文档库 最新最全的文档下载
当前位置:文档库 › 数学概念的定义形式知识讲解

数学概念的定义形式知识讲解

数学概念的定义形式知识讲解
数学概念的定义形式知识讲解

数学概念的定义方式

一.给概念下定义的意义和定义的结构

前面提到过,概念是反映客观事物思想,是客观事物在人的头脑中的抽象概括,是看不见摸不着的,要用词语表达出来,这就是给概念下定义。而明确概念就是要明确概念的内涵和外延。所以,概念定义就是揭示概念的内涵或外延的逻辑方法。揭示概念内涵的定义叫内涵定义,揭示概念外延的定义叫做外延定义。在中学里,大多数概念的定义是内涵定义。

任何定义都由被定义项、定义项和定义联项三部分组成。被定义项是需要明确的概念,定义项是用来明确被定义项的概念,定义联项则是用来联接被定义项和定义项的。例如,在定义“三边相等的三角形叫做等边三角形”中,“等边三角形”是被定义项,“三边相等的三角形”是定义项,“叫做”是定义联项。

二、常见定义方法。

1、原始概念。数学定义要求简明,不能含糊不清。如果定义含糊不清,也就不能明确概念,失去了定义的作用。例如,“点是没有部分的那种东西”就是含糊不清的定义。按这个要求,给某概念下定义时,定义项选用的必须是在此之前已明确定义过的概念,否则概念就会模糊不清。这样顺次上溯,终必出现不能用前面已被定义过的概念来下定义的概念,这样的概念称为原始概念。在中学数学中,对原始概念的解释并非是下定义,这是要明确的。比如:代数中的集合、元素、对应等,几何中的点、线、面等

2、属加种差定义法。这种定义法是中学数学中最常用的定义方法,该法即按公式:“邻近的属+种差=被定义概念”下定义,其中,种差是指被定义概念与同一属概念之下其他种概念之间的差别,即被定义概念具有而它的属概念的其他种概念不具有的属性。例如,平行四边形的概念邻近的属是四边形,平行四边形区别于四边形的其他种概念的属性即种差是“一组对边平行并且相等”,这样即可给平行四边形下定义为“一组对边平行并且相等的四边形叫做平行四边形”。

利用邻近的属加种差定义方法给概念下定义,一般情况下,应找出被定义概念最邻近的属,这样可使种差简单一些。像下列两个定义:

等边的矩形叫做正方形;

等边且等角的四边形叫做正方形。

前者的种差要比后者的种差简单。

邻近的属加种差的定义方法有两种特殊形式:

(1)发生式定义方法。它是以被定义概念所反映的对象产生或形成的过程作为种差来下定义的。例如,“在平面内,一个动点与一个定点等距离运动所成的轨迹叫做圆”即是发生式定义。在其中,种差是描述圆的发生过程。

(2)关系定义法。它是以被定义概念所反映的对象与另一对象之间关系或它与另一对象对第三者的关系作为种差的一种定义方式。例如,若a b=N,则log a N=b(a>0,a≠1)。即是一个关系定义概念。

3、揭示外延的定义方法。数学中有些概念,不易揭示其内涵,可直接指出概念的外延作为它的概念的定义。常见的有以下种类:

(1)逆式定义法。这是一种给出概念外延的定义法,又叫归纳定义法.例如,整数和分数统称为有理数;正弦、余弦、正切和余切函数叫做三角函数;椭圆、双曲线和抛物线叫做圆锥曲线;逻辑的和、非、积运算叫做逻辑运算等等,都是这种定义法.

(2)约定式定义法。揭示外延的定义方法还有一种特殊形式,即外延的揭示采用约定的方法,因而也称约定式定义方法。例如,a0=1(a≠0),0!=1,就是用约定式方法定义的概念。

三、概念的引入

(1)原始概念

一般采用描述法和抽象化法或用直观说明或指明对象的方法来明确。

“针尖刺木板”的痕迹引入“点”、用“拉紧的绳”或“小孔中射入的光线”来引入“直线”的方法是直观说明法,“1,2,3,···叫做自然数”是指明对象法。

(2)对于用概念的形成来学习的概念

一般可通过阅读实例,启发学生抽象出本质属性,师生共同进行讨论,最后再准确定义。(3)对于用概念的同化来学习的概念

(a)用属加种差定义的概念

新概念是已知概念的特例,新概念可以从认知结构中原有的具有较高概括性的概念中繁衍出来。

(b)由概念的推广引入的概念

讲清三点:推广的目的和意义;推广的合理性;推广后更加广泛的含义。

(c)采用对比方法引入新概念

当新概念与认知结构中已有概念不能产生从属关系,但与已有的旧概念有相似之处时可采用此法。

关键是弄清不同之处,防止概念的负迁移。

(d)根据逆反关系引入新概念

多项式的乘法引入多项式的因式分解、由乘方引入开方、由指数引入对数等。

关键是弄清逆反关系。

(4)发生式定义

通过阅读实例或引导学生思考,进行讨论,自然得出构造过程,即揭示出定义的合理性。

四、概念的形成的方式

概念形成就是让学生阅读大量同类事物的不同例证中独立发现同类事物的本质属性,从而形成概念。因此,数学概念的形成实质上是抽象出数学对象的共同本质特征的过程。可概括如下:

(1)通过阅读比较,辨别各种刺激模式,在知觉水平上进行分析、辨认,根据事物的外部特征进行概括。

(2)分化出各种刺激模式的属性。

(3)抽象出各个刺激模式的共同属性。

(4)在特定的情境中检验假设,确认关键属性。

(5)概括,形成概念。

(6)把新概念的共同关键属性推广到同类事物中去。

(7)用习惯的形式符号表示新概念。

数学概念的定义

什么叫给概念下定义,就是用已知的概念来认识未知的概念,使未知的概念转化为已知的概念,叫做给概念下定义.概念的定义都是由已下定义的概念(已知概念)与被下定义的概念(未

知概念)这两部分组成的.例如,有理数与无理数(下定义的概念),统称为实数(被下定义的概念);平行四边形(被下定义的概念)是两组对边分别平行的四边形(下定义的概念).其定义方法有下列几种.

1、直觉定义法

直觉定义亦称原始定义,凭直觉产生的原始概念,这些概念不能用其它概念来解释,原始概念的意义只能借助于其它术语和它们各自的特征给予形象的描述.如几何中的点、直线、平面、集合的元素、对应等.原始概念是人们在长期的实践活动中,对一类事物概括、抽象的结果,是原创性抽象思维活动的产物.直觉定义为数不多.

2、“种+类差”定义法

种+类差”定义法:被定义的概念=最邻近的种概念(种)+类差。这是下定义常用的内涵法。“最邻近的种概念”,就是被定义概念的最邻近的种概念,“类差”就是被定义概念在它的最邻近的种概念里区别于其它类概念的那些本质属性。

例如,以“平行四边形”为最邻近的种概念的类概念有“矩形”、“菱形”,“菱形”的“邻边相等”是区别于“矩形”的本质属性,“邻边相等”就是“菱形”的类差。我们先看几个用“种+类差”定义的例子:

等腰梯形是两腰相等的梯形.

