文档库 最新最全的文档下载
当前位置:文档库 › 混凝土损伤理论

混凝土损伤理论

混凝土损伤理论
混凝土损伤理论

1、混凝土的本构关系主要是表达混凝土在多轴应力作用下的应力—应变关系, 应力—应变曲线由上升段和下降应变软化段组成, 特别是对下降段, 它具有裂缝逐渐扩展, 卸载时弹性软化等特点, 而非线性弹性、弹塑性理论很难描述这一特性。

2、损伤力学理论既考虑混凝土材料在未受力的初始裂缝的存在, 也可反映在受力过程中由于损伤积累而产生的裂缝扩展,从而导致的应变软化。因而近年来不少学者致力于将损伤力学用于混凝土材料, 并建立相应的本构关系。

3、ABAQU S 软件中的混凝土损伤塑性模型是使用各向同性损伤弹性结合各向同性拉伸和压缩塑性的模式来表示混凝土的非弹性行为。这是一个基于塑性的连续介质损伤模型。该模型可用于单向加载、循环加载及动态加载等情况, 具有较好的收敛性。

4、数据行:膨胀角(度数),流动势的偏度,cb/c0,kc,u,温度,第一个场变量,第二个场变量,,,第四个场变量

(a) 定义混凝土损伤塑性模型的流动势,屈服面,混凝土粘滞参数;

(b) 膨胀角应小于等于摩擦角,膨胀角与摩擦角相等为关联流动法则,不相等为非关联流动法则,为零则不考虑土的剪胀性, 混凝土为32-37°。

(c) 流动势的偏度是一个较小的正数,定义了双曲流动势曲线靠近其渐近线时的比率,默认为0.1;

(d)cb/c0为初始等效双轴抗压屈服应力与初始单轴抗压屈服应力的比值,默认为1.16;

(e)kc,受拉子午线与受压子午线常应力的比值,其取值范围为

0.5

(f) u,粘滞参数,只适用于粘-塑性常规混凝土本构,

钢筋混凝土施工及验收规范(附图)

钢筋混凝土施工及验收规范(附图) 建筑是有生命的,如果说建筑设计代表“他”的外形,结构设计代表“他”的骨架,那么工程人所掌控的质量安全,就一定是代表“他”的身体素质了。如何才能知道我们身体素质的好坏呢?那就需要体检了,体检在日常生活中对我们很重要,当然对我们的建筑物来说也是重中之重。而质量验收就是对建筑工程最有效的体检。建筑工程质量检测,是每个工程环节必须的,一个环节出现问题,就会导致质量检测的不合格。 模板分项工程 模板安装: 主控项目 1、模板及支架用材料的技术指标应符合国家现行标准的规定。进场时应抽样检验模板和支架材料的外观、规格和尺寸。 检查数量:按国家现行相关标准的规定确定 检验方法:检查质量证明文件、观察、尺量 2、现浇混凝土结构模板及支架的安装质量,应符合国家现行有关标准的规定和施工方案的要求。 检查数量:按国家现行相关标准的规定确定 检验方法:按国家现行相关标准的规定确执行 3、后浇带处的模板及支架应独立设置。 检查数量:全数检查 检验方法:观察 4、支架竖杆和横向模板安装在土层上时,应符合下列规定:

a.土层应坚实、平整,其承载力或密实度应符合施工方案的要求 b.应有防水、排水措施;对冻胀土,应有预防冻融措施 c.支架竖杆下应有底座或垫板 检查数量:全数检查 检验方法:观察;检查土层密实度检测报告、土层承载力验算或现场检测报告 验收标准: 1、足够的强度、刚度和稳定性能可靠地承受新浇砼的重量和侧压力,以及在施工过程中所产生的荷载,从而在浇筑的过程中不发生变形。 2、架要横平竖直,间距均匀,挑出长度一致。模板接缝要严密,接缝不大于3mm的模板用胶带纸粘贴。 3、墙柱边弹300mm模板检查线,顶板模板施工完后,在顶板周边弹30 0mm检查线,电梯井内弹十字检查线。 4、裁切后的模板裁切面必须涂刷两遍红油漆。电梯井筒模专门定制,阳角处加订2mm铝板,两边各宽100mm。 现浇结构模板安装的允许偏差及检验方法:

