文档库 最新最全的文档下载
当前位置:文档库 › 自动重合闸方式及应用论述

自动重合闸方式及应用论述

自动重合闸方式及应用论述
自动重合闸方式及应用论述

自动重合闸方式及应用论述

摘要:据统计,系统中永久性故障一般不到10%,其余故障都是瞬时故障。当系统出现故障时,保护立刻动作使线路或设备断电,在非常短暂的时间内,故障点的电弧就会自动熄灭,使绝缘得以恢复。此时自动重合闸装置动作,自动将断路器合上,恢复系统正常运行

关键词:自动重合闸断路器系统运行

引言:

瞬时性故障:在线路被继电保护迅速断开后,电弧即行熄灭,故障点的绝缘强度重新恢复,外界物体也被电弧烧掉而消失,此时,如果把断开的线路断路器再合上,就能恢复正常的供电。(2)永久性故障:在线路被断开以后,故障仍然存在,这时即使再合上电源,由于故障仍然存在。

1.自动重合闸在电力系统中的作用

自动重合闸(ZCH)装置是将因故障跳开后的断路器按需要自动投入的一种自动装置。

运行经验表明,架空线路大多数故障是瞬时性的,手动(停电时间长)效果不显著,自动重合效果明显。

作用:

(1)对瞬时性故障,可迅速恢复供电,从而能提高供电的可靠性。

(2)对两侧电源线路,可提高系统并列运行的稳定性,从而提高线路的输送容量。

(3)可以纠正由于断路器或继电保护误动作引起的误跳闸。

应用:1KV及以上电压的架空线路或电缆与架空线路的混合线路上,只要装有断路器,一般应装设ZCH。

但是,若重合于永久性故障时,使电力系统又一次受到故障的冲击,也会使断路器的工作条件恶化。

据运行资料统计,ZCH成功率60%-90%,经济效益很高——>广泛应用。

2.对自动重合闸的基本要求:

自动重合闸装置设计要点

目录 1 选题背景 (1) 1.1 指导思想 (1) 1.2 设计目的及内容 (1) 2 方案论证 (1) 2.1 自动重合闸的概念 (1) 2.1.1 自动重合闸装置的概念 (1) 2.1.1 重合闸装置的分类 (2) 2.2 自动重合闸的基本要求 (3) 2.3 自动重合闸的分类 (3) 2.4 自动重合闸的选择原则 (4) 2.4.1 三相普通一次重合闸方式 (4) 2.4.2 单相重合闸及综合重合闸方式 (4) 2.5 三相自动重合闸保护原理 (4) 2.6 三相自动重合闸保护的意义 (5) 3 过程论述 (5) 3.1 原始资料的分析 (5) 3.2 重合闸时限的整定 (6) 3.2.1 重合闸时限的整定原则 (6) 3.2.2 HP线路重合闸启动时间的整定 (7) 3.2.3 N、H母线侧重合闸启动时间的整定 (7) 3.2.4 MN线路的M侧、N侧重合闸启动时间的整定 (8) 4 重合闸与继电保护的配合 (9) 4.1 重合闸前加速保护 (9) 4.2 重合闸后加速保护 (10) 5 结果分析 (11) 6 总结 (11) 参考文献 (12)

1 选题背景 1.1 指导思想 系统事故的发生除了由于自然条件的因素[如遭受雷击等]以外,一般都是由于设备制造上的缺陷,设计和安装上的错误。检修质量不高或运行维护不当而引起的。因此,只要发挥人的主观能动性,正常地掌握客观规律,加强对设备的维护和检修,就可以大大减少事故发生的机率把事故发生消灭在发生之前。 1.2 设计目的及内容 1.2.1 设计目的 在完成了继电保护理论学习的基础上,为了进一步加深对理论知识的理解,通过此次线路保护自动重合闸保护的设计,巩固所学的理论知识,提高解决问题的能力。 1.2.2 设计内容 (1)分析三相自动重合闸保护原理,重合闸的意义; (2)进行HP线路重合闸启动时间计算; (3)进行N、H母线侧重合闸启动时间计算; (4)进行MN线路的M侧、N侧重合闸启动时间计算; 2 方案论证 2.1 自动重合闸的概念 当输电线路上发生故障后继电保护装置将断路器跳开,经过预定的延时后,能够自动地将跳开的断路器重新合闸。若线路发生瞬时性故障跳闸时,当瞬时性故障消失后,自动重合闸装置能在极短的时限内重新合上线路断路器,恢复线路的正常供电。若线路发生永久性故障时,则自动重合闸不成功,故障线路再次跳闸,迅速切除故障线路,保证其他运行线路的供电。 2.1.1 自动重合闸装置的概念 自动重合闸装置(ZCH)又称自动重合器,是用于配电网自动化的一种智能化开关设

