文档库 最新最全的文档下载
当前位置:文档库 › 计算电磁学3-有限元法、里兹法、伽辽金法、矩量法

计算电磁学3-有限元法、里兹法、伽辽金法、矩量法

间断有限元方法

2016年夏季学期研究生课程考核 (读书报告、研究报告) 考核科目:间断有限元方法及其应用 学生所在院(系):理学院数学系 学生所在学科: 学生姓名: 学号 学生类别 考核结果阅卷人

1.引言 间断Galerkin(DG)方法兼有有限元与有限体积方法的特征。如同一般有限元方法那样,DG方法利用单元多项式空间作为近似解和检验函数空间,但是与传统的有限元方法不同,有限元函数空间基函数都是完全间断的分片多项式,各个单元之间的通信也需要像有限体积方法那样通过在单元边界上构造合适的数值流通量来实现。因此DG方法既保持了一般有限元方法和有限体积方法的优点,又克服了各自的不足。该方法可采用局部高阶插值的方法构造基函数,具有灵活处理边界条件以及可显式求解间断问题的能力,克服了一般有限元方法不适于间断问题的缺点,以及有限体积方法必须通过扩大模板进行重构来提高精度的不足。因此间断Galerkin(DG)方法的出现拓展了传统有限元方法的应用范围,改 善了人们对传统有限元方法的认识。 2.DG的基本概念 间断Galerkin方法最早由Reed和Hill在1973年为解决中子输运方程问题而提出。随后众多学者对间断有限元方法提出了改进和发展特别是90年代以来,以Cockbum和舒其望为代表提出了Runge-Kutta间断Galerkin(RKDG)方法,该方法结合TVD(TVD:Total Variation Diminishing) Runge-Kutta 时间离散方法和间断有限元求解一维双曲守恒律方程(组)以至于高维双曲守恒律方程(组),能够适合复杂计算区域和边界条件,可以精确的捕捉激波和接触间断。它不但在光滑区域可以保证高精度,而且在间断区域可以保持数值无振荡,分辨率高,可以证明收敛到熵解。这些优点使得RKDG成为计算流体力学流行的方法之一,并被广泛应用到气象学、海洋学、湍流、电磁学、石油勘探、水动力学等离子物理和图像处理等领域。 同样是在20世纪70年代,内惩罚(IP: Interior Penalty)类方法被独立地提出来求解摘圆和抛物方程。内惩罚方法后来也被归为间断Galerkin方法一种,本文记为内惩罚间断Galerkin(IPDG)方法。内惩罚间断有限元的发展与同时代求解双曲守恒律的间断有限元方法保持相对对立,该方法的侧重点在于选择合适的惩罚项保持格式的稳定性,而不在于如何构造数值流通量。基于DG方法求解双曲守恒律的巨大成功,许多学者考虑运用DG方法的思想求解扩散方程,但如果只是简单地将DG方法推广到扩散方程得到的数值格式并不准确。例如考虑一维热传导

计算电磁学作业_二)

计算电磁学课程作业(二) 1. 电磁场的线性系统(满足标量亥姆霍兹方程的系统)与一般电 子线性系统有何异同点? 2. 试阐述格林函数对工程电磁场计算和求解的意义。 3. 任何源函数都可很方便地表示为基本函数(一般为函数)的线 性组合。任何波函数都可很方便地表示为基本函数(各种谐函 数)的线性组合。利用电磁场线性系统的函数和格林函数, 对于矢量磁位的亥姆霍兹方程: ,其在自由空间的解为 试写出两个有关矢量磁位的结论。 4. 对于无源区,电场、磁场、矢量磁位、标量电位、矢量电 位、标量磁位以及德拜位、赫兹矢量位等波函数,在时 域均可以写成矢量达朗伯方程的形式: 或标量达朗伯方程的形式。 对于矢量达朗伯方程,也常常只对标量达朗伯方程进行讨论和求解。这是因为:一方面矢量方程可以通过分离变量法后看做各个坐标分量标量方程的叠加;另一方面不同的波函数(平面波、柱面波、球面波)之间可以相互转换表达或相互展开表示(通过广义傅里叶变换)。 试写出无源区标量达朗伯方程的一个通解形式及其推导过程,并阐述通解的物理含义。 5. 类似地,在无源区,频域中波函数的波动方程可以表达为标量 亥姆霍兹方程(谐方程): () 其解在为谐函数(正弦函数、余弦函数、指数函数或柱谐函数、 球谐函数)。 电磁波在无限空间传播与存在的是连续谱;而电磁波在有限空 间传播与存在的是分立谱。试分别写出无源区的标量亥姆霍兹方程在直