直角梯形是有一个底角是直角的梯形.

等腰三角形是两边相等或两角相等的三角形.

逻辑上还可以通过总结外延给出定义.例如:“有理数和无理数统称为实数”等.

由上述几例可看出,用“种加类差”的方式给概念下定义,首先要找出被定义概念的最邻近的种概念,然后把被定义概念所反映的对象同种概念中的其它类概念所反映的对象进行比较,找出“类差”,最后把类差加最邻近的种概念组成下定义概念而给出定义。种加类差定义法在形式逻辑中也称为实质定义,属于演绎型定义,其顺序是从一般到特殊。这种定义,既揭示了概念所反映对象的特殊性,又指出了一般性,是行之有效的定义方法。由于概念本身的类别特点及类差性质的不同,在叙述形式上也有差异。

这种定义方法,能用已知的种概念的内涵来揭示被定义概念的内涵。揭示了概念的内涵,既准确又明了,有助于建立概念之间的联系,使知识系统化,因此,在中学数学概念的定义中应用较多.

3、发生式定义法

发生定义法(也称构造性定义法):通过被定义概念所反映对象发生过程,或形成的特征的描述来揭示被定义概念的本质属性的定义方法称发生定义法。这种定义法是“种+类差”定义的一种特殊形式。定义中的类差是描述被定义概念的发生过程或形成的特征,而不是揭示被定义概念的特有的本质属性。

例如,平面(空间)上与定点等距离的点的轨迹叫做圆(球).此外,中学数学中对圆柱、圆锥、圆台、微分、积分、坐标系等概念也都是采用的发生式定义法.

又如:

平面内与两个定点的距离的和等于定长的点的轨迹叫做椭圆.

围绕一中心点或轴转动,同时又逐渐远离的动点轨迹称为螺线.

一直杆与圆相切作无滑动的滚动,此直杆上一定点的轨迹称为圆的渐开线.

设是试验E中的一个事件,若将E重复进行n次,其中A发生了次,则称为n次试验中事件A发生的频率.

在一定条件下,当试验次数越来越多时,事件A出现的频率逐步稳定于某一固定的常数P,称P为事件A出现的概率.

由此可知,只要有人类的数学活动,就有概念的发生式定义.

4、逆式定义法

这是一种给出概念外延的定义法,又叫归纳定义法.例如,整数和分数统称为有理数;正弦、余弦、正切和余切函数叫做三角函数;椭圆、双曲线和抛物线叫做圆锥曲线;逻辑的和、非、积运算叫做逻辑运算等等,都是这种定义法.

5、约定性定义法

由于实践需要或数学自身发展的需要而被指定的数学概念.在实践活动中,

人们发现一些概念非常重要,便指明这些概念,以便数学活动中使用.比如一些特定的数:圆周率、自然对数的底e 等;某些重要的值:平均数、频数、方差等;某类数学活动的概括:比如代数指研究有限多元素有限次运算的数学活动;几何指研究空间及物体在空间结构中结构与形式的数学活动;随机事件指在社会和自然界中,相同条件下,可能发生也可能不发生,但在大量重复试验中其出现的频率呈现稳定性的事情;概率指随机事件发生的可能性大小的数学度量;等等.

同时,数学概念有时是数学发展所需要约定的.如零次幂的约定,模为零的向量规定为零向量,模为1的向量规定为单位向量.又如矢量积的方向由右手法则规定.数学教学中应向学生灌输这样一种观念,即数学概念是可以约定的(其更深刻的含义是数学可以创造).约定是简约思想的结果,它使得数学因为有了这样的约定而运算简便.约定不是惟一的,但应具有合理性或符合客观事物的规律.如规定矢量积的方向按左手法则也不是不可以的.约定不是随意针对的,一般只约定那些有重要作用的概念,如约定当n 趋于无限大时的极限为自然对数的底e ,因为这个数对计算十分重要.

6、刻画性定义

刻画性定义法亦称描述性定义法,数学中那些体现运动、变化、关系的概念经严格地给予表述(逾越直觉描述阶段),这些概念即属于刻画性定义.比如等式函数、数列极限、函数极限等概念.

函数概念:设D 是实数集的子集,如果对D 内每一个,通过给定的法则 ,有惟一一个实数y 与此 对应,称是定义在D 上的一元实值函数,记为 概念中刻画了变量y 与变量的关系. 数列极限概念:对于数列{ }和一个数 ,如果对任意给定的正数,都存在一个自然数 ,对一切自然数n , ,成立 ,称数n 是数列{ }当n 趋于无限大时的极限,记为 .概念中刻画了 与 “要多么接近就可以多么接近(只要 )”的程度,使“ 无限接近 ”的直觉说法上升到严格水平.

函数极限概念:对于在 附近有定义的函数和一个数A ,如果对任意给定的正数 ,都存在一个正数,对定义域中的x 只要 ,成立 ,称数 是 当 趋近于 时的极限,记为,概念中刻画了 与A“要多接近就可以有多接近(只要)”的程度,是严格的数学概念。

7、过程性定义

有些复杂的数学概念是由在实践基础上的数学活动造就的,这样的概念由过程来引导. 例如:导数:设y=f(x) 在点(x 0,f(x 0))附近有定义.当自变量x 取得改变量△x (△x ≠0),函数取得相应改变量△y=y-y 0,比值,当0→?x 时x

y ??的极限存在,这个极限值就称作的导数,记作)(x f '.导数概念通过“作改变量——作商——求极限”的过程获得.

定积分:设有界函数 定义在[ ]上.在[ ]中插入分点: 取 ,作和 令当 时,和 的极限存在,这个极限值称作 在[ ]上的定积分.定积分概念通过“分割[ ](插入了分点)一作和一求极限”的过程获得.

此外,数学中的概念还有其他给出方式.如n 维向量空间的定义:“n 为有序实数组( )的全体,并赋予加法与数乘的运算

( )+

”.它是二维向量空间{ }的类比推广.再如“群”和“距离空间”的概念,则是用一组公理来定义的.公理法定义的方式多用于高等数学,中学中涉及得很少.

此外,中学数学中还有递推式定义法(如"阶行列式、n阶导数、n重积分的定义),借助另一对象来进行定义(如借助指数概念定义对数概念)等等.

上述分类是大致的,学习概念的定义,并不在于区分它究竟属于那种定义方式,而在于理解概念的内涵,把握概念的外延,应用它们去学习数学知识和解决有关问题。

为了正确地给概念下定义,定义要符合下列基本要求:

(1)定义应当相称.即定义概念的外延与被定义概念的外延必须是相同的,既不能扩大也不能缩小.即应当恰如其分,既不宽也不窄.例如,无限不循环小数,叫做无理数.而以无限小数来定义无理数(过宽),或以除不尽方根的数来定义无理数(过窄).显然,这都是错误的.(2)定义不能循环.即在同一个科学系统中,不能以A概念来定义B概念,

而同时又以B概念来定义A概念.例如,的角叫做直角,直角的九十分之一,叫做1度,这就发生循环了.