重合闸的介绍

1)瞬时性故障:在线路被继电保护迅速断开后,电弧即行熄灭,故障点的绝缘强度重新恢复,外界物体也被电弧烧掉而消失,此时,如果把断开的线路断路器再合上,就能恢复正常的供电,因此称这类故障为“瞬时性故障”。 (2)永久性故障:在线路被断开以后,故障仍然存在,这时即使再合上电源,由于故障仍然存在,线路还要被继电保护再次断开,因而就不能恢复正常的供电。此类故障称为“永久性故障”。 二.基本要求 1,在下列情况下,重合闸不应动作: 1)由值班人员手动操作或通过遥控装置将断路器断开时; 2)手动投入断路器,由于线路上有故障,而随即被继电保护将其断开时。因为在这种情况下,故障是属于永久性的,它可能是由于检修质量不合格、隐患未消除或者保安的接地线忘记拆除等原因所产生,因此再重合一次也不可能成功。 2,除上述条件外,当断路器由继电保护动作或其它原因而跳闸后,重合闸均应动作,使断路器重新合闸。 3,为了能够满足第1、2项所提出的要求,应优先采用由控制开关的位置与断路器位置不对应的原则来起动重合闸,即当控制开关在合闸位置而断路器实际上在断开位置的情况下,使重合闸起动,这样就可以保证不论是任何原因使断路器跳闸以后,都可以进行一次重合。当用手动操作控制开关使断路器跳闸以后,控制开关与断路器的位置仍然是对应的。因此,重合闸就不会起动。 4,自动重合闸装置的动作次数应符合预先的规定。如一次式重合闸就应该只动作一次,当重合于永久性故障而再次跳闸以后,就不应该在动作;对二次式重合闸就应该能够动作两次,当第二次重合于永久性故障而跳闸以后,它不应该再动作。 5,自动重合闸在动作以后,一般应能自动复归,准备好下一次再动作。但对10KV及以下电压的线路,如当地有值班人员时,为简化重合闸的实现,也可采用手动复归的方式。采用手动复归的缺点是:当重合闸动作后,在值班人员未及时复归以前,而又一次发生故障时,重合闸将拒绝动作,这在雷雨季节,雷害活动较多的地方尤其可能发生。 6,自动重合闸装置应有可能在重合闸以前或重合闸以后加速继电保护的动作,以便更好地与继电保护相配合加速故障的切除。 7,在双侧电源的线路上实现重合闸时,应考虑合闸时两侧电源的同步问题,并满足所提出的要求。 8,当断路器处于不正常状态(如操作机构中使用的气压、液压降低等)而不允许实现重合闸时,应将自动重合闸装置锁闭。

重合闸

SF6弹簧操作机构断路器与重合闸配合问题的浅析 杜书平、吴俊芳、赵敏、徐成勇 (信阳供电公司,河南,信阳,464000) 摘 要:本文针对某500kV 变电站SF6弹簧操作机构断路器与许继WDLK862A 断路器保护重合闸配合时,合闸弹簧未储能闭锁重合闸与断路器SF6压力低闭锁重合闸两种设计方案进行详细分析,指出了断路器在发生某些异常,如合闸弹簧未储能或SF6压力低闭锁时都应能及时闭锁重合闸;根据分析,运用中的两种方案均不完整,故提出了三方面解决方法。 关键词:重合闸;位置继电器;弹簧操作机构 1 引言 某500kV 变电站为分期设计投运,500kV 断路器均为苏州AREVA 高压电气开关有限公司生产的户外LG317X 型、瓷柱式双断口SF6分相断路器, FK3-5型弹簧操作机构。断路器独立设置许继公司的GXF-222型成套断路器保护,包含WDLK-862A 型断路器保护装置及ZFZ-822型操作箱,重合闸按断路器配置。2009年2月二期扩建工程投运,其在设计“压力”低闭锁重合闸回路(即“压力接点”回路)上有所不同,其具体表现在:初期设计断路器SF6压力低闭锁重合闸、合闸弹簧未储能报信号(方案一);二期中设计弹簧未储能闭锁重合闸、断路器SF6压力低闭锁报信号(方案二),就此做分析。 2 两种方案具体形式 压力低闭锁重合闸回路如图一: 正常时,“压力接点”断开,2YJJ 继电器励磁使其常闭接点打开,不闭锁重合闸;当“压力接点”闭合,则2YJJ 继 电器失磁使其常闭接点返回,闭锁重合闸。 图1:压力低闭锁重合闸 方案一,“压力接点”取断路器SF6压力低闭锁继电器常开接点(如图二):三相断路器SF6压力正常时,密度控制器接点均断开, SF6压力低闭锁继电器失磁,使“压力接点”断开,不闭锁重合闸;若断路器(一相或多相)SF6压力降低至闭锁压力,则闭锁重合闸。 方案二,“压力接点”取各相合闸弹簧储能限位开关常开接点(如图三):若合闸弹簧三相储能,三相弹簧储能限位开关断开,“压力接点”断开,不闭锁重合闸;若合闸弹簧(一相或多相)未 储能,则闭锁重合闸。 图2:“压力接点”取SF6闭锁继电器常开接点

晶闸管的结构以及工作原理

一、晶闸管的基本结构 晶闸管(SemiconductorControlled Rectifier 简称SCR )是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K )和门极(G )。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P 型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。 图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定

的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。 图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V 左右,特性曲线CD 段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <,A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。