角坐标、柱坐标和球坐标下的的一般解(通解)形式。 以下题目需提交作业: 6. 当矢量位为 (1),; (2),; 时,分别推导由矢量位计算电磁场各直角坐标和圆柱坐标分量的关系式,并且讨论其电磁场特点。 7. 对于TEM 波(横电磁波),标量电位函数满足拉普拉斯方 程:,即在横街面上具有静电场的行为特征,这种特征给电磁场 的数值计算带来很大的方便,试证明之。 电场E和磁场H满足此关系吗? TE波(横电波)和TM 波(横磁波)的情况如何呢? 8. 电磁场中的标量格林函数满足亥姆霍兹方程: 对于无界空间,标量格林函数是关于源点球对称的,标量格林函数对应的亥姆霍兹方程可以变化为: 其中。其通解为:,试将通解代入上式求出。注意到一般边值问题的特解是将通解代入到边界条件(时域还需知道初始条件)中得到的,此问题的另外一个边界在无限远。能不能利用索莫菲辐射条件求出?为什么? 下题选做: 9. 试说明准静态场的概念,并分别推导磁准静态场和电准静态场的场波动方程及其通过矢量磁位求解的过程。

各种计算电磁学方法比较和仿真软件

各种计算电磁学方法比较和仿真软件 各种计算电磁学方法比较和仿真软件微波EDA 仿真软件与电磁场的数值算法密切相关,在介绍微波EDA 软件之前先简要的介绍一下微波电磁场理论的数值算法。所有的数值算法都是建立在Maxwell 方程组之上的,了解Maxwell 方程是学习电磁场数值算法的基础。计算电磁学中有众多不同的算法,如时域有限差分法(FDTD )、时域有限积分法(FITD )、有限元法(FE)、矩量法(MoM )、边界元法(BEM )、谱域法(SM)、传输线法(TLM )、模式匹配法(MM )、横向谐振法(TRM )、线方法(ML )和解析法等等。在频域,数值算法有:有限元法( FEM -- Finite Element Method)、矩量法(MoM -- Method of Moments ),差分法( FDM -- Finite Difference Methods ),边界元法( BEM --Boundary Element Method ),和传输线法 ( TLM -Transmission-Line-matrix Method )。在时域,数值算法有:时域有限差分法( FDTD - Finite Difference Time Domain ),和有限积分法( FIT - Finite Integration Technology )。这些方法中有解析法、半解析法和数值方法。数值方法中又分零阶、一阶、二阶和高阶方法。依照解析程度由低到高排列,依次是:时域有限差分法(FDTD )、传输线法(TLM )、时域有限积分法(FITD )、有限元法(FEM )、矩量法(MoM )、线方法(ML )、边界元法(BEM )、谱域法(SM )、模式匹配法

电磁学作业及解答

电磁学习题 1 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B 的大 小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对? 2 如题图所示,AB 、CD 为长直导线,C B 为圆心在O 点的一段圆弧形导线, 其半径为R .若通以电流I ,求O 点的磁感应强度. 图 3 在半径为R 的长直圆柱形导体内部,与轴线平行地挖成一半径为r 的长直圆柱形空腔,两轴间距离为a ,且a >r ,横截面如题9-17图所示.现在电流I 沿导体管流动,电流均匀分布在管的横截面上,而电流方向与管的轴线平行.求: (1)圆柱轴线上的磁感应强度的大小; (2)空心部分轴线上的磁感应强度的大小. 4 如图所示,长直电流1I 附近有一等腰直角三角形线框,通以电流2I ,二者 共面.求△ABC 的各边所受的磁力. 图 5 一正方形线圈,由细导线做成,边长为a ,共有N 匝,可以绕通过其相对两边中点的一个竖直轴自由转动.现在线圈中通有电流I ,并把线圈放在均匀的水平

外磁场B 中,线圈对其转轴的转动惯量为J .求线圈绕其平衡位置作微小振动时 的振动周期T . 6 电子在B =70×10-4 T 的匀强磁场中作圆周运动,圆周半径r =3.0cm .已知B 垂直于纸面向外,某时刻电子在A 点,速度v 向上,如图. (1) 试画出这电子运动的轨道; (2) 求这电子速度v 的大小; (3)求这电子的动能k E . 图 7 在霍耳效应实验中,一宽1.0cm ,长4.0cm ,厚1.0×10-3cm 的导体,沿长度 方向载有3.0A 的电流,当磁感应强度大小为B =1.5T 的磁场垂直地通过该导体时,产生1.0×10-5V 的横向电压.试求: (1) 载流子的漂移速度; (2) 每立方米的载流子数目. 8 如图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压 N M U U . 图 9 如图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场

