文档库 最新最全的文档下载
当前位置:文档库 › 二次函数图象性质应用(一)(含答案)

二次函数图象性质应用(一)(含答案)

二次函数图象性质应用(一)(含答案)
二次函数图象性质应用(一)(含答案)

学生做题前请先回答以下问题

问题1:___________是研究函数、方程、不等式等的一种重要手段.

①二次函数对称性:两点对称,则______相等;纵坐标相等,则两点______;由(x1,y1),(x2,y1)知,对称轴为直线_________.

②二次函数增减性:y值比大小、取最值,常利用__________,借助____________求解.问题2:二次函数草图的画法:

①找准__________、__________,画二次函数;

②根据各点与__________的距离描点(或结合函数间关系画图).

二次函数图象性质应用(一)

一、单选题(共10道,每道10分)

1.二次函数,自变量x与函数y的对应值如下表:

下列说法正确的是( )

A.抛物线的开口向下

B.当x>-3时,y随x的增大而增大

C.二次函数的最小值是-2

D.抛物线的对称轴是

答案:D

解题思路:

试题难度:三颗星知识点:二次函数图象上点的坐标特征

2.已知二次函数(a,b,c为常数且a≠0),其函数值y与自变量x之间的部分对应值如下表:

给出了结论:

(1)二次函数有最小值,最小值为-3;

(3)当时,y<0;

(4)二次函数

(2)当x>1时,y随x的增大而减小;

的图象与x轴有两个交点,且它们分别在y轴两侧.

则其中正确结论的个数是( )

A.3个

B.2个

C.1个

D.0个

答案:B

解题思路:

试题难度:三颗星知识点:二次函数的对称性

3.已知二次函数,设自变量的值分别为且

,则对应的函数值的大小关系是( )

A. B.

C. D.

答案:A

解题思路:

试题难度:三颗星知识点:二次函数图象对称性

4.设是抛物线上的三点,则

的大小关系为( )

A. B.

C. D.

答案:A

解题思路:

试题难度:三颗星知识点:二次函数图象对称性

5.已知关于x的一元二次方程的一根为-3,在二次函数的图象上有三点,,,则的大小关系为( )

A. B.

C. D.

答案:A

解题思路:

试题难度:三颗星知识点:二次函数图象的对称性

6.已知二次函数,若,则y的取值范围是_____,若,则y的取值范围是_______.( )

A. B.

C. D.

答案:B

解题思路:

试题难度:三颗星知识点:二次函数的性质

7.已知点和点是抛物线上的两点,且,则m的取值范围是( )

A. B.

C. D.

答案:D

解题思路:

试题难度:三颗星知识点:二次函数图象上点的坐标特征

8.已知关于x的二次函数,当时,y在时取得最大值,则实数a的取值范围是( )

A. B.

C. D.

答案:D

解题思路:

试题难度:三颗星知识点:二次函数最值

9.二次函数(m为常数)的图象如图所示,若当x=a时,y<0,则当x=a-1时,函数值满足( )

A. B.

C. D.

答案:C

解题思路:

试题难度:三颗星知识点:数形结合思想

10.已知两点均在抛物线上,是该抛物线的顶点.若,则的取值范围是( )

A. B.

C. D.

答案:B

解题思路:

试题难度:三颗星知识点:二次函数图象的对称轴

2020年中考数学复习专题训练——二次函数的图像与性质

2020年中考数学复习专题训练——二次函数的图像与性质 考点1:二次函数的顶点、对称轴、增减性 1.关于二次函数y=2x2+4x-1,下列说法正确的是( ) A.图像与y轴的交点坐标为(0,1) B.图像的对称轴在y轴的右侧 C.当时,x<0的值随y值的增大而减小 的最小值为-3 2.如图,函数y=ax2-2x+1和y=ax-a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是( ) 3.已知二次函数y=ax2+bx+c的y与x的部分对应值如下表: x-1013 y-3131 下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4,其中正确的结论有( ) A. 1个 B. 2个 C. 3个 D. 4个 4.已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为( )