重合闸失败原因分析

500kV线路重合闸失败的原因分析及解决办法 摘要:本文分析了某公司生产的LFAA101型重合闸装臵因启动信号与开关压力低闭锁信号配合上的问题导致重合命令不能正常发出的根本原因,并提出了解决办法,确保了保护的正确动作。 关键词:重合闸、压力接点、共存时间、改进 1、概况 我厂在500kV线路保护改造试验中发现了LFAA101重合闸在准备好的前提下,模拟单相瞬时性故障,开关跳开后,重合闸命令无法发出,最后由三相不致保护跳开三相开关的现象。这种现象的发生极其偶然,为此我们进行了深入分析和试验,经过努力终于找到了问题症结,在此作一详细分析并提出解决方案。 2、原理介绍 经过反复的试验明确了LFAA101重合闸装臵要发出可靠的重合命令必须满足以下条件(说明书中未有相关说明,现已得到厂家验证): 在收到启动信号(也即保护发出单跳命令)的同时断路器的压力接点至少要保持18ms才能变位(如图一),共同接通时间15ms时为临界状态,13ms以下重合闸肯定不能发出合闸脉冲(如图二)。 在本次保护改造中,闭锁重合闸压力接点仍采用原老线路保护的设计方案,即将

三相断路器的OCO(其含义应为分一合一分,也即该接点接通时,可保证断路器进行一次分闸,然后开关重合,再次跳开这么一个循环所需的压力)常闭接点串联。用OCO 接点对断路器的要求是比较高的,它的行程为54.5mm,很接近液压马达开始储能的行程为57.5mm。也就是说当分合断路器用的油压低到行程小于57.5mm时,延时2s钟后,油泵起动打压,当行程达到58.5mm时,停止打压。行程低于34mm时不能进行合分操作,行程低于21mm时不能进行分闸操作。 3、原因分析 断路器在正常运行时,由于高压油在油腔内有一定的微漏,当油压低到行程小于57.5mm时,延时2s钟后,油泵起动打压直到58.5mm。这样油压就一直保持在行程始终大于57.5mm。如果这时线路上发生了A相瞬时性故障,保护动作跳开A相,同时给重合闸一个启动信号,此时油压就会释放一部分,由于OCO的行程与开始打压的行程很接近,分闸过程中闭锁重合闸用的OCO压力接点就会断开。线路发生故障是随机的,跳闸前的行程位臵可以在57.5~58.5mm间任何一个位臵,但这个位臵影响着启动信号与压力信号的共存时间,当位臵接近低位时共存时间应短,反之就长。这种接点竞赛的情况如满足图二的时序关系,重合闸就会失败。 为此,我们进行了实际的录波试验。当压力储足后模拟A相瞬时性故障,测得启动信号与压力信号共存时间为17.1ms,重合闸能正确发出重合命令,开关重合成功。但是当我们人为将A相断路器的压力泄放到刚要启动液压油泵但又未到时又进行了一次试验,此时两信号的共存时间只有14.2ms,重合闸不能发出合闸命令,A相重合失败,三相不一致保护跳开三相开关。我们模拟的这种情况在实际运行中确确实实是可能发生的,所以按目前设计也就存在线路发生瞬时性故障时出现重合闸失败的现象,

单相重合闸和综合重合闸

单相重合阐是指线路上发生单相接地故障时,保护动作只跳开故障相的断路器并单相重合;当单相重合不成功或多相故障时,保护动作跳开三相断路器,不再进行重合。由其他任何原因跳开三相断路器时,也不再进行重合。 综合重合闸是指,当发生单相接地故障时采用单相重合闸方式,而当发生相间短路时采用三相重合闸方式。 在下列情况下,需要考虑采用单相重合闸或综合重合闸方式: (1)220kV及以下电压单回联络线、两侧电源之间相互联系薄弱的线路(包括经低一级电压线路弱联系的电磁环网),特别是大型汽轮发电机组的高压配出线路。 (2)当电网发生单相接地故障时,如果使用三相重合闸不能保证系统稳定的线路。 (3)允许使用三相重合闸的线路,但使用单相重合闸对系统或恢复供电有较好效果时,可采用综合重合闸方式。例如。两侧电源间联系较紧密的双回线路或并列运行环网线路,根据稳定计算,重合于三相永久故障不致引起稳定破坏时,可采用综合重合闸方式。当采用三相重合闸时。采取一侧先合,另一侧待对侧重合成功后实现同步重合闸的分式。 (4)经稳定计算校核,允许使用重合闸。 44.选用线路单相重合闸或综合重合闸的条件是什么? 答:单相重合阐是指线路上发生单相接地故障时,保护动作只跳开故障相的断路器并单相重合;当单相重合不成功或多相故障时,保护动作跳开三相断路器,不再进行重合。由其他任何原因跳开三相断路器时,也不再进行重合。 综合重合闸是指,当发生单相接地故障时采用单相重合闸方式,而当发生相间短路时采用三相重合闸方式。在下列情况下,需要考虑采用单相重合闸或综合重合闸方式:(1)220kV及以下电压单回联络线、两侧电源之间相互联系薄弱的线路(包括经低一级电压线路弱联系的电磁环网),特别是大型汽轮发电机组的高压配出线路。(2)当电网发生单相接地故障时,如果使用三相重合闸不能保证系统稳定的线路。(3)允许使用三相重合闸的线路,但使用单相重合闸对系统或恢复供电有较好效果时,可采用综合重合闸方式。例如。两侧电源间联系较紧密的双回线路或并列运行环网线路,根据稳定计算,重合于三相永久故障不致引起稳定破坏时,可采用综合重合闸方式。当采用三相重合闸时。采取一侧先合,另一侧待对侧重合成功后实现同步重合闸的分式。(4)经稳定计算校核,允许使用重合闸。 45.重合闸重合于永久性故障上对电力系统有什么不利影响? 答:当重合闸重合于永久性故障时,主要有以下两个方面的不利影响:(1)使电力系统又一次受到故障的冲击;(2)使断路器的工作条件变得更加严重,因为在很短时间内,断路器要连续两次切断电弧。 46.单相重合闸与三相重合闸各有哪些优缺点? 答:这两种重合闸方式的优缺点如下:(1)使用单相重合闸时会出现非全相运行,除纵联保护需要考虑一些特殊问题外,对零序电流保护的整定和配合产生了很大影响,也使中、短线路的零序电流保护不能充分发挥作用。(2)使用三相重合闸时,各种保护的出口回路可以直接动作于断路器。使用单相重合闸时,除了本身有选相能力的保护外。所有纵联保护、相间

