文档库 最新最全的文档下载
当前位置:文档库 › 光纤布喇格光栅基模到辐射模耦合分析

光纤布喇格光栅基模到辐射模耦合分析

光纤布喇格光栅基模到辐射模耦合分析
光纤布喇格光栅基模到辐射模耦合分析

光纤布喇格光栅基模到辐射模耦合分析

根据耦合模理论和辐射模理论对光纤布喇格光栅(FBG)外界材料折射率大于包层折射率的情况下建立了完整的模型。基于自适应Lobatto算法将基模到辐射模的耦合方程组离散化,利用四阶五级的Runge-Kutta法求解基模到辐射模的离散耦合方程组。定量地分析了FBG的透射谱随它的外界材料折射率、长度、周期以及纤芯半径的变化规律。研究结果对于指导FBG设计、封装和将其作为折射率传感器的应用都有一定意义。

标签:布喇格光纤光栅;辐射模;三层阶跃波导

光纤布喇格光栅(FBG)是一种具有优良光学特性的光纤型无源器件,在光纤通信和光纤传感领域得到了广泛的应用[1.2]。FBG的电磁特性主要表现为纤芯内正、反向传输的基模之间的耦合。随着研究的深入,进一步考虑正向基模与反向包层模或辐射模之间的模式耦合效应显得很重要。

FBG正向基模到反向基模的耦合分析,文獻[3]进行了研究;1997年T.Erdogan等人[4]对FBG纤芯的LP01模和包层模的耦合进行了详细的描述。文献[5]提出了基于FBG 包层模式的折射率传感方案,研究了光纤通过氢氟酸腐蚀后包层模式的耦合波长随外部折射率的变化规律。对于FBG基模到辐射模的耦合研究,报道较少。文献[6]在假定光纤包层半径为无限大的情况下,对FBG 基模到辐射模的耦合进行了研究,显然这与实际情况不吻合。文献[7]首次在外界材料折射率略大于包层材料折射率,且包层半径为有限大的情况下采用泰勒级数展开法研究FBG基模到辐射模的耦合特性。当FBG的基模和辐射耦合较弱时该方法计算简单且误差较小。但基模与辐射模的耦合较强时,需将泰勒级数展开至三阶以上,计算复杂且误差较大。文章在文献[7]的基础上,采用计算简单且精度高的数值积分和数值微分相结合的方法,计算FBG的基模和辐射模的耦合方程,研究了FBG外界材料折射率、长度、周期以及纤芯半径变化对FBG透射谱的影响。

1 基于三层结构的FBG辐射模研究

采用三层阶跃折射率波导结构[8]来模拟FBG,如图1所示,其中n1、n2和n3分别是纤芯、包层和外界材料的折射率,r1和r2分别是纤芯和包层的半径。当外界材料折射率大于包层折射率时,由文献[3]可知在波导中不存在离散的包层模式,只有连续的辐射模。

3.1 外界材料折射率对FBG透射谱的影响

图2为FBG透射谱随外界材料折射率(n3)的变化情况,即n3=n2、n3=1.02n2、n3=1.05n2时的FBG透射谱。所选用FBG的参数为:n1=1.451、n2=1.446、r1=4.1μm、r2=62.5μm、光栅长度L=10mm,折射率调制深度5×10-4和光栅周期Λ=530nm。由它可以看出:(1)当n3=n2时,即类似包层无限大的情况,此时

光纤光栅的特性

光纤光栅的特性 1.光纤布喇格光栅的理论模型: 假设光纤为理想的纤芯掺锗阶跃型光纤,并且折射率沿轴向均匀分布,包层为纯石英,此种光纤在紫外光的照射下,纤芯的折射率会发生永久性变化,对包层的折射率没有影响。 利用目前的光纤光栅制作技术:如全息相干法,分波面相干法及相位模板复制法等。生产的光纤光栅大多数为均匀周期正弦型光栅。纤芯中的折射率分布(如图1)所示。 )(1Z n 为纤芯的折射率,max n ?为光 致折射率微扰的最大值, )0(1n 为纤芯原折射率, Λ为折射率变化的周期(即栅距), L 为光栅的区长度。 若忽略光栅横截面上折射率分布的不均匀性,光栅区的折射率分布可表示为: )2cos( )0()(max 11Z n n z n Λ ?+=π …………………………………………………(1.1) 显而易见,其折射率沿纵向分布,属于非正规光波导中的迅变光波导,在考虑模式耦合的时候,只能使用矢量模耦合方程,其耦合主要发生在基模的正向传输导模与反向传输导模之间。 2.单模光纤的耦合方程 由于纤芯折射率非均匀分布,引起了纤芯中传输的本征模式间发生耦合。在弱导时, 忽 略偏振效应,吸收损耗和折射率非均匀分布引起了模式泄漏,则非均匀波导中的场Φ( x , y , z ) 满足标量波动方程:0),,(}),,({22 2 20 2=Φ??++?z y x z z y x n sk t …………………(2.1) 其中:λπ/20=k ,λ是自由空间的光波长。 2 22 2 1}{1? ??+?Φ???=Φ?Φ r r r r r t …………………………………………………(2.2) 由于折射率非均匀分布引起波导中模式耦合只发生在纤芯中,因此非均匀波导中的场 可以表示为均匀波导束缚模式),(y x φ之和: ),()}exp()exp()({),()(),,(y x z i a z i z a y x z A z y x l l l l l l l l l φββφ-+-∑=∑=Φ………(2.3)

光纤耦合器

光纤耦合器 光纤耦合器的概述 ?·光纤耦合器的简介 ?·光纤耦合器的分类 ?·光纤耦合器的制作方式 ?·光纤耦合器端口的级联 光纤耦合器的应用 ?·2×2单模光纤耦合器的改进... ?·光纤耦合器中光孤子传输的... ?·可调光子晶体光纤耦合器的制作 光纤耦合器的简介 光纤耦合器是指光讯号通过光纤中分至多条光纤中的元件,属于一种光被动元件,一般 在电信网路、有线电视网路、用户回路系统、区域网路各个领域都会应用到,与光纤连接器 在被动元件中起重大作用,也叫分歧器. 光纤耦合器的分类 光纤耦合器一般分为三类: 标准耦合器:双分支,单位1X2,就是将光讯号未成两个功率 星状/树状耦合器 波长多工器:也称作WDM,一般波长属于高密度分出,即波长间距窄,就是WDM 光纤耦合器的制作方式 光纤耦合器制作方式有烧结(FUSE)、微光学式(MICRO Optics)、光波导式(Wave Guide) 三种.这里介绍下烧结方式,烧结方式占了多数(约有90%),主要的方法是将两条光纤并在一起烧融拉伸,使核芯聚合一起,以达光耦合作用,而其中最重要的生产设备就是融烧机,也是最为重要的步骤,虽然重要步骤部分可由机器代工,但烧结之后,必须人工封装,所以人工成本在10%-15%左右,其次采用人工检测封装必须保证品质一致性,这也是量产时所必须克服的,但技术困难度不若DWDM MODULE及光主动元件高,因此初期想进入光纤产业的厂商,大部 分会从光耦合器切入,毛利则在20~30% 光纤耦合器端口的级联 光纤耦合器端口的级联 由于光纤端口的价格仍然非常昂贵,所以,光纤主要被用于核心交换机和骨干交换机之间连接,或被用于骨干交换机之间的级联.需要注意的是,光纤端口均没有堆叠的能力,只能被用于级联. 1. 光纤跳线的交叉连接