钢筋混凝土案例

●某市路南区建设一综合楼,结构型式采用现浇框架—剪力墙结构体系,地上20层, 地下2层,建筑物檐高66.75米,建筑面积5.6万平方米,混凝土强度等级为C35,于2000年3月12日开工,在工程施工中出现了质量问题:试验测定地上3、4层混凝土标准养护试块强度未达到设计要求,监理工程师采用回弹法测定,结果仍不能满足设计要求,最后法定检测单位从3、4层钻取部分芯样,为了进行对比,又在试块强度检验合格的2层钻取部分芯样,检测结果发现,试块强度合格的芯样强度能达到设计要求,而试块强度不合格的芯样强度仍不能达到原设计要求。 1.针对该工程,施工单位应采取哪些质量控制对策来保证工程质量? 2.为避免以后施工中出现类似质量问题,施工单位应采取何种方法对工程质量进行控制? 3.简述该建筑施工项目质量控制的过程。 4.针对工程项目的质量问题,现场常用的质量检查方法有哪些? 问题解决 1、质量控制的对策主要有: 1)以人的工作质量确保工程质量; 2)严格控制投入品的质量; 3)全面控制施工过程,重点控制工序质量; 4)严把分项工程质量检验评定关; 5)贯彻“预防为主”的方针; 6)严防系统性因素的质量变异。 2、质量控制的方法:主要是审核有关技术文件和报告,直接进行现场质量检验或必要的试验等。 3、施工项目的质量控制过程是从工序质量到分项工程质量、分部工程质量、单位工程质量的系统控制过程;也是一个由投入原材料的质量控制开始,直到完成工程质量检验为止的全过程的系统过程。 4、现场质量检查的方法有目测法、实测法和试验法三种。 2002年7月,一天凌晨两点左右,某市联合大学学生宿舍楼发生一起6层悬臂式雨篷根部突然断裂的恶性质量事故,雨篷悬挂在墙上。幸好在凌晨,未造成人员伤亡。该工程为6层砖混结构宿舍楼,建筑面积2784平方米。经事故调查、原因分析,发现造成该质量事故的主要原因是施工队伍素质差。在施工时将受力钢筋位置放错,使悬臂结构受拉区无钢筋而产生脆性破坏。 ● 1.如果该工程施工过程中实施了工程监理,监理单位对该起质量事故是否承担责 任?原因是什么? ● 2.施工单位现场质量检查的内容有哪些? ● 3.施工单位现场质量检查目测法有哪些常用手段? ● 4.施工单位现场质量检查实测法有哪些常用手段? ● 5.钢筋工程隐蔽验收的要点有哪些? ● 6.质量事故处理的程序是怎样的? 问题解决 ● 1.如果该工程施工过程中实施了工程监理,监理单位对该起质量事故承担责任。原 因是:监理单位接受了建设单位委托,并收取了监理费用,具备了承担责任的条件,而施工过程中监理未能发现钢筋位置放错的质量问题,因此必须承担相应责任。 ● 2.现场质量检查的内容有:1)开工前检查;2)工序交接检查;3)隐蔽工程检查; 4)停工后复工前的检查;5)分项、分部工程完工后,就经检查认可,签署验收记录后,才允许进行下一工程项目施工;6)成品保护检查。

ABAQUS_混凝土损伤塑性模型_损伤因子

混凝土损伤因子的定义 BY lizhenxian27 1 损伤因子的定义 损伤理论最早是1958年Kachanov提出来用于研究金属徐变的。所谓损伤,是指在各种加载条件下,材料内凝聚力的进展性减弱,并导致体积单元破坏的现象,是受载材料由于微缺陷(微裂纹和微孔洞)的产生和发展而引起的逐步劣化。损伤一般被作为一种“劣化因素”而结合到弹性、塑性和粘塑性介质中去。 由于损伤的发展和材料结构的某种不可逆变化,因而不同的学者采用了不同的损伤定义。一般来说,按使用的基准可将损伤分为: (1) 微观基准量 1,空隙的数目、长度、面积、体积; 2空隙的形状、排列、由取向所决定的有效面积。 (2) 宏观基准量 1、弹性常数、屈服应力、拉伸强度、延伸率。 2、密度、电阻、超声波波速、声发射。 对于第一类基准量,不能直接与宏观力学量建立物性关系,所以用它来定义损伤变量的时候,需要对它做出一定的宏观尺度下的统计处理(如平均、求和等)。 对于第二类基准量,一般总是采用那些对损伤过程比较敏感,在实验室里易于测量的量,作为损伤变量的依据。 由于微裂纹和微孔洞的存在,微缺陷所导致的微应力集中以及缺陷的相互作用,有效承

载面积由

A 减小为A ’。如假定这些微裂纹和微孔洞在空间各个方向均匀分布,A ’与法向无关,这时可定义各向同性损伤变量D 为 D= ( A- A ’ )/ A 事实上,微缺陷的取向、分布及演化与受载方向密切相关,因此材料损伤实际上是各向异性的。为描述损伤的各向异性,可采用张量形式来定义。损伤表征了材损伤是一个非负的因子,同时由于这一力学性能的不可逆性,必然有 0dD dt ≥ 2有效应力 定义Cauchy 有效应力张量'σ ''//(1)A A D σσσ==- 一般情况下,存在于物体内的损伤(微裂纹、空洞)是有方向性的。当损伤变量与受力面法向相关时,是为各向异性损伤;当损伤变量与法向无关时,为各向异性损伤。这时的损伤变量是一标量。 3等效性假设 损伤演化方程推导一般使用两种等效性假设,一种是应变等效性假设,另一种是能量等效性假设。采用能量等效性假设可以避免采用应变等效假设而使得各向异性损伤模型中的有效弹性矩阵不对称的问题.以下对两种假设进行简要的介绍。 (1) 应变等效性假设 1971年 Lematire 提出,损伤单元在应力σ作用下的应变响应与无损单元在定义的有效应力'σ作用下的应变响应相同。在外力作用下受损材料的本构关系可采用无损时的形式,只要

