文档库 最新最全的文档下载
当前位置:文档库 › 立体几何(向量法)建系难

立体几何(向量法)建系难

立体几何(向量法)建系难
立体几何(向量法)建系难

立体几何(向量法)—建系难

例1 (2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,四棱锥P ABCD

-中,PA ABCD ⊥底面,2,4,3

BC CD AC ACB ACD π

===∠=∠=,F 为PC 的中

点,AF PB ⊥.

(1)求PA 的长; (2)求二面角B AF D --的正弦值.

【答案】

解:(1)如图,联结BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB →,OC →,AP →

的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1,而AC =4,得AO =AC -OC =3.又OD =CD sin

π

3=3,故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0).

因P A ⊥底面ABCD ,可设P (0,-3,z ),由F 为PC 边中点,得F ????0,-1,z 2,又AF →

=????0,2,z 2,PB →=(3,3,-z ),因AF ⊥PB ,故AF →·PB →=0,即6-z 2

2

=0,z =2 3(舍去-2 3),所以|P A →

|=2 3.

(2)由(1)知AD →=(-3,3,0),AB →=(3,3,0),AF →

=(0,2,3).设平面F AD 的法

向量为1=(x 1,y 1,z 1),平面F AB 的法向量为2=(x 2,y 2,z 2).

由1·AD →=0,1·AF →=0,得

??

?-3x 1+3y 1=0,

2y 1+3z 1=0,

因此可取1=(3,3,-2). 由2·AB →=0,2·AF →=0,得

??

?3x 2+3y 2=0,

2y 2+3z 2=0,

故可取2=(3,-3,2). 从而向量1,2的夹角的余弦值为 cos 〈1,2〉=n 1·n 2|n 1|·|n 2|=1

8

.

故二面角B -AF -D 的正弦值为3 7

8

.

例2(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))如图,四

棱锥P ABCD -中,902,ABC BAD BC AD PAB ∠=∠==?o

,与PAD ?都是等边三角形.

(I)证明:;PB CD ⊥ (II)求二面角A PD C --的大小.

【答案】解:(1)取BC 的中点E ,联结DE ,则四边形ABED 为正方形. 过P 作PO ⊥平面ABCD ,垂足为O . 联结OA ,OB ,OD ,OE .

由△P AB 和△P AD 都是等边三角形知P A =PB =PD ,

所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .

因为O 是BD 的中点,E 是BC 的中点,所以OE ∥CD .因此PB ⊥CD .

(2)解法一:由(1)知CD ⊥PB ,CD ⊥PO ,PB ∩PO =P , 故CD ⊥平面PBD .

又PD ?平面PBD ,所以CD ⊥PD .

取PD 的中点F ,PC 的中点G ,连FG . 则FG ∥CD ,FG ⊥PD .

联结AF ,由△APD 为等边三角形可得AF ⊥PD . 所以∠AFG 为二面角A -PD -C 的平面角. 联结AG ,EG ,则EG ∥PB . 又PB ⊥AE ,所以EG ⊥AE .

设AB =2,则AE =2 2,EG =1

2PB =1,

故AG =AE 2+EG 2=3,

在△AFG 中,FG =1

2CD =2,AF =3,AG =3.

所以cos ∠AFG =FG 2+AF 2-AG 22·FG ·AF =-6

3.

因此二面角A -PD -C 的大小为π-arccos

6

3

. 解法二:由(1)知,OE ,OB ,OP 两两垂直.

以O 为坐标原点,OE →

的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz .

设|AB →

|=2,则

A (-2,0,0),D (0,-2,0), C (2 2,-2,0),P (0,0,2),

PC →=(2 2,-2,-2),PD →

=(0,-2,-2), AP →=(2,0,2),AD →

=(2,-2,0). 设平面PCD 的法向量为1=(x ,y ,z ),则 1·PC →

=(x ,y ,z )·(2 2,-2,-2)=0,

PD →=(x ,y ,z )·(0,-2,-2)=0,

可得2x -y -z =0,y +z =0.

取y =-1,得x =0,z =1,故1=(0,-1,1). 设平面P AD 的法向量为2=(m ,p ,q ),则 2·

AP →

=(m ,p ,q )·(2,0,2)=0, 2·AD →=(m ,p ,q )·(2,-2,0)=0,

可得m +q =0,m -p =0.

取m =1,得p =1,q =-1,故2=(1,1,-1). 于是cos 〈,2〉=

n 1·n 2|n 1||n 2|=-6

3

. 由于〈,2〉

等于二面角A -PD -C 的平面角,所以二面角A -PD -C 的大小为π-arccos 6

3

. 例3(2012高考真题重庆理19)(本小题满分12分 如图,在直三棱柱111C B A ABC 中,AB=4,AC=BC=3,D 为AB 的中点

(Ⅰ)求点C 到平面11ABB A 的距离;

(Ⅱ)若11AB A C 求二面角 的平面角的余弦值.

【答案】解:(1)由AC =BC ,D 为AB 的中点,得CD ⊥AB .又CD ⊥AA 1,故

CD ⊥面A 1ABB 1,所以点C 到平面A 1ABB 1的距离为

CD =BC 2-BD 2= 5.

(2)解法一:如图,取D 1为A 1B 1的中点,连结DD 1,则DD 1∥AA 1∥CC 1.又由(1)知CD ⊥面A 1ABB 1,故CD ⊥A 1D ,CD ⊥DD 1,所以∠A 1DD 1为所求的二面角A 1-CD -C 1的平面角.