高亮度光纤耦合半导体激光器

高亮度光纤耦合半导体激光器 High Brightness Fiber Coupled Diode Laser 凯普林光电 1 引言 光纤耦合半导体激光器以其体积小、光束质量好、寿命长及性能稳定等优势在各领域得到广泛应用,主要作为光纤激光器的泵浦源、固体激光器泵浦源,也可直接应用于激光医疗,材料处理如熔覆、焊接等领域。受光纤激光器向高功率方向发展趋势的影响,半导体激光器也在向高功率、高亮度发展,高亮度半导体激光器具有较高的光功率密度,经合束器合束同样成为高功率光纤激光器理想的泵浦源。目前光纤耦合半导体激光器结构主要有单管耦合激光器、多单管耦合激光器、迷你Bar以及Bar条/叠阵系列,多单管耦合激光器因其具有高可靠性而成为光纤激光器的主流泵浦源之一,本文主要介绍通过多单管光纤耦合技术实现高亮度半导体激光器的技术与实现。 2 多单管结构 多单管结构是将多路分立的半导体激光器发出的光束经过整形、重新排列、合束后耦合进入单根光纤,从而可提高激光器输出功率。由于分立半导体激光器芯片必须安装在具有一定大小的热沉上,如果直接将多个半导体激光器的输出光束进行排列并聚焦耦合,通常由于受到每个芯片和其热沉体积的限制,合并光束体积较大,很难获得小芯径高亮度的光纤耦合输出。为减小合并光束的空间体积大小,必须采取一定的措施。为此,凯普林自主研发的多单管耦合结构采用阶梯热沉、聚焦透镜、耦合光纤以及独特的安装方式,光路设计简化了结构的复杂性,减小了组件的体积,大大提高了半导体激光器输出的功率,同时保证了耦合点的合理工作温度,如图1所示。 在进行多单管耦合前可对分立半导体激光器芯片进行老化筛选,从而保证了多单管耦合后的可靠性。单管的随机失效特性独立,相比于Bar条、叠阵无热效应干扰,单管的可替换也增加了其耐用性,具有较高的成本优势。

光纤光栅的理论研究

第1章 光纤光栅光学性质的研究 光纤光栅是一种全光纤的滤波器件,它的光学性质决定了它的广泛应用。研究光纤光栅光学性质的基本理论是耦合波理论。基于耦合波理论的传输矩阵法是一种快速数值模拟非均匀光纤光栅光学特性的方法。在本章,系统地总结了应用耦合波理论研究光纤光栅的光学性质的方法。光栅反射带宽是其作为滤波器的主要性能指标,本章研究了光栅参数对光栅反射带宽的影响。其它主要研究包括寻找传输矩阵法中分割段数的最优值,各种参数对线性啁啾光纤光栅光学性质的影响,包括反射谱和时延特性受光栅长度、光纤折射率微扰幅度、啁啾系数和光波从不同方向入射时的影响,以及各种切趾函数对光纤光栅的作用。 第一节 研究光纤光栅的基本理论:耦合波理论 1 光纤光栅中的折射率分布 光纤光栅中的折射率微扰是由制作时所用紫外光的场分布决定的。一般全息曝光和相位 图2.1-1几中典型光纤光栅的折射率微扰分布 a uniform grating b chirped grating c Gauss grating d phas e shift grating e Moire grating f super structure grating

掩模板法制作光纤光栅时的场分布具有余弦函数的形式,所以光栅的折射率微扰也具有余弦函数形式,一般可以写为: ??? ? ????????φ+Λπν+δ=δ)z (z 2cos )z (1)z (n )z (n eff eff (2.1-1) )z (n eff δ是折射率微扰的平均值,可以看成一个光栅周期内折射率变化的直流部分,ν 是光栅条纹的可见度,Λ是光栅的周期,φ(z)可以用来描述光栅的啁啾。光纤光栅的光学性 质就决定于上式中各个参数的选择,我们将它们统称为光栅参数。光纤光栅的光学性质就由这些光栅参数决定,通过选择它们沿光纤方向不同的变化形式,可以得到适用于不同目的的光栅。图2.1-1是几中常见的光纤光栅的折射率微扰的分布示意图: 1. 均匀光纤光栅:各个光栅参数沿光纤方向是常量,这种光栅可以得到解析的理论 分析结果,是耦合波理论分析光纤光栅光学性质的出发点。 2. 线性啁啾光纤光栅:光栅周期Λ沿光纤方向是线性变化的量,应用于色散补偿等方 面。 3. 折射率微扰平均值沿光纤方向是一个高斯型分布:实际制作的光纤光栅很多都属 于这种类型。 4. 相移光栅:在光栅周期性结构中存在一个相位移动,一般是π。可以应用于透射型 滤波器。 5. MOIRE 光栅:折射率微扰幅度的轮廓是一个余弦函数,而平均值是一个常数。 6. 超结构光栅:由间隔一定的微均匀光纤光栅(几百个周期结构)组成。 2 耦合波理论 研究电磁场在光纤光栅这样的周期性波导中传播的基本理论是耦合波理论[1]。假设电磁场横向分量在光纤中的传播可以看成没有折射率微扰时标准光纤的模式的叠加: ()()()()()[] ()y x e z i z B z i z A z y x E j tj j j j j t ,exp exp ,,∑?-+= ββ (2.1-2) 式中A j (z)和B j (z)分别是第j 个模分别沿+z 和-z 方向传播时缓变的幅度函数。()y ,x e tj 是第j 个模的横向分量的场分布,可以是束缚模、包层模和辐射模。在理想的、没有折射率微扰的光纤中,这些模相互正交没有能量交换。在紫外光的照射下,光纤芯部的折射率发生改变。这种变化很小,一般为10-4,是一种微扰。折射率微扰的引入使得模式之间发生能量交换,即发生模式耦合。一个模式沿光纤方向幅度的变化是所有模式相互作用的结果[2]: ∑∑∑∑β-β-K +K -β+βK -K -=β+β-K -K +β-βK +K =k k j k z k j t k j k j k z k j t k j k j k k j k z k j t k j k j k z k j t k j k j ] z )(i exp[)(B i ]z )(i exp[)(A i dz )z (dB ] z )(i exp[)(B i ]z )(i exp[)(A i dz )z (dA (2.1-3) 式中t k j K 是横向耦合因子,可以表示为:

光纤耦合器 光纤耦合器

光纤耦合器光纤耦合器(Coupler)又称分歧器(Splitter),是将光讯号从一条光纤中分至多条光纤中的元件,属于光被动元件领域,在电信网路、有线电视网路、用户回路系统、区域网路中都会应用到,与光纤连接器分列被动元件中使用最大项的(根据ElectroniCat资料,两者市场金额在2003年约达25亿美元)。光纤耦合器可分标准耦合器(双分支,单位1×2,亦即将光讯号分成两个功率)、星状/树状耦合器、以及波长多工器(WDM,若波长属高密度分出,即波长间距窄,则属于DWDM),制作方式则有烧结(Fuse)、微光学式(MicroOptics)、光波导式(WaveGuide)三种,而以烧结式方法生产占多数(约有90%)。烧结方式的制作法,是将两条光纤并在一起烧融拉伸,使核芯聚合一起,以达光耦合作用,而其中最重要的生产设备是融烧机,也是其中的重要步骤,虽然重要步骤部份可由机器代工,但烧结之后,仍须人工作检测封装,因此人工成本约占10~15%左右,再者采用人工检测封装须保品质的一致性,这也是量产时所必须克服的,但技术困难度不若DWDMmodule及光主动元件高,因此初期想进入光纤产业的厂商,大部分会从光耦合器切入,毛利则在20~30%。国外业者有JDS、E-Tek、Oplink、Gould等,目前都已直接在大陆设厂生产耦合器跳线先说配线架吧,就是外线(电信线路)和内线进行交换为了方便管理而设的线路管理的机架。通常外线是架好不用动的,内现在表层,员工调了位置或人员流动时就要对号码或分机进行相应的移动,这就是跳线。跳线,实际上就是将用户的端口在交换机上(网络)和配线架上(语音)做一个调整,但现在的弱电几乎都是在配线架上面完成,网络和语音都在一块的,这就是网管的基本工作。另外顺便说一句,现在还有一种光纤跳线,在配线架上面用的,俗名也叫跳线/尾纤,呵呵。 尾纤尾纤又叫猪尾线,只有一端有连接头,而另一端是一根光缆纤芯的断头,通过熔接与其他光缆纤芯相连,常出现在光纤终端盒内,用于连接光缆与光纤收发器(之间还用到耦合器、跳线等)。跳线,就是两端有连接头(如ST、SC、FC、MTRJ等等)的一段线缆(有光纤跳线、双绞线跳线及其他铜缆跳线等),作用是直接连接两个标准接口设备互连1、图解交换机设备的级联双绞线端口的级联级联既可使用普通端口也可使用特殊的MDI-II端口。当相互级联的两个端口分别为普通端口(即MDI-X)端口和MDI-II端口时,应当使用直通电缆。当相互级联的两个端口均为普通端口(即MDI-X)或均为MDI-II端口时,则应当使用交叉电缆。无论是10Base-T以太网、100Base-TX快速以太网还是1000Base-T千兆以太网,级联交换机所使用的电缆长度均可达到100米,这个长度与交换机到计算机之间长度完全相同。因此,级联除了能够扩充端口数量外,另外一个用途就是快速延伸网络直径。当有4台交换机级联时,网络跨度就可以达到500米。这样的距离对于位于同一座建筑物内的小型网络而言已经足够了!1.使用Uplink端口级联现在,越来越多交换机(Cisco交换机除外)提供了Uplink端口(如图1所示),使得交换机之间的连接变得更加简单。图1Uplink端口Uplink端口是专门用于与其他交换机连接的端口,可利用直通跳线将该端口连接至其他交换机的除Uplink端口外的任意端口(如图2所示),这种连接方式跟计算机与交换机之间的连接完全相同。需要注意的是,有些品牌的交换机(如3Com)使用一个普通端口兼作Uplink端口,并利用一个开关(MDI/MDI-X转换开关)在两种类型间进行切换。图2利用直通线通过Uplink端口级联交换机. 2.使用普通端口级联如果交换机没有提供专门的级联端口(Uplink端口),那么,将只能使用交叉跳线,将两台交换机的普通端口连接在一起,扩展网络端口数量(如图3所示)。需要注意的是,当使用普通端口连接交换机时,必须使用交叉线而不是直通线。图3利用交叉线通过普通端口级联交换机光纤端口的级联由于光纤端口的价格仍然非常昂贵,所以,光纤主要被用于核心交换机和骨干交换机之间连接,或被用于骨干交换机之间的级联。需要注意的是,光纤端口均没有堆叠的能力,只能被用于级联。1.光纤跳线的交叉连接所有交换机的光纤端口都是2个,分别是一发一收。当然,光纤跳线也必须是2根,否则端口

