阵一定可对角化,而且对于任一个实对称阵A ,存在正交矩阵T ,使T -1AT 为对角阵。[]

1[]2[]3[]

4即n 级实对称矩

阵存在n 个线性无关的正交特征向量。

定理5:n 级实对称矩阵A ,B ,若A 与B 相似,则A 与B 合同。[]5

证:A 与B 相似,那么它们有相同的特征值,设为12,,

,n λλλ

由A ,B 为n 级实对称矩阵知,特征值全为实数,且存

在正交矩阵P ,Q ,使

1

2

1T

n P AP P AP λλλ-???

??

?==?????

?, 12

1T

n Q BQ Q BQ λλλ-?????

?==?????

?

, 则11P AP Q BQ --= ? 11A PQ BQP --= 即 111()()A QP B QP ---=。

由于正交矩阵的逆、乘积还是正交矩阵,因此1QP -为正交矩阵。

则 111()()QP QP ---= 且 110QP Q P --=≠

11()()T A QP B QP --∴= 即 A 与B 是合同的。

一般情况下相似与合同是没有什么关系,但是如果是实对称阵的话,合同是包含相似的。

三、几种常用矩阵的对角化问题讨论

1、非零幂零矩阵一定不可对角化。 证:设非零幂零阵A ,幂零指数为m 。 1)A 的特征值全为0。

设λ为A 的特征值,α是属于λ的特征向量。即 A αλα=,则m m A αλα=,又由0m A =知00m λλ=?= (0α≠),即A 的特征值全为0。

2)若A 可对角化,则存在可逆阵T ,使 1

1000

0000T AT A T T --????

????

?

???=?==?????????

??

?

与0A ≠矛盾。

综上所述,非零幂零矩阵一定不可对角化。 推论:幂零阵若可对角化,则它一定是零矩阵。 2、对合矩阵一定可对角化。 设A 为对合阵,则2A E =。

方法1:若A 有n 个线性无关特征向量,由定理1命题成立。 证:

1)A 的特征值只有1和1-

设λ为A 的特征值,α为属于λ的特征向量。 ()()()22A A A A A ααλαλαλα====,又2A E ααα== 得2λαα=,移项得 ()()221010λαλ-=?-= 即1λ=±。

2)A 有n 个线性无关的特征向量

由已知2A E =?秩()A E ++秩()E A n -=。 对特征值1,齐次线性方程组()0E A X -=。

有()()n r E A r E A --=+个无关特征向量。 对特征值1-,齐次线性方程组()0E A X -+=。 有()()n r E A r E A ---=-个无关特征向量。

再因为属于不同特征值特征向量线性无关,所以,A 有 ()()r A E r E A n ++-=个无关特征向量。从而A 可对角化。 若秩()E A r -=,则A 的相似对角阵为00

r

n r E E -??

??-??

方法二:利用最小多项式无重根。

令()21f x x =-,()20f A A E =-=,则()f x 为零化多项式。 又()()()11f x x x =+-无重根,由()()A m x f x ,知()A m x 无重根,从而A 可对角化。

又A 的特征值只有1和1-。从而相似对角阵为00

r

n r E E -??

?

?-??

其中r =维()1V ,1V 表示特征值1的特征子空间。

3、幂等矩阵一定可对角化。 设幂等矩阵A ,满足2A A =。

幂等矩阵对角化讨论与对合矩阵对角化讨论类似,同样可以用两种方法进行讨论,且A 的特征值只有1和0,从而,它的相似对角阵为00

0r E ??

?

???

。其中秩()A r =。当r n =时,它相似对角阵为单位阵E ,从而存在可逆阵P ,使1P AP E -=,

11A PEP PP E --===。也就是说,可逆幂等矩阵是单位矩阵。

致谢

首先,感谢系里给我们开设“高等代数选讲”及“数学分析选讲”这两门专业选修课。让我们对数学的基础课程有了更进一步的理解,更为我们有准备考研的同学创造了良好的条件。在此,特别感谢(杨忠鹏)老师授课,使我们进一步打好高等代数的基础知识,进一步理清高等代数的结构。

本文主要根据自己的理解从理论上总结有关矩阵可对角化问题,缺少实例应用,而且还存在很多不足之处,望教师给予指出,我将努力更正。也向所有给予本论文关心,支持与提供宝贵意见的教师,同学表示衷心的感谢。 参考文献

[1]《高等代数》 第二版 北京大学 高等教育出版社 [2]《高等代数》 姚慕生编著 复旦大学 复旦大学出版社 [3]《高等代数》张禾瑞、郝鈵新编 第四版 高等教育出版社 [4]《线性代数》 居余马等编 清华大学出版社 [5]《高等代数辅导及习题精解》滕加俊等编 陕西师范大学出版社