计算电磁学

电磁学: 电磁学是研究电磁现象的规衛[]应用的物理学分支学科,起源于18世纪。广义的电磁学可以说是包含电学和磁学”但狭义来说是_ 门探讨电性与磁性交互关系的学科。主要硏究电磁波、电磁场以及有关电荷、带电物体的动力学等等。 计算电磁学: 内容简介: 本书在论述计算电磁学的产生背景、现状和发展趋势的基础上, 系统地介绍了电磁仿真中的有限差分法、人工神经网络在电磁建模中的应用,遗传算法在电磁优化中的应用等。 图书目录: 第一童绪论 1.1计算电磁学的产生背景 1.1.1高性能计算技术 1.1.2计算电磁学的重要性 1.1.3计算电磁学的硏究特点 1.2电磁场问题求解方法分类 1.2.1解析法 1.2.2数值法 1.2.3半解析数值法 13当前计算电磁学中的几种重要方法 13.1有限元法

1.3.2时域有限差分法 1.3.3矩量法 1.4电磁场工程专家系统 1.4.1复杂系统的电磁特性仿真 1.4.2面向CAD的复杂系统电磁特性建模1.4.3电磁场工程专家系统 第一篇电磁仿真中的有限差分法 第二童有限差分法 2.1差分运算的基本概念 2.2二维电磁场泊松方程的差分格式 2.2.1差分格式的建立 2.2.2不同介质分界面上边界条件的离散方法2.2.3第一类边界条件的处理 2.2.4第二类和第三类边界条件的处理 2.3差分方程组的求解 2.3.1差分方程组的特性 2.3.2差分方程组的解法 2.4工程应用举例 2.5标量时域有限差分法 2.5.1瞬态场标量波动方程 2.5.2稳定性分析 2.5.3网格色散误差

2.5.4举例 第三童时域有限差分法I——差分格式及解的稳定性3.1FDTD基本原理 3.1.1Yee的差分算法 3.1.2环路积分解释 3.2解的稳定性及数值色散 3.2.1解的稳定条件 3.2.2数值色散 3.3非均匀网格及共形网格 3.3.1渐变非均匀网格 3.3.2局部细网格 3.3.3共形网格 3.4三角形网格及平面型广义Yee网格 3.4.1三角形网格离散化 3.4.2数值解的稳定性 3.4.3平面型广义Yee网格 3.5半解析数值模型 3.5.1细导线问题 3.5.2增强细槽缝公式 3.5.3小孔耦合问题 3.5.4薄层介质问题 3.6良导体中的差分格式

电磁学计算题题库(附答案)

《电磁学》练习题(附答案) 1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求: (1) 在它们的连线上电场强度0=E ? 的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远? d 2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大? 3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度. 4. 一半径为R 的带电球体,其电荷体密度分布为 ρ =Ar (r ≤R ) , ρ =0 (r >R ) A 为一常量.试求球体内外的场强分布. 5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12 C 2 / N ·m 2 ) 6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0. 常量b =1000 N/(C ·m).试求通过该高斯面的电通量. 7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷 相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩. (2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功. 8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10 -12 C 2N -1m -2 ) 9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有 一静电场,场强为j i E ? ??300200+= .试求穿过各面的电通 量. 10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2 ·N -1 ·m -2 ) 11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分 布. 12. 如图所示,在电矩为p ? 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之 间距离)移到B 点,求此过程中电场力所作的功. 13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功. (1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ; (3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角). 14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. ( 41επ=9.00×109 Nm 2 /C 2 ) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2 ,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2 .试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2 ·N -1 ·m -2 ) 16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度. 17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB R ,试求圆心O 点的场强. E ? q L d q O x z y a a a a A B R ? Ⅰ Ⅱ Ⅲ d b a 45?c E ? σA σB A B O a θ0 q A R ∞ ∞ O

