文档库 最新最全的文档下载
当前位置:文档库 › 极坐标、参数方程题型大全

极坐标、参数方程题型大全

极坐标、参数方程题型大全
极坐标、参数方程题型大全

参 数 方 程 集 中 训 练 题 型 大 全 答题时间:300分钟 满分:300分 命题人:杨晓帆

参27.在极坐标系中,点(ρ,θ)与(-ρ, π-θ)的位置关系为( )。 A .关于极轴所在直线对称 B .关于极点对称 C .关于直线θ=2

π (ρ∈R) 对称

D .重合

28.极坐标方程 4ρsin

2

=5 表示的曲线是( )。

A .圆

B .椭圆

C .双曲线的一支

D .抛物线

29.点 P 1(ρ1,θ1) 与 P 2(ρ2,θ2) 满足ρ1 +ρ2=0,θ1 +θ2 = 2π,则 P 1、P 2 两点 的位置关系是( )。

A .关于极轴所在直线对称

B .关于极点对称

C .关于θ=2

π所在直线对称 D .重合

30.椭圆?

?

?Φ+-=Φ

+=sin 51cos 33y x 的两个焦点坐标是( )。

A .(-3, 5),(-3, -3)

B .(3, 3),(3, -5)

C .(1, 1),(-7, 1)

D .(7, -1),(-1, -1) 六、1.若直线的参数方程为12()23x t

t y t

=+??

=-?为参数,则直线的斜率为( )

A .23

B .23-

C .

32

D .3

2

-

2.下列在曲线sin 2()cos sin x y θ

θθθ

=??

=+?为参数上的点是( )

A .1(

,2 B .31

(,)42

- C . D . 3.将参数方程2

2

2sin ()sin x y θ

θθ

?=+??=??为参数化为普通方程为( )

A .

2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤

4.化极坐标方程2

cos 0ρθρ-=为直角坐标方程为( )

A .201y y +==2

x

或 B .1x = C .201y +==2x 或x D .1y =

5.点M

的直角坐标是(1-,则点M

的极坐标为( )

A .(2,

)3

π

B .(2,)3π-

C .2(2,)3π

D .(2,2),()3k k Z π

π+∈

6.极坐标方程cos 2sin 2ρθ

θ=表示的曲线为( )

A .一条射线和一个圆

B .两条直线

C .一条直线和一个圆

D .一个圆 七、1.直线l 的参数方程为()x a t

t y b t

=+??=+?为参数,l 上的点1P 对应的参数是1t ,则点1P 与(,)P a b 之

间的距离是( )

A .

1t B .12t C

1

D

1

2.参数方程为1()2

x t t t y ?=+?

??=?为参数表示的曲线是( )

A .一条直线

B .两条直线

C .一条射线

D .两条射线

3

.直线112()x t t y ?=+??

??=-??为参数和圆2216x y +=交于,A B 两点,

AB 的中点坐标为( )

A .(3,3)- B

.( C

.3)- D

.(3,

4

.圆5cos ρ

θθ=-的圆心坐标是( )

A .4(5,)3π--

B .(5,)3π-

C .(5,)3π

D .5(5,)3

π

- 5

.与参数方程为)x t y ?=??

=??为参数等价的普通方程为( ) A .214y +=2

x B .21(01)4

y x +=≤≤2x

C .21(02)4y y +=≤≤2

x D .21(01,02)4

y x y +=≤≤≤≤2

x 6.直线2()1x t

t y t

=-+??

=-?为参数被圆22(3)(1)25x y -++=所截得的弦长为( )

A

B .1

40

4

C

D

八、1.把方程1xy

=化为以t 参数的参数方程是( )

A .1

21

2x t y t -?

=???=?

B .sin 1sin x t y t =???=??

C .cos 1cos x t y t =??

?=??

D .tan 1tan x t

y t =???

=?? 2.曲线25()12x t

t y t

=-+??

=-?为参数与坐标轴的交点是( )

A .21(0,)(,0)52、

B .11(0,)(,0)52

、 C .(0,4)(8,0)-、

D .5

(0,)(8,0)9

、 3.直线12()2x t

t y t

=+??

=+?为参数被圆229x y +=截得的弦长为( )

A .

125 B

C

D

4.若点(3,)P m 在以点F 为焦点的抛物线2

4()4x t t y t

?=?

=?为参数上, 则

PF

等于( )

A .2

B .3

C .4

D .5 5.极坐标方程cos 20ρθ

=表示的曲线为( )

A .极点

B .极轴

C .一条直线

D .两条相交直线 6.在极坐标系中与圆4sin ρθ=相切的一条直线的方程为( )

A .cos 2ρθ

= B .sin 2ρθ=

C .4sin()3π

ρθ=+

D .4sin()3

π

ρθ=-

参、5.把参数方程?

??+==1cos sin αα

y x (α为参数)化为普通方程,结果是

15.把直角坐标系的原点作为极点,x 的正半轴作为极轴,并且在两种坐标系中取相同的长度单位,若曲线的极坐标方程是1

cos 412

2

-=

θP ,则它的直角坐标方程是。

六、1.直线34()45x t

t y t

=+??=-?为参数的斜率为______________________。

2.参数方程()2()

t t

t t

x e e

t y e e --?=+??=-??为参数的普通方程为__________________。

3.已知直线113:()24x t

l t y t

=+??

=-?为参数与直线2:245l x y -=相交于点B ,又点(1,2)A ,

则AB =_______________。

4.直线122

()112

x t t y t ?=-???

?=-+??为参数被圆224x y +=截得的弦长为______________。

5.直线cos sin 0x y αα+=的极坐标方程为____________________。

七、1.曲线的参数方程是211()1x t t y t ?=-?

≠??=-?

为参数,t 0,则它的普通方程为__________________。

2.直线3()14x at

t y t =+??

=-+?

为参数过定点_____________。

3.点P(x,y)是椭圆2

22312x y +=上的一个动点,则2x y +的最大值为___________。

4.曲线的极坐标方程为1

tan cos ρθθ

=?

,则曲线的直角坐标方程为________________。

5.设()y tx t =为参数则圆2240x y y +-=的参数方程为__________________________。

八、1.已知曲线2

2()2x pt t p y pt ?=?=?为参数,为正常数上的两点,M N

对应的参数分别为12,t t 和,

120t t +=且,那么MN

=_______________。

2

.直线2()3x t y ?=-??

=+??为参数上与点(2,3)A -

_______。 3.圆的参数方程为3sin 4cos ()4sin 3cos x y θθ

θθθ=+??=-?

为参数,则此圆的半径为_______________。

4.极坐标方程分别为cos ρ

θ=与sin ρθ=的两个圆的圆心距为_____________。

5.直线cos sin x t y t θ

θ=??

=?与圆42cos 2sin x y αα=+??=?

相切,则θ=_______________。

参、3.如图,过点M (-2, 0) 的直线ι依次与圆(x +

2

9)2 + y 2 = 16和抛物线 y 2

= - 4x

交于A 、B 、C 、D 四点,且|AB| = |CD|,求直线ι的方程。

\

4.过点 P(-2, 0) 的直线ι与抛物线 y 2

= 4x 相交所得弦长为8,求直线ι的方程。

5.求直线?