或6 或6 或3 或6 5.当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,则a的值为() 或2 或2 6.对于抛物线y=ax2+(2a-1)x+a-3,当x=1时,y,则这条抛物线的顶点一定在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 考点2:抛物线特征和a,b,c的关系 1.已知二次函数图形如图所示,下列结论:①abc;②;③;④点(-3,y1),(1,y2) 都在抛物线上,则有y1y 2. 其中正确的结论有( ) 个个个个 2.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是( ) <4ac >0 b=0 b+c=0

二次函数图象性质及应用(讲义及答案)

二次函数图象性质及应用(讲义) ?课前预习 回顾一次函数、反比例函数与二次函数的相关知识,回答下列 问题: 1.对二次函数y =ax2 +bx +c 来说,a,b,c 符号与图象的关系: a 的符号决定了抛物线的开口方向,当时,开口向; 当时,开口向. c 是抛物线与交点的. b 的符号:与a ,根据可推 导.判断下面函数图象的a,b,c 符号: (1)已知抛物线y =ax2 +bx +c 经过原点和第一、二、三象限,那么() A.a > 0,b > 0,c > 0 C.a < 0,b < 0,c > 0 B.a < 0,b < 0,c = 0 D.a > 0,b > 0,c = 0 (2)二次函数y=ax2+bx+c 的图象如图所示,其对称轴为直线x=-1,给出下列结论:①abc>0;②2a-b=0.其中正确的是. 2.函数y 值比大小,主要利用函数的增减性和数形结合.如点 A(x1,y1),B(x2,y2)在直线y=kx+b 上,当k>0,x1<x2时,y1y2.

1

?知识点睛 1.二次函数对称性:两点对称,则相等;纵坐标相等, 则两点;由(x1,y1),(x2,y1)知,对称轴为直线.2.二次函数增减性:y 值比大小、取最值,常利用, 借助求解. 3.观察图象判断a,b,c 符号及组合: ①确定符号及信息; ②找特殊点的,获取等式或不等式; ③代入不等式,组合判断残缺式符号. ?精讲精练 1.若二次函数y=ax2+bx+c 的x 与y 的部分对应值如下表: x -7 -6 -5 -4 -3 -2 y -27 -13 -3 3 5 3 A.5 B.-3 C.-13 D.-27 2.抛物线y=ax2+bx+c 上部分点的横坐标x,纵坐标y 的对应值 如下表: x …-2 -1 0 1 2 … y …0 4 6 6 4 … 从上表可知,下列说法中正确的是.(填写序号) ①抛物线与x 轴的一个交点为(3,0); ②二次函数y =ax2 +bx +c 的最大值为6; ③抛物线的对称轴是直线x =1 ; 2 ④在对称轴左侧,y 随x 的增大而增大. 3.已知二次函数y =x2 - 2mx + 4m - 8 .若x ≥2 时,函数值y 随 x 的增大而增大,则m 的取值范围是;若x≤1 时,函数值y 随x 的增大而减小,则m 的取值范围是. 4.在二次函数y=-x2+2x+1 的图象中,若y 随x 的增大而增大, 则x 的取值范围是. 2 二次函数草图的画法: 1. 一般草图 1找准开口方向、对称轴、顶点坐标,画二次函数; 2根据各点与对称轴的距离描点(或结合函数间关系画图).2. 坐标系下画草图时,往往要根 据四点一线来确定大致图 象.四点:二次函数顶点,二 次函数与y 轴的一个交点,二 次函数与x 轴的两个交点. 一线:二次函数对称轴.

人教版高中数学必修一-第三章-函数的应用知识点总结

高中数学必修一第三章函数的应用知识点总结(详细) 第三章函数的应用 一、方程的根与函数的零点 1、函数零点的概念:对于函数y=f(x),使f(x)=0 的实数x叫做函数的零点。(实质上是函数y=f(x)与x轴交点的横坐标) 2、函数零点的意义:方程f(x)=0 有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点 3、零点定理:函数y=f(x)在区间[a,b]上的图象是连续不断的,并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)至少有一个零点c,使得f( c)=0,此时c也是方程f(x)=0 的根。 4、函数零点的求法:求函数y=f(x)的零点: (1)(代数法)求方程f(x)=0 的实数根; (2)(几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点. 5、二次函数的零点:二次函数f(x)=ax2+bx+c(a≠0). 1)△>0,方程f(x)=0有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点. 2)△=0,方程f(x)=0有两相等实根(二重根),二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点. 3)△<0,方程f(x)=0无实根,二次函数的图象与x轴无交点,二次函数无零点. 二、二分法 1、概念:对于在区间[a,b]上连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。 2、用二分法求方程近似解的步骤: ⑴确定区间[a,b],验证f(a)f(b)<0,给定精确度ε; ⑵求区间(a,b)的中点c;