(3)定义应清楚、简明,一般不用否定的形式和未知的概念.例如,笔直笔直的线,叫做直线(不清楚);两组对边互相平行的平面平行四边形(不简明);不是有理数的数,叫做无理数(否定形式);对初中生来说,在复数a+ i中,虚部6—0的数,叫做实数(应用未知概念)等,这些都是不妥的.

人教版高中数学总复习[知识点整理及重点题型梳理]推理与证明、数学归纳法

推理与证明、数学归纳法 编稿:辛文升 审稿:孙永钊 【考纲要求】 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用. 2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理. 3.了解合情推理和演绎推理之间的联系和差异. 4.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点. 5.了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点. 6.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. 【知识网络】 【考点梳理】 【推理与证明、数学归纳法407426 知识要点】 考点一:合情推理与演绎推理 1.推理的概念 根据一个或几个已知事实(或假设)得出一个判断,这种思维方式叫做推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫做结论. 2.合情推理 根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理称为合情推理. 合情推理又具体分为归纳推理和类比推理两类: (1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这 推 理 与 证 明 归纳 推 理 证 明 合情推理 演绎推理 数学归纳法 综合法 分析法 直接证明 类比 间接证明 反证法

些特征的推理,或者由个别事实概括出一般结论的推理.简言之,归纳推理是由部分到整体、个别到一般的推理,归纳推理简称归纳. (2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,简言之,类比推理是由特殊到特殊的推理,类比推理简称类比. 3.演绎推理 从一般性的原理出发,推出某个特殊情况下的结论.简言之,演绎推理是由一般到特殊的推理. 三段论是演绎推理的一般模式,它包括: (1)大前提——已知的一般原理; (2)小前提——所研究的特殊情况; (3)结论——根据一般原理,对特殊情况作出的判断. 要点诠释: 合情推理与演绎推理的区别与联系 (1)从推理模式看: ①归纳推理是由特殊到一般的推理. ②类比推理是由特殊到特殊的推理. ③演绎推理是由一般到特殊的推理. (2)从推理的结论看: ①合情推理所得的结论不一定正确,有待证明。 ②演绎推理所得的结论一定正确。 (3)总体来说,从推理的形式和推理的正确性上讲,二者有差异;从二者在认识事物的过程中所发挥的作用的角度考虑,它们又是紧密联系,相辅相成的。合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得的;演绎推理可以验证合情推理的正确性,合情推理可以为演绎推理提供方向和思路. 考点二:直接证明与间接证明 1.综合法 (1)定义:综合法是中学数学证明中最常用的方法,它是从已知到未知,从题设到结论的逻辑推理方法,即从题设中的已知条件或已证的真实判断出发,经过一系列的中间推理,最后导出所要求证的命题.综合法是一种由因索果的证明方法,又叫顺推法. (2)综合法的思维框图: 用P 表示已知条件,1i Q i =(,2,3,...,n )为定义、定理、公理等,Q 表示所要证明的结论,则综合法可用框图表示为: 1P Q ?()→12Q Q ?()→23Q Q ?()→.........n Q Q ?() 2.分析法 (1) 定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判断一个明显成立的条件(已知条件,定理,定义,公理)为止.这种证明方法叫做分析法.分析法又叫逆推法或执果索因法. (2)分析法的思维框图: 1Q P ?()→12P P ?()→23P P ?() →.........得到一个明显成立的条件. 3.反证法

数学概念的定义形式

数学概念的定义方式 一、给概念下定义的意义和定义的结构 前面提到过,概念是反映客观事物思想,是客观事物在人的头脑中的抽象概括,是看不见摸不着的,要用词语表达出来,这就是给概念下定义。而明确概念就是要明确概念的内涵 和外延。所以,概念定义就是揭示概念的内涵或外延的逻辑方法。揭示概念内涵的定义叫内 涵定义,揭示概念外延的定义叫做外延定义。在中学里,大多数概念的定义是内涵定义。 任何定义都由被定义项、定义项和定义联项三部分组成。被定义项是需要明确的概念, 定义项是用来明确被定义项的概念,定义联项则是用来联接被定义项和定义项的。例如,在定义“三边相等的三角形叫做等边三角形”中,“等边三角形”是被定义项,“三边相等的三角形”是定义项,“叫做”是定义联项。 二、常见定义方法。 1原始概念。数学定义要求简明,不能含糊不清。如果定义含糊不清,也就不能明确概念,失去了定义的作用。例如,“点是没有部分的那种东西”就是含糊不清的定义。按这个要求,给某概念下定义时,定义项选用的必须是在此之前已明确定义过的概念,否则概念就会模糊 不清。这样顺次上溯,终必出现不能用前面已被定义过的概念来下定义的概念,这样的概念称为原始概念。在中学数学中,对原始概念的解释并非是下定义,这是要明确的。比如:代数中的集合、元素、对应等,几何中的点、线、面等 2、属加种差定义法。这种定义法是中学数学中最常用的定义方法,该法即按公式:“邻近的属+种差=被定义概念”下定义,其中,种差是指被定义概念与同一属概念之下其他种概念 之间的差别,即被定义概念具有而它的属概念的其他种概念不具有的属性。例如,平行四边形的概念邻近的属是四边形,平行四边形区别于四边形的其他种概念的属性即种差是“一组对边平行并且相等”,这样即可给平行四边形下定义为“一组对边平行并且相等的四边形叫做平行四边形”。 利用邻近的属加种差定义方法给概念下定义,一般情况下,应找出被定义概念最邻近的属,这样可使种差简单一些。像下列两个定义: 等边的矩形叫做正方形; 等边且等角的四边形叫做正方形。 前者的种差要比后者的种差简单。 邻近的属加种差的定义方法有两种特殊形式: (1 )发生式定义方法。它是以被定义概念所反映的对象产生或形成的过程作为种差来下定义的。例如,“在平面内,一个动点与一个定点等距离运动所成的轨迹叫做圆”即是发生式定义。在其中,种差是描述圆的发生过程。 (2)关系定义法。它是以被定义概念所反映的对象与另一对象之间关系或它与另一对象对 第三者的关系作为种差的一种定义方式。例如,若a b=N,则log a N=b(a >0, 1)。即是一个关系定义概念。 3、揭示外延的定义方法。数学中有些概念,不易揭示其内涵,可直接指出概念的外延作为 它的概念的定义。常见的有以下种类: (1)逆式定义法。这是一种给出概念外延的定义法,又叫归纳定义法?例如,整数和分数统称为有理数;正弦、余弦、正切和余切函数叫做三角函数;椭圆、双曲线和抛物线叫做圆锥曲线;逻辑的和、非、积运算叫做逻辑运算等等,都是这种定义法. (2)约定式定义法。揭示外延的定义方法还有一种特殊形式,即外延的揭示采用约定的方 法,因而也称约定式定义方法。例如,a°=i(a z0), 0! =1,就是用约定式方法定义的概念。 三、概念的引入