矩阵的可对角化及其应用

附件: 分类号O15 商洛学院学士学位论文 矩阵的可对角化及其应用 作者单位数学与计算科学系 指导老师刘晓民 作者姓名陈毕 专业﹑班级数学与应用数学专业07级1班 提交时间二0一一年五月

矩阵的可对角化及其应用 陈毕 (数学与计算科学系2007级1班) 指导老师刘晓民 摘要:矩阵可对角化问题是矩阵理论中的一个重要问题,可对角化矩阵作为一类特殊的矩阵,在理论上和应用上有着十分重要的意义。本文对可对角化矩阵做出了全面的概括和分析,并利用高等代数和线性代数的有关理论给出了矩阵可对角化的若干条件,同时也讨论了化矩阵为对角形的求解方法,最后总结出可对角化矩阵在求方阵的高次幂﹑利用特征值求行列式的值﹑由特征值和特征向量反求矩阵﹑判断矩阵是否相似﹑向量空间﹑线性变换等方面的应用. 关键词:对角化;特征值;特征向量;相似;线性变换 Matrix diagonolization and its application Chen Bi (Class 1,Grade 2007,The Depart of Math and Calculation Science) Advisor:Lecturer Liu Xiao Min Abstract: Matrix diagonolization problem is an important problem in matrix theory diagonolization matrix, as a kind of special matrix, in theory and application has the extremely vital significance. This paper has made diagonolization matrix

线性代数知识点归纳同济第五版

线性代数复习要点 第一部分 行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 1. 行列式的计算: ① (定义法)12 1212 11 12121222() 121 2 ()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ 1 ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.

④ 若A B 与都是方阵(不必同阶),则 ==()mn A O A A O A B O B O B B O A A A B B O B O *==**=-1 例 计算 2-100-1 300001100-25 解 2-100 -1 30000110 -2 5 =2-1115735-13-25?=?= ⑤ 关于副对角线: (1) 2 1121 21 1211 1()n n n n n n n n n n n a O a a a a a a a O a O ---* = =-1 ⑥ 范德蒙德行列式:()1 2 2 22 12 11 1112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏111 例 计算行列式

⑦ a b - 型公式:1 [(1)]()n a b b b b a b b a n b a b b b a b b b b a -=+-- ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算. ⑩ (数学归纳法) 2. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλ λ-=-=+-∑,其中k S 为k 阶主子式; 3. 证明 0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-

线性代数知识点总结

线性代数知识点总结 第一章 行列式 (一)要点 1、二阶、三阶行列式 2、全排列和逆序数,奇偶排列(可以不介绍对换及有关定理),n 阶行列式的定义 3、行列式的性质 4、n 阶行列式ij a D =,元素ij a 的余子式和代数余子式,行列式按行(列)展开定理 5、克莱姆法则 (二)基本要求 1、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章 矩阵 (一)要点 1、矩阵的概念 n m ?矩阵n m ij a A ?=)(是一个矩阵表。当n m =时,称A 为n 阶矩阵,此时由A 的元素按原来排列的形式构成的n 阶行列式,称为矩阵A 的行列式,记为A . 注:矩阵和行列式是两个完全不同的两个概念。 2、几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1)矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。 如果两矩阵A 与B 相乘,有BA AB =,则称矩阵A 与B 可换。 注:矩阵乘积不一定符合交换 (2)方阵的幂:对于n 阶矩阵A 及自然数k , 规定I A =0 ,其中I 为单位阵 .

(3) 设多项式函数k k k k a a a a ++++=--λλλλ?1110)( ,A 为方阵,矩阵A 的 多项式I a A a A a A a A k k k k ++++=--1110)( ?,其中I 为单位阵。 (4)n 阶矩阵A 和B ,则B A AB =. (5)n 阶矩阵A ,则A A n λλ= 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A 可逆,则其逆矩阵是唯一的);矩阵A 的伴随矩阵记为*A , 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价意义下的标准形;矩阵A 可逆的又一充分必要条件:A 可以表示成一些初等矩阵的乘积;用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k 阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如n m A ?,l n B ?,将矩阵B 分块为 ) (21l b b b B =,其中j b (l j 2, ,1=)是矩阵B 的第j 列, 则 又如将n 阶矩阵P 分块为) (21n p p p P =,其中j p (n j 2, ,1=)是矩阵P 的第j 列. (3)设对角分块矩阵

