文档库 最新最全的文档下载
当前位置:文档库 › 线性代数期末考题1

线性代数期末考题1

线性代数期末考题1
线性代数期末考题1

西南财经大学会计专升本科2003级

《线性代数》课程期末考试题1

专业 学号 姓名 成 绩 (分)

试 题 全 文

一、填空题(请将正确答案直接填在横线上。每小题2分,共20分): 1. 排列36215784 的逆序数是 ,是 排列。

2.行列式5

1

323

1

412

--的代数余子式31A = , 23A = 。

3. 设矩阵???

?

??=d c b a A ,当满足__________时,A 是可逆阵,其逆阵为___ _______。 4. 分块矩阵??

??

??00

B A ,其中A ,B 都是可逆方阵,则1

00

-??

?

???B

A = 。 5. n 阶方阵A 满足032

=--E A A ,则=-1

A 。

6.设A 是一个n 阶方阵,则A 非奇异的充分必要条件是R (A )=__________。

7.向量)1,2,2,3()4,2,2,1(-==βα,,则α+β=____ __,2α-3β=___ _______。 8.单独一个非零向量必线性__________。

9.设AX = O 是有6个方程,5个未知数的齐次线性方程组,其系数矩阵A 的秩为2,则方程组AX = O 有____ _____组解,其基础解系含_ ________个解向量。

10.若2是可逆方阵A 的特征值,则___ ___是2

A 的特征值, __ ___ 是1

-A 的特征值。

二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,并将其号码填在括号内。每小题2分,共10分):

1.设行列式121213101

223,010,,31510D D D D λλλ

-==-=-若则λ的取值为 ( )。

① 0, 1 ② 0, 2 ③ 1, ?1

④ 2, ?1

2. 设A , B 为n 阶方阵,A ≠O , 且AB = O , 则( )。

① BA = O ② ∣B ∣= 0或∣A ∣= 0 ③ B = O ④(A ?B )2 = A 2 + B 2

3. 设有4维向量组 α1 , …, α6,则( )。

① R (α1 , …, α6) = 4

② R (α1 , …, α6) = 2 ③ α1 , α2 , α3 , α4必然线性无关

④ α1 , …, α6中至少有2个向量能由其余向量线性表示 4. 当 ( ) 时, ()

0a A b c =是正交阵。

① a = 1, b = 0, c = -1 ② a = b = c = 1 ③ a = 1, b = 2, c = 3

④ a = b = 1, c = 0

5. 设n 阶方阵A 满足A E +=0,则A 必有一个特征值为( )。

① 1 ② -1 ③ 0 ④ 2

三、计算题( 每小题8分,共64分):

1. 计算4阶行列式

2

132

65119231

1021-。

2. 设矩阵 111100210,210104021A B ????

? ?=-= ? ?

????

.求: AB BA -。

3. 设矩阵方程A+B = AB ,且????

?

?????-=110210003B ,求矩阵A 。

4. 设向量组 123411231111, , , 133542563157αααα????????

? ? ? ?- ? ? ? ?==== ? ? ? ?- ? ? ? ?????????

求该向量组的秩, 并确定一个极大无关组, 将其余向量用该极大线性无关组线性表出。

1231231231235. (,2,10),(2,1,5),(1,1,4),(1,,),, (1) ,,? (2) ,,?

(3) ,,, ?

T T T T a b c a b c αααββαααβαααβααα==-=-=设向量组,试 问:当满足什么条件时,

可由线性表示,且表示唯一不能由线性表示可由线性表示但表示不唯一

6. 设1231100,1,1101ααα??????

??????===??????????????????

为R 3的一组基, 将其化为标准正交基。

7. λ为何值时,线性方程组

λx 1 + x 2 + x 3 = λ?3 x 1 +λx 2 + x 3 = ?2 x 1 + x 2 +λx 3 = ?2

有唯一解, 无解和有无穷多解? 当方程组有无穷多解时求其通解。

8. 设100010021A ?? ?

= ? ???

,求A 的特征值及对应的特征向量。

四、证明题(6分)

设方阵A 满足等式 2

A + A - 7 E = 0 .试证明方阵A 、A + 3 E 、 A - 2 E 均可逆。

《线性代数》课程考试题

参 考 解 答

一、填空题(请将正确答案直接填在横线上。每小题2分,共20分): 1. 排列36215784 的逆序数是 ,是 排列。(6, 偶)

2.行列式5

1

323

1

412

--的代数余子式312314

21

,3

2

31

A A -=

=

-.

3. 设矩阵?

??

???=d c b a A ,当满足_ad bc ≠_时,A 是可逆阵,其逆阵为?