知识点汇总和思维导图

第九单元知识点汇总和思维导图【一轮复习】 一、溶液的形成 1、溶液概念:一种或几种物质分散到另一种物质里形成的均一的、稳定的混合物,叫做溶液 溶液的基本特征:均一性、稳定性 注意: a、溶液不一定无色,如CuSO4溶液为蓝色 FeSO4溶液为浅绿色 Fe2(SO4)3溶液为黄色 b、溶质可以是固体、液体或气体;水是最常用的溶剂 c、溶液的质量 = 溶质的质量 + 溶剂的质量溶液的体积≠溶质的体积 + 溶剂的体积 d、溶液的名称:溶质的溶剂溶液(如:碘酒——碘的酒精溶液) 2、溶质和溶剂的判断 3、饱和溶液、不饱和溶液 ⑴概念:(略); ⑵注意:①条件:“在一定量溶剂里”“在一定温度下”;②甲物质的饱和溶液不是乙物质的饱和溶液,故甲物质的甲物质的饱和溶液还可以溶解乙物质。 ⑶判断方法:继续加入该溶质,看能否溶解; ⑷饱和溶液和不饱和溶液之间的转化 注:①Ca(OH)2和气体等除外,它的溶解度随温度升高而降低;②最可靠的方法是:加溶质、蒸发溶剂 ⑸浓、稀溶液与饱和不饱和溶液之间的关系 ①饱和溶液不一定是浓溶液; ②不饱和溶液不一定是稀溶液,如饱和的石灰水溶液就是稀溶液; ③在一定温度时,同一种溶质的饱和溶液要比它的不饱和溶液浓; ⑹溶解时放热、吸热现象 a.溶解吸热:如NH4NO3溶解; b.溶解放热:如NaOH溶解、浓H2SO4溶解; c.溶解没有明显热现象:如NaCl 二、溶解度 1、固体的溶解度定义:在一定温度下,某固态物质在100g溶剂里达到饱和状态时所溶解的质量

四要素:①条件:一定温度②标准:100g溶剂③状态:达到饱和④质量:溶解度的单位:克 (1)溶解度的含义:如20℃时NaCl的溶液度为36g含义: a.在20℃时,在100克水中最多能溶解36克NaCl。 b.或在20℃时,NaCl在100克水中达到饱和状态时所溶解的质量为36克。(2)影响固体溶解度的因素:①溶质、溶剂的性质(种类)②温度 a大多数固体物的溶解度随温度升高而升高;如KNO3 b少数固体物质的溶解度受温度的影响很小;如NaCl c极少数物质溶解度随温度升高而降低。如Ca(OH)2 (3)溶解度曲线 例: (a)t3℃时A的溶解度为 80g ; (b)P点的的含义在该温度时,A和C的溶解度相同; (c)N点为 t3℃时A的不饱和溶液,可通过加入A物质、降温、蒸发溶剂的方法使它变为饱和; (d)t1℃时A、B、C、溶解度由大到小的顺序C>B>A; (e)从A溶液中获取A晶体可用降温结晶的方法获取晶体; (f)从B的溶液中获取晶体,适宜采用蒸发结晶的方法获取晶体; (g)t2℃时A、B、C的饱和溶液各W克,降温到t1℃会析出晶体的有A和B 无晶体析出的有 C ,所得溶液中溶质的质量分数由小到大依次为 A

数学归纳法.知识点梳理

课题:数学归纳法 备课教师:沈良宏参与教师:郭晓芳、龙新荣审定教师:刘德清 1、教学重点:能用数学归纳法证明一些简单的数学命题 2、教学难点:学归纳法中递推思想的理解. 3、学生必须掌握的内容: 1.数学归纳法的定义 一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用以下两个步骤: (1)证明当n=n0时命题成立. (2)假设当n=k(k∈N+且k≥n0)时命题成立,证明当n=k+1时命题也成立. 在完成了这两个步骤后,就可以断定命题对于不小于n0的所有正整数都成立,这种证明方法称为数学归纳法. 2.数学归纳法的适用范围 适用于证明一个与无限多个正整数有关的命题. 3.数学归纳法的步骤 (1)(归纳奠基)验证当n=n0(n0为命题成立的起始自然数)时命题成立; (2)(归纳递推)假设当n=k(k∈N+,且k≥n0)时命题成立,推导n=k+1时命题也成立. (3)结论:由(1)(2)可知,命题对一切n≥n0的自然数都成立. 注意:用数学归纳法证明,关键在于两个步骤要做到“递推基础不可少,归纳假设要用到,结论写明莫忘掉”,因此必须注意以下三点: (1)验证是基础.数学归纳法的原理表明:第一个步骤是要找一个数n0,这个n0就是我们要证明的命题对象的最小自然数,这个自然数并不一定就是“1”,因此“找准起点,奠基要稳”是正确运用数学归纳法要注意的第一个问题. (2)递推是关键.数学归纳法的实质在于递推,所以从“k”到“k+1”的过程,必须把归纳假设“n=k”时命题成立作为条件来导出“n=k+1”时命题成立,在推导过程中,要把归纳假设用上一次或几次,没有用上归纳假设的证明不是数学归纳法. (3)正确寻求递推关系.数学归纳法的第二步递推是至关重要的,那么如何寻找递推关系呢?①在第一步验证时,不妨多计算几项,并正确写出来,这样对发现递推关系是有帮助的;②探求数列的通项公式时,要善于观察式子或命题的变化规律,观察n处在哪个位置;③在书写f(k+1)时,一定要把包含f(k)的式子写出来,尤其是f(k)中的最后一项.除此之外,多了哪些项,少了哪些项都要分析清楚. 4、容易出现的问题: (1)混淆数学归纳法与归纳法; (2)忽视第一步的归纳基础,数学归纳法的解题步骤有两步,第一步是归纳基础,第二步是归纳假设,在证明命题成立时,归纳假设这部分是一个难点,学生往往比较重视第二步的证明,却对忽视了归纳基础。常见的错误有: ①没有写第一步,而是直接假设成立,进行第二步归纳假设的证明; ②有写第一步,但是只是形式上写一下归纳基础,并没有进行验证是否成立,容易发生第一步是不成立的情况。因为第一步往往是正确的,而且是比较显然的,所以学生容易忽视它,但是就像玩多米诺骨牌游戏一样,如果第一块骨牌没有办法倒下,那么就算后面的骨牌排得多么整齐都不会倒下. 5、解决方法: 针对数学归纳法的特殊证明思路和特点,讲解清楚数学归纳法的概念及它的特征和相关要点,并结合学生的课堂反应,课堂多注重基础,多找出有代表性的典例适时强化学生理解

《地球和地球仪》思维导图及知识点解析教学内容

《地球和地球仪》思维导图及知识点解析

收集于网络,如有侵权请联系管理员删除 《地球和地球仪》思维导图及知识点解析 一、思维导图 答案:(1)不规则球体(2)6371(3)4万(4)5.1亿(5)赤道(6)缩短(7)东西(8)赤道(9)垂直(10)半圆(11)南北(12)0°(13)20°W 和160°E(14)经线(15)纬线