??+-=+-=t y t

x 321 ( t 为参数)被抛物线 y 2

= 16x 截得的线段AB 中点 M 的坐

标及点 P(-1, -2) 到 M 的距离。

8.A 为椭圆252x +

9

2

y =1上任一点,B 为圆( x - 1)2 + y 2

= 1 上任一点,求 | AB | 的

最大值和最小值 。

9.A 、B 在椭圆2

2

a

x +22b

y = 1(a > b > 0)上,OA ⊥OB ,求△AOB 面积的最大值和最小值。

10.椭圆2

2

a x +22b

y =1(a > b > 0)的右顶点为A ,中心为O ,若椭圆在第 一象限的弧

上存在点P ,使∠OPA=90°,求离心率的范围。 一1、求圆心为C 36,π??

?

?

?,半径为3的圆的极坐标方程。

2、已知直线l 经过点P(1,1),倾斜角6

π

α=

(1)写出直线l 的参数方程。 (2)设l 与圆422

=+y x 相交与两点A 、B ,求点P 到A 、B 两点的距离之积。

3、求椭圆

14

92

2=+y x )之间距离的最小值,与定点(上一点01P 。

三、18.上截得的弦长。为参数)被双曲线(求直线13222=-??

?=+=y x t t

y t

x

四、14.设椭圆4x 2+y 2

=1的平行弦的斜率为2,求这组平行弦中点的轨迹.

五、19.ABC ?的底边,2

1

,10B A BC ∠=

∠=以B 点为极点,BC 为极轴,求顶点A 的轨迹方程。

20.在平面直角坐标系中已知点A (3,0),P 是圆珠笔()

122

=+y x

上一个运点,且AOP ∠的平分线

交PA 于Q 点,求Q 点的轨迹的极坐标方程。

六1.已知点(,)P x y 是圆2

22x y y +=上的动点,

(1)求2x y +的取值范围;

(2)若0x y a ++≥恒成立,求实数a 的取值范围。

\\\\

2

.求直线11:()5x t

l t y =+???

=-+??为参数

和直线2:0l x y --=的交点P 的坐标,及点P 与(1,5)Q -的距离。 \\

3.在椭圆

2211612

x y +=上找一点,使这一点到直线2120x y --=的距离的最小值。

七、1.参数方程cos (sin cos )

()sin (sin cos )

x y θθθθθθθ=+??=+?为参数表示什么曲线?

2.点P 在椭圆

22

1169

x y +=上,求点P 到直线3424x y -=的最大距离和最小距离。

\

3.已知直线l 经过点(1,1)P ,倾斜角6

π

α=

(1)写出直线l 的参数方程。 (2)设l 与圆422

=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积。

八、1.分别在下列两种情况下,把参数方程

1

()cos

2

1

()sin

2

t t

t t

x e e

y e e

θ

θ

-

-

?

=+

??

?

?=-

??

化为普通方程:

(1)θ为参数,t为常数;(2)t为参数,θ为常数;

2

.过点P作倾斜角为α的直线与曲线22

121

x y

+=交于点,

M N,求PM PN

?的最小值及相应的α的值。

参 数 方 程 集 中 训 练 题 型 大 全 答案 田硕

27.A 【习题分析】

与点M(ρ,θ)关于极轴对称的点有(ρ,-θ)或(-ρ,π-θ),关于θ=

2

π所在直线对称的点有(-ρ,-θ)或

(ρ,π-θ),关于极点对称的点有(-ρ,θ)或(ρ,π+θ)。掌握好点与极坐标的对应关系,及点之间特殊的对称关系是很有用处的。 28.D 【习题分析】

化为4P 2cos 1θ-?=5。即ρ=

θ

cos 125

-,表示抛物线,应选D 。判断曲线类型一般不外乎直线、

圆、圆锥曲线等,因此需化为相应方程即可。 29.C 【习题分析】

点 P 2 坐标为(-ρ1, 2π-θ1)也即为(ρ1, 3π-θ1), ∴点P 1、P 2关于θ=

2

π

所在直线对称,应选C 。

判断点的对称,应记忆好相应坐标之间的关系,必要时 可结合图形。

30.B 【习题分析】

先将椭圆方程化为普通方程,得:

9

)3(2

-x +

25

)1(2+y =1。

然后由平移公式?

?

?-=+=1`3

`y y x x 。

及在新系中焦点(0, ±4)可得答案,应选B 。

【填空】 5.x 2+(y-1) 2=1 【习题分析】

将原方程变形为???=-=α

α

cos 1sin y x ,两边相加即可得x 2 + (y - 1)2 =1。

15.3x 2-y 2=1 【习题分析】

原方程可化为 4ρ2cos 2θ-ρ2 =1。将ρcos θ= x , p 2 = x 2 + y 2 代入上式,得 4x 2 - x 2 - y 2 = 1,即 3x 2 - y 2 = 1。 【计算】

3.x=-2或2x-y+4=0或2x=y=4=0 【习题分析】

设直线的参数方程为?

??=+-=αα

sin cos 2t y t x (t 为参数) 代入圆的方程和抛物线的方程,化简并利用| AB

| = | CD |

?t A + t D = t C + t B , 根据韦达定理可迅速获解。

4.

)2(3

3

=x y 【习题分析】

设:??

?+=+-=α

α

sin 0cos 2t y t x ( t 为参数),α为直线ι

的倾角,

代入抛物线方程整理得:

ι

2

sin 2α - (4cos α) t + 8 = 0

由韦达定理得 t 1 + t 2 =

α

α2sin cos 4 t 12t 2 =

α

2sin 8。

弦长| t 1 - t 2 | = 8,整理得 4sin 4α+ 3sin 2α-1 = 0

解得 sin 2α=

4

1 ∴sin α= ±

2

10 ≤α<π

∴ α=

6

π或

6

即所求直线ι的方程为 y = ±

3

3

(x + 2) 5.

3532+,3

3

8,

3

16

34+ 【习题分析】

不能把原参数方程直接代入 y = 16x 2 中,因为原参数不是 标准式,不具有几何意义,在求 | PM | 时不用两点间距离 公式,而用参数的几何意义直接得出。 因而解本题用到两个结论:1. 弦的中点对应参

数为: t =

2

2

1t t +,2. 点P(直线经过的定点)到弦中点M 的距离|PM=|

2

2

1t t +|

6.217

【习题分析】

4

2x +y 2=1有P(2cos θ,sin θ),则2x+y=4cos θ+sin θ=

17

sin(θ+φ)(tan φ= 4), ∴(2x + y)大=

17。

若已知椭圆(圆或双曲线)上一点,用参数方程来设坐标较方便,用此法可以解决 Ax + By 型的最值问题。

8.7,

14

15

3- 【习题分析】

圆心C (1,0),求|AB|的最值,只需求AC 的最值,设A (5cos θ,3sin θ) 用两点间距离公式求解|AC|。 解决本题的关键在于将圆上的动点B 转化到定点—圆心C 。

9.