《混凝土结构设计规范》GB50010-2002

《混凝土结构设计规范》 GB50010-2002 3 基本设计和规定 1.1.8 未经技术鉴定或设计许可,不得改变结构的用途和使用环境。 1.2..1 根据建筑结构破坏后果的严重程度,建筑结构划分为 三个安全等级 。设计 时应根据具体情况,按照表 3.2.1 的规定选用相应的安全等级。 表 3.2.1 建筑结构的安全等级 安全等级 破坏后果 建筑物类型 一级 很严重 重要的建筑物 二级 严重 一般的建筑物 三级 不严重 次要的建筑物 注:对有特殊要求的建筑,其安全等级应根据具体情况另行确定。 1.1.3 混凝土轴心抗压、轴心抗拉强度标准值? ck 、?tk 应按表 4.1.3 采用。 表 4.1.3 混凝土强度标准值( N/mm 2 ) 强 混凝土强度等级 度 种 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C80 类 ? 10.0 13.4 16.7 20.1 23.4 26.8 29.6 32.4 35.5 38.5 41.5 44.5 47.4 50.2 ck ? 1.27 1.54 1.78 2.01 2.20 2.39 2.51 2.64 2.74 2.85 2.93 2.99 3.05 3.11 tk 、?应按表 4.1.4 1.1.4 混凝土轴心抗压、轴心抗拉强度设计值? c 采用。 t 表 4.1.4 混凝土强度设计值( N/mm 2 ) 强 混凝土强度等级 度 种 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C80 类 ?c 7.2 9.6 11.9 14.3 16.7 19.1 21.1 23.1 25.3 27.5 29.7 31.8 33.8 35.9 ? 0.91 1.10 1.27 1.43 1.57 1.71 1.80 1.89 1.96 2.04 2.09 2.14 2.18 2.22 t 注: 1.计算现浇钢筋混凝土轴心受压及偏心受压构件时,如截面的长边或直径小于 300mm ,则表中混凝土 的强度设计值应乘以系数 0.8;当构件质量(如混凝土成型、截面和轴线尺寸等)确有保证时,可不 受此限制; 2.离心混凝土的强度设计值应按专门标准取用。 1.2.2 钢筋的强度标准值应具有不小于 95%的保证率。热轧钢筋的强度标准值系 根据屈服强度确定,用? yk 表示。预应力钢绞线、钢丝和热处理钢筋的强度标 准值系根据极限抗拉强度确定,用? ptk 表示。 普通钢筋的强度标准值应按表 4.2.2 -1 采用;预应力钢筋的强度标准值应按

混凝土本构数据

附录一 动力弹塑性分析的材料非线性参数取值 一 混凝土材料: 混凝土材料采用塑性损伤模型(Plastic-Damaged Model)(1). 根据GB 50010-2002 混凝土强度分类 如下: C25, C30, C35, C40, C45, C50, C55, C60, C65, C70, C75, C80 (1) 弹性模量: 按(2)表4.1.5, 单位kN/m 2 (2) 泊松比, 统一取 0.2 (参阅(2)的4.1.8) (3) 剪切模量: 按(2)表4.1.5中的0.4 倍采用(参阅(2)的4.1.8). (4) 密度(2): 2.5 T/m 3 (5) 单轴应力-应变关系 混凝土材料轴心抗压和轴心抗拉强度标准值按(2)表4.1.3采用. A: 单轴受压, 其应力-应变关系方程如下(参阅(2)C.2.1, P206): 当1≤x 时 32)2()23(x αx ααy a a a -+-+= 当1≥x 时 x x αx y d +-=2)1( c εεx = *= c f σy

在 0 – 0.7f c 的应力范围为线弹性, 其弹性模量按表1. 大于0.7f c 为塑性范围, 应力-塑性应变关系如下: E σεεc c in c -= B: 单轴受拉, 其应力-应变关系方程如下(参阅(2)C.2.2, P208): 当1≤x 时 62.02.1x x y -= 当1≥x 时 x x αx y t +-=7.1)1( t εεx = * = t f σy 在 0 – f t 的应力范围为线弹性, 其弹性模量按表1. 大于f t 为塑性 范围, 应力-塑性应变关系如下: 0 E σεεt t ck t -= 据此得到下列各等级混凝土材料在拉和压屈服后的应力(kN/m 2)-塑性应变关系: *Material, Name=C25 *Concrete compression hardening 应力(kN/m 2) 塑性应变 11690., 0 16700., 0.000808693 13239.8, 0.00233739 9841.27, 0.00386389 7674.36, 0.0053464 6248.49, 0.00680245 5255.01, 0.00824305 4527.98, 0.00967414 3974.73, 0.011099 3540.4, 0.0125197 *Concrete tension stiffening 1797.8, 0 1780., 0.000025515 1191.06, 0.000135635