因A 1D 为A 1C 在面A 1ABB 1上的射影,又已知AB 1⊥A 1C ,由三垂线定理的逆定理得AB 1⊥A 1D ,从而∠A 1AB 1、∠A 1DA 都与∠B 1AB 互余,因此∠A 1AB 1=∠A 1DA ,所以Rt △A 1AD ∽Rt △B 1A 1A .因此AA 1AD =A 1B 1

AA 1

,即AA 21=AD ·

A 1

B 1=8,得

AA 1=2 2.

从而A 1D =AA 21+AD 2

=2 3.

所以,在Rt △A 1DD 1中, cos ∠A 1DD 1=DD 1A 1D =AA 1A 1

D =63.

解法二:如图,过D 作DD 1∥AA 1交A 1B 1于点D 1,在直三棱柱中,易知DB ,DC ,DD 1两两垂直.以D 为原点,射线DB ,DC ,DD 1分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz .

设直三棱柱的高为h ,则A (-2,0,0),A 1(-2,0,h ),B 1(2,0,h ),C (0,5,0),C 1(0,5,h ),从而AB 1→=(4,0,h ),A 1C →

=(2,5,-h ).

由AB 1→⊥A 1C →,有8-h 2

=0,h =2 2. 故DA 1→=(-2,0,22),CC 1→=(0,0,22),DC →= (0,5,0).

设平面A 1CD 的法向量为m =(x 1,y 1,z 1),则m ⊥DC →,m ⊥DA 1→,即 ???

5y 1=0,-2x 1+22z 1

=0, 取z 1=1,得m =(2,0,1),

设平面C 1CD 的法向量为n =(x 2,y 2,z 2),则n ⊥DC →,n ⊥CC 1

→,即

???

5y 2=0,22z 2=0,

取x 2=1,得n =(1,0,0),所以 cos 〈m ,n 〉=m·n

|m ||n |=

22+1·1

=6

3. 所以二面角A 1-CD -C 1的平面角的余弦值为6

3.

例4(2012高考真题江西理20)(本题满分12分)

如图1-5,在三棱柱ABC -A 1B 1C 1中,已知AB =AC =AA 1=5,BC =4,点A 1在底面ABC 的投影是线段BC 的中点O .

(1)证明在侧棱AA 1上存在一点E ,使得OE ⊥平面BB 1C 1C ,并求出AE 的长; (2)求平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值.

图1-5

【答案】解:(1)证明:连接AO ,在△AOA 1中,作OE ⊥AA 1 于点E ,因为

AA 1∥BB 1,所以OE ⊥BB 1.

因为A 1O ⊥平面ABC ,所以A 1O ⊥BC . 因为AB =AC ,OB =OC ,所以AO ⊥BC , 所以BC ⊥平面AA 1O . 所以BC ⊥OE ,

所以OE ⊥平面BB 1C 1C ,又AO =AB 2-BO 2=1,AA 1=5,

得AE =AO 2AA 1

=5

5.

(2)如图,分别以OA ,OB ,OA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则A (1,0,0),B (0,2,0),C (0,-2,0),A 1(0,0,2),

由AE →=15AA 1→得点E 的坐标是? ??

??45,0,25, 由(1)得平面BB 1C 1C 的法向量是OE

→=? ????45,0,25,设平面A 1B 1C 的法向量=(x ,y ,z ),

由?????

·AB →=0,n ·

A 1C →=0得???

-x +2y =0,

y +z =0,

令y =1,得x =2,z =-1,即=(2,1,-1),所以 cos 〈OE →

,〉=OE →·

n |OE →|·|n |

=3010.

即平面BB 1C 1C 与平面A 1B 1C 的夹角的余弦值是30

10.

例5(2012高考真题安徽理18)(本小题满分12分)

平面图形ABB 1A 1C 1C 如图1-4(1)所示,其中BB 1C 1C 是矩形,BC =2,BB 1

=4,AB=AC=2,A1B1=A1C1= 5.

图1-4

现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A1A,A1B,A1C,得到如图1-4(2)所示的空间图形.对此空间图形解答下列问题.

(1)证明:AA1⊥BC;

(2)求AA1的长;

(3)求二面角A-BC-A1的余弦值.

【答案】

解:(向量法):(1)证明:取BC,

B1C1的中点分别为D和D1,连接A1D1,DD1,AD.

由BB1C1C为矩形知,

DD 1⊥B 1C 1,

因为平面BB 1C 1C ⊥平面A 1B 1C 1, 所以DD 1⊥平面A 1B 1C 1, 又由A 1B 1=A 1C 1知, A 1D 1⊥B 1C 1.

故以D 1为坐标原点,可建立如图所示的空间直角坐标系D 1-xyz . 由题设,可得A 1D 1=2,AD =1.

由以上可知AD ⊥平面BB 1C 1C ,A 1D 1⊥平面BB 1C 1C ,于是AD ∥A 1D 1. 所以A (0,-1,4),B (1,0,4),A 1(0,2,0),C (-1,0,4),D (0,0,4). 故AA 1→=(0,3,-4),BC →=(-2,0,0),AA 1→·BC →=0, 因此AA 1→⊥BC →,即AA 1⊥BC . (2)因为AA 1→=(0,3,-4), 所以||

AA 1

→=5,即AA 1=5. (3)连接A 1D ,由BC ⊥AD ,BC ⊥AA 1,可知BC ⊥平面A 1AD ,BC ⊥A 1D ,所以∠ADA 1为二面角A -BC -A 1的平面角.