大功率半导体激光器光纤耦合技术调研报告

大功率半导体激光器光纤耦合技术调研报告 1.前言 近年来,高功率光纤激光器因其优良的性能日益受到人们的重视和青睐,被广泛地应用于工业加工、空间光通信、医疗和军事等各个方面,其迅速发展在很大程度上得益于大功率高亮度半导体激光器技术的进步,大功率半导体激光光纤耦合技术一直是高功率光纤激光器技术的一项关键核心技术。相反地,半导体激光器泵浦的高功率光纤激光器(DPFL)的发展也带动了大功率半导体激光器技术,尤其是大功率半导体激光光纤耦合技术的进步。 由于单管半导体激光器(LD)的输出功率受限于数瓦量级,远不能满足高功率光纤激光器泵浦源的要求,要获得更大输出功率须采用具有多个发光单元的激光二极管阵列(LD Array)。按照结构形式的不同,激光二极管阵列分为线阵列(LD Bar)和面阵列(LD Stack),分别如图1(a)和(b)所示,其中LD Bar的输出功率一般在数十瓦至百瓦量级,而LD Stack的输出功率一般在数百瓦乃至上千瓦。无论是单管LD还是LD Array,由其固有结构特点决定了半导体激光器具有光束发散角较大,输出光束光斑不对称,亮度不高等问题,给作为高功率光纤激光器泵浦源的实际应用带来很大困难和不便。一个较好的解决方法是将半导体激光耦合进光纤输出,这样既可以利用光纤的柔性传输,增加使用的灵活性,又可以从根本上改善半导体激光器的输出光束质量。 Fig.1 (a)LD Bar 和(b)LD Stack 大功率半导体激光器阵列光纤耦合技术作为一项高新技术,具有很高的技术含量,涉及半导体材料、纤维光学技术、微光学技术、微精细加工技术和耦合封装技术等关键单元技术。目前为止,大功率半导体激光器阵列光纤耦合技术主要采用两条技术路线:光纤束耦合法和微光学系统耦合法。下面将主要以LD Bar 光纤耦合技术为例,就该两种方法进行详细阐述。 2.大功率半导体激光器阵列光纤耦合技术 2.1光纤束耦合法 光纤束耦合法(又称光纤阵列耦合法)是早期使用的一种光纤耦合技术,具有结构简单明了、耦合效率高、各发光元的间隙不影响整体光束质量和成本低等优点。该方法通过微光学系统将LD Bar各个发光单元发出的光束在快轴方向进行准直和压缩后,与相同数目的光纤阵列一一对应耦合,然后通过光纤合束在

光纤光栅的特性

光纤光栅的特性

光纤光栅的特性 1.光纤布喇格光栅的理论模型: 假设光纤为理想的纤芯掺锗阶跃型光纤,并且折射率沿轴向均匀分布,包层为纯石英,此种光纤在紫外光的照射下,纤芯的折射率会发生永久性变化,对包层的折射率没有影响。 利用目前的光纤光栅制作技术:如全息相干法,分波面相干法及相位模板复制法等。生产的光纤光栅大多数为均匀周期正弦型光栅。纤芯中的折射率分布(如图1)所示。 ) (1Z n 为纤芯的折射 率,m ax n ?为光致折射 率微扰的最大值, ) 0(1n 为纤芯原折射 率, Λ 为折射率变化的周期(即栅距), L 为光栅的区长度。 若忽略光栅横截面上折射率分布的不均匀

性,光栅区的折射率分布可表示为: )2cos()0()(max 11Z n n z n Λ ?+=π ………………………………………………… (1.1) 显而易见,其折射率沿纵向分布,属于非正规光波导中的迅变光波导,在考虑模式耦合的时候,只能使用矢量模耦合方程,其耦合主要发生在基模的正向传输导模与反向传输导模之间。 2.单模光纤的耦合方程 由于纤芯折射率非均匀分布,引起了纤芯中传输的本征模式间发生耦合。在弱导时, 忽 略偏振效应,吸收损耗和折射率非均匀分布引起了模式泄漏,则非均匀波导中的场Φ( x , y , z ) 满足标量波动方程: ),,(}),,({22 220 2=Φ??++?z y x z z y x n sk t …………………(2.1) 其中:λ π/20 =k ,λ是自由空间的光波长。 2 22 2 1}{1???+?Φ???=Φ?Φ r r r r r t ………………………………… ………………(2.2) 由于折射率非均匀分布引起波导中模式耦合只发生在纤芯中,因此非均匀波导中的场

光纤布喇格光栅基模到辐射模耦合分析

光纤布喇格光栅基模到辐射模耦合分析 根据耦合模理论和辐射模理论对光纤布喇格光栅(FBG)外界材料折射率大于包层折射率的情况下建立了完整的模型。基于自适应Lobatto算法将基模到辐射模的耦合方程组离散化,利用四阶五级的Runge-Kutta法求解基模到辐射模的离散耦合方程组。定量地分析了FBG的透射谱随它的外界材料折射率、长度、周期以及纤芯半径的变化规律。研究结果对于指导FBG设计、封装和将其作为折射率传感器的应用都有一定意义。 标签:布喇格光纤光栅;辐射模;三层阶跃波导 光纤布喇格光栅(FBG)是一种具有优良光学特性的光纤型无源器件,在光纤通信和光纤传感领域得到了广泛的应用[1.2]。FBG的电磁特性主要表现为纤芯内正、反向传输的基模之间的耦合。随着研究的深入,进一步考虑正向基模与反向包层模或辐射模之间的模式耦合效应显得很重要。 FBG正向基模到反向基模的耦合分析,文獻[3]进行了研究;1997年T.Erdogan等人[4]对FBG纤芯的LP01模和包层模的耦合进行了详细的描述。文献[5]提出了基于FBG 包层模式的折射率传感方案,研究了光纤通过氢氟酸腐蚀后包层模式的耦合波长随外部折射率的变化规律。对于FBG基模到辐射模的耦合研究,报道较少。文献[6]在假定光纤包层半径为无限大的情况下,对FBG 基模到辐射模的耦合进行了研究,显然这与实际情况不吻合。文献[7]首次在外界材料折射率略大于包层材料折射率,且包层半径为有限大的情况下采用泰勒级数展开法研究FBG基模到辐射模的耦合特性。当FBG的基模和辐射耦合较弱时该方法计算简单且误差较小。但基模与辐射模的耦合较强时,需将泰勒级数展开至三阶以上,计算复杂且误差较大。文章在文献[7]的基础上,采用计算简单且精度高的数值积分和数值微分相结合的方法,计算FBG的基模和辐射模的耦合方程,研究了FBG外界材料折射率、长度、周期以及纤芯半径变化对FBG透射谱的影响。 1 基于三层结构的FBG辐射模研究 采用三层阶跃折射率波导结构[8]来模拟FBG,如图1所示,其中n1、n2和n3分别是纤芯、包层和外界材料的折射率,r1和r2分别是纤芯和包层的半径。当外界材料折射率大于包层折射率时,由文献[3]可知在波导中不存在离散的包层模式,只有连续的辐射模。 3.1 外界材料折射率对FBG透射谱的影响 图2为FBG透射谱随外界材料折射率(n3)的变化情况,即n3=n2、n3=1.02n2、n3=1.05n2时的FBG透射谱。所选用FBG的参数为:n1=1.451、n2=1.446、r1=4.1μm、r2=62.5μm、光栅长度L=10mm,折射率调制深度5×10-4和光栅周期Λ=530nm。由它可以看出:(1)当n3=n2时,即类似包层无限大的情况,此时