天喻三维钢筋混凝土结构设计平台InteRDS

天喻三维钢筋混凝土结构设计平台InteRDS 天喻InteRDS3.0是面向工程建设行业而开发的三维钢筋混凝土设计平台,具有强大的参数化混凝土结构建模、配筋和二维钢筋施工详图的自动生成能力,使用户不仅能构造直观的三维混凝土结构,直接基于直观的三维结构进行配筋,而且能自动生成符合施工要求的钢筋详图,大大地降低工作强度,减少设计错误,提高设计效率。 系统主要功能 三维参数化的混凝土结构设计 通过基于历史的三维几何形状造型技术,用户随时可对结构形状尺寸进行更改,系统自动重构结构模型得到更新的混凝土结构形状。 (a)截面形状定义 (b)三维形状构造

(c) 三维参数化混凝土结构建模结果 三维可视化的配筋设计 基于三维结构设计结果,选择需要配筋的面,设置配置钢筋参数,自动根据结构形状生成三维形状钢筋,并自动根据钢筋形状自动分组,同时灵活方便的钢筋编辑工具。 (a) 配筋位置

(b) 配筋参数 (c) 钢筋自动生成与分组 (d) 三维结构配筋结果

二维钢筋施工详图自动生成 可在任意位置定义剖视图截面,并可自定义出图参数,自动生成输出到AutoCAD的钢筋详图和钢筋、材料表。 (a) AutoCAD平台上自动生成的二维钢筋施工详图 系统主要特色 无限级的Undo/Redo能力 无限级的Undo/Redo能力使设计过程更轻松。结构和钢筋设计可以从设计过程中的一个任意节点Undo/Redo到另外的一个任意节点。 灵活的变量表功能 在变量表中包含丰富的函数类型,可以定义用户自定义变量,给变量添加表达式,修改变量值,并对零件进行驱动。变量表中的变量会随着对模型的Undo/Redo自动进行Undo/Redo。 变量表

混凝土损伤的研究现状

混凝土结构损伤的研究现状 一、混凝土结构的损伤机制及分类 混凝土是由粗骨料、细骨料和水泥浆组成的非均质混合物,其表现出来的力学性能并不仅仅是这几种材料性能的简单叠加,而是与其内部的组成结构紧密相关。这一特点决定了混凝土材料的非均质性和物理性态的复杂性。这使得混凝土在承受外载之前,由于干缩、泌水等原因,已存在大量的微孔隙和界面裂缝,且这些缺陷的分布完全是随机的。当混凝土受到外界作用以后,弥散在材料内部的微裂缝开始逐渐长大,并随着荷载的变化,在部分区域出现贯通,直至形成宏观大裂缝。混凝土的破坏是结合缝的产生、成核、扩展、分叉、和失稳的过程。 混凝土具有微观、细观、宏观等不同的层次结构,以往对于混凝土的研究大多基于宏观层次,把混凝土均匀化为宏观均质连续材料,不考虑混凝土内部的细观结构及其演化。这种均匀化的处理方法对于研究混凝土结构的宏观力学性能无疑是行之有效的,但是要想深入研究混凝土的工作机理还应从混凝土的细观组成结构入手,抓住材料非均质性的特点,揭示混凝土结构宏观表现的内在机制。现在通常先在细观层次建立了混凝土的数值模型,分析混凝土损伤破坏机理,并以此为基础在宏观层次提出了混凝土损伤断裂理论分析模型,通过宏、细观两个层次的相互联系与补充对混凝的破坏行为进行研究。 从细观角度看,混凝土材料的力学特性是由其内部的细观结构及其变化决定的。作为一种典型的非均质材料,混凝土在多种尺度下都表现出了非均质性。根据复合材料的观点,将混凝土结构分为三级。第一级,即混凝土。可将砂浆视为基相,骨料视为分散相。骨料和砂浆的结合面为薄弱面,该处常因各种原因产生结合缝。混凝土的破坏首先从这里开始。第二级,即砂浆」将水泥视为基相,砂视为分散相。砂和水泥的结合面也是薄弱面,也产生结合缝,但其尺寸笔砂浆和骨料之间的结合缝至少小一个量级。第三级,即硬_ 化水泥浆。硬化水泥浆也不是匀质材料,其中包裹着一些未被水化的水泥颗粒及孔隙,他- 们就是缺陷。因此可将硬化水泥浆胶体视为基相,将这些缺陷视为分散相。水泥浆体的破坏可能从这些缺陷开始,裂纹由于克服硬化水泥浆分子间的引力而扩展。未被水化的水泥颗粒尺寸通常比砂和水泥浆的结合缝至少小几个量级。 从损伤力学的观点来看,如果混凝土体受到外界因素的作用,则混凝土体中原有损伤将会有所发展并会导致出现新的损伤,当损伤积累到一定程度时,混凝土体中将会出现宏观裂缝,而宏观裂缝的端部又将会发生新的损伤及产生新的损伤区,再经积累而引起裂缝的扩展,直至混凝土体的破坏,由上可见,混凝土的破坏过程实际上是损伤、损伤积累、宏观裂纹出现、宏观裂纹扩展交织发生的过程。 二、混凝土结构的破坏机理 在上述损伤机制下,混凝土的裂纹扩展存在四个阶段: (1)预存微裂纹阶段。即在混凝土成形过程中,由于水泥浆硬化干缩,水分蒸发留下裂隙等原因,使构件中预存原始微裂纹。它们大都为界面裂纹,极少量为砂浆裂纹,这些裂纹是稳定的。这些裂纹的存在是混凝土具有初始损伤的原因之一。 (2)裂纹的起裂和稳定扩展阶段。在较低的工作应力下,构件内部的某些点会产生拉应力集中,致使相应的预存微裂纹延伸或扩展,应力集中则随之缓解,如果荷载不再增加,