二、知识点解析 知识点梳理(基础知识、基本方法、思维拓展)例题解析基础知识点一、地球的形状和大小 (1)认识过程 人类对地球形状的认识,经历了漫长而艰难的探索过程。 天圆地方我国古代有“天圆如张盖,地方如棋局”的说法 太阳和月亮人们根据太阳、月亮的形状,推测地球也是个球体,于是就有了“地球”的概念 麦哲伦环球航行路线图1519~1522年,葡萄牙航海家麦哲伦率领的船队,首次实现了人类环绕地球一周的航行,证实了地球是一个球体 地球卫星照片20世纪,人类进入了太空,从太空观察地球,并且从人造卫星上拍摄了地球的照片,确证地球是一个球体 (2)地球的大小 随着科学的发展,人们利用科学仪器,精确地测量出了地球的大小,下面是一组数据。【例1】下列可以说明地球的形状为球体的是()。 ①人造卫星拍摄的地球照片 ②远航的船舶逐渐消失在地平线以下 ③麦哲伦环球航行 ④环太平洋地带多火山和地震 ⑤流星现象 A.①②③B.②③④ C.③④⑤D.②③⑤ 解析:人造卫星拍摄的地球照片是地球形状的最直观、最有力的证据;远航船舶消失在地平线以下说明地球是一个球体;麦哲伦环球航行也证明了地球是球体。而火山、地震、流星现象与地球的形状无关。 答案:A 收集于网络,如有侵权请联系管理员删除

数学归纳法知识点大全(综合)

数学归纳法 数学归纳法是用于证明与正整数n 有关的数学命题的正确性的一种严格的推理方法.在数学竞赛中占有很重要的地位. (1)第一数学归纳法 设)(n P 是一个与正整数有关的命题,如果 0n n =(N n ∈01.数学归纳法的基本形式)时,)(n P 成立; ②假设),(0N k n k k n ∈≥=成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. (2)第二数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ①当0n n =(N n ∈0)时,)(n P 成立; ②假设),(0N k n k k n ∈≥≤成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. 2.数学归纳法的其他形式 (1)跳跃数学归纳法 ①当l n ,,3,2,1Λ=时,)(,),3(),2(),1(l P P P P Λ成立,

②假设k n =时)(k P 成立,由此推得l k n +=时,)(n P 也成立,那么,根据①②对一切正整数1≥n 时,)(n P 成立. (2)反向数学归纳法 设)(n P 是一个与正整数有关的命题,如果 )(n P 对无限多个正整数n 成立; ②假设k n =时,命题)(k P 成立,则当1-=k n 时命题)1(-k P 也成立,那么根据①②对一切正整数1≥n 时,)(n P 成立. 例如,用数学归纳法证明: 为非负实数,有 在证明中,由 真,不易证出 真;然而却很容易证出 真,又容易证明不等式对无穷多个 (只要 型的自然数)为真;从而证明 ,不等式成立. (3)螺旋式归纳法 P (n ),Q (n )为两个与自然数 有关的命题,假如 ①P(n0)成立; ②假设 P(k) (k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立; 综合(1)(2),对于一切自然数n (>n0),P(n),Q(n)都成立;

数学归纳法案例分析

数学归纳法案例分析 一、内容提要 数学归纳法是高中数学中的一个重点和难点内容,也是一种重要的数学方法,数学归纳法这一方法,贯通了高中数学的几大知识点:不等式,数列,三角函数,平面几何等。通过对它的学习,能起到以下几方面的作用:提高学生的逻辑思维、推理能力;培养学生辩证思维素质,全面提高学生数学能力;培养学生科学探索的创新精神,提高学生综合素质。 二、教学设计 根据本节课的内容和学生的实际水平,我采用的引导发现法和感性体验法进行教学。 在引出的《数学归纳法》这个课题后,我通过一个盒子中的十个乒乓球和等差数列的通项公式,导出完全归纳法和不完全归纳法这两个概念,又通过的两个例子促进学生对“ 递推关系” 的理解,明了两个概念的必要性,为数学归纳法的应用前提和场合提供形象化的参照物。 同点做准备时抓住这两个问题的类似之处,由具体到抽象,引导学生掌握本堂课的重点,为进一步突出难。 三、设计理念 1 、初步掌握归纳与推理的能力;培养大胆猜想,小心求证的辩证思维素质。 2 、掌握了自主探索问题、自主学习的方法。 3 、培养学生对于数学内在美的感悟能力。 四、教学片断 师:问题1 :这个盒子里有十个乒乓球,如何证明里面的球全为白色? 问题2 :请大家回忆,课本是如何得出等差数列的通项公式的?

教师引导学生明了以上两个问题的异同点。由此,得出归纳法的概念,同时指明了完全归纳法与不完全归纳法的区别。 师:若盒子里的乒乓球有无数个,如何证明它们全是白色球呢? 生:①证明第一次拿出的乒乓球是白色的;②构造一个命题并证明,此命题的题设是:“ 若某一次拿出的球是白色的” ,结论是:“ 下次拿出的球也是白色的” 。以上两步都被证明,则盒子中的乒乓球全是白色的。 教师引导学生讨论:以上两个步骤如果都得到证明,是否能说明全部的乒乓球都是白色的?由此,得出数学归纳法的基本概念。 师:这种思考方法能不能用来证明第二个问题呢? 生:能,学生对比上一问题与此问题类似之处,进而得出数学归纳法的证题思路和步骤。 让学生用数学归纳法证明第二人个问题( 略) 。 师再强调数学归纳法的“ 奠基步骤” 和“ 递推步骤” 这“ 两个步骤” 以及“ 一个结论” 。 师引导学生总结: ①教学归纳法是一种完全归纳的证明方法,它适用于与自然数有关的问题。 ②两个步骤、一个结论缺一不可否则结论不能成立。 ③在证明递推步骤时,必须使用归纳假设,必须进行恒等变换。 五、课后反思 ? 通过一个生活事例和一个课本公式的比较,引导学生讨论,促使学生主动思维。? 通过本节课的教学也使学生掌握递推原理,提高学生的逻辑思维和推理能力。? 本节课的结构可以,对学生的学法指导不错,让学生清楚学习数学归纳法的用途,指明的方向。 对数学归纳法的解题步骤可再介绍具体一点

小学数学概念教学(讲座稿)