?

??

?

?

??------bc ad a bc ad c bc ad b bc ad d 。 4. 分块矩阵??

??

??00

B A ,其中A ,B 都是可逆方阵,则1

00

-????

??B A =??

?

???--00

1

1A

B 。 5. n 阶方阵A 满足032

=--E A A ,则E A A 31

-=-。

6.设A 是一个n 阶方阵,则A 非奇异的充分必要条件是R (A )=__n ________。 7.向量)1,2,2,3()4,2,2,1(-==βα,,则2α-3β=__(-7,-2,10,5)________。 8.单独一个非零向量必线性____无关______.

9.设AX = O 是有6个方程,5个未知数的齐次线性方程组,其系数矩阵A 的秩为2,则方程组AX = O 有____无穷多______组解,其基础解系含_5-2=3_________个解向量。

10.若2是可逆方阵A 的特征值,则___4___是2

A 的特征值, ____1/2____是1

-A 的特征值。 二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,并将其号码填在括号内。每小题2分,共10分):

1.设行列式121213101

223,010,,31510D D D D λλλ

-==-=-若则λ的取值为 ( ③ )。

① 0, 1 ② 0, 2 ③ 1, ?1

④ 2, ?1

2. 设A , B 为n 阶方阵,A ≠O , 且AB = O , 则( ② )。

① BA = O ② ∣B ∣= 0或∣A ∣= 0 ③ B = O ④ (A ?B )2 = A 2 + B 2 3. 设有4维向量组 α1 , …, α6,则( ④ )。

① R (α1 , …, α6) = 4 ② R (α1 , …, α6) = 2

③ α1 , α2 , α3 , α4必然线性无关

④ α1 , …, α6中至少有2个向量能由其余向量线性表示 4. 当 ( ① ) 时, ()

0a A b c =是正交阵。

① a = 1, b = 0, c = -1, ② a = b = c = 1, ③ a = 1, b = 2, c = 3,

④ a = b = 1, c = 0

5. 设n 阶方阵A 满足A E +=0,则A 必有一个特征值为( ④ )。

① 1 ② -1 ③ 0 ④ 2 三、计算题( 每小题8分,共64分):

1. 计算4阶行列式

2

13265119

231

1021

-。 解:

4343

00017100821010218300171008210102101

1

0753082101021=---=--=- 2. 设矩阵 111100210,210104021A B ????

? ?=-= ? ?????

.求: AB BA -。

解:

11110010

01112

1021021

021*********

11043311112

20 0

104124

22 121521440AB BA ????????

???

???-=--- ??? ???

??? ?????????????????

? ? ?

=--=--- ? ? ? ? ? ?--??????

3. 设矩阵方程A+B = AB ,且????

?

?????-=110210003B ,求矩阵A 。 解:1

)(-)(B E B A B B E A B AB A AB B A --=?-=-?-=-?=+

????

?

??=???????

???--??????????--=--=?????

?

?--→????? ??--=-10

11000001000011021000300

1

00100010

00

001

100010010200001002)(2123

2

1

2

11

21

21-)(-B E B A E B E

4. 设向量组 123411231111, , , 133542563157αααα???????? ? ? ? ?

- ? ? ? ?==== ? ? ? ?- ? ? ? ?????????

求该向量组的秩, 并确定一个极大无关组, 将其余向量用该极大线性无关组线性表出. 解:

()12341

12311231

11102121

3350212425

60

63631570

2121123130102

120212 00

000000000000

00000

00000αααα????

? ?

---- ? ? ? ?

=→ ? ?

---- ? ? ? ?---????

--????

?

? ? ? ? ?→→

?

? ? ? ? ??

???

13,αα∴是一极大线性无关组. 21341332,2αααααα∴=-+-+=

1231231231235. (,2,10),(2,1,5),(1,1,4),(1,,),, (1) ,,? (2) ,,?

(3) ,,, ?

T T T T a b c a b c αααββαααβαααβααα==-=-=设向量组,试 问:当满足什么条件时,

可由线性表示,且表示唯一不能由线性表示可由线性表示但表示不唯一

解:

112233123123,211 211105421

211 4

1054

(1)4,,(2)40,k k k a k k b k c a A a a A a A αααββααα++=--??????

??????=??????

?????

???????--==--≠-≠=-=设由已知得线性方程组其系数行列式为当时,0,方程组有唯一解,可由线性表示,且表达式唯一.

当时,对方程组的增广矩阵作初等行变换,

1231234211210

12110012110540003131,()(),,,(3)4,31()()23,,,b A b b c b c b c R A R A a b c R A R A βαααβααα-----???? ? ?