2

ab ,2

2

22b a b a +

【习题分析】

从椭圆中心(抛物线顶点)出发的线段长有关的问题,可将???==θ

θ

sin cos p y p x 直接代入普通方程,转化

为极坐标方程,

设A ( ρ1,θ),B (ρ2,θ±2

π)则有

S △AOB =

2

1| ρ1ρ2 | 进一步处理。

10.

2

2≤e<1

【习题分析】

设 P(acos θ, bsin θ)(0 <θ< 90°), ∵∠OPA=90° ∴有

θ

θcos sin a b 2

a

a b -θθ

cos sin = -1? (a 2-b 2)cos 2θ

- acos 2θ+ b 2=0

解得 cos θ

=2

2

2b a b -或cos θ=1(舍)。

∴当2

2

2

b a b -≤1,即 a ≥

2b ,也即

2

2≤e < 1时,

存在这样的点P ,使∠OPA=90°。

练习1参考答案

三、解答题

1、1、如下图,设圆上任一点为P (ρθ,),则((((2366

OP POA OA π

ρθ=∠=-=?=,,

((((cos Rt OAP OP OA POA ?=?∠中,

6c o s 6πρθ?

?

∴=-

??

?

而点O )32,

0(π A )6

,0(π

符合

2、解:(1)直线的参数方程是是参数)t t y t x (;211,231???

????+=+= (2)因为点A,B 都在直线l 上,所以可设它们对应的参数为t 1和t 2,则点A,B 的坐标分别为

),211,231(11t t A ++

)2

1

1,231(22t t B ++ 以直线L 的参数方程代入圆的方程422

=+y x

整理得到

2)13(

2=-++t t

因为t 1和t 2是方程①的解,从而t 1t 2=-2。 所以|PA|2|PB|= |t 1t 2|=|-2|=2。

3、(先设出点P 的坐标,建立有关距离的函数关系)

()()

3cos 2sin 10P P d θθθ=设,,则到定点(,)的距离为

3c o s )

5d θθ=(当时,

练习3参考答案

18.解:把直线参数方程化为标准参数方程为参数)

( 23 212t t y t x ???

?

???

=+=

1 23 21212

2

22=????

??-??? ?

?+=-t t y x ,得:代入 06 4 2=--t t 整理,得: ,则,设其二根为 21t t

6 4 2121-=?=+t t t t ,

()()10240644 4 22122121==--=

-+=

-=t t t t t t AB 从而弦长为

练习4参考答案

14.取平行弦中的一条弦AB 在y 轴上的截距

m 为参数,并设

A(x 1

设弦AB

的中点为M(x

,y),则

极坐标与参数方程单元练习5

三.解答题(共75分)

练习5参考答案

19.解:设()θρ,M

是曲线上任意一点,在ABC ?

中由正弦定理得:

2

sin

10)

2

3

sin(θ

θπρ

=-

得A 的轨迹是:2

sin 40302

θ

ρ-=

20.解:以O 为极点,x 轴正半轴为极轴建立极坐标系,设()θρ,Q

,()θ2,1P

O AP O Q P O Q A S S S ???=+

θθρθρ2sin 1321

sin 21sin 321???=+?∴ θρcos 2

3

=

坐标系与参数方程单元练习6

坐标系与参数方程单元练习6参考答案

一、选择题 1.D

233

122

y t k x t --=

==--

2.B 转化为普通方程:21y x =+,当34x =-

时,1

2

y =

3.C 转化为普通方程:2y x =-,但是[2,3],[0,1]x y ∈∈

4.

C (cos 1)0,0,cos 1x ρρθρρθ-=====或

5.C 2(2,2),()3

k k Z π

π+

∈都是极坐标 6.C

2cos 4sin cos ,cos 0,4sin ,4sin ρθθθθρθρρθ====或即

则,2

k π

θπ=+

或224x y y +=

二、填空题 1.54-

455

344

y t k x t --=

==-- 2.

221,(2)416

x y x -=≥ 22

()()4

22222

t

t t t t

t

y x e x e e y y x x y y e e x e ---??+==+?????+-=??=-??-=??? 3.

5

2

将1324x t y t

=+??

=-?代入245x y -=得12t =,则5(,0)2B ,而

(1,2)A ,得5

2AB =

4

直线为

10

x y +-=,圆心到直线的距

d =

=,弦长的一半

2

=

5.2

π

θ

α=

+ cos cos sin sin 0,cos()0ρθαρθαθα+=-=,取2

π

θα-=

三、解答题

1.解:(1)设圆的参数方程为cos 1sin x y θ

θ

=??

=+?,

22cos sin 1)1x y θθθ?+=++=++

121x y ≤+≤

(2)cos sin 10x y a a θθ+

+=+++≥

(cos sin )1)1

4

1a a π

θθθ∴≥-+-=+-∴≥ 2

.解:将15x t

y =+???=-+??

代入0x y --=

得t =,

得(1P +,而(1,5)Q -

,得PQ ==3

.解:设椭圆的参数方程为4cos x y θ

θ

=???=??

,d =

3)33

θ

θθθ=

-=+- 当cos()13

π

θ

+

=

时,min 5

d =

,此时所求点为(2,3)-。

坐标系与参数方程单元练习7参考答案

一、选择题 1.C

1

=

2.D

2y =表示一条平行于x 轴的直线,而2,2x x ≥≤-或,所以表示两条射线

3.D

22

1(1)()1622

t ++-=,得2880t t --=,12128,42t t t t ++==

中点为1143

24x x y y ?

=+??=??????

=?

??=-??4.A

圆心为5(

,22

- 5.D

222

22

,11,1,0,011,0244

y y x t t x x t t y ==-=-+=≥≤-≤≤≤而得

6.C

222112

x x t y t y ?=-+??=-+?????

=-??=???,把直线21x t y t =-+??=-?代入 22(3)(1)25x y -++=得222(5)(2)25,720t t t t -++-=-+=

12t t -==

12t -=二、填空题 1.

2

(2)

(1)(1)

x x y x x -=

≠- 111,,1x t t x -==-而21y t =-, 即

22

1(2)

1()(1)1(1)

x x y x x x -=-=≠-- 2.(3,1)-

14

3y x a

+=-,(1)4120y a x -++-=对于任何a 都成立,则3,1x y ==-且 3

椭圆为22

164

x y +

=

,设,2sin )P θθ,

24sin )x y θθθ?+=+=+≤4.2

x

y = 2

22

2

1s i n t a n ,c o s s i n ,

c o s s i n ,c o s c o s

θρθρθθρθρθθθ=?

===即2

x y =

5.2

2

24141t x t t y t ?

=??+??=?+?