矩阵知识点归纳

矩阵知识点归纳 (一)二阶矩阵与变换 1.线性变换与二阶矩阵 在平面直角坐标系xOy 中,由? ?? ?? x ′=ax +by , y ′=cx +dy ,(其中a ,b ,c ,d 是常数)构成的变换 称为线性变换.由四个数a ,b ,c ,d 排成的正方形数表?? ?? ?? a b c d 称为二阶矩阵,其中a ,b ,c ,d 称为矩阵的元素,矩阵通常用大写字母A ,B ,C ,…或(a ij )表示(其中i ,j 分别为元素a ij 所在的行和列). 2.矩阵的乘法 行矩阵[a 11a 12]与列矩阵??????b 11b 21的乘法规则为[a 11a 12]??????b 11b 21=[a 11b 11+a 12b 21],二阶矩阵???? ? ? a b c d 与列矩阵??????x y 的乘法规则为??????a b c d ??????x y =???? ?? ax +by cx +dy .矩阵乘法满足结合律, 不满足交换律和消去律. 3.几种常见的线性变换 (1)恒等变换矩阵M =???? ?? 1 00 1; (2)旋转变换R θ对应的矩阵是M =?? ?? ?? cos θ -sin θsin θ cos θ; (3)反射变换要看关于哪条直线对称.例如若关于x 轴对称,则变换对应矩阵为M 1=??????1 00 -1;若关于y 轴对称,则变换对应矩阵为M 2=???? ?? -1 0 0 1;若关于坐标原点对称,则变 换对应矩阵M 3=???? ?? -1 0 0 -1; (4)伸压变换对应的二阶矩阵M =???? ?? k 1 00 k 2,表示将每个点的横坐标变为原来的k 1倍,纵 坐标变为原来的k 2倍,k 1,k 2均为非零常数; (5)投影变换要看投影在什么直线上,例如关于x 轴的投影变换的矩阵为M =?????? 1 00 0; (6)切变变换要看沿什么方向平移,若沿x 轴平移|ky |个单位,则对应矩阵M =???? ?? 1 k 0 1, 若沿y 轴平移|kx |个单位,则对应矩阵M =???? ?? 1 0k 1.(其中k 为非零常数). 4.线性变换的基本性质 设向量α=??????x y ,规定实数λ与向量α的乘积λα=??????λx λy ;设向量α=??????x 1y 1,β=???? ?? x 2y 2,规定 向量α与β的和α+β=???? ?? x 1+x 2y 1+y 2. (1)设M 是一个二阶矩阵,α、β是平面上的任意两个向量,λ是一个任意实数,则①M (λα)=λM α,②M (α+β)=M α+M β. (2)二阶矩阵对应的变换(线性变换)把平面上的直线变成直线(或一点).

高中数学必修和选修知识点归纳总结

高中数学必修+选修知识点归纳 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、 导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩 充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系 的扩充与复数选修2—3:计数原理、随机变量及其分布列, 统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数 难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻 辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、 值域与最值、反函数、三大性质、函 数图象、指数与指数函数、对数与对 数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数 列、数列求和、数列的应用

矩阵秩重要知识点总结_考研必看

一. 矩阵等价 行等价:矩阵A 经若干次初等行变换变为矩阵B 列等价:矩阵A 经若干次初等列变换变为矩阵B 矩阵等价:矩阵A 经若干次初等行变换可以变为矩阵B ,矩阵B 经若干次初等行变换可以变成矩阵A ,则成矩阵A 和B 等价 矩阵等价的充要条件 1. 存在可逆矩阵P 和Q,PAQ=B 2. R(A)=R(B) 二. 向量的线性表示 Case1:向量b r 能由向量组A 线 性表示: 充要条件: 1.线性方程组A x r =b 有解 (A)=R(A,b) Case2:向量组B 能由向量组A 线性表示 充要条件: R(A)=R(A,B) 推论 ∵R(A)=R(A,B),R(B) ≤R(A,B) ∴R(B) ≤R(A) Case3:向量组A 能由向量组B 线性表示 充要条件: R(B)=R(B,A) 推论 ∵R(B)=R(A,B),R(A) ≤R(A,B) ∴R(A) ≤R(B) Case4:向量组A 和B 能相互表示,即向量组A 和向量组B 等价 充要条件: R(A)=R(B)=R(A,B)=R(B,A) Case5:n 维单位坐标向量组能由矩阵A 的列向量组线性表示 充要条件是: R(A)=R(A,E)

n=R(E)<=R(A),又R(A)>=n ,所以R(A)=n=R(A,E) 三. 线性方程组的解 1. 非齐次线性方程组 (1) R(A)=R(A,B),方程有解. (2) R(A)=R(A,B)=n ,解唯一. (3) R(A)=R(A,B)