晶闸管(可控硅)的结构与工作原理

一、晶闸管的基本结构 晶闸管(Semi co ndu cto rC ont roll ed Re ctifier 简称SCR)是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K)和门极(G)。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。 图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定

的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。 图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V左右,特性曲线CD段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <, A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。

自动重合闸

自动重合闸 一.基本概念 (1)瞬时性故障:在线路被继电保护迅速断开后,电弧即行熄灭,故障点的绝缘强度重新恢复,外界物体也被电弧烧掉而消失,此时,如果把断开的线路断路器再合上,就能恢复正常的供电,因此称这类故障为“瞬时性故障”。 (2)永久性故障:在线路被断开以后,故障仍然存在,这时即使再合上电源,由于故障仍然存在,线路还要被继电保护再次断开,因而就不能恢复正常的供电。此类故障称为“永久性故障”。 二.基本要求 1,在下列情况下,重合闸不应动作: 1)由值班人员手动操作或通过遥控装置将断路器断开时; 2)手动投入断路器,由于线路上有故障,而随即被继电保护将其断开时。因为在这种情况下,故障是属于永久性的,它可能是由于检修质量不合格、隐患未消除或者保安的接地线忘记拆除等原因所产生,因此再重合一次也不可能成功。 2,除上述条件外,当断路器由继电保护动作或其它原因而跳闸后,重合闸均应动作,使断路器重新合闸。 3,为了能够满足第1、2项所提出的要求,应优先采用由控制开关的位置与断路器位置不对应的原则来起动重合闸,即当控制开关在合闸位置而断路器实际上在断开位置的情况下,使重合闸起动,这样就可以保证不论是任何原因使断路器跳闸以后,都可以进行一次重合。当用手动操作控制开关使断路器跳闸以后,控制开关与断路器的位置仍然是对应的。因此,重合闸就不会起动。 4,自动重合闸装置的动作次数应符合预先的规定。如一次式重合闸就应该只动作一次,当重合于永久性故障而再次跳闸以后,就不应该在动作;对二次式重合闸就应该能够动作两次,当第二次重合于永久性故障而跳闸以后,它不应该再动作。 5,自动重合闸在动作以后,一般应能自动复归,准备好下一次再动作。但对10KV及以下电压的线路,如当地有值班人员时,为简化重合闸的实现,也可采用手动复归的方式。 采用手动复归的缺点是:当重合闸动作后,在值班人员未及时复归以前,而又一次发生故障时,重合闸将拒绝动作,这在雷雨季节,雷害活动较多的地方尤其可能发生。