计算电磁学入门基础介绍

计算电磁学入门基础介绍 一. 计算电磁学的重要性 在现代科学研究中,“科学试验,理论分析,高性能计算”已经成为三种重要的研究手段。在电磁学领域中,经典电磁理论只能在11 种可分离变量坐标系中求解麦克斯韦方程组或者其退化形式,最后得到解析解。解析解的优点在于: ①可将解答表示为己知函数的显式,从而可计算出精确的数值结果; ②可以作为近似解和数值解的检验标准; ③在解析过程中和在解的显式中可以观察到问题的内在联系和各个参数对数值结果所起的作用。 这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。当遇到不规则形状或者任意形状边界问题时,则需要比较复杂的数学技巧,甚至无法求得解析解。20 世纪60 年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法也迅速发展起来,并在实际工程问题中得到了广泛地应用,形成了计算电磁学研究领域,已经成为现代电磁理论研究的主流。简而言之,计算电磁学是在电磁场与微波技术学科中发展起来的,建立在电磁场理论基础上,以高性能计算机技术为工具,运用计算数学方法,专门解决复杂电磁场与微波工程问题的应用科学。相对于经典电磁理论分析而言,应用计算电磁学来解决电磁学问题时受边界约束大为减少,可以解决各种类型的复杂问题。原则上来讲,从直流到光的宽广频率范围都属于该学科的研究范围。近几年来,电磁场工程在以电磁能量或信息的传输、转换过程为核心的强电与弱电领域中显示了重要作用。 二. 电磁问题的分析过程 电磁工程问题分析时所经历的一般过程为: 三. 计算电磁学的分类 (1) 时域方法与谱域方法 电磁学的数值计算方法可以分为时域方法(Time Domain或TD)和频域方法(Frequeney Domain或FD)两大类。 时域方法对Maxwell方程按时间步进后求解有关场量。最著名的时域方法是时域有限差分法(Finite Difference Time Domain或FDTD)。这种方法通常适用于求解在外界激励下场

Cahn-Hilliard方程的隐显BDF2方法

Cahn-Hilliard 方程的隐显BDF2方法 饶 婷, 王晚生 (长沙理工大学 数学与统计学院, 长沙 410114) 摘 要: Cahn-Hilliard 方程作为一类重要的四阶扩散方程已成为偏微分方程研究领域一个倍受关注的问题. 本文考虑带有Neumann 边界的Cahn-Hilliard 方程的隐显BDF2半离散格式和全离散格式, 并证明了该格式是质量守恒的. 关键词: Cahn-Hilliard 方程; 质量守恒; 隐显BDF2格式; 全离散 中图分类号: O241.8 文献标识码: A 文章编号: 1672-5298(2018)02-0009-03 IMEX-BDF2 Method for Cahn-Hilliard Equation RAO Ting, WANG Wansheng (School of Mathematics and Computational Science, Changsha University of Science and Technology, Changsha 410114, China) Abstract : The Cahn-Hilliard equation, as an important class of fourth-order diffusion equations, has become a major concern in the field of partial differential equations. In this paper, the Cahn-Hilliard equation with Neumann boundary is considered to be discretized by implicit-explicit BDF2 method. It is proved that the scheme preserves the property of mass conservation. Key words : Cahn-Hilliard equation; mass conservation; implicit-Explicit BDF2; full-discrete schemes Cahn-Hilliard 方程是一个描述两种金属物质混合时随温度变化发生亚稳相分离现象的四阶非线性抛物方程. 最初是由 Cahn 和Hilliard [1]于1958年在研究热力学中两种物质(如合金、聚合物等等)之间相互扩散现象时提出的. 后来用于描述生物种群竞争与排斥现象, 固体表面上微滴的扩散等许多扩散现象的研究中也提出了同样的数学模型. 近些年来, 越来越多的学者关注Chan-Hilliard 方程, 对Chan-Hilliard 方程的解的性质做了大量的研究工作, 获得了比较丰硕的成果. 例如, 在1996年Chen [12]等人得到了Chan-Hilliard 方程解的摄动性质; Carlen 和Bricmont [8,9]分别研究了Chan-Hilliard 方程解的稳定性质; Chen 和Zheng [10,11]等人在研究Chan-Hilliard 方程解的渐进性质方面做了大量的工作, 等等. 关于Chan-Hilliard 方程的数值解法方面的研究也越来越受到重视. 例如, Elliott 和Larsson [4]在1992 年考虑Cahn-Hilliard 方程的有限元方法, 并给出了有限元逼近的误差估计. 1998年, Chen 和Shen [5]提出Cahn-Hilliard 方程的谱方法格式, 并证明了该格式独有的高精度与数值稳定性. 2008年, He 和Liu [13]考虑 Cahn-Hilliard 方程的Galerkin 谱方法格式, 并证明了该格式的稳定性和收敛性. Feng 和Karakashian [15,16]等人在2007年提出采用局部间断Galerkin 方法(LDG)和全离散动态网格的间断Galerkin 方法研究Cahn-Hilliard 方程. 2016年, Wang 、Chen 和 Zhou [1721],采用混合有限元方法的后处理技术求解Cahn-Hilliard 方程, 且数值解继承了原有的质量守恒性质和能量递减性质, 最后还获得了相应的误差估计 以及负范数的误差估计等等. 本文在上述研究的基础上, 采用隐显BDF2方法研究Cahn-Hilliard 方程, 并讨论该格式是否保留了方程原有的质量守恒性质. 1问题和记号 首先考虑Cahn-Hilliard 模型方程: 收稿日期: 2018-03-24 基金项目: 国家自然科学基金项目(11771060, 11371074) 作者简介: 饶 婷(1994? ), 女, 湖南常德人, 硕士研究生. 主要研究方向: 微分方程数值解 通讯作者: 王晚生(1977? ), 男, 湖南株洲人, 教授. 主要研究方向: 微分方程数值解 第31卷 第2期 湖南理工学院学报(自然科学版) Vol.31No.2 2018年6月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Jun. 2018