二次函数图像和性质专题训练(答案)

二次函数图象专题训练 1.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论①a 、b 异号;②当x =1和x=3时,函数值相等;③4a +b =0,④当y =4时,x 的取值只能为0.结论正确的个数有( ) 个 A .1 B.2 C.3 D.4 2、已知二次函数2y ax bx c =++(0a ≠)的 图象如图所示,有下列结论: ①240b ac ->; ②0abc >; ③80a c +>; ④930a b c ++<.其中,正确结论的个数是( ) A .1 B .2 C .3 D .4 3.已知二次函数2 y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x , ,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③ 20a c +>;④210a b -+>.其中正确结论的个数是 个. A .1 B .2 C .3 D .4 4、已知抛物线y =ax 2 +bx +c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( ) A . a >0 B . b <0 C . c <0 D . a +b +c >0 5、如图所示的二次函数2 y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)2 40b ac ->;(2)c >1;(3)2a -b <0;(4)a +b +c <0。你认为其中错误.. 的有 A .2个 B .3个 C .4个 D .1个 6、已知二次函数y =ax 2 +bx +c (a ≠0)的图象如图,则下列结论中正确的是( ) A .a >0 B .当x >1时,y 随x 的增大而增大 C .c <0 D .3 是方程ax 2 +bx +c =0的一个根

二次函数知识点整理

二次函数知识点整理: 1.二次函数的图象特征与a ,b ,c 及判别式ac b 42-的符号之间的关系 (1)字母a 决定抛物线的形状. 即开口方向和开口大小;决定二次函数有最大值或最小值. a >0时开口向上,函数有最小值; a <0时开口向下,函数有最大值; a 相同,抛物线形状相同,可通过平移、对称相互得到; a 越大,开口越小. (2)字母b 、a 的符号一起决定抛物线对称轴的位置. ab=0 (a ≠0,b=0), 对称轴为y 轴; ab >0(a 与b 同号),对称轴在y 轴左侧; ab <0(a 与b 异号),对称轴在y 轴右侧. (3)字母c 决定抛物线与y 轴交点的位置. c=0, 抛物线经过原点; c >0,抛物线与y 轴正半轴相交; c <0,抛物线与y 轴负半轴相交. (4)ac b 42-决定抛物线与x 轴交点的个数. ac b 42-=0,抛物线与x 轴有唯一交点(顶点); ac b 42->0抛物线与x 轴有两个不同的交点; ac b 42-<0抛物线与x 轴无交点. 2.任意抛物线()k h x a y +-=2 都可以由抛物线2ax y =经过平移得到,具体平移方法如 下: 【注意】 二次函数图象间的平移,可看作是顶点间的平移,因此只要掌握了顶点是如何平移的,就掌握了二次函数间的平移. 二次函数图象间对称变换也是同样的道理. 3.用待定系数法求二次函数的解析式 确定二次函数的解析式一般需要三个独立条件,根据不同条件选不同的设法 (1)设一般式:c bx ax y ++=2 (a ,b ,c 为常数、a ≠0)

若已知条件是图象上的三点,将已知条件代入所设一般式,求出a,b,c 的值 (2)设顶点式:()k h x a y +-=2 (a,h,k 为常数,a ≠0) 若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),将已知条件代入所设顶点式,求出待定系数,最后将解析式化为一般形式. (3)设两点式:()()21x x x x a y --=(a ≠0,a 、1x 、2x 为常数) 若已知二次函数图象与x 轴的两个交点的坐标为()()0,0,21x x ,将第三点(m,n ) 的坐标(其中m ,n 为已知数)或其他已知条件代入所设交点式,求出待定系数a ,最后将解析式化为一般形式. 4. 二次函数c bx ax y ++=2(a ≠0)与一元二次方程02=++c bx ax 的关系 (1)二次函数c bx ax y ++=2(a ≠0)中,当y=0时,就变成了一元二次方程02=++c bx ax (2)一元二次方程02=++c bx ax 的根就是二次函数c bx ax y ++=2的图象与x 轴交点的横坐标. (3)二次函数的图象与x 轴交点的个数与一元二次方程根的个数一致. (4)在它俩的关系中,判别式△=ac b 42-起着重要作用. 二次函数的图象与x 轴有两个交点?对应方程的△>0 二次函数的图象与x 轴有一个交点?对应方程的△=0 二次函数的图象与x 轴无交点 ?对应方程的△<0 5.二次函数应用 包括两方面 (1)用二次函数表示实际问题中变量之间的关系; (2)用二次函数解决最大化问题即最值问题.