矩阵可对角化的判定条件开题报告

矩阵可对角化的判定条件开题报告 开题报告 矩阵可对角化的判定条件 选题的背景、意义 矩阵最初是作为研究代数学的一种工具提出的,但是经过两个多世纪的发展,现在已成为独立的一门数学分支?矩阵论。矩阵论又可分为矩阵方程论、矩阵分解论和广义逆矩阵论等矩阵的现代理论。矩阵及其理论现已应用于自然科学、工程技术、社会科学等许多领域。如在观测、导航、机器人的位移、化学分子结构的稳定性分析、密码通讯、模糊识别、计算机层析及 X 射线照相术等方面都有广泛的应用。随着现代数字计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决。于是作为处理离散问题的线性代数和矩阵计算,成为从事科学研究和工程设计的科技人员必备的数学基础。 矩阵是一个重要的数学工具,不仅在数学中有广泛的应用,在其他学科中也经常遇到。它在二十世纪得到飞速发展,成为在物理学、生物学、地理学、经济学等中有大量应用的数学分支,现在矩阵比行列式在数学中占有更重要的位置。 矩阵对角化是矩阵论的重要组成部分,在矩阵论中占有重要的作用,研究矩阵对角化问题很有实用价值,关于矩阵对角化问题的研究,这方面的资料和理论已经很多。但是他们研究的角度和方法只是某个方面的研究,没有进行系统的分类归纳和总结。因此,我就针对这方面进行系统的分类归纳和总结,对一些理论

进行应用和举例,给出算法。特别给出了解题时方法的选择。 矩阵的应用在现代社会中是十分广泛的,本文围绕有限维线性空间上的线性变换对角化问题与矩阵可对角化相互转换进行研究.根据矩阵的多项式对矩阵对角化问题进行判断,这种方法不仅为探讨矩阵对角化提供了一个简便的工具,也把矩阵和有限维空间相结合.在现代科技中,很多问题都是运用此类方式。 矩阵对角化问题只是矩阵理论中的一个小问题,但是一个基础问题,这样矩阵可对角化作为矩阵理论里的最基础的知识,就显得格外的重要.通过对《高等代数》,《科学计算方法》等有关资料的查阅和分析研究,为我们对判定矩阵的可对角化的条件提供了相关依据和理论. 文献[1]和[2]介绍了广义逆矩阵和一类特殊矩阵可对角化的判定条件,利用子空间关于矩阵的最小多项式研究了矩阵可广义对角化的充要条件,给出了一种更简单的判别仅有两个互异特征根的矩阵与对角阵相似以及求特征向量的方法。 文献[3]总结了利用循回阵的性质找出一个矩阵可对角化的充要条件。任意阶矩阵可以对角化的充要条件是相似于一个阶循回阵, 形式最简单的矩阵是对角阵。矩阵对角化是线性变换和化二次型到主轴上问题中经常遇到并需要解决的一个关键问题,但不是任何一个阶矩阵都可以对角化。 文献[4]总结了对矩阵的计算中用到了对角化的性质。该文详细地分析了Doolittle LU分解过程,基于分解过程的特点,在MPI(Message-Passing interface)并行环境下,提出了按直角式循环对进程进行任务分配的并行求解方法。实验证明该方法可以有效地减少进程间数据通信量,从而加快计算速度。 文献[5]?[7] 阐述了矩阵可对角化的条件以及对实对称矩阵的可对角化,

矩阵可对角化的总结

矩阵可对角化的总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-

矩阵可对角化的总结莆田学院数学系02级1班连涵生 21041111 [摘要]:主要讨论n级方阵可对角化问题:(1)通过特征值,特征向量和若尔当标准形讨论方阵可对角化的条件;(2)实n级对称矩阵的可对角化讨论;(3)几个常见n 级方阵的可对角化讨论。 [关键词]:n级方阵;可对角化;相似;特征值;特征向量;若尔当标准形;n级实对称矩阵 说明:如果没有具体指出是在哪一个数域上的n级方阵,都认为是复数域上的。当然如果它的特征多项式在某一数域K上不能表成一次多项式的乘积的话,那么在此数域上它一定不能相似对角阵。只要适当扩大原本数域使得满足以上条件就可以。复数域上一定满足,因此这样假设,就不用再去讨论数域。 引言 所谓矩阵可对角化指的是矩阵与对角阵相似,而说线性变换是可对角化的指的是这个线性变换在某一组基下是对角阵(或者说线性变换在一组基下的矩阵是可对角化的),同样可以把问题归到矩阵是否可对角化。本文主要是讨论矩阵可对角化。 定义1:设A,B是两个n级方阵,如果存在可逆矩阵P,使P-1AP=B,则称B与A相似,记作A~ B。矩阵P称为由A到B的相似变换矩阵。[]1[]2[]3[]4 2