电磁学复习计算题(附答案)

《电磁学》计算题(附答案) 1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求: (1) 在它们的连线上电场强度0=E ? 的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远? d +q 2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大? 3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度. 4. 一半径为R 的带电球体,其电荷体密度分布为 =Ar (r ≤R ) , =0 (r >R ) A 为一常量.试求球体内外的场强分布. 5. 若电荷以相同的面密度均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度的值. (0 =8.85× 10-12C 2 / N ·m 2 ) 6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位 置.已知空间的场强分布为: E x =bx , E y =0 , E z =0. 常量b =1000 N/(C ·m).试求通过该高斯面的电通量. 7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩. (2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功. 8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量 =8.85×10 -12 C 2N -1m -2 ) 9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在 此区域有一静电场,场强为j i E ? ??300200+= .试求穿过各面的电通量. E ? q L d q O x z y a a a a

计算电磁学结课论文

《计算电磁学》学习心得 姓名:桑dog 学号: 班级: 联系方式:

前言 计算电磁学是科技的重要领域它的研究涉及到应用计算机求解电磁方程它的重要性基于麦克斯韦方程——唯一的可以描述小到亚原子大到天体尺度的所有物理现象的方程, 。而且, 麦克斯韦方程式对于结果拥有很强的预测能力: 对于一个复杂问题的麦克斯韦方程的解通常可以准确的预知实验结果。因此, 麦克斯韦方程的解对于提高我们对复杂系统之物理现象的洞察力和设计复杂系统的能力均有极大帮助所以, 成功求解麦克斯韦方程式拥有广泛的应用前景: 例如纳米技术, 电脑微电子电路, 电脑芯片设计, 光学, 纳米光学, 微波工程, 遥感, 射电天文学, 生物医学工程, 逆散射和成象等等。 这篇文章的安排如下:第一章介绍了计算电磁学的重要意义以及发展状况。第二章介绍了计算电磁学中解决问题的方法分类。第三章对主要的数值方法进行了简介。第四章展望了计算电磁学的发展趋势。

第1章计算电磁学的重要性 在现代科学研究中,“科学试验,理论分析,高性能计算”已经成为三种重要的研究手段[1]。在电磁学领域中,经典电磁理论只能在11 种可分离变量坐标系中求解麦克斯韦方程组或者其退化形式,最后得到解析解。解析解的优点在于: ●可将解答表示为己知函数的显式,从而可计算出精确的数值结果; ●可以作为近似解和数值解的检验标准; ●在解析过程中和在解的显式中可以观察到问题的内在联系和各个参数对数值 结果所起的作用。 这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题[2]。当遇到不规则形状或者任意形状边界问题时,则需要比较复杂的数学技巧,甚至无法求得解析解。20 世纪60 年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法也迅速发展起来,并在实际工程问题中得到了广泛地应用,形成了计算电磁学研究领域,已经成为现代电磁理论研究的主流。简而言之,计算电磁学是在电磁场与微波技术学科中发展起来的,建立在电磁场理论基础上,以高性能计算机技术为工具,运用计算数学方法,专门解决复杂电磁场与微波工程问题的应用科学。相对于经典电磁理论分析而言,应用计算电磁学来解决电磁学问题时受边界约束大为减少,可以解决各种类型的复杂问题。原则上来讲,从直流到光的宽广频率范围都属于该学科的研究范围。近几年来,电磁场工程在以电磁能量或信息的传输、转换过程为核心的强电与弱电领域中显示了重要作用。[3]