小学数学概念教学 开化县园区小学陈根祥 一、什么是数学概念 数学概念是客观现实中的数量关系和空间形式的本质属性在人脑中中的反映。数学的研究对象是客观事物的数量关系和空间形式。在数学中,客观事物的颜色、材料、气味等方面的属性都被看作非本质属性而被舍弃,只保留它们在形状、大小、位置及数量关系等方面的共同属性。在数学科学中,数学概念的含义都要给出精确的规定,因而数学概念比一般概念更准确。 小学数学中有很多概念,包括:数的概念、运算的概念、量与计量的概念、几何形体的概念、比和比例的概念、方程的概念,以及统计初步知识的有关概念等。这些概念是构成小学数学基础知识的重要内容,它们是互相联系着的。如只有明确牢固地掌握数的概念,才能理解运算概念,而运算概念的掌握,又能促进数的整除性概念的形成。 二、小学数学概念的表现形式 在小学数学教材中的概念,根据小学生的接受能力,表现形式各不相同,其中描述式和定义式是最主要的两种表示方式。 1.定义式 定义式是用简明而完整的语言揭示概念的内涵或外延的方法,具体的做法是用原有的概念说明要定义的新概念。这些定义式的概念抓住了一类事物的本质特征,揭示的是一类事物的本质属性。这样的概念,是在对大量的探究材料的分析、综合、比较、分类中,使之从直观到表象、继而上升为理性的认识。如“有两条边相等的三角形叫等腰三角形”;“含有未知数的等式叫方程”等等。这样定义的概念,条件和结论十分明显,便于学生一下子抓住数学概念的本质。 2.描述式 用一些生动、具体的语言对概念进行描述,叫做描述式。这种方法与定义式不同,描述式概念,一般借助于学生通过感知所建立的表象,选取有代表性的特例做参照物而建立。如:“我们在数物体的时候,用来表示物体个数的1、2、3、4、5……叫自然数”;“象1.25、0.726、0.005等都是小数”等。这样的概念将随着儿童知识的增多和认识的深化而日趋完善,在小学数学教材中一般用于以下两种情况。 一种是对数学中的点、线、体、集合等原始概念都用描述法加以说明。例如,“直线”这一概念,教材是这样描述的:拿一条直线,把它拉紧,就成了一条直线。“平面”就用“课桌面”、“黑板面”、“湖面”来说明。 另一种是对于一些较难理解的概念,如果用简练、概括的定义出现不易被小学生理解,就改用描述式。例如,对直圆柱和直圆锥的认识,由于小学生还缺乏运动的观点,不能像中学生那样用旋转体来定义,因此只能通过实物形象地描述了它们的特征,并没有以定义的形式揭示它们的本质属性。学生在观察、摆拼中,认识到圆柱体的特征是上下两个底面是相等的圆,侧面展开的形状是长方形。 一般来说,在数学教材中,小学低年级的概念采用描述式较多,随着小学生思维能力的逐步发展,中年级逐步采用定义式,不过有些定义只是初步的,是有待发展的。在整个小学阶段,由于数学概念的抽象性与学生思维的形象性的矛盾,大部分概念没有下严格的定义;而是从学生所了解的实际事例或已有的知识经验出发,尽可能通过直观的具体形象,帮助学生认识概念的本质属性。对于不容易理解的概念就暂不给出定义或者采用分阶段逐步渗透的办法来解决。因此,小学数学概念呈现出两大特点:一是数学概念的直观性;二是数学概念的阶段性。在进行数学概念教学时,我们必须注意充分领会教材的这两个特点。 三、小学数学概念教学的意义 首先,数学概念是数学基础知识的重要组成部分。 小学数学的基础知识包括:概念、定律、性质、法则、公式等,其中数学概念不仅是数学基础知识的

地球和地球仪思维导图及知识点解析

1 / 13 《地球和地球仪》思维导图及知识点解析 一、思维导图 答案:(1)不规则球体(2)6371(3)4万(4)5.1亿(5)赤道(6)缩短(7)东西(8)赤道(9)垂直(10)半圆(11)南北(12)0°(13)20°W 和160°E(14)经线(15)纬线

二、知识点解析 知识点梳理(基础知识、基本方法、思维拓展)例题解析基础知识点一、地球的形状和大小 (1)认识过程 人类对地球形状的认识,经历了漫长而艰难的探索过程。 天圆地方我国古代有“天圆如张盖,地方如棋局”的说法 太阳和月亮人们根据太阳、月亮的形状,推测地球也是个球体,于是就有了“地球”的概念 麦哲伦环球航行路线图1519~1522年,葡萄牙航海家麦哲伦率领的船队,首次实现了人类环绕地球一周的航行,证实了地球是一个球体 地球卫星照片20世纪,人类进入了太空,从太空观察地球,并且从人造卫星上拍摄了地球的照片,确证地球是一个球体 (2)地球的大小 随着科学的发展,人们利用科学仪器,精确地测量出了地球的大小,下面是一组数据。【例1】下列可以说明地球的形状为球体的是()。 ①人造卫星拍摄的地球照片 ②远航的船舶逐渐消失在地平线以下 ③麦哲伦环球航行 ④环太平洋地带多火山和地震 ⑤流星现象 A.①②③B.②③④ C.③④⑤D.②③⑤ 解析:人造卫星拍摄的地球照片是地球形状的最直观、最有力的证据;远航船舶消失在地平线以下说明地球是一个球体;麦哲伦环球航行也证明了地球是球体。而火山、地震、流星现象与地球的形状无关。 答案:A 2 / 13

谈重点:地球的基本数据可以证明地球的形状 地球的赤道半径比极半径长约21千米,可以证明:地球是一个两极稍扁、赤道略鼓的不规则球体。 析规律:歌谣记忆地球的基本数据 3 / 13

浅谈数学归纳法在高考中的应用

1、数学归纳法的理论基础 数学归纳法,人类天才的思维、巧妙的方法、精致的工具,解决无限的问题。它体现的是利用有限解决无限问题的思想,这一思想凝结了数学家们无限的想象力和创造力,这无疑形成了数学证明中一道绚丽多彩的风景线。它的巧妙让人回味无穷,这一思想的发现为后来数学的发展开辟了道路,如用有限维空间代替无限维空间(多项式逼近连续函数)用有限过程代替无限过程(积分和无穷级数用有限项和答题,导数用差分代替)。 1.1数学归纳法的发展历史 自古以来,人们就会想到问题的推广,由特殊到一般、由有限到无限,可人类对无限的把握不顺利。在对无穷思考的过程中,古希腊出现了许多悖论,如芝诺悖论,在数列中为了确保结论的正确,则必须考虑无限。还有生活中一些现象,如烽火的传递,鞭炮的燃放等,触动了人类的思想。 安提丰用圆周内接正多边形无穷地逼近圆的方法解决化圆为方;刘徽、祖冲之用圆内接正多边形去无穷地逼迫圆,无穷的问题层出不穷,后来古希腊欧几里得对命题“素数的个数是无穷的”的证明,通过了有限去实现无限,体现了数学归纳法递推思想。但要形成数学归纳法中明确的递推,清晰的步骤确是一件不容易的事,作为自觉运用进行数学证明却是近代的事。 伊本海塞姆(10世纪末)、凯拉吉(11世纪上叶)、伊本穆思依姆(12世纪末)、伊本班纳(13世纪末)等都使用了归纳推理,这表明数学归纳法使用较普遍,尤其是凯拉吉利用数学归纳法证明 22 333 (1)124n n n +++??????+= 这是数学家对数学归纳法的最早证明。 接着,法国数学家莱维.本.热尔松(13世纪末)用"逐步的无限递进",即归纳推理证明有关整数命题和排列组合命题。他比伊斯兰数学家更清楚地体现数学归纳法证明的基础,递进归纳两个步骤。 到16世纪中叶,意大利数学家毛罗利科对与全体和全体自然数有关的命题的证明作了深入的考察在1575年,毛罗利科证明了 21n n a a n ++= 其中1231,2k a k =+++?????? =?????? 他利用了逐步推理铸就了“递归推理”的思路,成为了较早找到数学归纳中“递 归推理”的数学家,为无限的把握提供了思维。 17世纪法国数学家帕斯卡为数学归纳法的发明作了巨大贡献,他首先明确而清晰地阐述数学归纳法的运用程序,并完整地使用数学归纳法,证明了他所发