因为DA →=(0,-1,0),DA 1→=(0,2,-4),所以 cos 〈DA →,DA 1

→〉=-21×22+(-4)

2=-5

5. 即二面角A -BC -A 1的余弦值为-5

5.

(综合法)(1)证明:取BC ,B 1C 1的中点分别为D 和D 1,连接A 1D 1,DD 1,AD ,A 1D .

由条件可知,BC ⊥AD ,B 1C 1⊥A 1D 1, 由上可得AD ⊥面BB 1C 1C ,A 1D 1⊥面BB 1C 1C . 因此AD ∥A 1D 1,即AD ,A 1D 1确定平面AD 1A 1D . 又因为DD 1∥BB 1,BB 1⊥BC ,所以DD 1⊥BC . 又考虑到AD ⊥BC ,所以BC ⊥平面AD 1A 1D , 故BC ⊥AA 1.

(2)延长A 1D 1到G 点,使GD 1=AD ,连接AG . 因为AD 綊GD 1,所以AG 綊DD 1綊BB 1. 由于BB 1⊥平面A 1B 1C 1,所以AG ⊥A 1G . 由条件可知,A 1G =A 1D 1+D 1G =3,AG =4, 所以AA 1=5.

(3)因为BC ⊥平面AD 1A 1D ,所以∠ADA 1为二面角A -BC -A 1的平面角. 在Rt △A 1DD 1中,DD 1=4,A 1D 1=2,解得 sin ∠D 1DA 1=5

5,

cos ∠ADA 1=cos ? ????

π2+∠D 1DA 1=-55.

即二面角A -BC -A 1的余弦值为-5

5.

立体几何中的向量方法(一)——证明平行与垂直

立体几何中的向量方法(一)——证明平行与垂直 1.直线的方向向量与平面的法向量的确定 (1)直线的方向向量:在直线上任取一非零向量作为它的方向向量. (2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为???? ? n ·a =0,n ·b =0. 2.用向量证明空间中的平行关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. (2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =x v 1+y v 2. (3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1 ∥u 2. 3.用向量证明空间中的垂直关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( ) (2)平面的单位法向量是唯一确定的.( ) (3)若两平面的法向量平行,则两平面平行.( ) (4)若两直线的方向向量不平行,则两直线不平行.( ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( ) (6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( ) 1.下列各组向量中不平行的是( )

立体几何中的向量方法

立体几何中的向量方法(二)——求空间角和距离 1. 空间向量与空间角的关系 (1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|. (2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|. (3)求二面角的大小 1°如图①,AB 、CD 是二面角α—l —β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉. 2°如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉. 2. 点面距的求法 如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到 平面α的距离d =|AB → ·n | |n | . 1. 判断下面结论是否正确(请在括号中打“√”或“×”)

(1)两直线的方向向量所成的角就是两条直线所成的角. ( × ) (2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角. ( × ) (3)两个平面的法向量所成的角是这两个平面所成的角. ( × ) (4)两异面直线夹角的范围是(0,π2],直线与平面所成角的范围是[0,π 2],二面角的 范围是[0,π]. ( √ ) (5)直线l 的方向向量与平面α的法向量夹角为120°,则l 和α所成角为30°. ( √ ) (6)若二面角α-a -β的两个半平面α、β的法向量n 1,n 2所成角为θ,则二面角α- a -β的大小是π-θ. ( × ) 2. 已知二面角α-l -β的大小是π 3 ,m ,n 是异面直线,且m ⊥α,n ⊥β,则m ,n 所成 的角为 ( ) A.2π3 B.π 3 C.π 2 D. π6 答案 B 解析 ∵m ⊥α,n ⊥β, ∴异面直线m ,n 所成的角的补角与二面角α-l -β互补. 又∵异面直线所成角的范围为(0,π 2], ∴m ,n 所成的角为π 3 . 3. 在空间直角坐标系Oxyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),

立体几何中的向量方法总结

立体几何中的向量方法基础篇一(几何证明) 一.求直线方向向量 1.已知()()4,2,2,2,1,1B A -且),,6(y x a =为直线AB 的方向向量,求y x ,。 二.平面的法向量 2.在空间中,已知()()()0,1,1,1,1,0,1,0,1C B A ,求平面ABC 的一个法向量。 3.如图,在四棱锥ABCD P -中,底面ABCD 为正方形, 2,==⊥DC PD ABCD PD 平面,E 为PC 中点 (1)分别写出平面PDC ABCD PAD ,,的一个法向量; (2)求平面EDB 的一个法向量; (3)求平面ADE 的一个法向量。 三.向量法证明空间平行与垂直 1.如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,M AF AB ,1,2== 为EF 的中点,求 证:BDE AM 平面//

2. 如图,正方体''''D C B A ABCD -中,F E ,分别为CD BB ,'的中点,求证:ADE F D 平面⊥'。 3. 如图,在四棱锥ABCD E -中,BCE CD BCE AB 平面平面⊥⊥, 0120,22=∠====BCE CD CE BC AB ,求证:平面ABE ADE 平面⊥。 巩固练习: 1. 如图,在正方体''''D C B A ABCD -中,P 是'DD 的中点,O 是底面ABCD 的中心, (1)求证:O B '为平面PAC 的一个法向量;(2)求平面CD B A ''的一个法向量。