500kV同杆双回线自适应重合闸方案

!""#年$月第%卷第$期 电&力&设&备 ’()*+,-*.(’/0-12)3+ !4.35!""# 67(8%978$ ,**-.同杆双回线自适应重合闸方案 沈!军"!张!哲"!郑玉平"!李九虎"!孟国凯# !南京南瑞继保电气有限公司"江苏省南京市&!!!%%#&"浙江临安市供电局"浙江省临安市(!!(%%$ 摘要!-$$%&同杆双回线在电力系统中具有举足轻重的作用!该项目通过综合两回线信息!将非严重永久故障判据#辅助判据以及按相顺序重合原则完美地结合起来!实现了同杆双回线的自适应重合闸功能!从而最大限度地提高了电力系统的稳定性"目前该项目成套保护装置已通过鉴定!并已推广应用"文章着重介绍了该项目的自适应重合闸的原理及保护配置!并对带并联电抗器的电压判据作了改进" 关键词!同杆双回线$非严重永久故障判据$辅助判据$按相顺序重合$电力系统稳定性$自适应重合闸 中图分类号!)*++6 "&引言 随着电力系统的发展!由于同杆双回线占用线路走廊窄!具有较高的经济价值!因此-$$%&输变电线路采用同杆双回线已成为必然的选择"由于-$$%&电压等级的同杆双回线担负着系统大容量潮流输送的任务!因此它的正常运行对电力系统的稳定有着重要意义" 同杆双回线装设在同一杆塔上!线间的距离较近!可能会出现跨线故障!当发生跨线故障时!常规的重合闸会合于跨线永久故障!虽然对于各回线路!仍然体现为单相故障!但对于整个电力系统来说!则与重合于多相故障无异!这对系统的冲击很大!并且重合后两回线路均跳开!可能造成一个地区电网潮流严重的不足!从而对系统的稳定以及设备运行造成严重的影响!极端情况下可能导致系统失稳以及损坏电力设备" -$$%&同杆双回线均采用单相重合闸方式!当发生单相接地故障!故障相跳闸后!由于同杆双回线的静电耦合和电磁耦合作用较强!故障相恢复电压较高!使得潜供电弧熄灭时间较短!当潜供电弧还未熄灭或者熄灭的时间较短!还不足以使得故障点绝缘强度恢复!由于常规重合闸无法识别此现象!当重合闸动作时!会使得故障点重新被击穿!导致瞬时性故障重合失败"另外!常规重合闸不能识别故障的严重程度!可能会重合于出口严重故障!这对系统以及电力运行设备也会产生很大的影响" 针对此现状!国电公司调度中心%四川省电力公司及南瑞继保电气有限公司申报了国电公司重点科技项目/-$$%&同塔双回输电线路保护研究0!该项目的成套保护及自适应重合闸装置C>均已顺利通过验收!目前已经在四川洪龙双回线以及福建福州变可门电厂等双回线上投入运行"本文详细介绍了自适应重合闸的工作原理及保护配置和通道连接等!并对有并联电抗器时的电压判据进行了改进"$&自适应重合闸原理 当同杆双回线发生故障!故障相跳闸后!健全相 对故障相会产生恢复电压!恢复电压包括电容耦合电压以及电磁耦合电压"电容耦合电压包括相间电容耦合电压以及线间电容耦合电压!其幅值不受线路长度的影响$电磁耦合电压由线间以及相间的互感产生"由于恢复电压的影响!使得故障点潜供电弧的熄灭比较困难!为了加快潜供电弧的自熄!目前比较常用的方法是在三相并联电抗器的中性点加小电抗的方法!该方法可以部分或全部补偿相间的静电耦合电压"自适应重合闸主要包括无严重故障判据以及按相顺序重合原则" $8$&无并联电抗器电压判据 当线路无并联电抗器投入时!自适应重合闸判别公式如下(") ) S R" A) i "$@"j)H*"+ *) S R6 d) S R- +k$@#j) S R" *#+ 式中!) S R" %) S R6 %) S R- 分别为线路故障跳开相两侧的实测端电压基波幅值%三次谐波以及五次谐波电压幅值$ ) H 为额定电压幅值$) i 为健全相对故障相的感应电压!可根据两回线的互感%故障距离以及健全相电流算出!计算公式如下 " i 56# $ 1 2d6#l $ 1l 2 式中!1 为相间每千米的互感阻抗$1l 为双回线相间 每千米的互感阻抗$# $ 为该回线零序电流$#l $ 为另一回线零序电流$2为故障距离" 式*"+左边计算结果为双回线健全相对故障相的静电耦合电压!对于永久性故障!由于电容对地很快放电!因此式*"+左边为零!可见该电压判据不受负荷电流以及相间互感的影响!具有很高的可靠性!并且接地电阻的大小对式*"+的影响也很小(")" 实际采用时对式*"+作了简化!未对互感电压进 行补偿!即令式*"+中的) i 5$!此时电压判据为

重合闸

重合闸 在电力系统线路故障中,大多数都是“瞬时性”故障,如雷击、碰线、鸟害等引起的故障,在线路被保护迅速断开后,电弧即行熄灭。对这类瞬时性故障,待去游离结束后,如果把断开的断路器再合上,就能恢复正常的供电。此外,还有少量的“永久性故障”,如倒杆、断线、击穿等。这时即使再合上断路器,由于故障依然存在,线路还会再次被保护断开。由于线路故障的以上性质,电力系统中广泛采用了自动重合闸装置,当断路器跳闸以后,能自动将断路器重新合闸。 1.重合闸的利弊 显然,对于瞬时性故障,重合闸以后可能成功;而对于永久性故障,重合闸会失败。统计结果,重合闸的成功率在70%~90%。重合闸的设置对于电力系统来说有利有弊。 当重合于瞬时性故障时: (1)可以提高供电的可靠性,减少线路停电次数及停电时间。特别是对单侧电源线路; (2)可以提高电力系统并列运行的稳定性,提高输电线路传输容量; (3)可以纠正断路器本身机构不良或保护误动等原因引起的误跳闸; 当重合于永久性故障时: (1)使电力系统再一次受到冲击,影响系统稳定性; (2)使断路器在很短时间内,连续两次切断短路电流,工作条件恶劣; 由于线路故障绝大多数都是瞬时性故障,同时重合闸装置本身投资低,工作可靠,因此在电力系统中得到了广泛的应用。 2.重合闸的分类 理论上来讲,除了线路重合闸,还有母线重合闸和变压器重合闸,但权衡利弊,后两者用的很少。因此我们只讨论线路重合闸。 按重合闸动作次数可分为: 一次重合闸、二次(多次)重合闸; 重合闸如果多次重合于永久性故障,将使系统遭受多次冲击,后果严重。所以在高压电网中基本上均采用一次重合闸。只有110kV及以下单侧电源线路,当断路器断流容量允许时,才有可能采用二次重合闸。 按重合闸方式可分为:三相重合闸、单相重合闸。 通常,保护装置设有四种重合闸方式:三重、单重、重合闸停用。这四种方式可以由屏上的转换把手或定值单中的控制字来选择。下面我们简单了解三重、单重和综重的区别。 三相一次重合闸: 线路上发生任何故障,保护三跳三重。如果重合成功,线路继续运行,如果重合于永久性故障,保护再次三跳不重合。 单相一次重合闸:

可控硅元件的工作原理及基本特性

可控硅元件的工作原理及基本特性 1、工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示 图1 可控硅等效图解图 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1 状态条件说明 从关断到导通1、阳极电位高于是阴极电位 2、控制极有足够的正向电压和电流 两者缺一不可 维持导通1、阳极电位高于阴极电位 2、阳极电流大于维持电流 两者缺一不可 从导通到关断1、阳极电位低于阴极电位 2、阳极电流小于维持电流 任一条件即可 2 可控硅的基本伏安特性见图2 图2 可控硅基本伏安特性 (1)反向特性 当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。此时,可控硅会发生永久性反向击穿。

自动重合闸前加速保护实验

实验十七 自动重合闸前加速保护实验 一.实验目的 1.熟悉自动重合闸前加速保护的原理接线。 2.理解自动重合闸前加速的组成形式,技术特性,掌握其实验操作方法。 二.预习和思考 1.图12-2中各个继电器的功用是什么? 2.在重合闸动作前是由哪几个继电器及其触点共同作用,实现前加速保护。 3.重合于永久性故障,保护再次起动,此时由哪几个继电器及其触点共同作用,恢复有选择地再次切除故障的? 4.为什么加速继电器要具有延时返回的特点? 5.在前加速保护电路中,重合闸装置动作后,为什么KM2继电器要通过KA1的常开触点,KM2自身延时返回常开触点进行自保持? 6.在输电线路重合闸电路中,采用前加速时,KM2是由于什么触点起动的? 7.请分析自动重合闸前加速保护的优缺点。 8.分析自动重合闸合闸前加速度保护实验的原理和判断动作过程,并完成预习报告。 三.实验原理 如图12-1所示的网络接线,假定在每条线路上均装设过电流保护,其动作时限按阶梯型原则来配合。因而,在靠近电源端保护3处的时限就很长。为了能加速故障的切除,可在保护3处采用前加速的方式,即当任何一条线路上发生故障时,第一次都由保护3瞬时动作予以切除。如果故障是在线路A-B 以外(如d 1点),则保护3的动作都是无选择性的。但断路器3跳闸后,即起动重合闸重新恢复供电,从而纠正了上述无选择性的 动作。如果此时的故障是瞬时性的,则在重合闸以后就恢复了供电。如果故障是永久性的,则故障由保护1或2切除,当保护2拒动时,则保护3第二次就按有选择性的时限t 3动作和跳闸。为了使无选择性的动作范围不扩展的太长,一般规定当变压器低压侧短路时保护3不应动作。因此,其起动电流还应按照躲开相邻变压器低压侧的短路(d 2点)来整定。 图12-1 重合闸前加速保护的网络接线图t bh t 3 t t 2 t 1 t d 2 ARD 3 2 1 d 1

无人值守设备自动重合闸电路保护方案

无人值守设备自动重合闸电路保护方 案 1

2

无人值守设备自动重合闸电路保护方案 广州市弘得电子有限公司 二○一○年七月 3

目录 一、公司简介 .......................................................................... 错误!未定义书签。 二、自动重合闸漏电保护开关产品介绍.............................. 错误!未定义书签。 2.1 产品简介......................................................................... 错误!未定义书签。 2.2 产品概述......................................................................... 错误!未定义书签。 2.3 产品功能......................................................................... 错误!未定义书签。 2.4 产品用途......................................................................... 错误!未定义书签。 2.5 安装自动重合闸漏电保护开关的意义 ........................ 错误!未定义书签。 2.6 产品规格和技术参数..................................................... 错误!未定义书签。 2.7 软件功能......................................................................... 错误!未定义书签。 2.8 安装使用......................................................................... 错误!未定义书签。 2.9 操作使用及面板指示说明............................................. 错误!未定义书签。 三、产品检验报告 .................................................................. 错误!未定义书签。 3.1 HD-ACPD-D10A检验报告........................................... 错误!未定义书签。 3.2 HD-ACPD-D32A检验报告........................................... 错误!未定义书签。 3.3 HD-ACPD-S100B检验报告.......................................... 错误!未定义书签。 4

线路重合闸的投退操作方法及顺序

线路重合闸的投退操作方法及顺序说明 一、重合闸说明 1、本装置重合闸为一次重合闸方式, 可实现单相重合闸、三相重合闸或综合重合闸;可根据故障的严重程度引入闭锁重合闸的方式。重合闸的起动方式可以由保护动作起动或开关位置不对应起动方式;二套装置的重合闸可以同时投入,不会出现二次重合,正常时只允许投入两套保护中重合闸的一个出口压板即只投一个1LP4: 重合闸出口: 2、重合闸方式由外部切换1QK把手决定,其功能表如下: 开入量单重三重综重停用 重合方式1 0 1 0 1 重合方式2 0 0 1 1 当线路重合闸投入单重或停用时,应分别将二套装置的外部切换1QK投在相应位置。 3、重合闸方式开关打在停用位置,仅表明本装置的重合闸停用,保护仍是选相跳闸。要实现线路重合闸停用,即任何故障三跳且不重,则应将“闭重三跳”压板投入。 闭重三跳输入,其意义是:(1 )沟三跳,即单相故障保护也三跳; (2 )闭锁重合闸,如重合闸投入则放电。 4、本装置的重合闸起动方式有:(1 )位置(TWJ )接点确定的不对应起动(由整定控制字确定是否投入);(2 )本保护动作起动;(3 )其它保护动作起动; 二、重合闸投退原则 1、投入:先选择投入的重合闸方式,再投入重合闸出口,最后退出勾通三跳。 2、退出:先投入勾通三跳,再选择投入的重合闸方式,最后退出重合闸出口。 三、单相重合闸的投入步骤: (1)将RCS—902A、RCS—931A两套保护的重合闸方式开关1QK切换至单重位置,(在RCS—902A、RCS—931A保护装置#保护状态#进入#开入显示#菜单中检查重合方式1置0,重合方式2置0,确保单相重合闸方式内部生效)。 (2)投入 RCS—902A、RCS—931A两套保护的其中一套的1LP4合闸出口压板 (3)退出RCS—902A、RCS—931A两套保护的1LP21勾通三跳压板,(在RCS—902A、RCS—931A保护装置#保护状态#进入#开入显示#菜单中检查沟通三跳变位置0,确保内部生效)。 四、单相重合闸的退出; (1)投入 RCS—902A、RCS—931A两套保护的1LP21:勾通三跳压板,(在