1.4《地形图的判读》思维导图及知识点解析

. 《地形图的判读》思维导图及知识点解析 一、思维导图 答案:(1)海平面(2)垂直(3)闭和(4)相等(5)密集(6)稀疏(7 )降低(8)降低(9)海拔低处(10)海拔高处(11)

. 重叠相交(12)平原(13)海洋(14)等高线地形图 二、知识点解析 知识点梳理 例题解析 知识点一、等高线地形图 (1)地面高度的计算 ①海拔:地面某个地点高出海平面的垂直距离。 ②相对高度:某个地点高出另一个地点的垂直距离。 辨误区:海拔和相对高度的参照点不同 (2)等高线 ①含义:在地图上,把海拔相同的各点连接成线,叫等高线。 ②特点:除陡崖外,等高线一般不相交;同一条等高线上的各点,海拔相等;等高线有无数条。 析规律:等高距的含义及特点 任意相邻的两条等高线之间的距离,叫等高距。同一幅等高线地形图上,等高距相等。 【例1-1】世界最高峰珠穆朗玛峰海拔约8 844米,我国陆地最低的地方吐鲁番盆地在海平面以下155米,两地相对高度约是( )。 A .8689米 B .9003米 C .8999米 D .9009米 解析:首先确定所求两点的海拔。然后计算二者海拔之差就是相对高度。 答案:C 【例1-2】读图(单位:米),完成下列问题。

(3)等高线地形图 ①含义:用等高线表示地形的地图,叫等高线地形图。 等高线地形图实际上是将不同高度的等高线投影到同一平面上来表示起伏的地形。 ②等高线地形图的判读 在等高线地形图上,可以根据等高线的疏密状况判断地面的高低起伏。坡陡的地方,表示等高线密集;坡缓的地方,表示等高线稀疏。山体的不同部位,等高线形态也不一样。 山体不同部位的等高线分布特点,如下表: 地形部位等高线分布特点 山峰等高线封闭,数值从中间向四周逐渐降低,常用“”表示 山脊等高线的弯曲部分向海拔低处凸出 山谷等高线的弯曲部分向海拔高处凸出 鞍部两个山顶之间相对低洼的部分 陡崖等高线重叠、相交处,常用符号表示 (4)等深线 (1)写出图中字母所代表的地形名称。 A________,B______,C______,D_______,E________。 (2)H点与G点的相对高度是________米。 (3)沿B虚线和C虚线登山,较容易的是________,其原因是_______________。 (4)山峰M与A,较高的是________。 解析:第(1)题,根据图中等高线的分布特点可知,A处等高线封闭,数值从中间向四周逐渐降低,为山峰;B处等高线的弯曲部分向海拔低处凸出,为山脊;C处等高线的弯曲部分向海拔高处凸出,为山谷;D处位于两个山顶之间相对低洼的部分,为鞍部;E处有几条海拔不同的等高线重叠相交,为陡崖。第(2)题,H点所在的等高线是400米,G点处在200米等高线上,二者相对高度是200米。第(3)题,沿B处虚线的等高线稀疏,说明坡度较缓,易攀登。第(4)题,根据等高线地形图中数据变化规律,A、M两点海拔高,是山峰,且M峰多了 .

数学归纳法经典练习及解答过程

数学归纳法经典练习及 解答过程 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

第七节数学归纳法 知识点数学归纳法 证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立. (2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.易误提醒运用数学归纳法应注意: (1)第一步验证n=n0时,n0不一定为1,要根据题目要求选择合适的起始值. (2)由n=k时命题成立,证明n=k+1时命题成立的过程中,一定要用到归纳假设,否则就不是数学归纳法. [自测练习] 1.已知f(n)=1 n + 1 n+1 + 1 n+2 +…+ 1 n2 ,则( ) A.f(n)中共有n项,当n=2时,f(2)=1 2 + 1 3 B.f(n)中共有n+1项,当n=2时,f(2)=1 2 + 1 3 + 1 4 C.f(n)中共有n2-n项,当n=2时,f(2)=1 2 + 1 3 D.f(n)中共有n2-n+1项,当n=2时,f(2)=1 2 + 1 3 + 1 4 解析:从n到n2共有n2-n+1个数,所以f(n)中共有n2-n+1项,且f(2)=1 2 + 1 3 + 1 4 ,故选D. 答案:D

2.(2016·黄山质检)已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1 n +1 = 2? ???? 1n +2+1n +4 +…+12n 时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立( ) A .k +1 B .k +2 C .2k +2 D .2(k +2) 解析:根据数学归纳法的步骤可知,则n =k (k ≥2为偶数)下一个偶数为k +2,故选B. 答案:B 考点一 用数学归纳法证明等式| 求证:(n +1)(n +2)·…·(n +n )=2n ·1·3·5·…·(2n -1)(n ∈N *). [证明] (1)当n =1时,等式左边=2,右边=21·1=2,∴等式成立. (2)假设当n =k (k ∈N *)时,等式成立,即(k +1)(k +2)·…·(k +k )=2k ·1·3·5·…·(2k -1). 当n =k +1时,左边=(k +2)(k +3)·…·2k ·(2k +1)(2k +2) =2·(k +1)(k +2)(k +3)·…·(k +k )·(2k +1) =2·2k ·1·3·5·…·(2k -1)·(2k +1) =2k +1·1·3·5·…·(2k -1)(2k +1). 这就是说当n =k +1时,等式成立. 根据(1),(2)知,对n ∈N *,原等式成立. 1.用数学归纳法证明下面的等式: 12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n ?n +1? 2 . 证明:(1)当n =1时,左边=12=1, 右边=(-1)0 ·1×?1+1? 2 =1, ∴原等式成立. (2)假设n =k (k ∈N *,k ≥1)时,等式成立,