=→+ ? ?

? ?--????

-≠≠=--===<有 若则方程组无解,则不能由线性表示.

当且时, 方程组有无穷多解,则可由线性表示,但其表达式不唯一.

6. 设1231100,1,1101ααα??????

??????===??????????????????

为R 3的一组基, 将其化为标准正交基。

解:(1)利用施密持正交化方法将其正交化

211122111

313233121122

11111/210,101 21011/2011/22/311/21002/323/2111/22/3,T

T T T

T T αββαβαβββαβαββαβββββββ????????????????===-=-=????????????????-????????

-????????????????=--=--=????????????????-????????即23,ββ是的正交向量组.

(2) 将123,,βββ标准化

12 6/2,

3,

βββ

3121231231/0, 2, 1/βββηηηβββ???-??

???∴======??????????-???????

7. λ为何值时,线性方程组

λx 1 + x 2 + x 3 = λ?3 x 1 +λx 2 + x 3 = ?2 x 1 + x 2 +λx 3 = ?2

有唯一解, 无解和有无穷多解? 当方程组有无穷多解时求其通解。 解:

21131121

12()= 112112011011211301133112 011000(2)(1)3(1)A B λλλλλλλλ

λλλλλλλλλλλλ---??????

? ?

?-→-→-- ? ? ? ? ? ?-----?????

?

-?? ?→-- ?

?+--??

① 当λ≠1且λ≠-2时,方程组有唯一解;当λ= -2且λ≠1时方程组无解

③ 当λ=1时,有无穷多组解,通解为12211010001X c c ---??????

? ? ?

=++ ? ? ? ? ? ???????

8. 设100010021A ??

?

= ? ???

,求A 的特征值及对应的特征向量。

解:31

00

01

0(1)00

2

1

E A λλλλλ--=

-=-=--

特征值λ1=λ2=λ3=1. 对于λ1=1,

1000000020E A λ?? ?-= ? ?-??, 特征向量为100001k l ????

? ?

+ ? ? ? ?????

四、证明题(6分)

设方阵A 满足等式 2

A + A - 7 E = 0 .试证明方阵A 、A + 3 E 、 A - 2 E 均可逆。

证明:由题设 2

A + A = 7 E , 从而 A

71(A + E )= E ,所以A 可逆且,1

-A = 7

1(A + E ) 又,由题设有2

A + A - 6 E = E ,从而(A + 3 E )(A - 2 E )= E , 所以A + 3 E 、A - 2 E 均可逆,且互为逆阵.

线性代数期末试题及答案

工程学院2011年度(线性代数)期末考试试卷样卷 一、填空题(每小题2分,共20分) 1.如果行列式233 32 31 232221 131211 =a a a a a a a a a ,则=---------33 32 31 232221 13 1211222222222a a a a a a a a a 。 2.设2 3 2 6219321862 131-= D ,则=+++42322212A A A A 。 3.设1 ,,4321,0121-=??? ? ??=???? ??=A E ABC C B 则且有= 。 4.设齐次线性方程组??? ?? ??=????? ??????? ??000111111321x x x a a a 的基础解系含有2个解向量,则 =a 。 、B 均为5阶矩阵,2,2 1 == B A ,则=--1A B T 。 6.设T )1,2,1(-=α,设T A αα=,则=6A 。 7.设A 为n 阶可逆矩阵,*A 为A 的伴随矩阵,若λ是矩阵A 的一个特征值,则*A 的一个特征值可表示为 。 8.若31212322 212232x x x tx x x x f -+++=为正定二次型,则t 的范围是 。

9.设向量T T )1,2,2,1(,)2,3,1,2(-=β=α,则α与β的夹角=θ 。 10. 若3阶矩阵A 的特征值分别为1,2,3,则=+E A 。

二、单项选择(每小题2分,共10分) 1.若齐次线性方程组??? ??=λ++=+λ+=++λ0 00321 321321x x x x x x x x x 有非零解,则=λ( ) A .1或2 B . -1或-2 C .1或-2 D .-1或2. 2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为 1,1,2,3-,则=A ( ) A .5 B .-5 C .-3 D .3 3.设A 、B 均为n 阶矩阵,满足O AB =,则必有( ) A .0=+ B A B .))B r A r ((= C .O A =或O B = D .0=A 或0=B 4. 设21β,β是非齐次线性方程组b X A =的两个解向量,则下列向量中仍为该方程组解的是 ( ) A .21+ββ B . ()21235 1 ββ+ C .()21221ββ+ D .21ββ- 5. 若二次型3231212 3222166255x x x x x x kx x x f -+-++=的秩为2,则=k ( ) A . 1 B .2 C . 3 D . 4 三、计算题 (每题9分,共63分) 1.计算n 阶行列式a b b b a b b b a D n Λ ΛΛΛΛΛΛ=