22()40x tx tx +-=,当0x =时,0y =;当0x ≠时,2

41t

x t =

+;

高中数学极坐标与参数方程大题(详解)

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. +=1 , , 的距离为 则 取得最小值,最小值为 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 的极坐标方程为: cos=

∴ y+1=0 ( d= 的距离的最大值. 3.已知曲线C1:(t为参数),C2:(θ为参数). (1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值. :(化为普通方程得:+ t=代入到曲线 sin =,),﹣

4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为 ,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C 上不同于A,B的任意一点. (Ⅰ)求圆心的极坐标; (Ⅱ)求△PAB面积的最大值. 的极坐标方程为,把 ,利用三角形的面积计算公式即可得出. 的极坐标方程为,化为= 把 ∴圆心极坐标为; (t , = 距离的最大值为 5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.

极坐标与参数方程 经典练习题含答案详解

一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.曲线25()12x t t y t =-+?? =-?为参数与坐标轴的交点是( ). A .21(0,)(,0)5 2 、 B .11(0,)(,0)5 2 、 C .(0,4)(8,0)-、 D .5(0,)(8,0)9 、 2.把方程1xy =化为以t 参数的参数方程是( ). A .1 21 2x t y t -?=???=? B .sin 1sin x t y t =???=?? C .cos 1cos x t y t =???=?? D .tan 1tan x t y t =???=?? 3.若直线的参数方程为12()23x t t y t =+?? =-?为参数,则直线的斜率为( ). A . 23 B .23- C .32 D .32 - 4.点(1,2)在圆18cos 8sin x y θ θ=-+??=? 的( ). A .内部 B .外部 C .圆上 D .与θ的值有关 5.参数方程为1()2 x t t t y ?=+? ??=?为参数表示的曲线是( ). A .一条直线 B .两条直线 C .一条射线 D .两条射线 6.两圆???+=+-=θθsin 24cos 23y x 与? ??==θθ sin 3cos 3y x 的位置关系是( ). A .内切 B .外切 C .相离 D .内含 7 .与参数方程为)x t y ?=?? =??为参数等价的普通方程为( ). A .22 14 y x + = B .22 1(01)4y x x +=≤≤ C .22 1(02)4y x y +=≤≤ D .22 1(01,02)4 y x x y +=≤≤≤≤

极坐标与参数方程题型三:最值问题

极坐标与参数方程题型二:最值问题 13.在直角坐标系中,曲线的参数方程为,(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为. (1) 求曲线的普通方程与曲线的直角坐标方程; (2) 设为曲线上的动点,求点到上点的距离的最小值,并求此时点的坐标. 14、已知曲线C :x 24+y 29=1,直线l :? ????x =2+t ,y =2-2t (t 为参数). (1)写出曲线C 的参数方程、直线l 的普通方程; (2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值. 15、以原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程; (2)若点()y x P ,在该圆上,求y x +的最大值和最小值.

16、已知曲线C 的极坐标方程θρsin 2=,直线l 的参数方程)(22223为参数t t y t x ??? ????=+=, 以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系; (1)求曲线l C 与直线的直角坐标方程. (2)若M 、N 分别为曲线l C 与直线上的两个动点,求||MN 的最小值. 17、已知直线l 的参数方程为1212 x t y ?=????=+??(t 为参数),曲线C 的参数方程为 2cos sin x y θθ =+??=?(θ为参数)。(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4, )3π,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求点Q 到直线l 的距离的最小值与最大值。 18、以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l 的参数方程为???=+=α αsin cos 1t y t x (t 为参数,πα<<0),曲线C 的极坐标方程为θθρcos 4sin 2=. (Ⅰ)求曲线C 的直角坐标方程; (Ⅱ)设直线l 与曲线C 相交于A 、B 两点,当α变化时,求AB 的最小值.

高中数学选修4-4极坐标与参数方程练习题

极坐标与参数方程单元练习1 一、选择题(每小题5分,共25分) 1、已知点M 的极坐标为?? ? ??35π,,下列所给出的四个坐标中能表示点M 的坐标是( )。 A. B. C. D. ?? ? ? ? -355π, 2、直线:3x-4y-9=0与圆:? ??==θθ sin 2cos 2y x ,(θ为参数)的位置关系是( ) A.相切 B.相离 C.直线过圆心 D.相交但直线不过圆心 3、在参数方程? ??+=+=θθ sin cos t b y t a x (t 为参数)所表示的曲线上有B 、C 两点,它们对应的参数值分别为t 1、 t 2,则线段BC 的中点M 对应的参数值是( ) 4、曲线的参数方程为???-=+=1 2 32 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、双曲线的一支 C 、圆 D 、射线 5、实数x 、y 满足3x 2 +2y 2 =6x ,则x 2 +y 2 的最大值为( ) A 、 27 B 、4 C 、2 9 D 、5 二、填空题(每小题5分,共30分) 1、点()22-, 的极坐标为 。 2、若A ,B ?? ? ? ? -64π, ,则|AB|=___________,___________。(其中O 是极点) 3、极点到直线()cos sin 3ρθθ+=________ _____。 4、极坐标方程2sin 2cos 0ρθθ-?=表示的曲线是_______ _____。 5、圆锥曲线()为参数θθ θ ?? ?==sec 3tan 2y x 的准线方程是 。

6、直线l 过点()5,10M ,倾斜角是 3 π ,且与直线032=--y x 交于M ,则0MM 的长为 。 三、解答题(第1题14分,第2题16分,第3题15分;共45分) 1、求圆心为C ,半径为3的圆的极坐标方程。 2、已知直线l 经过点P(1,1),倾斜角6 π α=, (1)写出直线l 的参数方程。 (2)设l 与圆42 2=+y x 相交与两点A 、B ,求点P 到A 、B 两点的距离之积。 3、求椭圆14 92 2=+y x )之间距离的最小值,与定点(上一点01P 。 极坐标与参数方程单元练习1参考答案 【试题答案】一、选择题:1、D 2、D 3、B 4、D 5、B 二、填空题:1、??? ? ?-422π, 或写成?? ? ? ? 4722π,。 2、5,6。 3、。 4、()2 2sin 2cos 02y x ρθρθ-==,即,它表示抛物线。 5、13 13 9±=y 。6、3610+。 三、解答题 1、1、如下图,设圆上任一点为P ( ),则((((2366 OP POA OA π ρθ=∠=- =?=,, ((((cos Rt OAP OP OA POA ?=?∠中, 6cos 6πρθ? ?∴=- ???而点O )32,0(π A )6 ,0(π符合 2、解:(1)直线的参数方程是是参数)t t y t x (;211,23 1??? ????+=+= (2)因为点A,B 都在直线l 上,所以可设它们对应的参数为t 1和t 2,则点A,B 的坐标分别为 ),211,231(11t t A ++ )2 1 1,231(22t t B ++ 以直线L 的参数方程代入圆的方程42 2 =+y x 整理得到02)13(2=-++t t ① 因为t 1和t 2是方程①的解,从而t 1t 2=-2。所以|PA|·|PB|= |t 1t 2|=|-2|=2。 3、(先设出点P 的坐标,建立有关距离的函数关系)

极坐标与参数方程含答案(经典39题)(整理版)

高考极坐标参数方程(经典39题) 1.在极坐标系中,以点(2,)2 C π 为圆心,半径为3的圆C 与直线:() 3 l R π θρ= ∈交于,A B 两点. (1)求圆C 及直线l 的普通方程. (2)求弦长AB . 2.在极坐标系中,曲线2 :sin 2cos L ρθθ=,过点A (5,α) (α为锐角且3tan 4α= )作平行于()4 R π θρ=∈的直线l ,且l 与曲线L 分别交于B ,C 两点. (Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直 角坐标系,写出曲线L 和直线l 的普通方程; (Ⅱ)求|BC|的长. 3.在极坐标系中,点M 坐标是)2 , 3(π ,曲线C 的方程为)4 sin(22π θρ+ =;以 极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M . (1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ?的值. 4.已知直线l 的参数方程是)(24222 2 是参数t t y t x ??? ??? ?+== ,圆C 的极坐标方程为 )4 cos(2π θρ+=. (1)求圆心C 的直角坐标; (2)由直线l 上的点向圆C 引切线,求切线长的最小值.