3 定义2:设A 是一个n 级方阵,如果有数λ和非零向量X ,使AX=λX 则称λ是矩阵A 的特征值,X 称为A 的对应于λ的特征向量,称{|}V A λααλα==为矩阵对应于特征值λ的特征子空间。[]1[]2[]3[]4 定义3:设A 是数域P 上一个n 级方阵,若多项式()[]f x P X ∈,使()0f A =则称()f x 为矩阵A 的零化多项式。[]2 定义4:数域P 上次数最低的首项为1的以A 为根的多项式称为A 的最小多项式。[]1[]2[]3 一、 首先从特征值,特征向量入手讨论n 级方阵可 对角化的相关条件。 定理1:一个n 级方阵A 可对角化的充要条件它有n 个线性无关的特征向量。[]1[]2[]3[]4 证明:必要性:由已知,存在可逆矩阵P ,使 121n P AP λλλ-??????=??????即12n AP P λλλ??????=?????? 把矩阵P 按列分块,记每一列矩阵为 12,, ,n P P P 即

线性代数知识点总结

线性代数知识点总结 第一章行列式 (一)要点 1、 二阶、三阶行列式 2、 全排列和逆序数,奇偶排列(可以不介绍对换及有关定理) ,n 阶行列式的定义 3、 行列式的性质 4、 n 阶行列式 ^a i j ,元素a j 的余子式和代数余子式,行列式按行(列)展开定理 5、 克莱姆法则 (二)基本要求 1 、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3 、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 a 1i A Ij ' a 2i A 2 j ' a ni A nj ^ 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、 掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、 了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章矩阵 (一)要点 1、 矩阵的概念 m n 矩阵A =(a j )mn 是一个矩阵表。当 m =n 时,称A 为n 阶矩阵,此时由 A 的 元素按原来排列的形式构成的 n 阶行列式,称为矩阵 A 的行列式,记为 A . 注:矩阵和行列式是两个完全不同的两个概念。 2、 几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 a i 1A j 1 ■ a i2A j 2 ? a in A jn = 〔 D '

3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。如果两矩阵A与B相乘,有AB = BA ,则称矩阵A与B可换。注:矩阵乘积不一定符合交换 (2)方阵的幕:对于n阶矩阵A及自然数k, A k=A A A , 1 k个 规定A° = I ,其中I为单位阵. (3) 设多项式函数(J^a^ k?a1?k^l Z-心律??a k,A为方阵,矩阵A的 多项式(A) = a0A k?a1A k' …-?-a k jA ■ a k I ,其中I 为单位阵。 (4)n阶矩阵A和B ,贝U AB=IAB . (5)n 阶矩阵A ,则∣∕Λ =λn A 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A可逆,则其逆矩阵是唯一的);矩阵A的伴随矩阵记 * 为A , AA* = A*A = AE 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价 意义下的标准形;矩阵A可逆的又一充分必要条件:A可以表示成一些初等矩阵的乘积; 用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如A m n, B nl,将矩

矩阵理论知识点整理资料

三、矩阵的若方标准型及分解 λ-矩阵及其标准型定理1 λ-矩阵()λ A可逆的充分必要条件是行列式()λ A是非零常数 引理2 λ-矩阵()λ A=() () n m ij? λ a的左上角元素()λ 11 a不为0,并且()λ A中至少有一个元素不 能被它整除,那么一定可以找到一个与()λ A等价的()() () n m ij? =λ λb B使得()0 b 11 ≠ λ且 ()λ 11 b的次数小于()λ 11 a的次数。 引理3 任何非零的λ-矩阵()λ A=() () n m ij? λ a等价于对角阵 () () () ? ? ? ? ? ? ? ? ? ? ? ? ... ..... d 2 1 λ λ λ r d d ()()()λ λ λ r 2 1 d ,.... d, d是首项系数为1的多项式,且 ()()1 ...... 3,2,,1 , / d 1 - = + r i d i i λ λ 引理4 等价的λ-矩阵有相同的秩和相同的各阶行列式因子 推论5 λ-矩阵的施密斯标准型是唯一的由施密斯标准型可以得到行列式因子推论6 两个λ-矩阵等价,当且仅当它们有相同的行列式因子,或者相同的不变因子 推论7 λ-矩阵()λ A可逆,当且仅当它可以表示为初等矩阵的乘积 推论8 两个()()λ λ λB A m与 矩阵 的- ?n等价当且仅当存在一个m阶的可逆λ-矩阵()λ P和 一个n阶的λ-矩阵()λ Q使得()()()()λ λ λ λQ A P = B 推论9 两个λ-矩阵等价,当且仅当它们有相同的初等因子和相同的秩