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

线性代数B复习题

线性代数B 复习资料 (一)单项选择题 1.设A ,B 为n 阶方阵,且()E AB =2 ,则下列各式中可能不成立的是( A ) (A )1-=B A (B)1-=B ABA (C)1-=A BAB (D)E BA =2 )( 2.若由AB=AC 必能推出B=C (A ,B ,C 均为n 阶矩阵)则A 必须满足( C ) (A)A ≠O (B)A=O (C )0≠A (D) 0≠AB 3.A 为n 阶方阵,若存在n 阶方阵B ,使AB=BA=A ,则( D ) (A) B 为单位矩阵 (B) B 为零方阵 (C) A B =-1 (D ) 不一定 4.设A 为n ×n 阶矩阵,如果r(A)

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。每小题 5 分,共 25 分) 1 3 1 1.若0 5 x 0 ,则__________。 1 2 2 x1 x2 x3 0 2.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。 x1x2x30 3.已知矩阵 A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。 4.已知矩阵A 为 3 3的矩阵,且| A| 3,则| 2A|。 5.n阶方阵A满足A23A E 0 ,则A1。 二、选择题(每小题 5 分,共 25 分) 6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?() A. 4 0 B. 4 4 C. 0 t 4 4 1 t 5 t D. t 2 5 5 5 5 1 4 2 1 2 3 7.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值() 0 4 3 0 0 5 A.3 B.-2 C.5 D.-5 8 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是() A. A0 B. A 1 0 C.r (A) n D.A 的行向量组线性相关 9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为() 1

x y 2 z 4 A. 3 1 2 x y 2 z 4 C. 3 1 2 x y 2 z 4 B. 3 2 2 x y 2 z 4 D. 3 2 2 10 3 1 .已知矩阵 A , 其特征值为( ) 5 1 A. 1 2, 2 4 B. C. 1 2, 2 4 D. 三、解答题 (每小题 10 分,共 50 分) 1 1 2, 2, 2 2 4 4 1 1 0 0 2 1 3 4 0 2 1 3 0 1 1 0 11.设B , C 0 2 1 且 矩 阵 满足关系式 0 0 1 1 0 0 1 0 0 0 2 T X (C B) E ,求 。 a 1 1 2 2 12. 问 a 取何值时,下列向量组线性相关? 1 1 1 , 2 a , 3 。 2 1 2 1 a 2 2 x 1 x 2 x 3 3 13. 为何值时,线性方程组 x 1 x 2 x 3 2 有唯一解,无解和有无穷多解?当方 x 1 x 2 x 3 2 程组有无穷多解时求其通解。 1 2 1 3 14.设 1 4 , 2 9 , 3 0 , 4 10 . 求此向量组的秩和一个极大无关 1 1 3 7 0 3 1 7 组,并将其余向量用该极大无关组线性表示。 15. 证明:若 A 是 n 阶方阵,且 AA A1, 证明 A I 0 。其中 I 为单位矩阵 I , 2

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

线性代数试题B

线性代数试题(B ) 一.选择或填空(3’x10) 1. 已知 2231 =l n m c b a ,则 =+++c l b n a m c b a 231222 2. 若 ??? ? ??=-11541A , 则 =A 3. 2)(,11111 111=???? ? ??---=A r t A , 则=t 4. 设A 为3阶方阵,且3=A ,则*1A A -+=_____________。 5.设向量组321,,ααα线性无关,11αβ=,212ααβ+=,3213αααβ++=, 则321,,βββ为 (填线性相关,或线性无关) 6.已知矩阵B A , 且n m ij c C ?=)(满足CB AC = 则B 是( )阶矩阵。 A. m m ? B. n m ? C. m n ? D. n n ? 7.若A 为n 阶方阵且2=A , 则 ()=-*1A ( ) A. A 2 B. 2A C. A n 12- D. 12 -n A 8. 一个n 维向量组 )1(.......,21>m m ααα,线性相关的充要条件为 ( ) A. 含有零向量 B. 有两个向量相应成比例 C. 向量组中至少有一向量可由其余向量线性表示 D. 向量组中任一个向量均可由其余向量线性表示 9.设21,ηη是某个齐次线性方程组的一个基础解系,则下列结论不成立的是( ) A. 211,ηηη+ 也是其基础解系 B. 2121,ηηηη-+ 也是其基础解系 C. 213,2ηη 也是其基础解系 D. 212122,ηηηη++ 也是其基础解系