5.在直角坐标系xOy 中,直线l 的参数方程为()为参数t t y t a x ,3?? ?=+=.在极坐标 系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为θρcos 4=. (Ⅰ)求圆C 在直角坐标系中的方程; (Ⅱ)若圆C 与直线l 相切,求实数a 的值. 6.在极坐标系中,O 为极点,已知圆C 的圆心为 (2, ) 3π ,半径r=1,P 在圆C 上运 动。 (I )求圆C 的极坐标方程; (II )在直角坐标系(与极坐标系取相同的长度单位,且以极点O 为原点,以极轴为x 轴正半轴)中,若Q 为线段OP 的中点,求点Q 轨迹的直角坐标方程。 7.在极坐标系中,极点为坐标原点O ,已知圆C 的圆心坐标为 ) 4,2(C π,半径为2,直线l 的极坐标方程为22)4sin(= θ+πρ. (1)求圆C 的极坐标方程; (2)若圆C 和直线l 相交于A ,B 两点,求线段AB 的长. 8.平面直角坐标系中,将曲线? ? ?==ααsin cos 4y x (α为参数)上的每一点纵坐标不变, 横坐标变为原来的一半,然后整个图象向右平移1个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线1C .以坐标原点为极点,x 的非负半轴为极轴,建立的极坐标中的曲线2C 的方程为θρsin 4=,求1C 和2C 公共弦的长度.

高中数学选修4-4-极坐标与参数方程-知识点与题型

一、极坐标系 1.极坐标系与点的极坐标 (1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2 题型一 极坐标与直角坐标的互化 1、已知点P 的极坐标为,则点P 的直角坐标为 ( ) A.(1,1) B.(1,-1) C.(-1,1) D.(-1,-1) 2、设点的直角坐标为,以原点为极点,实轴正半轴为极轴建立极坐标系,则点的极坐标为( ) A . B . C . D . 3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________. 4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( ) A .ρ=cos θ B .ρ=sin θ C .ρcos θ=1 D .ρsin θ=1 5.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________. 6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π 4 (ρ>0)所表示的图形的交点的极坐标. 题型二 极坐标方程的应用 由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.

极坐标和参数方程知识点典型例题及其详解(供参考)

极坐标和参数方程知识点+典型例题及其详解 知识点回顾 (一)曲线的参数方程的定义: 在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ???==) ()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下: 1.过定点(x 0,y 0),倾角为α的直线: αα sin cos 00t y y t x x +=+= (t 为参数) 其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离. 根据t 的几何意义,有以下结论. ○ 1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ?--4)(2. ○ 2.线段AB 的中点所对应的参数值等于2 B A t t +. 2.中心在(x 0,y 0),半径等于r 的圆: θθ sin cos 00r y y r x x +=+= (θ为参数) 3.中心在原点,焦点在x 轴(或y 轴)上的椭圆: θθsin cos b y a x == (θ为参数) (或 θ θsin cos a y b x ==) 中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)ααα(. sin ,cos 00???+=+=b y y a x x 4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:

极坐标与参数方程题型和方法归纳

极坐标与参数方程题型和方法归纳

极坐标与参数方程题型和方法归纳 题型一:极坐标(方程)与直角坐标(方程)的相互转化,参数方程与普通方程相互转化,极坐标方程与参数方程相互转化。方法如下: {22222 cos sin tan (0x y x y x y y x x ραρα ρρθ==?=++??=≠+?? ???????→ ←???????或(1)极坐标方程直角坐标方程 2 2 1θθ=????????????→←????????????消参(代入法、加减法、sin +cos 等)圆、椭圆、直线的参数方程 (2)参数方程直角坐标方程 ??→??→←??←?? (3)参数方程直角坐标方程(普通方程)极坐标方程 1、已知直线l 的参数方程为 11233x t y t ? =+? ? ?=? (t 为参数) 以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 的方程为2sin 3cos 0 θρθ=. (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)写出直线 l 与曲线C 交点的一个极坐标. 题型二:三个常用的参数方程及其应用 (1)圆 222 ()()x a y b r -+-=的参数方程是:

cos sin ()x a r y b r θ θθ =+?? =+?为参数 (2)椭圆 22 221(0,0,)x y a b a b a b +=>>≠的参数方程是: cos ,()sin x a y b θ θθ=?? =? 为参数 (3)过定点0 (,)P x y 倾斜角为α的直线l 的标准参数方程为: 00cos ,()sin x x t t y y t α α =+?? =+?为参数 对(3)注意: P 点所对应的参数为0 t =,记直线 l 上任意两点,A B 所对应的参数分别为1 2 ,t t ,则① 12 AB t t =-,② 1212121212,0 ,0 t t t t PA PA t t t t t t ?+?>?+=+=? -? )以坐标原点O 为极点, 以x 轴正半轴为极轴,建立极坐标系,已知直线l 的极坐标方程为cos 24 πρθ??+=- ?? ? (Ⅰ)设P 是曲线C 上的一个动点,当2a =时,求点P 到直线l 的距离的最小值;

最新极坐标与参数方程测试题(有详解答案)

2017高二文科极坐标与参数方程测试题 一、选择题 1.直线12+=x y 的参数方程是( ) A 、???+==1 22 2 t y t x (t 为参数) B 、???+=-=1412t y t x (t 为参数) C 、 ???-=-=121 t y t x (t 为参数) D 、? ? ?+==1sin 2sin θθy x (t 为参数) 2.极坐标方程cos 2sin 2ρθθ=表示的曲线为( ) A .一条射线和一个圆 B .两条直线 C .一条直线和一个圆 D .一个 3.已知??? ? ? -3,5πM ,下列所给出的不能表示点的坐标的是( ) A 、?? ? ? ?- 3,5π B 、?? ? ? ?34, 5π C 、?? ? ? ?- 32,5π D 、?? ? ? ?- -35,5π 4.极坐标系中,下列各点与点P (ρ,θ)(θ≠k π,k ∈Z )关于极轴所在直线 对称的是( ) A .(-ρ,θ) B .(-ρ,-θ) C .(ρ,2π-θ) D .(ρ,2π+θ) 5.点() 3,1-P ,则它的极坐标是 ( ) A 、?? ? ??3, 2π B 、?? ? ? ?3 4, 2π C 、?? ? ? ?- 3,2π D 、?? ? ? ?- 3 4,2π 6.直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲 线13cos :sin x C y θθ =+??=? (θ为参数)和曲线2:1C ρ=上,则AB 的最小值为( ). A.1 B.2 C.3 D.4 7.参数方程为1()2 x t t t y ? =+ ???=?为参数表示的曲线是( ) A .一条直线 B .两条直线 C .一条射线 D .两条射线 8.( )124123x t t x ky k y t =-?+==?=+?若直线为参数与直线垂直,则常数( )