新旧混凝土规范对比

新旧混凝土规范对比 新老规范变化(一):材料变化1、混凝土强度等级逐步提升4.1.2条:素混凝土结构的混凝土强度等级不应低于C15;钢筋混凝土结构的混凝土强度等级不应低于C20;采用强度级别400MPa及以上的钢筋时,混凝土强度等级不应低于C25。 承受重复荷载的钢筋混凝土构件,混凝土强度等级不应低于C30。预应力混凝土结构的混凝土强度等级不宜低于C40,且不应低于C30。2、钢筋高强-高性能发展趋势普通钢筋:淘汰低强235MPa钢筋,以300MPa光圆钢筋替代;增加高强500MPa钢筋;限制并准备淘汰335MPa钢筋;最终形成300、400、500MPa的强度梯次,与国际接轨。新规范实施后的钢筋牌号及标志为:HPB300—ΦHRB335— B HRBF335—BFHRB400—C HRBF400—CFHRB500—D HRBF500—DFRRB400—C增加了以下几条:4.2.7条:构件中的钢筋可采用并筋的配置形式。直径28mm及以下的钢筋并筋数量不应超过3根;直径32mm的钢筋并筋数量宜为2根;直径36mm及以上的钢筋不应采用并筋。并筋应按单根等效钢筋进行计算,等效钢筋的等效直径应按截面面积相等的原则换算确定。4.2.8条:当进行钢筋代换时,除应符合设计要求的构件承载力、最大力下的总伸长率、

裂缝宽度验算以及抗震规定以外,尚应满足最小配筋率、钢筋间距、保护层厚度、钢筋锚固长度、接头面积百分率及搭接长度等构造要求。4.2.9条:当构件中采用预制的钢筋焊接网片或钢筋骨架配筋时,应符合国家现行有关标准的规定。新老规范变化(二):基本构造变化1、箍筋长度:图中1 号箍筋的计算公式(按外皮计算):老规范:L=2(b+h)- 8bhc+2×1.9d+2max(10d,75)+8d新规范:L=2 (b+h) - 8bhc+2×1.9d+2max(10d,75)2、钢筋锚固:新规范中增加了基本锚固lab的计算方式:lab=a*fy/ft*d但其中ft(混凝土轴心抗拉强度设计值)取值改为“当混凝土强度等级高于C60时,按C60取值”以适应混凝土强度的提高。设计锚固长度为基本锚固长度乘锚固长度修正系数ζa的数值,以反映锚固条件的影响:la=ζa*lab其中,la不应小于200mm,锚固长度修正系数ζa,对普通钢筋按规范第8.3.2条的规定取用,当多于一项时,可按连乘计算,但不应小于0.6;对预应力筋,可取1.0.3、筋端弯钩和机械锚固:新规范对钢筋弯钩和机械锚固的形式和技术要求做了更详细的规定,如下表:4、钢筋的连接:不宜采用绑扎搭接接头的规定改为:受拉钢筋直径不宜大于25mm,受压钢筋直径不宜大于28mm。钢筋机械连接区段的长度为35d,d改为连接钢筋的较小直径。纵向受拉钢筋绑扎搭接接头的搭接长度不应小于300mm。新老规范变化(三):结构构件基本规定

钢筋混凝土板式楼梯设计楼梯板及平台板配筋图完整版

钢筋混凝土板式楼梯设计楼梯板及平台板配筋 图 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

六、钢筋混凝土板式楼梯设计 楼梯设计包括建筑设计和结构设计两部分。 一、设计资料 建筑设计 1、楼梯间建筑平面,开间:3300mm。进深:4800mm。 5楼梯形式尺寸:双跑楼梯,层高4600mm,踏步采用180mm×270mm,每层共需4600/180=25步。如图建筑图中所示。 二、结构设计采用板式楼梯 1、楼梯梯段板计算: 混凝土采用C20,单d≤10mm时,采用Ⅰ级钢筋;单d≥12mm时,采用Ⅱ级钢筋, fc=9.6kN/mm2,fy=210 kN/mm2 2假定板厚:h=l/30=2700/30=90mm,取h=100mm。 3荷载计算(取1米板宽计算) 楼梯斜板倾角: a=tg-1(180/270)=26.530 cosa=0.895 恒载计算: 踏步重(1.0/0.3)×0.5×0.15×0.3×25=1.875 kN/m