10. 若 1001002000 01000 -=-a a ,则 =a ( ) A. 2 1- B. 21 C. 1- D. 1 二.计算题(6x10’) 1.设 3 111131 1113 1111 3----=A 求: 14131211A A A A +++ 2. ()2121=A ,而A A B T = (1)求 B, (2) 求 B (3) 求5B 3.设n 阶方阵A 和X 满足条件E AX A =-2,且已知???? ? ??--=100110111A 求矩阵X 。 4. 求向量组的最大无关组,并求出剩余向量用最大无关组的线性表示 ??????? ??=34121α, ??????? ??--=12102α, ??????? ??--=63213α, ?????? ? ??=41014α 5. 求齐次方程的一组基础解向量,并求出通解 ??? ????=++=+++=-+-=+++02062220204324324321 3314321x x x x x x x x x x x x x x 6. 方程组 ?????-=-+-=-+=+-121321 321321x x x x x x x x x λλ 问λ为何值时,方程组 (1)有唯一解? (2)无解? (3)有无穷多解?并解出通解。

线性代数期末考试试卷答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号填“√”,错误的在括号填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 £ s £ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示

线性代数期末复习题

线性代数 一. 单项选择题 1。设A 、B 均为n 阶方阵,则下列结论正确的是 . (a)若A 和B 都是对称矩阵,则AB 也是对称矩阵 (b )若A ≠0且B ≠0,则AB ≠0 (c)若AB 是奇异矩阵,则A 和B 都是奇异矩阵 (d )若AB 是可逆矩阵,则A 和B 都是可逆矩阵 2. 设A 、B 是两个n 阶可逆方阵,则()1-?? ????'AB 等于( ) (a )()1-'A ()1-'B (b ) ()1-'B ()1-'A (c )() '-1B )(1'-A (d )() ' -1B ()1-'A 3.n m ?型线性方程组AX=b,当r(A )=m 时,则方程组 。 (a ) 可能无解 (b)有唯一解 (c)有无穷多解 (d )有解 4.矩阵A 与对角阵相似的充要条件是 。 (a )A 可逆 (b)A 有n 个特征值 (c) A 的特征多项式无重根 (d) A 有n 个线性无关特征向量 5。A 为n 阶方阵,若02 =A ,则以下说法正确的是 。 (a ) A 可逆 (b ) A 合同于单位矩阵 (c ) A =0 (d ) 0=AX 有无穷多解 6.设A ,B ,C 都是n 阶矩阵,且满足关系式ABC E =,其中E 是n 阶单位矩阵, 则必有( ) (A )ACB E = (B)CBA E = (C )BAC E = (D ) BCA E = 7.若233 32 31 232221 131211 ==a a a a a a a a a D ,则=------=33 32 3131 2322 212113 1211111434343a a a a a a a a a a a a D ( ) (A )6- (B )6 (C )24 (D )24- 二、填空题 1.A 为n 阶矩阵,|A |=3,则|AA '|= ,| 1 2A A -* -|= . 2.设???? ??????=300120211A ,则A 的伴随矩阵=*A ; 3.设A =? ? ?? ??--1112,则1 -A = 。

线性代数B期末试题

线性代数B 期末试题 一、判断题(正确填T ,错误填F 。每小题2分,共10分) 1. A 是n 阶方阵,R ∈λ,则有A A λλ=。 ( ) 2. A ,B 是同阶方阵,且0≠AB ,则111)(---=A B AB 。 ( ) 3.如果A 与B 等价,则A 的行向量组与B 的行向量组等价。 ( ) 4.若B A ,均为n 阶方阵,则当B A >时,B A ,一定不相似。 ( ) 5.n 维向量组{}4321,,,αααα线性相关,则{}321,,ααα也线性相关。 ( ) 二、单项选择题(每小题3分,共15分) 1.下列矩阵中,( )不是初等矩阵。 (A )001010100????????? ? (B)100000010?????????? (C) 100020001??????????(D) 100012001????-?????? 2.设向量组123,,ααα线性无关,则下列向量组中线性无关的是( )。 (A )122331,,αααααα--- (B )1231,,αααα+ (C )1212,,23αααα- (D )2323,,2αααα+ 3.设A 为n 阶方阵,且250A A E +-=。则 1(2)A E -+=( ) (A) A E - (B) E A + (C) 1()3A E - (D) 1()3A E + 4.设A 为n m ?矩阵,则有( )。 (A )若n m <,则b Ax =有无穷多解; (B )若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量; (C )若A 有n 阶子式不为零,则b Ax =有唯一解; (D )若A 有n 阶子式不为零,则0=Ax 仅有零解。 5.若n 阶矩阵A ,B 有共同的特征值,且各有n 个线性无关的特征向量,则( ) (A )A 与B 相似 (B )A B ≠,但|A-B |=0

线性代数期末考试试题含答案

线性代数期末考试试题含 答案 The final edition was revised on December 14th, 2020.