有限元法分析过程

有限元法分析过程 有限元法分析过程大体可分为:前处理、分析、后处理三大步骤。 对实际的连续体经过离散化后就建立了有限元分析模型,这一过程是有限元的前处理过程。在这一阶段,要构造计算对象的几何模型,要划分有限元网格,要生成有限元分析的输入数据,这一步是有限元分析的关键。 有限元分析过程主要包括:单元分析、整体分析、载荷移置、引入约束、求解约束方程等过程。这一过程是有限元分析的核心部分,有限元理论主要体现在这一过程中。 有限元法包括三类:有限元位移法、有限元力法、有限元混合法。 在有限元位移法中,选节点位移作为基本未知量; 在有限元力法中,选节点力作为未知量; 在有限元混合法中,选一部分基本未知量为节点位移,另一部分基本未知量为节点力。 有限元位移法计算过程的系统性、规律性强,特别适宜于编程求解。一般除板壳问题的有限元应用一定量的混合法外,其余全部采用有限元位移法。因此,一般不做特别声明,有限元法指的是有限元位移法。 有限元分析的后处理主要包括对计算结果的加工处理、编辑组织和图形表示三个方面。它可以把有限元分析得到的数据,进一步转换为设计人员直接需要的信息,如应力分布状态、结构变形状态等,并且绘成直观的图形,从而帮助设计人员迅速的评价和校核设计方案。 附:FELAC 2.0软件简介 FELAC 2.0采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的并行有限元计算C程序。 FELAC 2.0的目标是通过输入微分方程表达式和算法之后,就可以得到所有有限元计算的程序代码,包含串行程序和并行程序。该系统采用一种语言(有限元语言)和四种技术(对象技术、组件技术、公式库技术生成器技术)开发而成。并且基于FELAC 1.0的用户界面,新版本扩充了工作目录中右键编译功能、命令终端输入功能,并且丰

电磁学第二版答案(DOC)

第一章静电场 §1.1 静电的基本现象和基本规律 思考题: 1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。你所用的方法是否要求两球大小相等? 答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。本方法不要求两球大小相等。因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。 2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。试解释之。答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。但接触棒后往往带上同种电荷而相互排斥。 3、用手握铜棒与丝绸摩擦,铜棒不能带电。戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。为什么两种情况有不同结果? 答:人体是导体。当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。 7、两个点电荷带电2q 和q,相距l,第三个点电荷放在何处所受的合力为零? 解:设所放的点电荷电量为Q。若Q与q同号,则三者互相排斥,不可能达到平衡;故Q 只能与q异号。当Q在2q和q联线之外的任何地方,也不可能达到平衡。由此可知,只有Q与q异号,且处于两点荷之间的联线上,才有可能达到平衡。设Q到q的距离为x. 8、三个相同的点电荷放置在等边三角形的各顶点上。在此三角形的中心应放置怎样的电荷,才能使作用在每一点电荷上的合力为零? 解:设所放电荷为Q,Q应与顶点上电荷q异号。中心Q所受合力总是为零,只需考虑q 受力平衡。 平衡与三角形边长无关,是不稳定平衡。 9、电量都是Q的两个点电荷相距为l,联线中点为O;有另一点电荷q,在联线的中垂面上距O为r处。(1)求q所受的力;(2)若q开始时是静止的,然后让它自己运动,它将如何运动?分别就q与Q同号和异号两种情况加以讨论。 解: (1) (2)q与Q同号时,F背离O点,q将沿两Q的中垂线加速地趋向无穷远处。 q与Q异号时,F指向O点,q将以O为中心作周期性振动,振幅为r . <讨论>:设q 是质量为m的粒子,粒子的加速度为 因此,在r<

有限元法分析

有限元法的分析 从百度等搜索到的资料以及老师在课上对有限元法的相关介绍我们可以得知,有限元法是基于近代计算机的快速发展而发展起来的一种近似数值方法,用来解决力学、数学中带有特定边界条件的偏微分方程问题。而这些偏微分方程是工程实践中常见的固体力学和流体力学问题的基础。有限元法的核心思想是“数值近似”和“离散化”,所以它在历史上的发展也是围绕着这两个点进行的。 有限元法用于解决工程问题的微分方程的近似解,主要考虑怎么分割单元。比如,可以分割为长方形单元、三角形单元等形状的单元,不同形状的分割的出来的结果也是不尽相同的,边界条件也会影响有限元法的解。有限元法是将问题先分解,再进行合并,网格划分是分解,从单刚到总刚是合并,我们将这些复杂的处理量交给计算机处理,把一个困难的问题转化成一个个小的简单的问题交给计算机处理,最终得到问题的解,因此,有限元法可以说是将一个大问题转化为若干个简单问题的叠加的方法。