2. 如图,在直棱柱'''C B A ABC -中,4',5,4,3====AA AB BC AC (1)求证:'BC AC ⊥ (2)在AB 上是否存在点D ,使得'//'CDB AC 平面,若存在,确定D 点位置,若不存在,说明理由。 3. 如图,已知长方体''''D C B A ABCD -中,2==BC AB ,E AA ,4'=为'CC 的上的点,C B BE '⊥, 求证:BED C A 平面⊥' 4. 在三棱柱'''C B A ABC -中,1',2,,'===⊥⊥AA BC AB BC AB ABC AA 平面,E 为'BB 的中点,求证:C C AA AEC '''平面平面⊥

高中数学向量法解立体几何总结

向量法解立体几何 1、直线的方向向量和平面的法向量 ⑴.直线的方向向量:若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量. ⑵.平面的法向量:若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作 n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量. ⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系. ②设平面α的法向量为(,,)n x y z =. ③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==. ④根据法向量定义建立方程组0 n a n b ??=???=??. ⑤解方程组,取其中一组解,即得平面α的法向量. 2、用向量方法判定空间中的平行关系 ⑴线线平行。设直线12,l l 的方向向量分别是a b 、 ,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈.⑵线面平行。设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥ α,只需证明a u ⊥,即0a u ?=. ⑶面面平行。若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=. 3、用向量方法判定空间的垂直关系⑴线线垂直。设直线12,l l 的方向向量分别是a b 、 ,则要证明12l l ⊥,只需证明a b ⊥,即0a b ?=.⑵线面垂直 ①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l α⊥,只需证明a ∥u ,即a u λ=. ②(法二)设直线l 的方向向量是a ,平面α内的两个相交向量分别为m n 、 ,若

专题:运用向量法证明立体几何问题

专题:运用向量法证明立体几何问题 一、知识点: 1、若向量m 与直线l 平行,则向量叫做直线l 的方向向量。 2、若⊥α,则叫做平面α的法向量。 (1)要证m 为平面α的法向量,只须让m 与平面α内的两条相交直线垂直。 (2)若χ轴与平面的法向量,可设为=(1,0,0) (3)若 y 轴为平面的法向量,可设为=(0,1,0) (4)若Z 轴为平面的法向量,可设为m =(0,0,1) 3、证明线面平行与线面垂直 若为平面α的法向量,n 为直线l 的方向向量,则 (1)l ⊥α?m ∥n ?m =λn (2)l ∥α ?m ⊥n ?m ·n =0 4、运用向量求角 (1)若两条异面直线l 1,l 2所成的角为 θ,为l 1 的方向向量, n 为l 2 的方向向量,则 cos (090)m n m n θθ=<≤ , (2)若两个平面12αα,所成的二面角的平面角为 θ,为1α的法向

量,为2α的法向量,则 cos (090)m n m n θθ=<≤ , 当二面角为锐时为θ;当二面角为钝角时为 π-θ。 (3)直线l 与平面α所成的角为θ,n 为直线l 的方向向量,m 为平面α 的法向量,则 sin (090)m n m n θθ=<≤ , 5、点P 到平面α的距离为d,若为平面α的法向量,A 为平面α内任 一点,则PA m d m = 例1.如图在四棱锥P-ABCD 中,底面AB 、CD 是正方形且边长为1,侧棱PD ⊥底面ABCD ,PD=DC ,点E 是PC 的中点,且F 的坐标是(31,31,3 2 )。 (1)求证:PA ∥平面EDB (2)求证:PB ⊥平面EFD 解:如图建立空间直角坐标系D xyz -。 设底面正方形的边长为1,则PD=1 D (0,0,0),P (0,0,1),A (1,0,0), B (1,1,0), C (0,1,0),E (0,21,2 1 ) (1)设(x,y,z)m = 为平面EDB 的法向量 则00m DB m DE ?=??=?? , 而(1,1,0)11(0,,)22 DB DE ?=??=?? ∴011022 x y y z +=?? ?+=?? , 即 x y z y =-??=-? 故m =(1,-1,1)(取Y=-1)

向量法解立体几何

中山二中2011届空间向量解立体几何 一、空间直角坐标系的建立及点的坐标表示 (1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底 叫单位正交基底,用{,,}i j k 表示; (2)在空间选定一点O 和一个单位正交基底 {,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正 方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -, 点O 叫原点,向量,,i j k 都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为 xOy 平面,yOz 平面,zOx 平面。 (3)作空间直角坐标系O xyz -时,一般使135xOy ∠=(或45),90yOz ∠=; (4)在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,称这个坐标系为右手直角坐标系规 定立几中建立的坐标系为右手直角坐标系 (5)空间直角坐标系中的坐标:如图给定空间直角坐 标系和向量 a ,设,,i j k 123(,,)a a a ,使123a a i a j a k =++,有序实数组123(,,)a a a 作向量a 在空间直角坐标系O xyz -123(,,)a a a a =.在空间直角坐标系O xyz -中,对空间任 一点A ,存在唯一的有序实数组(,,)x y z ,使 OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的 坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标. 二、空间向量的直角坐标运算律 (1)若123(,,)a a a a =,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++, 112233(,,) a b a b a b a b -=---, 123(,,)()a a a a R λλλλλ=∈, 112233//,,()a b a b a b a b R λλλλ?===∈, (2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 (3)//a b b a λ?=11 223 3()b a b a R b a λλλλ=?? ?=∈??=? 三、空间向量直角坐标的数量积 1、设,是空间两个非零向量,我们把数量><,cos |||| 规定:零向量与任一向量的数量积为0。 2、模长公式 2| |a a a x =?=+3、两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z , 则2 ||(AB AB = =, 或,A B d = 4、夹角:cos |||| a b a b a b ??= ?. 注:①0(,a b a b a b ⊥??=是两个非零向量); ②2 2||a a a a =?=。 5、 空间向量数量积的性质: ①||cos ,a e a a e ?=<>.②0a b a b ⊥??=.③2||a a a =?.