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( )

线性代数B期末试卷及答案

2008 – 2009学年第二学期《线性代数B 》试卷 2009年6月22日 1、 设?? ??? ?? ?? ???-=* 8030010000100001A ,则A = 、 2、 A 为n 阶方阵,T AA =E 且=+

二、单项选择题(共6小题,每小题3分,满分18分) 1、设D n为n阶行列式,则D n=0的必要条件就是[ ]、 (A) D n中有两行元素对应成比例; (B) D n中各行元素之与为零; (C) D n中有一行元素全为零; (D)以D n为系数行列式的齐次线性方程组有非零解. 2.若向量组α,β,γ线性无关,α,β,σ线性相关,则[ ]、 (A)α必可由β,γ,σ线性表示; (B) β必可由α,γ,σ线性表示; (C)σ必可由β,γ,α线性表示; (D)γ必可由β,α,σ线性表示、 3.设3阶方阵A有特征值0,-1,1,其对应的特征向量为P1,P2,P3,令P=(P1,P2,P3),则P-1AP=[ ]、 (A) 100 010 000 ?? ?? - ?? ?? ?? ; (B) 000 010 001 ?? ?? - ?? ?? ?? ; (C) 000 010 001 ?? ?? ?? ?? ?? - ; (D) 100 000 001 ?? ?? ?? ?? ?? - . 4.设α1,α2,α3线性无关,则下列向量组线性相关的就是[ ]、 (A)α1,α2,α3 - α1; (B)α1,α1+α2,α1+α3; (C)α1+α2,α2+α3,α3+α1; (D)α1-α2,α2-α3,α3-α1、 5.若矩阵A3×4有一个3阶子式不为0,则A的秩R(A) =[ ]、 (A) 1; (B)2; (C)3; (D) 4. 6.实二次型f=x T Ax为正定的充分必要条件就是[ ]、 (A) A的特征值全大于零; (B) A的负惯性指数为零; (C) |A| > 0 ; (D) R(A) = n、 三、解答题(共5小题,每道题8分,满分40分)

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

2011线性代数期末试题(B)

中山大学软件学院2011级软件工程专业(2011学年秋季学期) 《S E -103+线性代数》期末试题(B 卷) (考试形式:闭 卷 考试时间: 2小时 ) 《中山大学授予学士学位工作细则》第六条 考试作弊不授予学士学位 方向: 姓名: ______ 学号: 出卷: 伍丽华 复核: 高成英 1. Fill in the blank (5×4=20 Pts ) (1) If T is the linear transformation from to whose matrix relative to is 2P 2P },t t ,1{2B = , then =_________________________________. ???? ????????=421130012][B T )(2210t a t a a T ++ (2) If the row space of a 4×7 matrix is 4-dimentional, then the dimension of the null space of is _______________. Is ?__________________ (Yes or No). A A 4 Col R A = (3) Let ,,and be eigenvectors of a 3×3 matrix , with corresponding eigenvalues 3, 2, and 1. Compute . =_______________________. ??????????=0221v ??????????=2222v ???? ??????=2203v A A A (4) Determine the value(s) of a such that the system is inconsistent. =_____________________________________. ???? ??????=?????????????????????+03121232121321x x x a a a (5) For x in 3R , Let , this quadratic form as is _________________________________________________________. 32212221853)(x x x x x x x Q +?+=Ax x T