斜板重(1.0/0.895)×0.1×25=2.8kN/m 20mm厚面层粉刷层重: [(0.3+0.15)/0.3]×0.02×20×1.0=0.6kN/m 15mm厚板底抹灰: (1.0/0.895)×0.015×17=0.32kN/m 恒载标准值 gk=1.875+2.8+0.60+0.29=5.57 kN/m 恒载设计值 gd=1.2×5.57=6.68 kN/m 活载计算: 活载标准值 Pk=2.5×1.0=2.5 kN/m 活载设计值 Pd=1.4×2.5=3.5 kN/m 总荷载设计值 qd=gd+pd=6.68+3.5=10.18kN/m (3)内力计算 跨中弯矩:M=qdl2/10=10.18×2.72/10=7.42 kN.m (4)配筋计算(结构重要系数r =1.0) h0= h-20=100-20=80mm ɑs=r 0M/(fcbh 2)=1.0×7.42×106/(9.6×1000×802)=0.12

《混凝土结构设计规范》GB50010-2010

为方便了解规范修订的变化并提出意见,将本次修订的主要内容简述如下:为方便了解规范修订的变化并提出意见,将本次修订的主要内容简述 1 完善规范的完整性,完善规范的完整性从以构件计算为主适当扩展到整体结构的设计,补充结完整性,从以构件计算为主适当扩展到整体结构的设计,适当扩展到整体结构“ 构方案”和“结构抗倒塌设计”的原则,增强结构的整体稳固性。构方案”结构抗倒塌设计” 的原则,增强结构的整体稳固性。 3 完善承载力极限状态设计内容,增加以构件分项系数进行应力设计等内容。 钢筋混凝土构件按荷载效应准永久组合计算裂缝宽正常使用极限状态设计,钢筋混凝土构件按荷载效应准永久组合计算裂缝宽 度,预应力构件稍放松;调整了裂缝宽度计算中的构件受力特征系数取值。度,预应力构件稍放松;调整了裂缝宽度计算中的构件受力特征系数取值。 4 增加楼盖舒适度要求,规定了楼板竖向自振频率的限制。 5 完善耐久性设计方法,除环境条件外,提出环境作用等级概念。完善耐久性设计方法,除环境条件外,提出环境作用等级概念除环境条件外,提出环境作用等级概念。 6 增加了既有结构设计的基本规定。增加了既有结构设计的基本规定。既有结构设计的基本规定 7 淘汰低强钢筋,纳入高强、高性能钢筋;提出钢筋延性(极限应变)的要求。淘汰低强钢筋,纳入高强、高性能钢筋;提出钢筋延性(极限应变)的要求 8 补充并筋(钢筋束)的配筋形式及相关规定。补充并筋(钢筋束)的配筋形式及相关规定及相关规定。 9 结构分析内容适当得到扩展,提出非荷载效应分析原则。结构分析内容适当得到扩展提出非荷载效应分析原则。适当得到扩展, 10

对结构侧移二阶效应,提出有限元分析及增大系数的简化方法。侧移二阶效应,提出有限元分析及增大系数的简化10 对结构侧移二阶效应,提出有限元分析及增大系数的简化方法。 11 完善了连续梁、连续板考虑塑性内力重分布进行内力调幅的设计方法。 12 补充、完善材料本构关系及混凝土多轴强度准则的内容。 “ 任意截面”“ 简化计算”13 构件正截面承载力计算:任意截面”移至正文,简化计算”移至附录。 截面设计中完善了构件自身挠曲影响的相关规定。14 截面设计中完善了构件自身挠曲影响的相关规定。 修改了受弯构件的斜截面的受剪承载力计算公式。15 修改了受弯构件的斜截面的受剪承载力计算公式。 改进了16 改进了双向受剪承载力计算的相关规定。 17 补充在拉、弯、剪、扭作用下的钢筋混凝土矩形截面框架柱设计的相关规定。扭作用下的钢筋混凝土矩形截面框架柱设计的相关规定 修改了受冲切承载力计算公式。18 修改了受冲切承载力计算公式。 19 补充了预应力混凝土构件疲劳验算的相关公式。 20 增加按开裂换算截面计算在荷载效应准永久或标准组合下的截面应力。 21 宽度大于 0.2mm 的开裂截面,增加按应力限制钢筋间距的要求。 22 挠度计算中增加按荷载效应准永久组合时长期刚度的计算公式。挠度计算中增加按荷载效应准永久组合时长期刚增加按荷载效应准永久组合时长期刚度 23 增加了无粘结预应力混凝土受弯构件刚度、裂缝计算方法。增加了 24 考虑耐久性影响适当调整了钢筋保护层厚度的规定,一股情况下稍增,恶劣考虑耐久性影响适当调整了钢筋保护层厚度的规定,一股情况下稍增,恶劣适当调整了钢筋保护层厚度的规定,一股情况下稍 环境下大幅度增加。