立体几何中的向量方法—证明平行和垂直

1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积 的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与 垂直。 【教学重点】理解空间向量的概念;掌握空间向量的运算方法 【教学难点】理解空间向量的概念;掌握空间向量的运算方法 在四棱锥 设直线,则 v

的正方体 I 2. 如图,在棱长为a (1) 试证:A1、G、C三点共线; (2) 试证:A1C⊥平面 3.【改编自高考题】如图所示,四棱柱 的正方形,侧棱A (1)证明:AC⊥A1B; (2)是否在棱A1A上存在一点P,使得C1【学后反思】 本节课我学会了 掌握了那些? 还有哪些疑问? 2017届高二数学导学案编写邓兴明审核邓兴明审批

1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别.3.体会求空间角中的转化思想、数形结合思想,熟练掌握平移方法、射影方法等.4.灵活地运用各种方法求空间角. 【教学重点】灵活地运用各种方法求空间角 【教学难点】灵活地运用各种方法求空间角 —l—β的两个面α,β的法向量,则向量 的大小就是二面角的平面角的大小(如图②③). 【课堂合作探究】 利用向量法求异面直线所成的角 B1C1,∠ACB=90°,CA=CB=CC1,D 的正方体ABCD—A1B1C1D1中,求异面直线

立体几何中的向量方法

立体几何中的向量方法 适用学科高中数学适用年级高中二年级 适用区域通用课时时长(分钟)90 知识点用空间向量处理平行垂直问题;用空间向量处理夹角问题. 教学目标 1. 理解直线的方向向量与平面的法向量; 2. 能用向量语言表述线线、线面、面面的垂直、平行关系; 3. 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理). 4. 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法的作用.教学重点用向量方法解决立体几何中的有关问题 教学难点用向量方法解决线线、线面、面面的夹角的计算问题

教学过程 一、课堂导入 空间平行垂直问题 1.两条直线平行与垂直; 2.直线与平面平行与垂直; 3.两个平面平行与垂直;空间夹角问题 1.两直线所成角; 2.直线和平面所成角; 3.二面角的概念; 空间距离问题

二、复习预习 (1)空间向量的直角坐标运算律:设231(,,)a a a a =,231(,,)b b b b =,则 112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=. (2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标. (3)模长公式:若231(,,)a a a a =, 则 222 123 ||a a a a a a =?=++. (4)夹角公式: 112233 2 2 2 22 2 123 123 cos |||| a b a b a b a b a b a b a a a b b b ++??= = ?++++. (5)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则 2212212212 )()()(z z y y x x AB AB -+-+-== .

用向量方法解立体几何题

用向量方法求空间角和距离 前言: 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1.求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;(平面和平面所成的角)二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 a l ⊥,在β内 b l ⊥,其方向如图,则二 方法一:在α内 平面角α=arccos |||| a b a b 面角l αβ--的 方法二:设12,,n n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角 α=12 12arccos |||| n n n n

2.求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的 距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离 方法一:设n 是平面α的法向量,在α内取一点B, 则 A 到 α的距离|| |||cos ||| AB n d AB n θ== 方法二:设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 方法一:找平面β使b β?且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 方法二:在a 上取一点A, 在b 上取一点B, 设a 、b 分别为异面直 线a 、b 的方向向量,求n (n a ⊥, n b ⊥),则异面直线a 、b 的距离 || |||cos ||| AB n d AB n θ== (此方法移植于点面距离的求法). 例1.如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是 棱1111,A D A B 的中点. (Ⅰ)求异面直线1DE FC 与所成的角; (II )求1BC 和面EFBD 所成的角; (III )求1B 到面EFBD 的距离 记异面直线1DE FC 与所成的角为α, 解:(Ⅰ) 则α 等于向量 1 DE FC 与的夹角或其补角, 1 1 ||||111111cos || ()() ||||||DE FC DE FC DD D E FB B C DE FC α∴=++=

立体几何中的向量方法复习

姓 名 年级 性 别 学 校 学 科 教师 上课日期 上课时间 课题 立体几何中的向量方法复习 一、选择题 1.若直线l 的方向向量为a =(1,-1,2),平面α的法向量为u =(-2,2,-4),则( ) A. l ∥α B. l ⊥α C. l ?α D. l 与α斜交 答案:B 解析:因为直线l 的方向向量为a =(1,-1,2),平面α的法向量为u =(-2,2,-4)共线,则说明了直线与平面垂直,选择B. 2. 如图,正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在A 1D ,AC 上,且A 1E =23A 1D ,AF =1 3AC ,则( ) A. EF 至多与A 1D ,AC 之一垂直 B. EF ⊥A 1D ,EF ⊥AC C. EF 与BD 1相交 D. EF 与BD 1异面 答案:B 解析:以D 点为坐标原点,以DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,设正方体棱长为1,则A 1(1,0,1),D (0,0,0),A (1,0,0),C (0,1,0),E (13,0,13),F (23,1 3 ,0),B (1,1,0),D 1(0,0,1), A 1D →=(-1,0,-1),AC →=(-1,1,0),EF →=(13,13,-13),BD 1→ =(-1,-1,1), EF →=-13BD 1→,A 1D →·EF →=AC →·E F → =0,从而EF ∥BD 1,EF ⊥A 1D ,EF ⊥AC .故选B. 3. 若a =(2,-2,-2),b =(2,0,4),则a 与b 的夹角的余弦值为( ) A. 48585 B. 6985 C. -15 15 D. 0 答案:C 解析:cos 〈a ,b 〉=a ·b |a |·|b |=2×2-823×25=-1515 . 4.在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,则AD 与平面AA 1C 1C 所成的角的正弦值为( ) A. 64 B. -64 C. 104 D. -10 4 答案:A