线性代数期末复习题

《线性代数》综合复习题 一、单项选择题: 1、若三阶行列式D 的第三行的元素依次为1、 2、3,它们的余子式分别为4、2、1,则D =( ) (A)-3 (B) 3 (C) -11 (D) 11 2、设123,,ααα是三阶方阵A 的列向量组,且齐次线性方程组AX =O 仅有零解,则( ) (A) 1α可由23,αα线性表示 (B) 2α可由13,αα线性表示 (C) 3α可由12,αα线性表示 (D) 以上说法都不对 3、设A 为n(n ≥2)阶方阵,且A 的行列式|A |=a ≠0,A *为A 的伴随矩阵,则| 3A * | 等于( ) (A) 3n a (B) 3a n -1 (C) 3n a n -1 (D) 3a n 4、设A =????? ??3332312322 21131211a a a a a a a a a , B =????? ??+++133311311232232122131112a a a a a a a a a a a a ,????? ??=1000010101P ,???? ? ??=1010100012P ,则有( ) (A) B AP P =12 (B) B AP P =21 (C) B A P P =21 (D) B A P P =12 5、设A 是正交矩阵,则下列结论错误.. 的是( ) (A) |A |2必为1 (B) |A |必为1 (C) A -1=A T (D) A 的行向量组是正交单位向量组 6、设A 是n 阶方阵,且O E A A =+-232,则( ) (A) 1和2必是A 的特征值 (B) 若,2E A ≠则E A = (C) 若,E A ≠则E A 2= (D) 若1不是A 的特征值,则E A 2= 7、设矩阵210120001A ?? ?= ? ??? ,矩阵B 满足2ABA BA E **=+,其中E 为三阶单位矩阵,A * 为A 的伴随矩 阵,则B = (A ) 13; (B )19; (C )1 4 ; (D )13。 8、下列命题中,错误的是 (A) 若1110,,,n n n k k αααα++=且线性无关,则常数1,,n k k 必全为零 (B) 若1110,, ,n n n k k αααα+ +=且线性无关,则常数1, ,n k k 必不全为零 (C) 若对任何不全为零的数1,,n k k ,都有1110,, ,n n n k k αααα++≠则 线性无关

《线性代数》模拟试卷B及答案

《线性代数》模拟试卷B 及答案 一、选择题(每小题3分,共30分) (1)若A 为4阶矩阵,则3A =( ) (A) 4A (B) 43A (C) 34A (D)3A (2)设A ,B 为n 阶方阵,0A ≠且0AB =,则( ) (A)0B = (B)0BA = (C)222()A B A B +=+ (D)00A B ==或 (3)A ,B ,C 均为n 阶方阵,则下列命题正确的是( ) (A) AB BA = (B)0,00A B AB ≠≠≠则 (C) AB A B = (D) ,AB AC B C ==若则 (4)222()2A B A AB B +=++成立的充要条件是( ) (A)AB BA = (B) A E = (C)B E = (D)A B = (5)线性方程组(1)22(1)k x y a x k y b -+=?? +-=?有唯一解,则k 为( ) (A)任意实数 (B) 不等于等于不等于0 (6)若A 为可逆阵,则1()A *-=( )

(A)A A (B)A A * (C)1 A A - (D)1 A A -* (7)含有4个未知数的齐次方程组0AX =,如果()1R A =,则它的每个基础解系中解向量的个数为( ) (A) 0 (B) 1 (C) 2 (D) 3 (8)设A 为m n ?矩阵,齐次方程组0AX =仅有零解的充要条件是A 的( ) (A) 列向量线性无关 (B) 列向量线性相关 (C) 行向量线性无关 (D) 行向量线性相关 (9)已知矩阵A=3111?? ?-?? ,下列向量是A 的特征向量的是( ) (A)10?? ??? (B)12?? ??? (C)12-?? ??? (D) 11-?? ??? (10)二次型222123123121323(,,)44224f x x x x x x x x x x x x λ=+++-+为正定二次型,则λ 的取值范围是( ) (A)21λ-<< (B)12λ<< (C)32λ-<<- (D)2λ>

线性代数期末试题(同济大学第五版)(附答案)

线性代数试题(附答案) 一、填空题(每题2分,共20分) 1.行列式0 005002304324321= 。 2.若齐次线性方程组?? ? ??=++=++=-+00202kz y kx z ky x z y kx 有非零解,且12≠k ,则k 的值为 。 3.若4×4阶矩阵A 的行列式*=A A ,3是A 的伴随矩阵则*A = 。 4.A 为n n ?阶矩阵,且ο=+-E A A 232,则1-A 。 5. 321,,ξξξ和321,,ηηη是3R 的两组基,且 32133212321122,2,23ξξξηξξξηξξξη++=++=++=,若由基321,,ξξξ到基321,,ηηη的基变换公式为(321,,ηηη)=(321,,ξξξ)A ,则A= 6.向量其内积为),1,0,2,4(),5,3,0,1(-=--=βa 。 7.设=?? ?? ? ?????---=??????????)(,111012111,321212113AB tr AB B A 之迹则 。 8.若的特征值分别为则的特征值分别为阶矩阵1,3,2,133--?A A 。 9.二次型x x x x x x f 2 32 22 132123),,(--=的正惯性指数为 。 10.矩阵?? ?? ? ?????1042024λλA 为正定矩阵,则λ的取值范围是 。 二、单项选择(每小题2分,共12分)