对概念图教学的几点思考

对概念图教学的几点思考

概念图是以综合、分层的形式表示概念之间相互联系的空间网络结构图。它是一种将概念之间关系的图形化表示的技术。概念图是组织和表征知识的工具,它包括众多的概念,以及概念和命题之间的关系。概念、命题、交叉连接和层级结构是概念图的四个图表特征。概念图的图表结构包括节点(又称结点) 、连线和连接词三个部分。学生通过简单的记忆和机械的训练获得的知识是最容易遗忘的,而通过自己亲身经历和体验,将抽象的知识与已有的知识经过思维加工之后联系起来,体验新知识的形成过程才是最有效的学习。概念图就是一种有效学习的工具,因为概念图的形成是教师和学生经历头脑风暴、构建思维景象描绘的过程。教师运用概念图的教学能够让学生脱离单纯的模仿和记忆,使他们能够通过动手实践、自主探索与合作交流来获得知识,这恰恰符合了新课程的教学理念。 1概念图的构建 在刚引入概念图教学策略的班级,应以循序渐进为原则,教师应该利用简单、 富有代表性的、规范的概念图范例进行多次指导示范后,再让学生尝试进行绘制。在具体练习绘制时,教师还应针对学生学习水平和绘图能力的个体差异拟定层次训练计划。如:针对中等水平的学生,教师可以呈现留有部分空格的概念图,学生的水平越高,空格就越多,需要连接的概念就越多。并且在训练过程中要注意我们教师教授的目的,是为了让学生学会这种重要的学习方法,而不是让学生死记硬背教师的概念图,否则概念图的应用就失去促进有意义学习的基本内涵,成为机械记忆的工具。在具体绘制概念图时一般有以下几个步骤: 第一步:列出概念。在确立构建概念图的命题后,应该围绕命题,熟悉构建对象的规律、原理及其内在联系,摸清楚相关知识的脉络,形成一定的背景知识,并把相关概念一一列出。 第二步:确定层次。选定知识领域后,便是确定关键概念,并把他们按一定的逻辑关系进行层级排序,从最一般、最概括的概念到最特殊最具体的概念依次排序。 第三步:建立连接。用连线把相关概念连接起来,然后针对两个概念间的意义关系,选择最能反映规律、原理、环节的关键词或核心词作为连接词,以突出构建对象的显著特征。 第四步:反思完善。对初建的草图进行系统的回顾梳理,及时发现疏漏之处加以完善;或再进一步深刻反思,激发出更好的思路和创意。这里还应注意图示位置的布局,力求合理、协调和美观。 第五步:正式绘制。 2概念图在教学中的应用 概念图作为一种教学策略和帮助学生认知的工具,可以有多种使用方法,适合不同的教学情景。 2.1 在新课讲授中构建概念图 在新课讲授中应用概念图教学策略,可以将教师单纯的“教”转变为“教与学”并举。特别是那些概念和陈述性知识比较多,内容又比较枯燥的章节,更适宜采用构建概念图来组织教学。教师在教的过程中可以根据讲课内容,将概念与概念的内在联系设计成问题。边提问边构建。通过这样的师生互动过程构建概念图,不仅可以充分调动学生学习的自主性和主动性,还可以充分向学生展示概念间的内在联系,实现陈述性知识向程序性知识的转化,从而培养了学生统领概念和自我构建知识的能力。例如在讲授“现代生物进化理论的主要内容”时,如果用教师传统的讲解的教学方式进行平铺直叙地教学,则学生的学习主动性往往得不到充分发挥,而如果在教师的组织引导下,通过小组分工合作,对信息进行加工处理,引导学生构建概念图来组织相关内容的教学,在不断

2016天津教师资格考试数学学科之数学概念的定义方式

点击下载更多天津教师招聘真题 天津教师教育网提供天津教师资格真题、天津教师招聘考试资讯 2016天津教师资格考试数学学科之数学概念的定义方式 欢迎来到天津教师资格招聘考试网,中公天津教师招聘考试网是中国教师第一门户网站,提供历年中小学教师资格证、考试培训、面试辅导、最新教师考试讲座等全方位教师考试信息,预祝广大考生顺利。 许多考生分不清一个概念究竟是发生定义还是外延定义等等,相信通过老师的分析,会很容易区分。中学数学中常见定义方法主要有一下几类: 1.属加种差定义法。 这种定义法是中学数学中最常用的定义方法,该法即按公式:“邻近的属+种差=被定义概念”下定义,例如,平行四边形的概念邻近的属是四边形,平行四边形区别于四边形的其他种概念的属性即种差是“一组对边平行并且相等”,这样即可给平行四边形下定义为“一组对边平行并且相等的四边形叫做平行四边形”。又如,等边的矩形叫做正方形; 邻近的属加种差的定义方法有两种特殊形式: (1)发生式定义方法。它是以被定义概念所反映的对象产生或形成的过程作为种差来下定义的。例如,“在平面内,一个动点与一个定点等距离运动所成的轨迹叫做圆”即是发生式定义。在其中,种差是描述圆的发生过程。 (2)关系定义法。它是以被定义概念所反映的对象与另一对象之间关系或它与另一对象对第三者的关系作为种差的一种定义方式。例如,若ab=N ,则logaN=b(a>0,a ≠1)。即是一个关系定义概念。 2.揭示外延的定义方法。 数学中有些概念,不易揭示其内涵,可直接指出概念的外延作为它的概念的定义。常见的有以下种类: (1)逆式定义法。这是一种给出概念外延的定义法,又叫归纳定义法.例如,整数和分数统称为有理数;正弦、余弦、正切和余切函数叫做三角函数;椭圆、双曲线和抛物线叫做圆锥曲线;逻辑的和、非、积运算叫做逻辑运算等等,都是这种定义法. (2)约定式定义法。揭示外延的定义方法还有一种特殊形式,即外延的揭示采用约定的方法,因而也称约定式定义方法。例如,a0=1(a ≠0),0!=1,就是用约定式方法定义的概念。 更多2016天津教师招聘真题请访问天津教师考试网。

基于思维导图的知识点

1. 函数、极限与连续 重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。 2. 一元函数微分学 重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。 3. 一元函数积分学 重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。 4. 向量代数与空间解析几何(数一) 主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等。该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。 5. 多元函数微分学

重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。 6. 多元函数积分学 重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。 7. 无穷级数(数一、数三) 重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。 8. 常微分方程及差分方程 重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。此外,数三考查差分方程的基本概念与一介常系数线形方程求解方法。数一还要求会伯努利方程、欧拉公式等。

数学归纳法的应用

数学归纳法的应用 姓名 甘国优 指导教师 赵慧炜 中文摘要:数学归纳法是数学中一种非常普遍的证题的方法,其应用极为广泛.本次主要简述了数学归纳法的简略步骤:观察(探索)﹑归纳﹑猜想﹑证明于一体的数学思想,体现出数学归纳法的证题思路.并归纳总结了数学归纳法解决代数恒等式﹑几何等方面的一些简单应用问题的方法,对应用中常见的误区加以剖析,以及介绍一些证题方法技巧,有助于提高对数学归纳法的应用能力. 关键词:数学归纳法;步骤;证明方法. Abstract: Mathematical induction is a common evidence method in mathematics, it is have very broad application. In this paper, author research into the step of the Mathematical induction , it includes summariz ,evidence and guess embody the idea of the evidence of mathematical induction. Also at here ,we summariz the method of the mathematical induction application in solve algebra identities , geometric ,order and portfolio ,and so on .also analyze the common errors on application and into duct skill of the proof ,proof of skills introduced. It is help to increased the level of the Mathematical induction’s application . Key words :Mathematical induction; Steps ; Proof. 引言 演绎和归纳是人在思维过程中两个完全相反的过程.同时又是数学思维中两种基本的方法.数学归纳法是一种重要的数学证明方法,他有着其他方法所不能代替的作用,也是证明与自然数有关的数学命题的一种完全归纳法.我们在学习运用数学归纳法应具备两个条件:①当1n =时,这个命题为正确的(奠基),②当n k =时,这个命题也为正确的.推出当+1n k =时,这个命题也为正确的(递推).通过“递推”链接,实现从特殊到一般的转化,抽象的进行数学归纳.首先

相关文档
相关文档 最新文档