立体几何(向量法)建系难

立体几何(向量法)—建系难 例1 (2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,四棱锥P ABCD -中,PA ABCD ⊥底面,2,4,3 BC CD AC ACB ACD π ===∠=∠=,F 为PC 的中 点,AF PB ⊥. (1)求PA 的长; (2)求二面角B AF D --的正弦值. 【答案】 解:(1)如图,联结BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB →,OC →,AP → 的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1,而AC =4,得AO =AC -OC =3.又OD =CD sin π 3=3,故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0). 因P A ⊥底面ABCD ,可设P (0,-3,z ),由F 为PC 边中点,得F ????0,-1,z 2,又AF → =????0,2,z 2,PB →=(3,3,-z ),因AF ⊥PB ,故AF →·PB →=0,即6-z 2 2 =0,z =2 3(舍去-2 3),所以|P A → |=2 3. (2)由(1)知AD →=(-3,3,0),AB →=(3,3,0),AF → =(0,2,3).设平面F AD 的法

向量为1=(x 1,y 1,z 1),平面F AB 的法向量为2=(x 2,y 2,z 2). 由1·AD →=0,1·AF →=0,得 ?? ?-3x 1+3y 1=0, 2y 1+3z 1=0, 因此可取1=(3,3,-2). 由2·AB →=0,2·AF →=0,得 ?? ?3x 2+3y 2=0, 2y 2+3z 2=0, 故可取2=(3,-3,2). 从而向量1,2的夹角的余弦值为 cos 〈1,2〉=n 1·n 2|n 1|·|n 2|=1 8 . 故二面角B -AF -D 的正弦值为3 7 8 . 例2(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))如图,四 棱锥P ABCD -中,902,ABC BAD BC AD PAB ∠=∠==?o ,与PAD ?都是等边三角形. (I)证明:;PB CD ⊥ (II)求二面角A PD C --的大小. 【答案】解:(1)取BC 的中点E ,联结DE ,则四边形ABED 为正方形. 过P 作PO ⊥平面ABCD ,垂足为O . 联结OA ,OB ,OD ,OE . 由△P AB 和△P AD 都是等边三角形知P A =PB =PD , 所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE . 因为O 是BD 的中点,E 是BC 的中点,所以OE ∥CD .因此PB ⊥CD .

《立体几何中的向量方法(一)》教学设计

《立体几何中的向量方法(一)》教学设计 慈溪中学岑光辉 一、教材分析 立体几何中的向量方法被安排在新课标《数学》选修2–1的第三章第二节,主要讨论的是用空间向量处理立体几何问题。在此之前安排了空间向量及其运算这一节,将向量由二维拓展为三维,为学生学习本节知识作了必要的铺垫。立体几何中的向量方法既是前面内容的延展与深化,又是代数与几何知识的交汇点,产生了一种解决几何问题的新视角,为解决三维空间中图形的位置关系与度量问题提供了一个十分有效的工具。同时它也体现了新课程标准中提出的“注重提高学生的数学思维能力”的课程基本理念。 二、教学目标 (1)知识与技能 了解点的位置向量的概念,理解直线的方向向量与平面的法向量的概念,能用向量语言表述线线、线面、面面的垂直、平行关系,掌握用向量法证明这些位置关系。 (2)过程与方法目标 【 通过概念的理解和应用,可以提高学生感知和梳理知识的能力;由具体问题的解决到解题方法的总结,可以培养学生的探索、操作和归纳能力;用数学语言描述几何知识,可以提高学生的数学表达和交流能力,发展独立获取数学知识的能力。 (3)情感、态度与价值观目标: 通过对立体几何中的向量方法的学习过程,激发学生对数学的好奇心和求知欲,培养学生良好的学习习惯和思维品质,培养学生勇于探索、勤于思考的科学精神,渗透唯物辩证法的思想,引导学生树立科学的世界观,提高学生的数学涵养和综合素质。 三、学情分析 通过《数学》必修2中的“立体几何”和《数学》选修2–1中“空间向量及其运算”的学习,学生已具备了一定的空间想象能力和代数运算能力,很自然就过渡到二者综合运用的层次;但也有部分学生的数学底子薄,数学思维能力有所欠缺,认知结构不太健全,会对向量和几何的综合运用产生畏惧感,担心学不好。 四、教学策略 实施主体性教学,发挥学生的主动性。让学生经历直观感知、自主探索、合作交流的过程,激发学生学习数学的兴趣,提高他们的自信心。 这节课我设计制作了多媒体课件,形象、直观,再现了知识产生的过程,突破学生在旧知和新识形成过程的障碍,增大了教学容量,提高了教学效率,培养了学生发现问题、分析问题、解决问题的能力。 …