二次函数图象性质应用(二)(含答案)

学生做题前请先回答以下问题 问题1:___________是研究函数、方程、不等式等的一种重要手段. ①二次函数对称性:两点对称,则______相等;纵坐标相等,则两点______;由(x1,y1),(x2,y1)知,对称轴为直线_________. ②二次函数增减性:y值比大小、取最值,常利用__________,借助____________求解.问题2:利用数形结合,计算二次函数最值问题的具体操作是: 先判断______、______,再结合______、______,确定最值. 二次函数图象性质应用(二) 一、单选题(共10道,每道10分) 1.在二次函数中,当时,y的最大值和最小值分别是( ) A.0,-4 B.0,-3 C.-3,-4 D.0,-2 答案:A 解题思路: 试题难度:三颗星知识点:二次函数的性质 2.已知二次函数,当时,y的取值范围是__________;当 时,则y的取值范围是_________.( )

A., B., C., D., 答案:A 解题思路: 试题难度:三颗星知识点:二次函数的性质 3.已知点和点是抛物线上的两点,且,则m的取值范围是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:二次函数图象上点的坐标特征 4.已知二次函数,当x>1时,y随x的增大而增大,则m的取值范围是( ) A.m=-1 B.m=3 C. D. 答案:D 解题思路:

试题难度:三颗星知识点:二次函数图象的对称性 5.已知二次函数,当时,y随x的增大而增大,则实数a的取值范围是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:二次函数图象的对称性 6.当时,二次函数有最大值4,则实数m的值为( )

二次函数的图像及性质

《二次函数的图像及性质》教学案例及反思 教师:同学们,我们上一节课一起研究了二次函数的表达式,那么我们一起来回忆一下表达式是什么? 学生齐答:y=ax2+bx+c(a,b,c是常数,a不为0) 教师:好,那么请同学们在黑板上写出一些常数较简单的二次函数表达式. (学生表现很踊跃,一下写出了十多个) 教师:黑板上这些二次函数大致有几个类型? 学生:(讨论了3分钟)四大类!有y=ax2+bx+c;y=ax2+bx;y=ax2+c;y=ax2! 教师:太棒了!同学们归纳的很好,今天我们就一起来研究比较简单的一种y=ax2的图像及性质! 教师在学生板书的函数中选了四个,并把复杂的系数换成简单的常数,找到如下函数:y=x2;y=-x2;y=2x2;y=-2x2.(教师在这里让学生自己准备素材!) 教师启发学生利用函数中的“列表,描点,连线”的方法,把画上述四个函数的任务分配给A,B,C,D小组,一组一个在已画好的坐标系的小黑板上动手操作.生在自己提供的素材上进行再“加工”,兴趣很大,合作交流充分,课堂气氛活跃.教师到每组巡视、指导,在确认画图全部正确的情况下,提出了要求,开始了探究之旅. 教师:请同学们小组之间比较一下,你们画的图象位置一样吗? 学生;不一样. 教师:有什么不一样?(开始聚焦矛盾) 学生:开口不一样. 学生A:走向不一样. 学生B:经过的象限不一样. 学生C:我们的图象在原点的上方,他们的图象在原点的下方. 教师:看来是有些不一样,那么它们位置的不一样是由什么要素决定的?(教师指明了探究方向,但未指明具体的探究之路,这是明智的) 学生:是由二次项系数的取值确定的. 教师:好了,根据同学们的回答,能得到图象或函数的那些结论?(顺水推舟,放手让学生一搏) 热烈讨论后,学生D回答并板书,当a>0时,图象在原点的上方,当a<0时,图象在原点的下方。 学生E:当a>0时,图象开口向上;当a<0时,图象开口向下. 学生A站起来补充:还有顶点,顶点坐标(0,0),对称轴为y轴! (这个过程约用了十多分时间,学生体会非常充分,从学生的神情看,绝大多数学生已接受了这几个学生的板书,但教师未对结论进行优化。怎么没有一个学生说出二次函数的性质呢?短暂停顿后,教师确定了思路) 教师:刚才你们是研究图象的性质,你们能否由图象性质得出相应的函数的性质? 看着学生茫然的目光,我在思考是不是我的问题---- 教师:请看同学们的板书,能揣摩图象“走向”的意思吗? 学生:(七嘴八舌)当a>0时,图象从左上向下走到原点后在向右上爬;当a<0时,图象从左下向上爬到原点后在向右下走(未出现教师所预期的结论) 教师:好,你们从图象的直观形象来理解的图象性质,很贴切,你们能从自变量与函数值之间的变化角度来说明“向上爬”和“向下走”吗?