自动重合闸简介

自动重合闸装置 所谓自动重合闸装置,是将因故障跳开后的断路器按需要自动投入的一种自动装置。电力系统采用自动重合闸装置,极大地提高了供电的可靠性,减少了停电损失,而且还提高了电力系统的水平,增强了线路的送电容量,厂家红申电气。 简介 就是将跳闸后的断路器按照要求自动投入的装置。 分类 1 重合闸的分类 1.1 按重合闸的动作来分,可分为电气式和机械式。 1.2 按重合闸作用于断路器的方式,可分为三相普通重合闸、单相重合闸和综合重合闸三种。 1.3 按重合闸的构成原理来分,可分为电磁式、晶体管式、集成电路式、数字(微机)式。 1.4 按动作次数来分,可分为一次式和多次式。 1.5 按使用条件来分,可分为单电源重合闸和双侧电源重合闸。双侧电源重合闸又可分为检定无压重合闸、检定同期和不检定三种。 基本要求 2.1 在下列情况下,重合闸不应动作:由运行值班员手动跳闸或无人值班变电站通过远方遥控装置跳闸时;当按频率自动减负荷装置动作时或负荷控制装置动作跳闸时;当手动合闸送电到故障线路上而保护动作跳闸时;母差保护或断路器失灵保护动作时;当备用电源自投(或互投)装置动作跳闸时或断路器处于不正常状态而不允许实现重合闸时。 2.2 除上述情况外,断路器由于继电保护动作或其他原因跳闸后,重合闸装置应动作,使断路器重新合上。 2.3 重合闸装置在动作后,均应能够自动复归,准备好下一次再动作,但动作次数应符合预先的设定。 2.4 重合闸装置应能够和继电保护配合实现重合闸前加速或后加速功能。 2.5 在双侧电源的线路上,重合闸启动条件应受到同期检定或无压检定的限制,且不可造成非同期重合并网。 2.6 重合闸的启动方式一般采用不对应启动,对于微机、集成电路保护还可采用保护启动方式。 2.7 重合闸动作应具备延时功能,对于220 kV以上电网应有两种以上时间可供选择。

重合闸知识问答汇总

1.选用线路单相重合闸或综合重合闸的条件是什么? 答:单相重合阐是指线路上发生单相接地故障时,保护动作只跳开故障相的断路器并单相重合;当单相重合不成功或多相故障时,保护动作跳开三相断路器,不再进行重合。由其他任何原因跳开三相断路器时,也不再进行重合。 综合重合闸是指,当发生单相接地故障时采用单相重合闸方式,而当发生相间短路时采用三相重合闸方式。 在下列情况下,需要考虑采用单相重合闸或综合重合闸方式: (1)220kV及以下电压单回联络线、两侧电源之间相互联系薄弱的线路(包括经低一级电压线路弱联系的电磁环网),特别是大型汽轮发电机组的高压配出线路。 (2)当电网发生单相接地故障时,如果使用三相重合闸不能保证系统稳定的线路。 (3)允许使用三相重合闸的线路,但使用单相重合闸对系统或恢复供电有较好效果时,可采用综合重合闸方式。例如。两侧电源间联系较紧密的双回线路或并列运行环网线路,根据稳定计算,重合于三相永久故障不致引起稳定破坏时,可采用综合重合闸方式。当采用三相重合闸时。采取一侧先合,另一侧待对侧重合成功后实现同步重合闸的分式。 (4)经稳定计算校核,允许使用重合闸。 2.重合闸重合于永久性故障上对电力系统有什么不利影响? 答:当重合闸重合于永久性故障时,主要有以下两个方面的不利影响: (1)使电力系统又一次受到故障的冲击; (2)使断路器的工作条件变得更加严重,因为在很短时间内,断路器要连续两次切断电弧。 3.自动重合闸的启动方式有哪几种?各有什么特点? 答:自动重合闸子有两种启动方式:断路器控制开关位置与断路器位置不对应启动方式和保护启动方式。 不对应启动方式的优点:简单可靠,还可以纠正断路器误碰或偷跳,可提高供电可靠性和系统运行的稳定性,在各级电网中具有良好运行效果,是所有重合闸的基本启动方式。其缺点是,当断路器辅助触点接触不良时,不对应启动方式将失效。 保护起动方式:是不对应启动方式的补充。同时,在单相生命闸过程中需要进行一些保护的闭锁,逻辑回路中需要对故障相实现选相固定等,也需要一个保护启动的重合闸启动元件。其缺点是,不能纠正断路器误动。 4.单相重合闸与三相重合闸各有哪些优缺点? 答:这两种重合闸方式的优缺点如下: (1)使用单相重合闸时会出现非全相运行,除纵联保护需要考虑一些特殊问题外,对零序电流保护的整定和配合产生了很大影响,也使中、短线路的零序电流保护不能充分发挥作用。 (2)使用三相重合闸时,各种保护的出口回路可以直接动作于断路器。使用单相重合闸时,除了本身有选相能力的保护外。所有纵联保护、相间距离保护、零序电流保护等,都必须经单相重合闸的选相元件控制,才能动作于断路器。 (3)当线路发生单相接地进行三相重合闸时,会比单相重合闸产生较大的操作过电压。这是由于三相跳闸、电流过零时断电,在非故障相上会保留相当于相电压峰值的残余电荷电压,而重合闸的断电时间较短,上述非故障相的电压变化不大,因而在