立体几何证明的向量公式和定理证明

立体几何证明的向量公式和定理证明

的计算(1)向量法: (2)转化法 ? ? ? ? ? ? ? 与平面的交点 这两点的线段的中点是 的点来求, 、转化到平面另外一侧 另外一点到平面的距离 上 、转化为平面的平行线 2 1 (3)等体积法: (1)向量法 (2)定义法:找出异面直线的公垂线段。 (3)转化法:转化为线面距离或面面距 离来求。 (四)利用向量方法证明和计算的原理(非常重要) 证明分类示意图所需条件证明原理 平行的证明线线 平行 (1)直线m方向向量m; (2)直线n方向向量n n mλ =?m∥n?m∥n 线面 平行 (1)直线m方向向量m; (2)平面α的法向量n = ?n m ?n m⊥ ?直线m∥平面α 面面 平行 (1)平面α的法向量m (2)平面β的法向量n n mλ = ?m∥n ?平面α∥平面β 垂直的证明线线 垂直 (1)直线m方向向量m; (2)直线n方向向量n = ?n m?n m⊥?m⊥n 线面 垂直 (1)直线m方向向量m; (2)平面α的法向量n n mλ = ?m∥n ?直线m⊥平面α (1)直线m方向向量m; (2)平面α内两相交直线 的方向向量AB,CD m?AB=0?m⊥AB m?CD=0?m⊥CD}?m⊥α AB,CD?α且AB I CD=P

面面垂直(1)平面α的法向量m (2)平面β的法向量n = ?n m ?n m⊥ ?平面α⊥平面β 计算分类示意图所需条件证明原理 角的计算 两异 面直 线所 成角 ∈ θ(0, 2 π 】 (1)直线m方向向量m (2)直线n方向向量n n m n m n m ? = > < =, cos cosθ 简化: n m n m? = θ cos 线面角 ∈ θ【0, 2 π 】 (1)直线OA的方向向量 OA; (2)平面α的法向量n n OA n OA n OA ? = > < =, cos sinθ 简化:sinθ= n OA n OA? = 二面角 ∈ θ【0,π】 同进同出为互补 (1)平面α的法向量n (2)平面β的法向量m n m n m n m ? >= <, cos (1二面角平面角是锐角余弦就取正值 (2二面角平面角是钝角余弦就取负值一进一出为相等 距离 的计算两异面直线间的距离 (1)直线a和直线b的公 垂线的方向向量n; (2)a上任意一点A,b 上任意一点B,构成向量 AB θ | | | | n n AB d ? =

利用空间向量解立体几何(完整版)

向量法解立体几何 引言 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系 线线垂直(共面与异面)?两线的方向向量垂直

线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点()111,,P x y z 与()222,,Q x y z 的 距离为PQ =u u u r 2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ u u u r 在法向量(),n A B =上的射影PQ n n ?u u u r =即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ u u u r , 计算平面α的法向量n , 计算PQ u u u r 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤: ① 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若

(完整版)用空间向量解立体几何问题方法归纳

用空间向量解立体几何题型与方法 平行垂直问题基础知识 直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量u =(a 3,b 3,c 3),v =(a 4,b 4,c 4) (1)线面平行:l ∥α?a ⊥u ?a ·u =0?a 1a 3+b 1b 3+c 1c 3=0 (2)线面垂直:l ⊥α?a ∥u ?a =k u ?a 1=ka 3,b 1=kb 3,c 1=kc 3 (3)面面平行:α∥β?u ∥v ?u =k v ?a 3=ka 4,b 3=kb 4,c 3=kc 4 (4)面面垂直:α⊥β?u ⊥v ?u ·v =0?a 3a 4+b 3b 4+c 3c 4=0 例1、如图所示,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2. (1)求证:EF ∥平面P AB ; (2)求证:平面P AD ⊥平面PDC . [证明] 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空 间直角坐标系如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ? ?? ??1 2,1,12, F ? ????0,1,12,EF u u u r =? ????-12,0,0,PB u u u r =(1,0,-1),PD u u u r =(0,2,-1),AP u u u r =(0,0,1),AD u u u r =(0,2,0),DC u u u r =(1,0,0),AB u u u r =(1,0,0). (1)因为EF u u u r =-12AB u u u r ,所以EF u u u r ∥AB u u u r ,即EF ∥AB . 又AB ?平面P AB ,EF ?平面P AB ,所以EF ∥平面P AB . (2)因为AP u u u r ·DC u u u r =(0,0,1)·(1,0,0)=0,AD u u u r ·DC u u u r =(0,2,0)·(1,0,0)=0, 所以AP u u u r ⊥DC u u u r ,AD u u u r ⊥DC u u u r ,即AP ⊥DC ,AD ⊥DC . 又AP ∩AD =A ,AP ?平面P AD ,AD ?平面P AD ,所以DC ⊥平面P AD .因为DC ?平面PDC , 所以平面P AD ⊥平面PDC .