定理10 设λ-矩阵()λA 等价于对角型λ-矩阵()() ()()?????? ?? ? ???????? ?=λλλλn h h . . . ..21h B ,若将()λB 的次数大于1的对角线元素分解为不同的一次因式的方幂的乘积,则所有这些一次因式的方幂(相同 的按照重复的次数计算)就是()λA 的全部初等因子。 行列式因子 不变因子 初等因子 初等因子被不变因子唯一确定但,只要λ-矩阵()λA 化为对角阵,再将次数大于等于1的对角线元素分解为不同的一次方幂的乘积,则 所有这些一次因式的方幂(相同的必须重复计算)就为()λA 的全部初等因子,即不必事先知道不变因子,可以直接求得初等因子。 矩阵的若当 标准型 定理1 两个n ?m 阶数字矩阵A 和B 相似,当且仅当它们的特征矩阵B -E A -E λλ与等价 N 阶数字矩阵的特征矩阵A -E λ的秩一定是n 因此它的不变因子有n 个,且乘积是A 的特征多项式 推论3 两个同阶矩阵相似,当且仅当它们有相同的行列式因子,或相同的不变因子,或相同的初等因子。 定理4 每个n 阶复矩阵A 都与一个若当标准型矩阵相似,这个若当标准型矩阵除去其中若当块的排列次序外是被矩阵A 唯一确定的。 求解若当标准型及可逆矩阵P:根据数字矩阵写出特征矩阵,化为对角阵后,得出初等因子, 根据初等因子,写出若当标准型J,设P(X1X2X3),然后根据 J X X X X X X A PJ AP J AP P 321321-1),,(),,(,即得到===得到 P (X1X2X3)方阵 矩阵的最小 多项式 定理1 矩阵A 的最小多项式整除A 的任何零化多项式,且最小多项式唯一。 N 阶数字矩阵可以相似对角化,当且仅当最小多项式无重根。 定理2 矩阵A 的最小多项式的根一定是A 的特征值,反之,矩阵A的特征值一定是最小多项式的根。 求最小多项式:根据数字矩阵写出特征多项式()A E f -=λλ, 根据特征多项式得到最小多

可对角化矩阵的应用

可对角化矩阵的应用 矩阵可对角化问题是矩阵理论中的一个重要问题,可对角化矩阵作为一类,特殊的矩阵,在理论上和应用上有着十分重要的意义。下面列举几个常见的可对角化矩阵的应用的例子。 1.求方阵的高次幂 例设V 是数域P 上的一个二维线性空间,12,εε是一组基,线性变换σ在12,εε下的矩阵A =2110?? ?-?? ,试计算k A 。 解:首先计算σ在V 的另一组基12,ηη下的矩阵,这里 ()()121211,,12-?? ηη=εε ? -?? , 且 σ 在 12 ,ηη下的矩阵为 1 112 1112 12 11111121012111 01 2 1 ----?????????? ?? ??== ? ??? ????? ?----- ????????? ?????显然 1 10 10 1k k ??? ? = ? ? ?? ?? ,再利用上面得到的关系1 1121111112101201---???????? = ? ??? ?---???????? 我们可以得到 1 21111111111211 101201121201111k k k k k k k ----+????????????????=== ? ??? ? ????? ? ------+???????????????? 2.利用特征值求行列式的值。 例:设n 阶实对称矩阵2A =A 满足,且A 的秩为r ,试求行列式2E A -的值。 解:设AX=λX ,X ≠0,是对应特征值λ的特征向量,因

为2A A =,则22X X λE =AE =A =λ,从而有()20X λ-λ=,因为X ≠0, 所以()1λλ-=0,即λ=1或0,又因为A 是实对称矩阵,所以A 相似于对角矩阵,A 的秩为r ,故存在可逆矩阵P ,使 1 00 0r E P AP -??= ??? =B ,其中 r E 是r 阶单位矩阵,从而 1102220 2r n r n r E E A PP PBP E B E -----=-=-= =2 3由特征值与特征向量反求矩阵。 若矩阵A 可对角化,即存在可逆矩阵P 使,其中B 为对角矩阵,则 例 设3阶实对称矩阵A 的特征值为,对应的特征向量为,求矩阵A 。 解:因为A 是实对称矩阵,所以A 可以对角化,即A 由三个线性无关的特征向量,设对应于231λ=λ=的特征向量为 () 123,,T P X X X =,它应与特征向量 1 P 正交,即 []1123,00P P X X X =++=,该齐次方程组的基础解系为 ()() 231,0,0,0,1,1T T P P ==-,它们即是对应于231λ=λ=的特征向量。 取 ()123010100,,101,010101001P P P P B -???? ? ? === ? ? ? ?-???? ,则 1P A P B -=, 于是1110 010******* 210101010 0011010011 1010022A PBP -? ? ?-?????? ? ??? ?===- ? ??? ? ??? ? ?--??????- ??? 4判断矩阵是否相似

矩阵可对角化的条件.