最新极坐标参数方程题型归纳--7种

极坐标与参数方程(高考真题)题型归纳 一、极坐标方程与直角坐标方程的互化 1.(2015·广东理,14)已知直线l 的极坐标方程为2ρsin ????θ-π4=2,点A 的极坐标为A ????22,7π 4,则点A 到直线l 的距离为________. [立意与点拨] 本题考查极坐标与平面直角坐标的互化、点到直线的距离,属于容易题.解答本题先进行极直互化,再求距离. 二、参数方程与直角坐标方程的互化 【解析】椭圆方程为:14622=+y x ,因为1cos sin 2 2=+x x ,令???==α αcos 2sin 6y x ,则有 X+2y=αsin 6+αcos 4=()?α++sin 166,最大值22,最小值22- 三、根据条件求直线和圆的极坐标方程 四、求曲线的交点及交点距离 4.(2015·湖北高考)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C 的参数方程为? ??x =t -1t , y =t + 1t (t 为参数),l 与C 相交于A ,B 两点,则|AB |=________. 【解析】 直线l 的极坐标方程ρ(sin θ-3cos θ)=0化为直角坐标方程为3x -y =0,曲线C 的参 数方程? ??x =t -1t ,y =t + 1t 两式经过平方相减,化为普通方程为y 2-x 2=4,联立? ??? ?3x -y =0,y 2-x 2=4 解得???x =-22,y =-322或? ??x =2 2, y =32 2 . 所以点A ????-22,-322,B ???? 22,322. 所以|AB |= ????-22-222+??? ?-322-3222=2 5.

极坐标与参数方程经典练习题

第八讲 极坐标系与参数方程 ◆ 知识梳理 一、极坐标 1、极坐标定义:M 是平面上一点,ρ表示OM 的长度,θ是MOx ∠,则有序实数实数对(,)ρθ,ρ叫极径,θ叫极角;一般地,[0,2)θπ∈,0ρ≥。 2、极坐标和直角坐标互化公式:cos sin x y ρθρθ=??=? 或2 2 2 tan (0)x y y x x ρθ?=+? ?= ≠?? ,θ的象限由点(x,y)所在象限确定. 二、常见曲线的极坐标方程 1、圆的极坐标方程 (1)圆心在极点,半径为R 的圆的极坐标方程是 ; (2)圆心在极轴上的点)0,(a 处,且过极点O 的圆的极坐标方程是 ; (3)圆心在点)2,(π a 处且过极点的圆O 的极坐标方程是 。 2、直线的极坐标方程 (1)过极点且极角为k 的直线的极坐标方程是 ; (2)过点)0,(a ,且垂直于极轴的直线的极坐标方程是 ; (3)过点)0)(0,(>a a ,且与极轴所成的角为α的直线的极坐标方程是 ; (4)过点),(11θρ,且与极轴所成的角为α的直线的极坐标方程是 。 三、常见曲线的参数方程 ◆ 随堂练习

第一部分:极坐标系 1、点M 的直角坐标是(-,则点M 的极坐标为( ) A .(2,)3π B .(2,)3π- C .2(2,)3π D .(2,2),()3k k Z π π+∈ 2、极坐标方程cos 2sin 2ρθθ=表示的曲线为( ) A .一条射线和一个圆 B .两条直线 C .一条直线和一个圆 D .一个圆 3、在极坐标系中,直线24sin =??? ? ? +πθρ被圆4=ρ截得的弦长为__ . 4、设A (2, 32π),B (3,3 π )是极坐标系上两点,则|AB|= _. 5、 已知某圆锥曲线C 的极坐标方程是22225 916cos ρθ =+,则曲线C 的离心率为( ) A .45 B .53 C .35 D .4 5 6、 在极坐标系中,已知曲线)3,1(.cos 4:)3 cos(:21-∈==+m C m C 若和θρπ θρ,则曲线C 1与C 2 的位置关系是 A .相切 B .相交 C .相离 D .不确定 7、以坐标原点为极点,横轴的正半轴为极轴的极坐标系下,有曲线C :4cos ρθ=,过极点的直线 θ?=(R ?∈且?是参数)交曲线C 于两点0,A ,令OA 的中点为M. (1)求点M 在此极坐标下的轨迹方程(极坐标形式).(2)当53 π ?=时,求M 点的直角坐标. 8、已知直线l k k C l 若直线和圆),0)(4cos(2:4)4sin(:≠+?==-π θρπθρ上的点到圆C 上的点的最小 距离等于2。 (I )求圆心C 的直角坐标;(II )求实数k 的值。

高考极坐标与参数方程大题题型汇总(附详细答案)

高考极坐标与参数方程大题题型汇总 1.在直角坐标系xoy 中,圆C 的参数方程1cos (sin x y ? ?? =+??=?为参数) .以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程; (2)直线l 的极坐标方程是 C 的交点为 O 、P ,与直线l 的交点为Q ,求线段PQ 的长. 解:(1)圆C 的普通方程是22(1)1x y -+=,又cos ,sin x y ρθρθ==; 所以圆C 的极坐标方程是2cos ρθ=. ---5分 (2)设11(,)ρθ为点P 的极坐标,则有 设22(,)ρθ为点Q 的极坐标,则有 由于12θθ=,所以,所以线段PQ 的长为2. 2.已知直线l 的参数方程为431x t a y t =-+??=-? (t 为参数),在直角坐标系xOy 中,以O 点为极 点, x 轴的非负半轴为极轴,以相同的长度单位建立极坐标系,设圆M 的方程为 26sin 8 ρρθ-=-. (1)求圆M 的直角坐标方程; (2)若直线l 截圆M a 的值. 解:(1)∵2 222268(36si )n 81x y y x y ρρθ+--=-?=-?+-=, ∴圆M 的直角坐标方程为2 2 (3)1x y +-=;(5分)

(2)把直线l的参数方程 4 31 x t a y t =-+ ? ? =- ? (t为参数)化为普通方程得:34340 x y a +-+=, ∵直线l截圆M所得弦长 为,且圆M的圆心(0,3) M到直线l的距 离 |163|19 522 a d a - ===?=或 37 6 a=,∴ 37 6 a=或 9 2 a=.(10分)3.已知曲线C的参数方程为 ?? ? ? ? + = + = α α sin 5 1 cos 5 2 y x (α为参数),以直角坐标系原点为极点,Ox轴正半轴为极轴建立极坐标系。 (1)求曲线c的极坐标方程 (2)若直线l的极坐标方程为 ρ (sinθ+cosθ)=1,求直线l被曲线c截得的弦长。 解:(1)∵曲线c的参数方程为 ?? ? ? ? + = + = α α sin 5 1 cos 5 2 y x (α为参数) ∴曲线c的普通方程为(x-2)2+(y-1)2=5 将? ? ? = = θ ρ θ ρ sin cos y x 代入并化简得: ρ =4cosθ+2sinθ 即曲线c的极坐标方程为 ρ =4cosθ+2sinθ (2)∵l的直角坐标方程为x+y-1=0 ∴圆心c到直线l的距离为d=2 2 =2∴弦长为22 5-=23 4.已知曲线C: 2 21 9 x y += ,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为 sin() 4 π ρθ-= (1)写出曲线C的参数方程,直线l的直角坐标方程; (2)设P是曲线C上任一点,求P到直线l的距离的最大值.