单向晶闸管的基本结构及工作原理

单向晶闸管的基本结构及工作原理 晶闸管有许多种类,下面以常用的普通晶闸管为例,介绍其基本结构及工作原理。 单向晶闸管内有三个PN 结,它们是由相互交叠的4 层P区和N区所构成的.如图17-1(a) 所示。晶闸管的三个电极是从P1引出阳极A,从N2引出阳极K ,从P2引出控制极G ,因此可以说它是一个四层三端 半导体器件。 为了便于说明.可以把图17-1 (a) 所示晶闸管看成是由两部分组成的[见图17-1(b)],这样可以把晶闸管等效为两只三极管组成的一对互补管.左下部分为NPN型管,在上部分为PNP 型管[见图17-1 (c)]。 当接上电源Ea后,VT1及VT2都处于放大状态,若在G 、K 极间加入一个正触发信号,就相当于在V T1基极与发射极回路中有一个控制电流IC,它就是VT1的基极电流IB1。经放大后,VT1产生集电极电流ICI。此电流流出VT2 的基极,成为VT2 的基极电流IB2。于是, VT2 产生了集电极电流IC2。IC2再流入VT1 的基极,再次得到放大。这样依次循环下去,一瞬间便可使VT1和VT2全部导通并达到饱和。所以,当晶闸管加上正电压后,一输入触发信号,它就会立即导通。晶闸管一经导通后,由于导致VT1基极上总是流过比控制极电流IG大得多的电流,所以即使触发信号消失后,晶闸管仍旧能保持导通状态。只有降低电源电压Ea,使VT1、VT2 集电极电流小于某一维持导通的 最小值,晶闸管才能转为关断状态。 如果把电源Ea反接,VT1 和VT2 都不具备放大工作条件,即使有触发信号,晶闸管也无法工作而处于关断状态。同样,在没有输入触发信号或触发信号极性相反时,即使晶闸管加上正向电压.它也无法导通。 上述的几种情况可参见图17-2 。

自动重合闸

自动重合闸 一、自动重合闸在电力系统中的作用 自动重合闸(ZCH )装置是将因故障跳开后的断路器按需要自动投入的一种自动装置。 运行经验表明,架空线路大多数故障是瞬时性的,如: (1)雷击过电压引起绝缘子表面闪络。 (2)大风时的短时碰线。 (3)通过鸟类身体(或树枝)放电。 此时,若保护动——>熄弧——>故障消除——>合断路器——>恢复供电。 手动(停电时间长)效果不显著,自动重合(1”)效果明显。 作用:(P153) (1)对暂时性故障,可迅速恢复供电,从而能提高供电的可靠性。 (2)对两侧电源线路,可提高系统并列运行的稳定性,从而提高线路的输送容量。 (3)可以纠正由于断路器或继电保护误动作引起的误跳闸。 应用:1KV 及以上电压的架空线路或电缆与架空线路的混合线路上,只要装有断路器,一般应装设ZCH (P153,最后一段)。 但是,ZCH 本身不能判断故障是瞬时性的,还是永久性的。所以若重合于永久性故障时,其不利影响: (1)使电力系统又一次受到故障的冲击; (2)使断路器的工作条件恶化(因为在短时间内连续两次切断短路电流)。 据运行资料统计,ZCH 成功率60~90%,经济效益很高——>广泛应用。 二、对自动重合闸的基本要求: (1)动作迅速。z u t t t +>,一般0.5”~1.5”。 tu ——故障点去游离,tz ——断路器消弧室及传动机构准备好再次动作。 (2)不允许任意多次重合,即动作次数应符合预先的规定,如一次或两次。 (3)动作后应能自动复归,准备好再次动作。 (4)手动跳闸时不应重合(手动操作或遥控操作)。 (5)手动合闸于故障线路不重合(多属于永久性故障)。 三、三相自动重合闸: (一)单侧电源线路的三相一次重合闸: 对于华东地区来说,当线路上故障(单相接地短路)——>保护动作跳开三相——>重合闸起动——>合三相:故障是瞬时性的,重合成功;故障是永久性的,保护再次跳开三相,不再重合。相间短路——>保护动作跳开三相不重合 通常三相一次自动重合闸装置由起动元件、延时元件、一次合闸脉冲元件和执行元件四部分组成。

相关文档