有限元法再物理原理上的理解可以概括为,“求解使系统能量泛函数极小值的系统状态”。这个角度是根据划分的网格和网格内部的特定点建立相应函数。在数学原理上,有限元法是求解满足特定微分方程的数值解。这个角度上可以看作是加权残值的一种形式,将甲醛积分时的权函数与拟合解函数的试函数取为相同的函数。 有限元法的基本思路可以归结为:将连续系统分割成有限个分区或单元,对每个单元提出一个近似解,再将所有单元按标准方法加以组合,从而形成原有系统的一个数值近似系统,也就是形成相应的数值模型。 有限元法的计算步骤归纳为以下3个基本步骤:网格划分、单元分析、整体分析。有限元法的基本做法是用有限个单元体的集合来代替原有的连续体。因此首先要对弹性体进行必要的简化,再将弹性体划分为有限个单元组成的离散体。单元之间通过节点相连接。由单元、节点、节点连线构成的集合称为网格。 通常把三维实体划分成四面体或六面体单元的实体网格,平面问题划分成三角形或四边形单元的面网格,如图

电磁学练习题积累(含部分答案)

一.选择题(本大题15小题,每题2分) 第一章、第二章 1.在静电场中,下列说法中哪一个是正确的 [ ] (A)带正电荷的导体,其电位一定是正值 (B)等位面上各点的场强一定相等 (C)场强为零处,电位也一定为零 (D)场强相等处,电位梯度矢量一定相等 2.在真空中的静电场中,作一封闭的曲面,则下列结论中正确的是[] (A)通过封闭曲面的电通量仅是面内电荷提供的 (B) 封闭曲面上各点的场强是面内电荷激发的 (C) 应用高斯定理求得的场强仅是由面内电荷所激发的 (D) 应用高斯定理求得的场强仅是由面外电荷所激发的 3.关于静电场下列说法中正确的是 [ ] (A)电场和试探电荷同时存在和消失 (B)由E=F/q知道,电场强度与试探电荷成反比 (C)电场强度的存在与试探电荷无关 (D)电场是试探电荷和场源电荷共同产生的 4.下列几个说法中正确的是: [ ] (A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向 (B)在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同 (C)场强方向可由E=F/q定出,其中q为试验电荷的电量,q可正、可负, F为试验电荷所受的电场力 (D)以上说法全不对。 5.一平行板电容器中充满相对介电常数为的各向同性均匀电介质。已知介 质两表面上极化电荷面密度为,则极化电荷在电容器中产生的电 场强度的大小为 [ ]

(A) 0εσ' (B) 02εσ' (C) 0εεσ' (D) ε σ' 6. 在平板电容器中充满各向同性的均匀电介质,当电容器充电后,介质中 D 、 E 、P 三矢量的方向将是 [ ] (A) D 与E 方向一致,与P 方向相反 (B) D 与E 方向相反,与P 方向一致 (C) D 、E 、P 三者方向相同 (D) E 与P 方向一致,与D 方向相反 7. 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分 布,如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: [ ] (A) 球壳内、外场强分布均无变化 (B) 球壳内场强分布改变,球壳外的不变 (C) 球壳外场强分布改变,球壳内的不变 (D) 球壳内、外场强分布均改变 8. 一电场强度为E 的均匀电场,E 的方向与x 轴正向平行,如图所示,则通过 图中一半径为R 的半球面的电场强度通量为 [ ] (A) 2R E π;(B) 21 2 R E π; (C) 22R E π;(D ) 0。 9. 在静电场中,电力线为均匀分布的平行 直线的区域内,在电力线方向上任意两点的电场强度E 和电势U 相比较 [ ] (A) E 相同,U 不同 (B) E 不同,U 相同 (C) E 不同,U 不同 (D) E 相同,U 相同

计算电磁学

计算电磁学 计算电磁学是指对一定物质和环境中的电磁场相互作用的建模 过程,通常包括麦克斯韦方程计算上的有效近似。计算电磁学被用来计算天线性能,电磁兼容,雷达散射截面和非自由空间的电波传播等问题。 计算电磁学的主要思想有,基于积分方程的方法,基于微分(差分)方程的方法,及其他模拟方法。 1.基于积分方程的方法 1.1 离散偶极子近似(discrete dipole approximation,DDA) DDA是一种计算电磁波在任意几何形状物体上散射和吸收的方法,其表达式基于麦克斯韦方程的积分形式。DDA用有限阵列的可极化点来近似连续形式的物体。每个点通过对局部电场的响应获得对应的偶极子矩量,然后这些偶极子通过各自的电场相互作用。因此,DDA 有时也被认为是耦合偶极子近似。这种线性方程的计算一般采用共轭梯度迭代法。由于离散矩阵的对称性,就可能在迭代中使用FFT计算矩阵的向量乘法。 1.2 矩量法(Method of Moments,MoM ),边界元法(Boundary Element Method,BEM ) MoM和BEM是求解积分形式(边界积分形式)的线性偏微分方程的数值计算方法,已被应用于如流体力学,声学,电磁学等诸多科技领域。自从上世纪八十年代以来,该方法越来越流行。由于只计算边界值,而不是方程定义的整个空间的数值,该方法是计算小表面(体