二次函数图像与性质总结

二次函数的图像与性质 一、二次函数的基本形式 1.二次函数基本形式:2 =的性质: y ax 2.2 =+的性质: y ax c 上加下减。 =-的性质: y a x h 左加右减。

4.()2 y a x h k =-+的性质: 1.平移步骤: 方法一:⑴将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标 ()h k ,; ⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2.平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.

概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确 定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我 们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对 称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 五、二次函数2y ax bx c =++的性质 1.当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2.当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. 六、二次函数解析式的表示方法 1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

二次函数知识点总结及典型题目

二次函数知识点总结及典型题目 一.定义: 一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c ;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c 叫二次函数在y 轴上的截距, 即二次函数图象必过(0,c )点. 二.二次函数2ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0

二次函数图像性质及应用

.. 二次函数图象性质及应用 一选择题 1.已知抛物线y=﹣x2+2x﹣3,下列判断正确的是() A.开口方向向上,y 有最小值是﹣2 B.抛物线与x轴有两个交点 C.顶点坐标是(﹣1,﹣2) D.当x<1 时,y 随x增大而增大 2.若二次函数y=x2+bx+5 配方后为y=(x-2)2+k,则b、k 的值分别为() A.0、5 B.0、1 C.﹣4、5 D.﹣4、1 3.将抛物线先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是 A. B. 3 y2- - )2 y2- =x + (5 =x D.3 (52+ )2 (5 - =x )2 y C. 3 4.把抛物线y=﹣2x2+4x+1 图象向左平移2个单位,再向上平移3个单位,所得的抛物线函数关系式是() A.y=﹣2(x-1)2+6 B.y=﹣2(x-1)2﹣6 C.y=﹣2(x+1)2+6 D.y=-2(x+1)2-6 5.函数y=ax+b 和y=ax2+bx+c 在同一直角坐标系内的图象大致是() A. B. C. D. 6.二次函数y=ax2+bx+c 的图象如图,则a bc,b2﹣4ac,2a+b,a+b+c 这四个式子中,值为正数的有() A.4 个 B.3 个 C.2 个 D.1 个 第6题图第8题图 7.二次函数y=ax2+bx+c 对于x的任何值都恒为负值的条件是() A.a>0,△>0 B.a>0,△<0 C.a<0,△>0 D.a<0,△<0 8.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是() A.y=x2-x-2 B.y=﹣x2﹣x+2 C.y=﹣x2﹣x+1 D.y=﹣x2+x+2

二次函数知识点梳理

初三年级数学—二次函数的基础 一、考点、热点回顾 二次函数知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2 y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2 y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2 y ax c =+的性质:上加下减。 3. ()2 y a x h =-的性质:左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴ c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵ c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2 y ax bx c =++是两种不同的表达形式,后者通过配方可以得 到前者,即2 2424b ac b y a x a a -??=++ ?? ?,其中2424b ac b h k a a -=-=,. 五、二次函数2 y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2 y ax bx c =++化为顶点式2 ()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、 与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2 y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2 44ac b a -.