立体几何常见证明方法

立体几何方法归纳小结 一、线线平行的证明方法 1、根据公理4,证明两直线都与第三条直线平行。 2、根据线面平行的性质定理,若直线a 平行于平面A ,过a 的平面B 与平面A 相交于b ,则 a//b 。 3、根据线面垂直的性质定理,若直线a 与直线b 都与平面A 垂直,则a//b 。 4、根据面面平行的性质定理,若平面A//平面B ,平面C 与平面A 和平面B 的交线分别为直线 a 与直线 b ,则a//b 。 5、由向量共线定理,若AB xCD ,且AB 、CD 不共线,则向量AB 所在的直线a 与向量cd 所在的直线b 平行,即a//b 。 二、线面平行的证明方法 1、根据线面平行的定义,证直线与平面没有公共点。 2、根据线面平行的判定定理,若平面 A 内存在一条直线b 与平面外的直线a 平行,则a//A 。 (用相似三角形或平行四边形) 3、根据平面与平面平行的性质定理,若两平面平行,则一个平面内的任一直线与另一个平面平行。 4、向量法,向量c 与平面A 法向量垂直,且向量c 所在直线c 不在平面内,则c//A 。 三、面面平行的证明方法 1、根据定义,若两平面没有公共点,则两平面平行。 2、根据两平面平行的判定定理,一个平面内有两相交直线与另一平面平行,则两平面平行。 或根据两平面平行的判定定理的推论,一平面内有两相交直线与另一平面内两相交直线平行,则两平面平行。 3、垂直同一直线的两平面平行。

4、平行同一平面的两平面平行。 5、向量法,证明两平面的法向量共线。 四、两直线垂直的证明方法 1、根据定义,证明两直线所成的角为90° 2、一直线垂直于两平行直线中的一条,也垂直于另一条. 3、一直线垂直于一个平面,则它垂直于平面内的所有直线. 4、根据三垂线定理及逆定理,若平面内的直线垂直于平面的一条斜线(或斜线在平面内的射影),则它垂直于斜线在平面内的射影(或平面的斜线). 5、向量法. 五、线面垂直的证明方法 1、根据定义,证明一直线与平面内的任一(所有)直线垂直,则直线垂直于平面. 2、根据判定定理,一直线垂直于平面内的两相交直线,则直线垂直于平面. 3、一直线垂直于两平行平面中的一个,也垂直于另一个. 4、两平行直线中的一条垂直于一个平面,另一条也垂直于这个平面. 5、根据两平面垂直的性质定理,两平面垂直,则一个平面内垂直于它们交线的直线垂直于另一个平面. 6、向量法,证明平面的法向量与表示该直线的向量共线. 六、面面垂直的证明方法 1、根据面面垂直的定义,两平面相交所成的二面角为直二面角,则两平面垂直。 2、根据面面垂直的判定定理,一平面经过另一平面的一条垂线,则两平面垂直。 3、一平面垂直于两平行平面中的一个,也垂直于另一个。 4、向量法,证明两平面的法向量垂直(即法向量的数量积为零)。

高中数学§3.2.2立体几何中的向量方法(4)及详解——向量法求线线角与线面角

§3.2立体几何中的向量方法(4) 向量法求线线角与线面角 一、学习目标 1.理解直线与平面所成角的概念. 2.掌握利用向量方法解决线线、线面 、面面的夹角的求法. 二、问题导学 问题1:什么叫异面直线所成的角?它的范围是什么?怎样用定义法求它的大小? 问题2:怎样通过向量的运算来求异面直线所成的角? 设l 1与l 2是两异面直线,a 、b 分别为l 1、l 2的方向向量,l 1、l 2所成的角为θ, 则〈a ,b 〉与θ ,cos θ= 。 问题3:用向量的数量积可以求异面直线所成的角,能否求线面角? 如图,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量, n 为平面α的法向量,φ为l 与α所成的角,θ=〈a ,n 〉, 则sin φ= 。 三、例题探究 例1.如图,M 、N 分别是棱长为1的正方体''''ABCD A B C D 的棱'BB 、''B C 的中点.求异面直线MN 与'CD 所成的角. 变式:在直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC ,AB ⊥AC ,M 是CC 1的中点,Q 是BC 的中点,点P 在A 1B 1上,则直线PQ 与直线AM 所成的角等于 ( ) A .30° B .45° C .60° D .90° 班别: _____________ 学号: _____________ 姓名: ___________ 高二理科数学 导学案

例2.如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. (1)证明:AB ⊥A 1C ; (2)若平面ABC ⊥平面AA 1B 1B ,AB =CB =2, 求直线A 1C 与平面BB 1C 1C 所成角的正弦值. 变式:如图,在四棱锥P -ABCD 中,底面为直角梯形,AD ∥BC ,∠BAD =90°,P A ⊥底面ABCD ,且P A =AD =AB =2BC ,M 、N 分别为PC 、PB 的中点.求BD 与平面ADMN 所成的角θ. 四、练一练(时间:5分钟) 1. 1.若平面α的法向量为μ,直线l 的方向向量为v , 直线l 与平面α的夹角为θ,则下列关系式成立的是 ( ) A .cos θ=μ·v |μ||v| B .cos θ=|μ·v||μ||υ| C .sin θ=μ·v |μ||v| D .sin θ=|μ·v||μ||v| 2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=4 1 1B A , 则BE 1与DF 1所成角的余弦值是( ) A .1715 B .21 C .17 8 D .23 3.正三棱柱ABC —A 1B 1C 1的所有棱长相等,则AC 1与面BB 1C 1C 所成角的余弦值为( ) A . 5 4 B . 104 C . 52 D . 102 A B C D 1 E 1 F 1 A 1 B 1 C 1D

相关文档
相关文档 最新文档