第二节矩阵可对角化的条件 定义1 如果矩阵能与对角矩阵相似,则称可对角化。 例1设,则有:,即。从而 可对角化。 定理1 阶矩阵可对角化的充分必要条件是有个线性无关的特征向量。 证明:必要性如果可对角化,则存在可逆矩阵,使得 将按列分块得,从而有

因此有,所以是的属于特征值的特征向量,又由可逆,知线性无关,故有个线性无关的特征向量。 充分性设是的个线性无关的特征向量,它们对应的特征值依次为 ,则有。令,则是一个可逆矩阵且有: 因此有,即,也就是矩阵可对角化。 注若,则,对按列分块得 ,于是有 ,即 ,从而。可见,对角矩阵的元素就是矩阵的特征值,可逆矩阵就是由的线性无关的特征向量所构成的,并且特征向量的顺序依赖于对角矩阵。 定理2 矩阵的属于不同特征值的特征向量是线性无关的。

证明:设是的个互不相同的特征值,是的属于特征值的特征向量,现对作数学归纳法证明线性无关。 当时,由于特征向量不为零,因此定理成立。 假设的个互不相同的特征值对应的个特征向量是线性无关的。设 是的个互不相同的特征值,是的属于特征值的特征向量。又设 (1) 成立。则有,又将(1)式两边同乘得: 从而有,由归纳假设得 ,再由两两互不相同可得 ,将其代入(1)式得,因此有,从而 线性无关。 推论1 若阶矩阵有个互不相同的特征值,则可对角化,且 。 定理3 设是阶矩阵的个互异特征值,对应于的线性无关的特征 向量为,则由所有这些特征向量(共个)构成的向量组是线性无关的。

证明:设,记, ,则有,且或是的属于特征值的特征向量。若存在某个,,则由属于不同特征值的特征向量线性无关知 ,矛盾。因此有,,又由已知得 ,,因此向量组 线性无关。 定理4设是阶矩阵的一个重特征值,对应于的特征向量线性无关的最大个数为,则,即齐次线性方程组的基础解系所含向量个数不超过特征值的重数。 证明:用反证法。由于是的属于特征值的特征向量当且仅当是齐次线性方程组的非零解,因此对应于的特征向量线性无关的最大个数与齐次线性方程组的基础解系所含向量个数相等。设是齐次线性方程组的一个基础解系,且假设,则有。现将扩充为一个维线性无关向量组,其中 未必是的特征向量,但有是一个维向量,从而 可由向量组线性表示,即: 因而有:

线性代数知识点全归纳

线性代数知识点 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;

最新对角化矩阵的应用本科

对角化矩阵的应用本 科

XXX学校 毕业论文(设计) 对角化矩阵的应用 学生姓名 学院 专业 班级 学号 指导教师 2015年 4 月 25 日

毕业论文(设计)承诺书 本人郑重承诺: 1、本论文(设计)是在指导教师的指导下,查阅相关文献,进行分析研究,独立撰写而成的. 2、本论文(设计)中,所有实验、数据和有关材料均是真实的. 3、本论文(设计)中除引文和致谢的内容外,不包含其他人或机构已经撰写发表过的研究成果. 4、本论文(设计)如有剽窃他人研究成果的情况,一切后果自负. 学生(签名): 2015 年4月25日

对角化矩阵的应用 摘要 矩阵对角化问题是矩阵理论中一个关键性问题.本文借助矩阵可对角化条件,可对角化矩阵性质和矩阵对角化方法来研究可对角化矩阵一些应用,包括求方阵的高次幂,反求矩阵,判断矩阵是否相似,求特殊矩阵的特征值,在向量空间中证明矩阵相似于对角矩阵,运用线性变换把矩阵变为对角矩阵,求数列通项公式与极限,求行列式的值. 【关键词】对角化;特征值;特征向量;矩阵相似;线性变换

Application of diagonalization matrix Abstract Matrix diagonalization problem is the key issue in the matrix theory. In this paper, by using matrix diagonalization conditions, diagonalization matrix properties and matrix diagonalization method we study some applications of diagonalization matrix, including for high-order exponent of matrix, finding the inverse matrix, matrix to determine whether it is similar, the eigenvalue of special matrix, in the vector space that matrix similar to a diagonal matrix, using linear transformation matrix is a diagonal matrix, for the series of general term formula and limit, the determinant of value. [Key words] The diagonalization; Eigenvalue; Feature vector; Similar; Linear transformation