高三极坐标与参数方程练习题

高三极坐标与参数方程 练习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高三极坐标与参数方程练习题 1.点M 的极坐标)3 2,5(π化为直角坐标为( ) A .)235,25(-- B .)235,25(- C .)235,25(- D .)2 35,25( 2.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65,2(π B .)67,2(π C .)611,2(π D .)6 ,2(π 3.已知曲线C 的参数方程为)(1 232为参数t t y t x ???+==则点)4,5(),1,0(21M M 与曲线C 的位置 关系是( ) A .1M 在曲线C 上,但2M 不在。 B .1M 不在曲线C 上,但2M 在。 C .1M ,2M 都在曲线C 上。 D .1M ,2M 都不在曲线C 上。 4.椭圆 )(sin 51cos 3为参数θθθ???+-=+=y x 的两个焦点坐标是( ) A .(-3,5),(-3,-3) B .(3,3),(3,-5) C .(1,1),(-7,1) D .(7,-1),(-1,-1) 5.曲线的极坐标方程ρ=4sinθ化 成直角坐标方程为( ) A .x 2+(y+2)2=4 B .x 2+(y-2)2=4 C .(x-2)2+y 2=4 D .(x+2)2+y 2=4 6.极坐标方程4sin 2θ=3表示曲线是 ( ) A .两条射线 B .抛物线 C .圆 D .两条相交直线 7.在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为________. 8. 参数方程 ?? ???+=+=θθθθcos 1sin cos 1cos y x (θ为参数)化成普通方程为 。 9. 抛物线y 2=2px(p >0)的一条过焦点的弦被焦点分成m 、n 长的两段,则 n m 11+ = 。 10. 在极坐标系中,点? ????2,π6到直线ρ sin ? ????θ-π6=1的距离是________. 11. 将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程;

高中数学选修4-4-极坐标与参数方程-知识点与题型

选做题部分 极坐标系与参数方程 一、极坐标系 1.极坐标系与点的极坐标 (1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2.极坐标与直角坐标的互化 点M 直角坐标(x ,y ) 极坐标(ρ,θ) 互化公式 题型一 极坐标与直角坐标的互化 1、已知点P 的极坐标为)4 ,2(π ,则点P 的直角坐标为 ( ) A.(1,1) B.(1,-1) C.(-1,1) D.(-1,-1) 2、设点P 的直角坐标为(3,3)-,以原点为极点,实轴正半轴为极轴建立极坐标系(02)θπ≤<,则点P 的极坐标为( ) A .3(32, )4π B .5(32,)4π- C .5(3,)4π D .3(3,)4 π- 3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________. 4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( ) A .ρ=cos θ B .ρ=sin θ C .ρcos θ=1 D .ρsin θ=1 5.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________. 6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π 4 (ρ>0)所表示的图形的交点的极坐标.

-全国卷极坐标与参数方程高考题汇编

极坐标与参数方程(全国卷高考题) 1、(2011)坐标系与参数方程:在直角坐标系xOy 中,曲线C 1的参数方程为 2cos 22sin x y αα =?? =+?(α为参数),M 是C 1上的动点,P 点满足2OP OM =u u u v u u u u v ,P 点的轨迹为曲 线C 2 (Ⅰ)求C 2的方程 (Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3 π θ=与C 1的异于 极点的交点为A ,与C 2的异于极点的交点为B ,求AB . 解:(I )设P(x,y),则由条件知M( 2 ,2Y X ).由于M 点在C 1上,所以 ??? ???????????+=?=sin 222,cos 22y x 即 ? ?? ????+=?=sin 44cos 4y x 从而2C 的参数方程为4cos 44sin x y α α =??=+?(α为参数) (Ⅱ)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为8sin ρθ=。 射线3 π θ=与1C 的交点A 的极径为14sin 3 π ρ=, 射线3 π θ= 与2C 的交点B 的极径为28sin 3 π ρ=。 所以21||||AB ρρ-== 2、(2012)已知曲线C 1的参数方程是??? x =2cos φ y =3sin φ(φ为参数),以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的 顶点都在C 2上,且A 、B 、C 、D 以逆时针次序排列,点A 的极坐标为(2,π 3) (Ⅰ)求点A 、B 、C 、D 的直角坐标; (Ⅱ)设P 为C 1上任意一点,求|PA| 2+ |PB|2 + |PC| 2+ |PD|2的取值范围。 【解析】(1)点,,,A B C D 的极坐标为5411(2,),(2,),(2,),(2, )3636 ππππ

极坐标与参数方程题型及解题方法

Ⅰ复习提问 1、 极坐标系和直角坐标系有什么区别?学校老师课堂如何讲解极坐标参数方程的? 2、 如何把极坐标系转化为直角坐标系? 答:将极坐标的极点O 作为直角坐标系的原点,将极坐标的极轴作为直角坐标系x 轴的正半轴。如果点P 在直角坐标系下的坐标为(x ,y ),在极坐标系下的坐标为),(θρ, 则有下列关系成立: ρθρ θy sin x cos = = 3、 参数方程{ cos sin x r y r θθ ==表示什么曲线? 4、 圆(x-a)2+(y-b)2=r2的参数方程是什么? 5、 极坐标系的定义是什么? 答:取一个定点O ,称为极点,作一水平射线Ox ,称为极轴,在Ox 上规定单位长度,这样就组成了一个极坐标系设OP=ρ,又∠xOP=θ. ρ和θ的值确定了,则P 点的位置就 确定了。ρ叫做P 点的极半径,θ叫做P 点的极角,),(θρ叫做P 点的极坐标(规定ρ写在前,θ写在后)。显然,每一对实数),(θρ决定平面上一个点的位置 6、参数方程的意义是什么?