光纤光栅的理论基础研究

高等光学论文 光纤光栅的理论基础研究 光纤光栅的理论基础研究 光纤由于具有损耗低、带宽大、不受电磁干扰和对许多物理量具有敏感性等优点,已成为现代通信网络中的重要传输媒介和传感领域的重要器件。光纤传感以其灵敏度高、抗电磁干扰、耐腐蚀、可弯曲、体积小、可埋入工程材料及进行分布式测量等优点受到了广泛重视。 光纤光栅是近十多年来得到迅速发展的一种光纤器件,其应用是随着写入技术的不断改进而发展起来的。光纤光栅是利用光纤材料的光敏性,通过紫外光曝光的方法将入射光相干场图样写入纤芯,在纤芯内产生沿纤芯轴向的折射率周期性变化,

从而形成永久性空间的相位光栅,其作用实质上是在纤芯内形成一个窄带的(透射或反射)滤波器或反射镜。当一束宽光谱光经过光纤光栅时,满足光纤光栅布拉格条件的波长将产生反射,其余的波长透过光纤光栅继续传输。 第一部分光纤光栅的简介 1 光纤光栅的发展 1978年,加拿大通信研究中心的Hill等发现纤芯掺锗的光纤具有光敏性,并利用驻波干涉法制成了世界上第一根光纤光栅[1]。 1989年,美国东哈特福联合技术研究中心的Meltz等利用244nm的紫外光双光束全息曝光法成功地制成了光纤光栅[2],用两束相干光相遇时所产生的干涉条纹使光敏光纤曝光,形成折射率的周期性永久改变,从而制成光栅。这种光栅已达到实用阶段。但这种方法有其缺点:一是对光源的相干性要求较高;二是对系统的稳定性要求高。 1993年,贝尔实验室的Lemaire等用光纤载氢技术增强了光纤的光敏性[3],这种方法适用于任何掺锗的光纤。通过光纤的载氢能够将在不增加掺锗浓度的情况下,使光纤的光敏性大大提高。1993年,又提出了制作光纤Bragg光栅的相位掩模法[4,5],是到目前为止最为实用化的一种方法,仍被普遍采用,但这种方法的主要缺点是制作掩模版,一种掩模版只对应一种波段的光纤光栅。 1996年,出现了长周期光纤光栅[6~8],这种光栅的周期较长,可以在数十微米到几百微米之间。光纤Bragg光栅具有选择性反射作用,是将前向传输的纤芯模耦合到后向传输的纤芯模中去,而长周期光纤光栅则是将纤芯模耦合到包层模,而包层模在传播不远后会损耗掉,从而在透射光中形成损耗峰。 2 光纤光栅的类型 根据周期的长短,通常把周期小于1μm的光纤光栅称为短周期光纤光栅,又称为光纤Bragg光栅或反射光栅,Bragg光栅的特点是传输方向相反的纤芯模式之间发生耦合,属于反射型带通滤波器;而把周期为几十至几百μm的光纤光栅称为长周期光纤光栅,又称为透射光栅,长周期光纤光栅的特点是同向传输的纤芯基模和包层模之间的耦合,无后向反射,属于透射型带阻滤波。 光纤光栅按波导类型可分为均匀光栅和非均匀光栅。均匀光纤光栅的特点是光栅的周期和折射率调制的大小均为常数,这是最常见的一种光纤光栅,其反射谱具有对称的边模振荡,但是其边模振荡较大,在通信中容易引起码间串扰,而最典型的均匀光栅为均匀光纤Bragg光栅。而非均匀周期光纤光栅的特点是光栅的周期或

半导体激光器和光纤的耦合

半导体激光器和光纤的耦合 高树理 (西安建筑科技大学理学院,西安710055) 摘要:半导体激光器与光纤的耦合是提高EDFA性能的关键技术之一,论文详细分析光纤与半导体激光器耦合的各种方法,最后总结出了提高耦合效率的研究方向。 关键词:光纤;半导体激光器;耦合效率 中图分类号:TN248文献标识码:A文章编号:1008-8725(2010)02-0028-03 Coupling of Semiconductor Laser with Fiber GAO Shu-li (College of Science,Xi c an University of Archi tecture&Technology,Xi c an710055,China) Abstract:The coupling of semiconductor laser with fiber is a key technology to obtain EDFA with high perfor-mance.Methods of c oupling of semiconduc tor laser with fiber are analyzed in the paper.The direction of re-search to improve the coupling efficiency is summarized at last. Key words:fiber;semiconductor laser;the coupling efficiency 0引言 近年来,半导体激光器与光纤的耦合技术得到了迅速发展,而且日趋成熟。按照半导体激光器与光纤之间是否存在光学元件,将耦合方式分为两种,即直接耦合与间接耦合。因为LD 和平面光纤的耦 图2T2中断服务程序流程图 5结束语 文章讨论了传统频率测量方法的原理及误差。 在此基础上,对多周期同步测频技术的原理及其误 差进行了详细分析。由于多周期同步测频技术的测 量精度与被测信号的频率无关,实现了整个测量频 段内的等精度测量,消除了M法中对被测脉冲信号 的计数量化误差,克服了M P T法中高低频两端精度 高而中界频率附近测量误差最大的缺陷。提出了基 于AT89C52实现多周期同步测频方法,利用T2的捕 捉功能和外部中断产生与待测信号同步的闸门时 间,通过T2的定时功能实现了时基信号与待测信号 的同步计数,使得系统只用一个定时器P计数器T2 就实现了多周期同步测频技术,该系统软硬件结构 简单,具有较高的测量精度和较短的系统反应时间。 参考文献: [1]尹克荣.智能仪表中的频率测量方法[J].长沙电力学院学报, 2002,17(1):74-76. [2]章军,张平,于刚.多周期同步测频测量精度的提高[J].电测与 仪表,2003,40(6):16-18. [3]王连符.测频系统测量误差分析及其应用[J].中国科技信息, 2005. [4]李全利.单片机原理及应用技术[M].北京:高等教育出版社, 2001. [5]李群芳,黄建.单片微型计算机与接口技术[M].北京:电子工 业出版社,2002. [6]孙传友,孙晓斌,汉泽西,等.测控系统原理与设计[M].北京: 北京航空航天大学出版社,2002. (责任编辑王秀丽) 收稿日期:2009-12-04;修订日期:2009-12-22 作者简介:高树理(1983-),男,西安人,硕士研究生,助教,现在西安建筑科技大学从事光纤激光器的研究工作,E-mail: gaoshuli1983@https://www.wendangku.net/doc/6a13114739.html,。 第29卷第2期 2010年2月 煤炭技术 Coal Technology Vol129,No102 Feb,2010