我国混凝土损伤本构关系的研究现状

我国混凝土损伤本构关系的研究现状 摘要:从弹性与塑性损伤、各向同性与各向异性损伤、静力与动力损伤、宏观唯象以及细观和微观损伤、局部化与非局部化损伤这5个不同侧重点考虑,归纳介绍了近几年来我国学者在混凝土损伤类本构关系领域研究的进展,并提出了自己的意见,对其发展方向进行了展望。 关键词:混凝土;损伤;本构关系;研究现状 引言 混凝土是现代建筑结构中运用最广泛的材料,它的破坏是由于材料内分布的微孔洞、微裂纹在荷载的作用下不断成核、扩展、贯通形成宏观裂纹,造成承载力下降导致的。要分析混凝土结构的受力特性,确保结构的可靠性,需要研究其微损伤的演化规律。 自1976年Dougill最早将损伤力学用于研究混凝土的受力性能以来,各种混凝土本构关系应运而生,不断发展。从最初的单轴受拉各向同性弹性损伤模型,到现在针对具体情况有侧重点的建立起得的各种不同的损伤模型。 本文从弹性与塑性损伤、各向同性与各向异性损伤、静力与动力损伤、宏观唯象以及细观和微观损伤、局部化与非局部化损伤这5个不同侧重点考虑,介绍了近几年来我国学者在混凝土损伤类本构关系领域研究的进展,并对其发展进行了展望。 1弹性与弹塑性损伤模型 混凝土是一种多相复杂的准脆性材料,在单轴或多轴压缩荷载作用下,混凝土表现出一定的塑性。混凝土损伤模型按照是否与塑性理论结合,可分为弹性损伤模型与弹塑性损伤模型。两者的区别主要在于,弹性损伤模型只考虑损伤对刚度的影响,弹塑性损伤模型考虑卸载时不可恢复的变形,卸载弹模不同,见图1。 图1循环加卸载实验的混凝土应力-应变曲线 相比而言,弹塑性模型能够更为准确的描述混凝土的损伤演化特性,因而更加受到学者们的关注,近年来有很大的发展。但由于弹塑性模型需要求解损伤与塑性耦合的复杂过程,计算复杂,参数众多,弹性损伤模型便于实际工程应用。 1.1弹性损伤模型 在损伤力学理论早期的发展过程中建立了一些经典的混凝土损伤模型,这些模型是在对金属损伤研究的基础上考虑混凝土类材料的特性发展而来的。Loland和Mazars的损伤模型都是参照实验得出的拉伸应力应变曲线,将曲线以应力峰值划为两端,分别用函数模拟。假设材料为各向同性弹性体,损伤也是各向同性,Loland假定应力峰值以前有效应力与应变关系,而峰值后有效应力为一常数。Mazars根据Terrien的混凝土单轴拉伸试验曲线,假定峰值应力前,应力应变曲线为直线,峰值应力后为下降段曲线。Sidoroff等人提出能量等价原理,并提出了损伤面的概念,损伤是在损伤阈值面上发生。Krajcinovic以Helmholtz自由能理论为基础,参照塑性力学方法引入了损伤面的概念,假设损伤演变速度的方向垂直于损伤面,导出了损伤本构方程及损伤演化方程[1]。 以上经典的弹性损伤模型均是在单调加载的情况下建立的,也未考虑混凝土的非线性。 李正在文献[2]中指出混凝土作为一种准脆性材料,混凝土的塑性变形主要发生在受压损伤较大情况下,而受拉损伤情况下,卸载后塑性应变很小,接近脆性。在地震作用下,混凝土结构主要发生受拉损伤,受压损伤程度较小。因此,弹性损伤模型对于一般精度要求的地震损伤分析也是具有适用性的。并对Faria和Oliver 等人所提出的混凝土损

钢筋混凝土板式楼梯设计楼梯板及平台板配筋图

钢筋混凝土板式楼梯设计 楼梯板及平台板配筋图 Revised by Liu Jing on January 12, 2021

六、钢筋混凝土板式楼梯设计 楼梯设计包括建筑设计和结构设计两部分。 一、设计资料 建筑设计 1、楼梯间建筑平面,开间:3300mm。进深:4800mm。 5楼梯形式尺寸:双跑楼梯,层高4600mm,踏步采用180mm×270mm,每层共需4600/180=25步。如图建筑图中所示。 二、结构设计采用板式楼梯 1、楼梯梯段板计算: 混凝土采用C20,单d≤10mm时,采用Ⅰ级钢筋;单d≥12mm时,采用Ⅱ级钢筋,fc=9.6kN/mm2,fy=210 kN/mm2 2假定板厚:h=l/30=2700/30=90mm,取h=100mm。 3荷载计算(取1米板宽计算) 楼梯斜板倾角: a=tg-1(180/270)=26.530 cosa=0.895 恒载计算: 踏步重(1.0/0.3)×0.5×0.15×0.3×25=1.875 kN/m 斜板重(1.0/0.895)×0.1×25=2.8kN/m 20mm厚面层粉刷层重: [(0.3+0.15)/0.3]×0.02×20×1.0=0.6kN/m 15mm厚板底抹灰: (1.0/0.895)×0.015×17=0.32kN/m