Ⅱ 题型与方法归纳 1、 题型与考点(1) { 极坐标与普通方程的互相转化极坐标与直角坐标的互相转化 (2) { 参数方程与普通方程互化 参数方程与直角坐标方程互化 (3) { 利用参数方程求值域参数方程的几何意义 2、解题方法及步骤 (1)、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程 (),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向 线段的数量、斜率,某一点的横坐标(或纵坐标) 例1、方程2222 t t t t x t y --?=-? ?=+??(为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆 解析:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,()() 2 2 2222224t t t t x y ---=--+=-, 即有22 4y x -=,又注意到 202222t t t y ->+≥=≥,,即,可见与以上参数方程等价的普通方程为 2242y x y -=≥().显然它表示焦点在y 轴上,以原点为中心的双曲线的上支,选B

极坐标与参数方程经典试题带详细解答

极坐标与参数方程经典试题带详细解答

————————————————————————————————作者:————————————————————————————————日期: 2

1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为 极轴.已知直线l 的参数方程为12232 x t y t ?=+?? ??=??(t 为参数),曲线C 的极坐标方程为 2sin 8cos ρθθ=.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于,A B 两 点,求弦长||AB . 2.已知直线l 经过点1 (,1)2P ,倾斜角α= 6 π ,圆C 的极坐标方程为2cos()4πρθ=-. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.(本小题满分10分)选修4-4:坐标系与参数方程 已知直线l 的参数方程是)(242 2 2 2 是参数t t y t x ??? ? ?? ? +==,圆C 的极坐标方程为 )4 cos(2π θρ+=. (I )求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值. 4.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴重合,且两坐标系有相同的长度单位,圆C 的参数方程为12cos 12sin x y α α =+??=-+?(α为参数), 点Q 的极坐标为7(22,)4 π。 (1)化圆C 的参数方程为极坐标方程; (2)直线l 过点Q 且与圆C 交于M ,N 两点,求当弦MN 的长度为最小时,直线l 的直角坐标方程。 5.在极坐标系中,点M 坐标是)2, 3(π ,曲线C 的方程为)4 sin(22π θρ+ =;以极点 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M . (1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ?的值.

极坐标与参数方程知识点及题型归纳总结

极坐标与参数方程知识点及题型归纳总结 知识点精讲 一、极坐标系 在平面上取一个定点O ,由点O 出发的一条射线Ox 、一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.点O 称为极点,Ox 称为极轴.平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ (弧度制)来刻画(如图16-31和图16-32所示). 这两个实数组成的有序实数对(,)ρθ称为点M 的极坐标. ρ称为极径,θ称为极角. 二、极坐标与直角坐标的互化 设M 为平面上的一点,其直角坐标为(,)x y ,极坐标为(,)ρθ,由图16-31和图16-32可知,下面的关系式成立: cos sin x y ρθρθ=??=?或222 tan (0) x y y x x ρθ?=+? ?=≠?? (对0ρ<也成立). 三、极坐标的几何意义 r ρ=——表示以O 为圆心,r 为半径的圆; 0θθ=——表示过原点(极点)倾斜角为0θ的直线,0(0)θθρ=≥为射线; 2cos a ρθ=表示以(,0)a 为圆心过O 点的圆. (可化直角坐标: 2 2cos a ρρθ=2 2 2x y ax ?+=2 2 2 ()x a y a ?-+=.) 四、直线的参数方程 直线的参数方程可以从其普通方程转化而来,设直线的点斜式方程为 00()y y k x x -=-,其中tan (k αα=为直线的倾斜角),代人点斜式方程: 00sin ()()cos 2 y y x x απ αα-= -≠,即00cos sin x x y y αα--=. 记上式的比值为t ,整理后得00cos t sin x x t y y αα =+??=+?,2π α=也成立,故直线的参数方程为

极坐标参数方程高考练习含答案解析(非常好的练习题)

极坐标与参数方程高考精练(经典39题) 1.在极坐标系中,以点(2,)2C π 为圆心,半径为3的圆C 与直线:()3l R π θρ=∈交于,A B 两点.(1)求圆C 及直线 l 的普通方程.(2)求弦长AB . 2.在极坐标系中,曲线2:sin 2cos L ρθθ=,过点A (5,α)(α为锐角且3tan 4α=)作平行于()4 R πθρ=∈的直线l ,且l 与曲线L 分别交于B ,C 两点. (Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L 和直线l 的普通方程;(Ⅱ)求|BC|的长. 3.在极坐标系中,点M 坐标是)2,3(π ,曲线C 的方程为)4 sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半 轴建立平面直角坐标系,斜率是1-的直线l 经过点M . (1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ?的值.

4.已知直线l 的参数方程是)(242222是参数t t y t x ???????+==,圆C 的极坐标方程为)4cos(2πθρ+=. (1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值. 5.在直角坐标系xOy 中,直线l 的参数方程为()为参数t t y t a x ,3???=+=.在极坐标系(与直角坐标系xOy 取相同的长 度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为θρcos 4=. (Ⅰ)求圆C 在直角坐标系中的方程; (Ⅱ)若圆C 与直线l 相切,求实数a 的值. 6.在极坐标系中,O 为极点,已知圆C 的圆心为(2,)3π,半径r=1,P 在圆C 上运动。 (I )求圆C 的极坐标方程;(II )在直角坐标系(与极坐标系取相同的长度单位,且以极点O 为原点,以极轴为x 轴正半轴)中,若Q 为线段OP 的中点,求点Q 轨迹的直角坐标方程。

极坐标与参数方程知识点、题型总结

极坐标与参数方程知识点、题型总结 一、伸缩变换:点),(y x P 是平面直角坐标系中的任意一点,在变换 ???>?='>?='). 0(,y y 0),(x,x :μμλλ?的作用下,点),(y x P 对应到点),(y x P ''',称伸缩变换 一、 1、极坐标定义:M 是平面上一点,ρ表示OM 的长度,θ是M Ox ∠,则有序实数实 数对(,)ρθ,ρ叫极径,θ叫极角;一般地,[0,2)θπ∈,0ρ≥。,点P 的直角坐标、极坐标分别为(x ,y )和(ρ,θ) 2、直角坐标?极坐标 cos sin x y ρθρθ=??=?2、极坐标?直角坐标222 tan (0)x y y x x ρθ?=+??=≠?? 3、求直线和圆的极坐标方程:方法一、先求出直角坐标方程,再把它化为极坐标方程 方法二、(1)若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为: ρsin(θ-α)=ρ0sin(θ0-α)(2)若圆心为M (ρ0,θ0),半径为r 的圆方程为ρ2-2ρ0ρcos(θ-θ0)+ρ02-r 2=0 二、参数方程:(一).参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标y x ,都是某个变数t 的函数???==), (),(t g y t f x 并且对于t 的每一个允许值,由这个方程所确 定的点),(y x M 都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数y x ,的变数t 叫做参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。 (二).常见曲线的参数方程如下:直线的标准参数方程 1、过定点(x 0,y 0),倾角为α的直线: αα sin cos 00t y y t x x +=+=(t 为参数) (1)其中参数t 的几何意义:点P (x 0,y 0),点M 对应的参数为t ,则PM =|t| (2)直线上12,P P 对应的参数是12,t t 。|P 1P 2|=|t 1-t 2|= t 1+t 2 2 -4t 1t 2.

相关文档
相关文档 最新文档