高亮度光纤耦合泵浦激光器的发展

高亮度光纤耦合泵浦激光器的发展 摘要:文章将就nlight公司不断发展的高亮度激光二极管模块作一个报告。这些模块以nlight公司PearlTM产品平台为基础,在输出功率、亮度、波长稳定、波长性能方面显示突出优势。该系统基于十四个单管激光器,采用空间光聚焦方式将激光耦合到光纤芯径为105μm,数值孔径NA小于0.14的光纤。我们目前实现了超过100W的光功率在波长为9xx nm的二极管亮度超过了20MW/cm2-str,运行效率大约50%。另外结果也显示了超过70W的光耦合在8xx nm。也展示了在波长14xx nm和更长的波长有卓越的纪录的光纤耦合技术,其中功率超过15W,7.5mm-mrad的光束质量。这些高亮度,高效率,高波长稳定性的成果显示了下一代固体激光和光纤激光器所需的泵浦技术。 关键词:光纤耦合二极管激光器、高亮度。 1.介绍 高亮度光纤耦合二极管激光器打开了二极管激光器在工业和泵浦应用上新的应用领域。nLIGHT公司已展示了具有优越亮度的设备应用在各种工业和泵浦应用中。 在Photonics West 2009 展会上nLIGHT公司介绍了高亮度光纤耦合激光器二极管模块,展示了超过100W光功率耦合进105μm,0.15 NA的光纤,相对应的亮度超过20 MW/cm2-str1。本文着重介绍了这项技术的应用在泵浦模块从79x 到15xx nm。一如往常,这些设备都是基于nLIGHT公司高功率大面积单管结构的专利,即自由空间组合的一个简洁和廉价的方法2。这种方法保留了激光二极管的功率和高亮度,造就具有最佳亮度和效率的设备。 2.高亮度泵浦激光器应用 对高亮度的激光模块结构发展的几点注意事项。首先,平台和工具必须与波长无关,使其适用于整个频谱激光二极管。其次,光设计的效率应尽可能高。最后,激光二极管模块的可靠性,必须充分被评估和验证。 nLIGHT公司的高亮度激光二极管模块最初是为泵浦光纤激光器而研制。更高亮度泵浦源能够使更高功率的光纤激光器通过其性能空间地耦合更大数量的泵浦和更有效的将它们耦合到光纤中。脉冲光纤激光器也需要高亮度泵浦模块,以减少有源光纤长度和相应光纤的非线性。在脉冲光纤激光器设法处理好非线性以使激光器脉冲长度更短和峰值功率更高。 过去几年我们致力于解决泵浦应用包括以下几点:

基于MATLAB的光纤光栅耦合模理论及其谱线特性

研究生课程论文封面 课程名称光电子学 论文题目基于MATLAB的光纤光栅耦 合模理论及其谱线特性 授课学期 2013 学年至 2014 学年第 1 学期学院物理科学与技术学院专业光学 学号 2012010887 姓名王璐玮任课教师秦子雄 交稿日期 2014年01月01日 成绩 阅读教师签名 日期

广西师范大学研究生学院制 基于MATLAB的光纤光栅耦合模理论及其谱线特性 0.前言 光纤光栅是近二十几年来迅速发展的光纤器件,其应用是随着写入技术的不断改进而发展起来的,逐渐在实际中得到应用。 1978年,加拿大通信研究中心的Hill等发现纤芯参锗的光纤具有光敏性,并利用驻波干涉法制成了世界上第一根光纤光栅。光纤的光敏性主要是指光线的折射率在收到某些波长的激光照射后,会发生永久改变的特性。通常情况需要紫外光照射,折射率会向着增大的方向改变。具有光敏性的光纤主要是纤芯参锗的光纤,受到紫外光照射后,纤芯折射率会增加,而包层折射率不变。 在光纤光栅的发展过程中,参锗光纤的载氢技术具有重要意义。参锗光纤本身具有光敏性,单当要求折射率改变较大时,相应就要提高纤芯的参锗浓度,这会影响光纤本身的特性。1993年,贝尔实验室的Lemaire等用光纤载氢技术增强了光纤的光敏性,这种发发适用于任何参锗的光纤。通过光纤的载氢能够将在不增加参锗浓度情况下,使光纤的光敏性大大提高。 在平面介质光波导中,布拉格光栅的应用比较早,主要应用于半导体激光器中,而后出现了光纤布拉格光栅,随着光纤光栅写入技术的成熟,光纤光栅在光通信和传感中得到广泛应用,特别是在光通信领域。光纤布拉格光栅和长周期光纤光栅的特性和应用有许多不同之处,也有类似的地方,都可用于通信和传感等领域。 光纤布拉格光栅的周期一般在微米以下,根据耦合模理论,这样的周期表现为使向前传播的纤芯模与向后传播的纤芯模之间发生耦合,结果在输出端表现为很窄的带阻滤波特性。作为一种反射型的光纤无源器件,光纤布拉格光栅对温度,应

第二类光纤耦合封装OFP技术

第二类光纤耦合封装OFP技术 最近几年来,高功率半导体激光器越来越多地为许多应用也生产,如直接的材料处理、光纤激光和放大器泵浦、自由空间光通讯、印刷和医疗等。这些首要归功于激光器结构设计的发展、半导体材料和可靠的封装技术。特别是,半导体激光器的封装使得激光器件能工作于高墙插效率,提高稳定性能并节省使用者的使用成本。尽管最近几年来获得的种种进展,但封装、测试及稳定性能等依然占据光纤耦合输出的半导体激光器的大量成本。我们开发的新半导体激光耦合设计和工艺使得低成本、高可靠性的半导体光纤激光器耦合变成可能,同时也使得可以使用自动化大批量得机器封装。 本文里,我们讨论一款现有的小管脚封装、高亮度、4w、100um、0.15NA光纤输出的半导体激光器的热建模。这种封装方式非常适合于那些对稳定性要求高过于用胶和阵列封装方式的半导体激光器。图1显示这种封装的尺寸和外观(OFP). 图1:外观尺寸 这种光学平面封装设计的主要优点如下: 1. 小尺寸 2. 可垂直叠装 3. 无流质和胶 4. 完全密封 5. 低热效应 6. 低成本 7. 高功率(>6W 光纤输出) 所有的封装过程是在无流体环境中进行的。这种是一种无胶的密封封装,使激光器的运行可靠性很高。使用材料和封装程序的节省,减低了可观的封装成本。这种封装因消除了