矩阵可对角化的充分必要条件论文

学号 20080501050116 密级 兰州城市学院本科毕业论文 矩阵可对角化的充分必要条件 学院名称:数学学院 专业名称:数学与应用数学 学生姓名:练利锋 指导教师:李旭东 二○一二年五月

BACHELOR'S DEGREE THESIS OF LANZHOU CITY UNIVERSITY Matrix diagonalization of the necessary and sufficient condition College : Mathematics Subject : Mathematics and Applied Mathematics Name : Lian Lifeng Directed by : Li Xudong May 2012

郑重说明 本人呈交的学位论文,是在导师的指导下,独立进行研究工作所取得的,所以数据、资料真实可靠。尽我所能,除文中已经注明应用的内容外,本学位论文的研究成果不包含他人享有的著作权的内容。对本论文所涉及的研究工作做出的其他个人和集体,均已在文中以明确的方式标明。本学位论文的知识产权归属于培养单位。 本人签名 : 日期 :

摘要 矩阵是否可以对角化,是矩阵的一条很重要的性质。对相似可对角化的充分必要条件的理解,一直是线性代数学习中的一个困难问题。本文给出了矩阵可对角化的几个充分必要条件和相应的证明。 关键词:方阵;特征值;特征向量;对角化

ABSTRACT Matrix diagonalization is a very important nature of matrix.Understanding the necessary and sufficient conditions of similarity can be diagonalized , has been a difficult problem in linear algebra.In this paper, several necessary and sufficient conditions and the corresponding proofs of matrix diagonlization have been given. Key words:square;eigenvalue;eigenvector;diagonalization

矩阵可对角化的充分必要条件开题报告

本科毕业论文开题报告 题目:矩阵可对角化的充分必要条件院系:数学学院 专业:数学与应用数学 班级: 081(本) 姓名:练利锋 指导教师:李旭东 申报日期: 2011年12月30日

开题报告填写要求 1.开题报告作为毕业论文(设计)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业论文(设计)工作前期内完成,经指导教师签署意见审查后生效。 2.开题报告内容必须用黑墨水笔工整书写,按教务处统一设计的电子文档标准格式打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见。 3.学生查阅资料的参考文献应在3篇及以上(不包括辞典、手册),开题报告的字数要在1000字以上。 4.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2004年9月26日”或“2004-09-26”。

毕业论文开题报告 1.本课题的研究意义 矩阵是高等代数中的重要组成部分,是许多数学分支研究的重要工具。而对角矩阵作为矩阵中比较特殊的一类,形式简单,研究起来非常方便。而研究矩阵的对角化及其理论意义也很明显,相似是一种等价关系,对角化相当于对一类矩阵在相似意义下给出了一种简单的等价形式,这对理论分析是方便的。相似的矩阵拥有很多相同的性质,比如特征多项式,特征根,行列式…….如果只关心这类性质,那么相似的矩阵可以看作没有区别的,这时研究一个一般的可对角化矩阵,只要研究它的标准形式——一个对角矩阵就可以了。而对角矩阵是最简单的一类矩阵,研究起来非常方便。这个过程相当于在一个等价类中选取最顺眼的元素进行研究。 另外,对角化突出了矩阵的特征值,而过度矩阵T反映了特征向量的信息,对角化过程的直观意义还是很明显的。再结合正交矩阵的概念,可以得到一些不平凡的结论,例如实对称矩阵总可以对角化。 事实上,在大学的学习中矩阵对角化理论占有非常重要的地位,因此,对它的研究意义重大。然而在高等代数学习中,大部分学生对矩阵对角化的充分必要条件的学习效果不是很理想,对什么样的矩阵可以对角化以及对角阵的求解步骤了解不深,常常出现错误,我认为主要的原因是他们对矩阵的相似对角化概念及其充分必要条件理解不透彻,本课题给出矩阵可对角化的基本概念和可对角的充分必要条件,并给出其他一些引申的充分必要条件和性质,对这些条件和性质的证明有助于学生对矩阵可对角化的条件进一步理解和强化,以及对可对角化矩阵的相似对角阵的求法和性质进一步理解掌握。从而使高等代数中的重要概念——矩阵的对角化理论比较完整的呈现在我们面前。 总之,矩阵对角化的充要条件是一个传统但又很重要的研究课题,具有广泛的应用价值。在很多有关矩阵数学问题的分析和证明中,我们都需要用到矩阵的对角化。本文给出了矩阵可对角的若干充分必要条件,希望对同学们在今后的学习和实际应运中有一定的帮助。 2.本课题的基本内容

相关文档
相关文档 最新文档