1.矩阵()==≠≠???? ? ???????=)(,4,3,2,1,0,0,44342414433323134232221241312111A r i b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a A i i 则其中。 A 、1 B 、2 C 、3 D 、4 2. 齐次线性方程组???=--=++-020 23214321x x x x x x x 的基础解系中含有解向量的个数是( ) A 、1 B 、2 C 、3 D 、4 3.已知向量组=====k a a k a a 则线性相关,)1,2,0,0(),1,0,2,2(),1,0,,0(),0,1,1,1(4321 ( ) A 、-1 B 、-2 C 、0 D 、1 4. A 、B 则必有且阶矩阵均为,))((,22B A B A B A n -=-+( ) A 、B=E B 、A=E C 、A=B D 、AB=BA 5.已知=?? ?? ? ?????==k A k a T 则的特征向量是矩阵,211121112)1,,1(( ) A 、1或2 B 、-1或-2 C 、1或-2 D 、-1或2 6.下列矩阵中与矩阵合同的是??? ? ???? ? ?-50 00210 002 ( ) A 、??????????---200020001 B 、?? ??? ?????-500020003 C 、?? ?? ??????--100010001 D ????? ?????100020002 三、计算题(每小题9分,共63分) 1.计算行列式),2,1,0(00000 022 11 210n i a a c a c a c b b b a i n n n ΛΛ ΛΛΛΛΛΛΛΛ=≠其中

线性代数期末考试试卷

本科生2010——2011学年第 一 学期《线性代数》课程期末考试试卷(B 卷) 草 稿 区 专业: 年级: 学号: 姓名: 成绩: 一 、选择题(本题共 28 分,每小题 4 分) 1.设n 阶方阵A 为实对称矩阵,则下列哪种说法是错误的 ( B ) (A) A 的特征值为实数; (B) A 相似于一个对角阵; (C) A 合同于一个对角阵; (D) A 的所有特征向量两两正交。 2.设n 维列向量组)(,,21n m m <ααα 线性无关,则n 维列向量组m βββ ,,21线性无关的充要条件是 ( D ) (A)向量组m ααα ,,21可由向量组m βββ ,,21线性表示; (B) 向量组m βββ ,,21可由向量组m ααα ,,21线性表示; (C) 矩阵),,(21m ααα 与矩阵),,(21m βββ 等价; (D) 向量组m ααα ,,21与向量组m βββ ,,21等价。 3.设n 阶方阵A 的伴随矩阵为*A ,则 ( C ) (A) *A 为可逆矩阵; (B) 若0||=A ,则0||*=A ; (C) 若2)(*-=n A r ,则2)(=A r ; (D) 若0||≠=d A ,则d A 1||*= 。 4.设A 为n 阶非零方阵,E 为n 阶单位矩阵,30A =则 ( ) (A)()E A -不可逆,()E A +不可逆; (B) ()E A -不可逆,()E A +可逆; (C) ()E A -可逆,()E A +可逆; (D) ()E A -可逆,()E A +不可逆. 第 1页,共 6 页

5.实数二次型T f X AX =为正定二次型的充分必要条件是 ( ) (A) 负惯性指数全为零; (B) ||0A >; (C) 对于任意的0X ≠,都有0f >; (D) 存在n 阶矩阵U ,使得T A U U =. 6.设12,λλ为A 的不同特征值,对应特征向量为12,αα,则112,()A ααα+线性无关的充要条件为 ( ) (A)10λ≠; (B) 20λ≠; (C) 10λ=; (D) 20λ=. 7.设211100121,010112000A B --???? ? ? =--= ? ? ? ?--???? ,则 ( ) (A) A 与B 合同,但不相似;(B) A 与B 相似,但不合同; (C) A 与B 既合同又相似; (D) A 与B 既不合同也不相似. 二 、填空题(本题共 24分,每小题 4 分) 1.二次型2221231231213(,,)22f x x x x x x x x tx x =++++是正定的,则t 的取值范围是 . 2.设01000 01000010 000A ?? ? ? = ? ? ?? ,则3A 的秩3()r A 为 . 3.设三阶矩阵A 的特征值为,2,3λ,若|2|48A =-,则λ= . 4.设向量123(1,2,1,0),(1,1,0,2),(2,1,1,)T T T a ααα=-==,若123,,ααα构成的向量组的秩为2, 则a = . 5.设3阶矩阵123(,,)A ααα=,123123123(,24,39)B ααααααααα=++++++,且已知||1A =,则||B = . 第 2页,共 6 页

相关文档
相关文档 最新文档