所有非垂直装配步骤,使得自动化封装带光纤耦合输出得半导体激光器成为可能。其他特点包括固定的无源连接部分和集成的光纤耦合等。 激光器到光纤的耦合是采用楔型透镜光纤。这种造型只需要单步光纤对准。这种光纤采用Au/Sn焊接固定在一个非常强健、稳定和具有保护性能的附件上。我们做了大量的热建模来分析理解这种结构的机械和热变形对光纤位置和耦合效率的影响,并且在设计中适当地加入合适的材料和工艺过程。 典型的光纤输出LI曲线,10pcs OFP-4的实际测试结果如图2。所有这些激光器样品是采用100um反射面,耦合到105/125um 纤芯/包层,0.22NA光纤中。指标显示在输入为6A 时获得4W的激光功率输出。光纤未采用AR镀膜时,耦合效率大约是85%。 图2: 光纤输出光功率- 电流图,10pcs 光学平面封装,光纤105um, 0.22NA. 虽然这种OFP封装并不是严格按照高功率应用的电信标准进行设计,仍然有很多用户对这种高功率封装的Telcordia感兴趣。我们已经做了很多遵照GR-468标准的测试,来帮助我们理解这种封装的边际应用条件。OFP封装已经通过了以下Telcordia GR-468 的机械性能测试: 1. 震动: PASS 2. 温度循环: PASS 3. 光纤抗拉: PASS OFP正在进行加速老化测试,以获得寿命数据和FIT率。其他的有关密封技术也正在开发之中。我们也同时在进一步改善封装设计以获得不同的平板式半导体激光器并提高出纤功率。 后注:目前我公司提供的高可靠性6W光纤输出的半导体激光器,被誉为半导体封装的第二类技术,产品已广泛用于光纤激光器、光纤遥感、光纤测距等领域。

高功率光纤耦合半导体激光器

STV-DLF系列高功率光纤耦合半导体激光器 STV-DLF是一款高功率光纤耦合半导体激光器,可以有多种输出功率、波长和光纤直径的组合。客户可以单独选择激光器或者集成了激光器和外围设备的交钥匙系统。 半导体激光器单元包含一个高功率、半导体激光器阵列和光学元件,激光器束可以高效率的耦合进入可分离和互换的单模阶跃光纤中。光纤直径范围从600微米到1200微米,输出功率从300W到数千瓦,光纤长度可以到50米或者更长,非常适合远程灵活的功率传输。 我们可以为客户量身定做诸如激光焊接、熔覆、切割和高速扫描处理系统,系统里也可以集成定位红光和监控传感器如照相机和测量锥。高度集成的激光器,保证了最少的安装时间和最大的生产时间。除此之外,我们还有很多控制器可以让客户根据需求选择,其中就包括微处理器,基于电脑的控制单元,我们也可以帮助客户集成标准的工业控制器。整个系统可以单机工作,也可以多机同时工作。 光纤耦合可以直接传输均匀激光束到工件上的任意位置,减少了直接安装半导体激光器在机器人手臂上而带来的成本增加、复杂性和危险性。 特点: 便于产线集成 光纤耦合,最高功率可以到4500W 结构灵活,便于伸缩 内部水流监控 工业级别安全光纤 长寿命 方便用户操作 紧凑便携 可靠高效 售后服务最小化 应用: 塑料焊接 激光熔覆 铜焊 硬化和热处理 泵浦光纤或者固体激光器 可选配置: 交钥匙系统集成 客户化或者下架光学系统和各种应用 指示光 方形光纤 脚踏操作 远程控制 远程网络控制

技术指标: 型号STV-DLF-500 STV-DLF-1000 STV-DLF-3000 STV-DLF-6000 最大输出功率(W) 500 1000 3000 6000 波长(nm) 808,915,940,980 808,915,940,980 808,915,940,980 808,915,940,980 波长数目 1 1 4 4 光纤芯径(um) 400,600,1000 600,1000 600,1000 1000 光纤长度5m 标准长度, 其他长度可以定做 光纤终端QBH QBH QBH QBH 外部水冷 温度(℃) 10 10 10 10 流量(GPM) 4 4 6 6 控制 客户界面 (GUI) 触摸屏触摸屏触摸屏触摸屏 外控接口安全互锁,数字I/O,模拟量功率控制(0-10V),网络 箱体 交钥匙系统机构标准 19” rack 标准 19” rack NEMA12 NEMA12 (产品图片1)

高功率光纤耦合半导体激光器S

ST 系列高功率光纤耦合半导体激光器 ST系列高功率光纤耦合半导体激光器是一款结构紧凑、维护和运行成本低廉、有显著节能效果的半导体激光器系统(如工作时长按八小时算比光纤激光器节能20%)。此激光器通常用于激光焊接,切割塑料和金属,以及许多其他的制造工艺上(如退火、回火或软钎焊等)。 特性: 交钥匙系统,可定制的OEM系统 易于集成,设计紧凑 手动和远程操作状态的界面 可控的半导体激光器操作,激光器模块更换方便 免维护,被动水冷,每年检查一次水冷系统(纯净水,颗粒过滤器) 严格按照安全标准操作(光纤插头和断线检测,互锁,争停界面,激光警示灯等) 可选设备:光纤长度可选 (5, 10, 20 m), 各种激光加工的激光头可选 电转换效率为 30%, 同功率等级的CO2激光器的转换率约为 6 - 8 % ,光纤激光器约为 20 - 25 % 应用: 金属和塑料的切割和焊接 激光退火、回火或软钎焊 参数: 2KW光纤耦合半导体激光器,也可根据客户要求提供其他功率的激光器

过滤丝网激光电路自来水接口类型CPC-plugs 自来水滤网电路水管尺寸(内径) 8mm 感应器水管尺寸 (外径) 12mm 加热器激光头冷却水接口Hose 我们还根据不同的加工材料及应用提供相应的激光头。 优点: -优化对于许多应用的最佳强度分布的光束整形 -完美透射焊接热塑性塑料或焊接(同步或轮廓处理) - 从以太网到激光电源的安全数据传输过程 - 单独的软件包,可用于流程文档和控制(通过高速busses快速数据传输,如CAN,Profibus)参数: 最大激光功率500W 波长范围790-990nm 最大光径NA 0.22 最大心径直径1,000um 传输比率>95% (typ. 98%) 准直焦距35mm 聚焦焦距200mm 工作距离180±2mm 200um 光纤芯径的光斑直径1150±20 um 400um 光纤芯径的光斑直径2300±50um 600um 光纤芯径的光斑直径3600±70um 水管材质阳极氧化铝 尺寸 (LxWxD) 169x156x90mm3 安装螺丝(两侧) 3xM5 光纤连接类型SMA905, LD80 产品图片(1)产品图片(2)