二次函数的图像和性质总结

二次函数的图像和性质 1.二次函数的图像与性质: 解析式 a 的取值 开口方向 函数值的增减 顶点坐标 对称轴 图像与y 轴的交点 时当0>a ;开口向上;在对称轴的左侧y 随x 的增大而减小,在对称轴的 右侧y 随x 的增大而增大。 时当0k 时向上平移;当0>k 时向下平移。 (2)抛物线2 )(h x a y +=的图像是由抛物线2 y ax =的图像平移h 个单位而得到 的。当0>h 时向左平移;当0k 时向上平移;当0>k 时向下平移;当0>h 时向左平移;当0

3.二次函数的最值公式: 形如 c bx ax y ++=2 的二次函数。时当0>a ,图像有最低点,函数有最小值 a b ac y 442-= 最小值 ;时当0?时抛物线与x 轴有两个交点;当0=?抛物线与x 轴有一个交点;当 0

二次函数知识点归纳总结

一元二次方程知识点一、知识清单梳理

二次函数知识点归纳 1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴.(2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点;②当0a 时,开口向上;当0

数学:二次函数图象性质应用(三九年级训练考试卷)

学生做题前请先回答以下问题 问题1:a,b,c符号与图象的关系: a的符号决定了抛物线的________,当_______时,开口________;当________时,开口________;c是抛物线与________交点的________;b的符号与a________,根据________可推导. 问题2: ①确定________符号及________的信息; ②找特殊点的___________,获取等式或不等式; ③________代入不等式,组合判断残缺式符号.(残缺型式子是指不同时含有a,b,c三个系数的式子,例如有时式子中只含有a,b时,我们就称之为残缺式或残缺型) 二次函数图象性质应用(三) 一、单选题(共6道,每道16分) 1.二次函数图象的一部分如图所示,其对称轴为直线,且过点 .下列说法:①;②;③;④若是抛物线上的两点,则.其中正确的是( ) A.①② B.②③ C.①②④ D.②③④ 2.小轩从如图所示的二次函数的图象中,观察得到如下四个结论: ①;②;③;④.其中正确的结论是( )

A.①②③ B.②③④ C.①②④ D.①②③④ 3.已知二次函数的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).下列结论:①;②b-2a=0;③;④. 其中正确的是( ) A.③ B.②③ C.③④ D.①② 4.已知二次函数的图象如图所示,有下列结论: ①;②2a+b=0;③;④.其中正确的有( )

A.1个 B.2个 C.3个 D.4个 5.抛物线的顶点为D(-1,2),与x轴的一个交点A在点(-3,0)和(-2,0)之间,其部分图象如图.则以下结论:①;②; ③c-a=2;④方程有两个相等的实数根.其中正确的有( ) A.1个 B.2个 C.3个 D.4个 6.已知二次函数的图象经过(),(2,0)两点,且,图象与y轴正半轴的交点在(0,2)的下方.则下列结论:①;②; ③;④.其中正确的是( ) A.①② B.②③ C.①②④ D.①②③④

北师大版2.4 二次函数的应用(1)教案

第二章二次函数 2.4 二次函数的应用(1) 一、知识点 1.利用二次函数求几何图形面积最大值的基本思路. 2.求几何图形面积的常见方法. 二、教学目标 知识与技能: 能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值. 过程与方法: 1.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力. 2.通过运用二次函数的知识解决实际问题,培养学生的数学应用能力. 情感与态度: 1.经历探究长方形和窗户透光最大面积问题的过程,获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值. 2.能够对解决问题的基本策略进行反思,形成个人解决问题的风格. 3.进一步体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心,具有初步的创新精神和实践能力. 三、重点与难点 重点:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大面积问题. 难点:把实际问题转化成函数模型. 四、创设情境,引入新知(放幻灯片2、3、4) 1.(1)请用长20米的篱笆设计一个矩形的菜园. (2)怎样设计才能使矩形菜园的面积最大? 设计意图:通过学生所熟悉的图形,引入新课,使学生初步了解解决最大面积问题的一般思路. 2.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的 宽AB为x米,面积为S平方米. (1)求S与x的函数关系式及自变量的取值范围; (2)当x取何值时所围成的花圃面积最大,最大值是多少?