积)问题的有效办法。从概念上讲,它们在建模后的表面建立网格。然而对于很多问题,此方法的效率较基于体积离散的方法(FEM,FDTD)低很多。原因是,稠密矩阵的生成将意味着存储需求和计算时间会以矩阵维数的平方律增长。相反的,有限元矩阵的存储需求和计算时间只会按维数的大小线性增长。即使可以采用矩阵压缩技术加以改善,计算成功率和因此增加的计算复杂性仍强烈依赖问题的本质。 BEM可用在能计算出格林函数的场合,如在线性均匀媒质中的场。为了能使用BEM,需要对问题有很多限制,使用上不方便。 以下是运用MoM的计算程序:Vector Fields Ltd Concerto、CST MICROWAVE STUDIO、Numerical Electromagnetic Code (NEC)、Sonnet Lite、FEKO 1.3 快速多极子法(Fast Multipole Method,FMM ) FMM是一种可以替代MoM的电磁计算方法,其效率比MoM的计算效率更高,也更准确,而且对内存和处理运行时间的要求比MoM小很多。FMM基于多极子展开技术,并首先被Greenyard和Rokhlin提出。 2.基于微分(差分)方程的方法 2.1 时域有限差分(FDTD) FDTD是计算电磁学中广泛应用的一种方法,很容易理解和软件实现。由于它是时域方法,求出的解将涵盖很宽的频率范围。 FDTD属于一类基于网格的时域差分数值建模方法。麦克斯韦方程被改写成中心差分方程,并在软件中离散实现。方程的求解采用蛙跳

伽辽金法求简支平板的屈曲载荷

This program calculates the buckling load for a simply supported plate using the Galerkin method. The region considered for the plate in this case is, x=0, x=1, and y=0, y=1 (* Definition of trial function which satisfies the given boundary conditions. The least order defined for this case.*) order=8; poly[n_]: Sum [a[(i+j) (i+j+1) / 2+i+1] x^i y^ j, {i, 0,n},{j, 0,n - i}] (*Generating the trial function using the above function definition*) poly[order] (*Applying the boundary conditions *) eq1 =CoefficientList[poly[order] / . x?>0 , y] eq2 =CoefficientList[poly[order] / . x?>1 , y] eq3 =CoefficientList[poly[order] / . y?>0 , x] eq4 =CoefficientList[poly[order] / . y?>1 , x] 63 eq5 =CoefficientList[D[poly[order] , {x, 2}] +v( D[poly[order],{y, 2}] ) / . x?>0 , y] eq6 =CoefficientList[D[poly[order] ,{x, 2}] +v( D[poly[order],{y, 2}] ) / . x?>1 , y] eq7 =CoefficientList[D[poly[order] ,{y, 2}] +v( D[poly[order],{x, 2}] ) / . y?>0 , x] eq8 =CoefficientList[D[poly[order] ,{y, 2}] +_v( D[poly[order],{x, 2}] ) / . y?>1 , x] (*Flatten command used for grouping all the eight equations together *) Eq = Flatten[ { eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8} ] (* Tabulating all the eight equations using the Table command *) Equn = Table[ Eq[ [ i ]] == 0, {i ,1, Length[Eq] } ] (* Solving all the eight equations and generating the coefficients *) sol = Solve[ Equn, Table[a[i], {i, 1, 60} ]][[1]] [ [ 1] ]是指第一个解,变量是a[i],用Table列出每一个变量。Equn里每一行都有a[i]的系数,i最大为45,所以Table里i从1到至少45。 (* Substituting the values of coefficients back into the equations *) poly1 = poly[order] / . sol 方程的解的形式为sol,将计算结果替换原方程未知数 {a[1]→0,a[2]→0,a[3]→0,……} 上式中是将已经求出来的a[i]的解替换原来变量。解的形式为a[1]→0等。 (* Simplifying the equation by taking out common terms *)

相关文档