光纤光栅原理及应用

光纤光栅原理及应用?作者:饶云江王义平朱涛 ?丛书名:当代杰出青年科学文库 ?出版社:科学出版社 ?ISBN:7030167546 ?上架时间:2007-2-10 ?出版日期:2006 年8月 前言. 第1章概论 1.1 光纤光栅发展概况 1.2 光纤光栅分类 1.3 光纤光栅应用概况 1.4 本书提纲 参考文献 第2章光纤光敏性 2.1 光敏性介绍 2.2 硅基光纤的光敏性 2.3 光致折变的各向异性 2.4 点缺陷 2.5 硅光纤光敏性的增强 2.6 光敏性机理 2.7 其他种类光纤的光敏性 2.8 光致折变的清除与保持 参考文献 第3章光纤光栅写入方法 3.1 内部法写人光纤布拉格光栅 3.2 干涉法制作光纤布拉格光栅 .3.3 相位模板法制作光纤布拉格光栅 3.4 逐点法写入布拉格光栅 3.5 模板成像投影法 3.6 光纤光栅写入中的激光光源 3.7 特殊光栅的制作过程 3.8 氢载对制作光纤光栅的影响 3.9 透过聚合物敷层制作光纤布拉格光栅 3.10 长周期光纤光栅写入法 参考文献 第4章光纤布拉格光栅理论 4.1 光纤布拉格光栅的耦合模理论 4.2 非均匀光栅中的双模耦合 4.3 倾斜光栅 4.4 包层模耦合

4.5 辐射模耦合 4.6 光纤布拉格光栅的数值算法 4.7 布洛赫波 4.8 非线性光栅效应 4.9 讨论 参考文献 第5章光纤布拉格光栅的特性 5.1 均匀光纤布拉格光栅 5.2 光纤布拉格光栅的种类 5.3 光纤布拉格光栅的脉冲响应 5.4 光纤布拉格光栅的寿命和可靠性 参考文献 第6章光纤布拉格光栅在传感中的应用6.1 概述 6.2 传感原理 6.3 fbg传感系统中的探测解调技术.. 6.4 fbg复用技术 6.5 fbg传感器的应用 6.6 其他应用 参考文献 第7章光纤布拉格光栅在通信中的应用7.1 光纤激光器 7.2 光纤放大器 7.3 光纤布拉格光栅二极管激光器 7.4 光纤布拉格光栅滤波器 7.5 波分复用懈复用器 7.6 密集波分复用器 7.7 色散补偿器 7.8 光纤布拉格光栅的其他应用 7.9 小结 参考文献 第8章长周期光纤光栅理论 8.1 长周期光纤光栅理论模型的发展8.2 耦合模理论 8.3 长周期光纤光栅的模式耦合i 8.4 长周期光纤光栅的模式耦合ⅱ 8.5 级联长周期光纤光栅 8.6 小结 参考文献 第9章长周期光纤光栅的特性 9.1 长周期光纤光栅的温度特性 9.2 长周期光纤光栅的轴向应变特性9.3 长周期光纤光栅的弯曲特性 9.4 长周期光纤光栅的扭曲特性

基于MATLAB的光纤光栅耦合模理论及其谱线特性

研究生课程论文封面 课程名称 光 电 子 学 论文题目基于MATLAB 的光纤光栅耦 合模理论及其谱线特性 授课学期 2013 学年至 2014 学年 第 1 学期 学 院 物理科学与技术学院 专 业 光 学 学 号 2012010887 姓 名 王 璐 玮 任课教师 秦 子 雄 交稿日期 2014年01月01日 成 绩 阅读教师签名 日 期 广西师范大学研究生学院制

基于MATLAB 的光纤光栅耦合模理论及其谱线特性 0.前言 光纤光栅是近二十几年来迅速发展的光纤器件,其应用是随着写入技术的不断改进而发展起来的,逐渐在实际中得到应用。 1978年,加拿大通信研究中心的Hill 等发现纤芯参锗的光纤具有光敏性,并利用驻波干涉法制成了世界上第一根光纤光栅。光纤的光敏性主要是指光线的折射率在收到某些波长的激光照射后,会发生永久改变的特性。通常情况需要紫外光照射,折射率会向着增大的方向改变。具有光敏性的光纤主要是纤芯参锗的光纤,受到紫外光照射后,纤芯折射率会增加,而包层折射率不变。 在光纤光栅的发展过程中,参锗光纤的载氢技术具有重要意义。参锗光纤本身具有光敏性,单当要求折射率改变较大时,相应就要提高纤芯的参锗浓度,这会影响光纤本身的特性。1993年,贝尔实验室的Lemaire 等用光纤载氢技术增强了光纤的光敏性,这种发发适用于任何参锗的光纤。通过光纤的载氢能够将在不增加参锗浓度情况下,使光纤的光敏性大大提高。 在平面介质光波导中,布拉格光栅的应用比较早,主要应用于半导体激光器中,而后出现了光纤布拉格光栅,随着光纤光栅写入技术的成熟,光纤光栅在光通信和传感中得到广泛应用,特别是在光通信领域。光纤布拉格光栅和长周期光纤光栅的特性和应用有许多不同之处,也有类似的地方,都可用于通信和传感等领域。 光纤布拉格光栅的周期一般在微米以下,根据耦合模理论,这样的周期表现为使向前传播的纤芯模与向后传播的纤芯模之间发生耦合,结果在输出端表现为很窄的带阻滤波特性。作为一种反射型的光纤无源器件,光纤布拉格光栅对温度,应变都有相当程度的敏感特性,其在光纤激光器,波分复用,可调谐光纤滤波器,高速光纤通信系统的色散补偿及光纤传感器等反面有许多重要应用。 对于长周期光纤光栅,其光栅的周期较长,根据光波导的耦合模理论,表现为向前传播的纤芯模和同向传播的包层模的耦合。特定长度和耦合系数的长周期光纤光栅可以将纤芯模耦合到包层中而损耗掉。一般来说,与光纤布拉格光纤相比,长周期光纤光栅的光谱带宽较大,其最典型的应用时参铒光纤放大器增益平坦,带阻滤波器和传感。 1.耦合模理论 耦合模方程是从麦克斯韦方程经过一系列推导得到的,其基本思想是:利用可求解光波导的解,研究受到微扰的光波导,或者相互有影响的光波导,其理论基础在于规则光波导的具有正交性,即: ()υμμ υδ20=????∞ * dxdy z h e t t 利用麦克斯韦方程组,经过变换可得: ()z H z j E n K E t t t t t ??? -=-????002 2 0ωμ

相关文档