初中数学二次函数图像性质练习题

数学二次函数图像性质练习题 1、函数()2h x a y -=的图象与性质 1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 。 2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。 (1)右移2个单位;(2)左移3 2个单位;(3)先左移1个单位,再右移4个单位。 3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个)。 4、二次函数()2h x a y -=的图象如图:已知2 1=a ,OA=OC ,试求该抛物线的解析式。 5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积。 6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6。求:(1)求出此函数关系式。(2)说明函数值y 随x 值的变化情况。 7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值。

()k h x a y +-=2 的图象与性质 1、请写出一个以(2, 3)为顶点,且开口向上的二次函数: 。 2、二次函数 y =(x -1)2+2,当 x = 时,y 有最小值。 3、函数 y =1 2 (x -1)2+3,当 x 时,函数值 y 随 x 的增大而增大。 4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到。 5、已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是 6、如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( ) A 、x>3 B 、x<3 C 、x>1 D 、x<1 7、已知函数()9232+--=x y 。 (1)确定下列抛物线的开口方向、对称轴和顶点坐标; (2)当x= 时,抛物线有最 值,是 。 (3)当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小。 (4)求出该抛物线与x 轴的交点坐标及两交点间距离; (5)求出该抛物线与y 轴的交点坐标; (6)该函数图象可由23x y -=的图象经过怎样的平移得到的? 8、已知函数()412-+=x y 。 (1)指出函数图象的开口方向、对称轴和顶点坐标; (2)若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积; (3)指出该函数的最值和增减性; (4)若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式; (5)该抛物线经过怎样的平移能经过原点。 (6)画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0。

二次函数的应用练习题及答案

二次函数的应用练习题及答案 一:知识点 利润问题:总利润=总售价–总成本 总利润=每件商品的利润×销售数量 二:例题 1、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个形,则这两个形面积之和的最小值是cm2. 2、某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程正确的是________________ 3、用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门,问养鸡场的边长为多少米时,养鸡场占地面积最大?最大面积是多少? 4、某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取降价措施,经调查发现,若每件衬衫每降价1元,商场平均每天可以多售出2件.若每件降价x 元,每天盈利y 元,求y 与x 的关系式.若商场平均每天要盈利1200元,每件衬衫应降价多少元?每件衬衫降价多少元时,商场每天盈利最多?盈利多少元?

5、某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求: 房间每天的入住量y关于x的函数关系式. 该宾馆每天的房间收费z关于x的函数关系式. 该宾馆客房部每天的利润w关于x的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少? 6、某商店经营一批进价每件为2元的小商品,在市场营销的过程中发现:如果该商品按每件最低价3元销售,日销售量为18件,如果单价每提高1元,日销售量就减少2件.设销售单价为x,日销售量为y. 写出日销售量y与销售单价x之间的函数关系式;设日销售的毛利润为P,求出毛利润P与销售单价x之间的函数关系式; 在下图所示的坐标系中画出P关于x的函数图象的草图,并标出顶点的坐标;观察图象,说出当销售单价为多少元时,日销售的毛利润最高?是多少? 7、我州有一种可食用的野生菌,上市时,外商经理按市场价格20元/千克收购了这种野生菌1000千克存放入

二次函数知识点及其应用的总结

二次函数知识点总结 知识结构框图 一、二次函数的概念 形如c bx ax y ++=2(a ,b ,c 是常数,a ≠0)的函数,叫做二次函数,其中x ,是自变量,a b c 、、分别是函数表达式的二次项系数,一次项系数和常数项。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.X 可以取全体实数. 二、二次函数的一般表达式 1、 一般式:c bx ax y ++=2(a ,b ,c 为常数,0a ≠); 2、 顶点式:k h x a y +-=2 )((a ,h ,k 为常数,0a ≠)其中2 424b ac b h k a a -=-= ,; 3、 两根式: 21212()()(0,,=)y a x x x x a x x ax bx c x =--≠++其中是y 与轴交点的横坐标 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以 写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.

三、二次函数2y ax bx c =++的图像性质(轴对称图形) 1. 当0a >时,抛物线开口向上, 对称轴为2b x a =-, 顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大; 当2b x a =-时,y 有最小值244ac b a -. 2. 当0a <时,抛物线开口向下, 对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ???,. 当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小; 当2b x a =-时,y 有最大值244ac b a -. 四、二次函数的图像与各项系数之间的关系 1. 二次项系数a 二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠. ⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b 在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下, 当0b >时,02b a -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a - >,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02b a ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a - <,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.

相关文档
相关文档 最新文档