恒载标准值 gk=1.875+2.8+0.60+0.29=5.57 kN/m 恒载设计值 gd=1.2×5.57=6.68 kN/m 活载计算: 活载标准值 Pk=2.5×1.0=2.5 kN/m 活载设计值 Pd=1.4×2.5=3.5 kN/m 总荷载设计值 qd=gd+pd=6.68+3.5=10.18kN/m (3)内力计算 跨中弯矩:M=qdl2/10=10.18×2.72/10=7.42 kN.m (4)配筋计算(结构重要系数r =1.0) h0= h-20=100-20=80mm ɑs=r 0M/(fcbh 2)=1.0×7.42×106/(9.6×1000×802)=0.12 ξ=1-(1-2ɑs)0.5=0.1282 As= fcbh ξ/fy=9.6×1000×0.1282×80/210=468.85mm2 受力钢筋选用10@150(As=604 mm2) 分布钢筋选用6@300 2、平台板计算 (1)荷载计算(取1米板宽计算) 假定板厚80mm,平台梁TL-1截面尺寸200×300mm,TL-2截面尺寸为150×300mm。 楼梯板及平台板配筋图 恒载:平台板自重 0.08×1.0×25=2 kN/m 20mm厚抹面: 0.02×1.0×20=0.4kN/m

混凝土损伤理论的分析研究

SHANGHAI UNIVERSITY 结构非线性分析课程论文 UNDERGRADUATE PROJECT (THESIS) 题 目:钢筋混凝土结构有限元分析及其断裂损伤理 论应用 学 院 土木工程系 专 业 建筑与土木工程 学 号 xxxxxxxx 学生姓名 xxx 指导教师 xx 日 期 2017.12.24

上海大学2017~2018学年冬季学期研究生课程考试 小论文 课程名称:结构非线性分析课程编号:18Z147004 论文题目:钢筋混凝土结构有限元分析及其断裂损伤理论应用 研究生姓名: xxx 学号: xxxxxxxx 论文评语: 成绩: 任课教师: xx 评阅日期:

目录 一混凝土损伤理论的研究背景 (1) 二国内外对混凝土损伤理论的研究现状 (2) 1)国外混凝土损伤理论研究现状 (2) 2)国内混凝土研究现状 (2) 三混凝土损伤理论研究中的问题和研究方法 (3) 1)试验条件相差较大时混凝土的本构关系将发生变化 (3) 2)复杂的多轴应力状态下的损伤理论 (3) 3)试验难度大 (3) 4)研究方法 (3) 四钢筋混凝土非线性损伤理论及有限元法 (4) 1)混凝土非线性本构模型 (4) 2)规范中的混凝土损伤理论 (5) ①混凝土单轴受压时的本构模型及dc的选取 (5) ②混凝土单轴受拉时的损伤理论 (6) 2)ABAQUS算例 (6) ①混凝土塑形损伤模型 (6) ②数值分析 (7) 五研究成果与创新 (8) 1)当今国际的研究成果 (8) 2)理论研究的新进展 (8) 3)在有限元中的应用 (8) 六研究混凝土损伤理论的意义和结论 (9) 1)社会意义 (9) 2)经济效益 (9) 3)结论 (9) 七展望 (9) 八建议 (10)

混凝土钢筋验收规范

钢筋分项工程 5 〔说明〕钢筋分项工程是普通钢筋进场检验、钢筋加工、钢筋连接、钢筋安 装等一系列技术工作和完成实体的总称。钢筋分项工程所含的检验批可根据施工 工序和验收的需要确定。 5.1 一般规定 5.1.1 浇筑混凝土之前,应进行钢筋隐蔽工程验收,其内容应包括: 纵向受力钢筋的牌号、规格、数量、位置; 1 钢筋的连接方式、接头位置、接头数量、接头面积百分率、搭接长度、2锚固方式及锚固长度;箍筋、横向钢筋的牌号、规格、数量、间距,箍筋弯钩的弯折角度及平3直段长度; 预埋件的规格、数量、位置。4〔说明〕钢筋隐蔽工程反映钢筋分项工程施工的综合质量,在浇筑混凝土之 前验收是为了确保受力钢筋等的加工、连接、安装满足设计要求。钢筋隐蔽工程 验收可与钢筋分项工程验收同时进行。 钢筋验收时,首先检查钢筋牌号、规格、数量,再检查位置偏差,不允许钢 筋间距累计正偏差后造成钢筋数量减少。 5.1.2 钢筋进场检验,当满足下列条件之一时,其检验批容量可扩大一倍: 经产品认证符合要求的钢筋; 1 同一工程、同一厂家、同一牌号、同一规格的钢筋、成型钢筋,连续三 2 次进场检验均一次检验合格。 〔说明〕本条规定对于通过产品认证的钢筋及生产质量稳定的钢筋、成型钢 筋,在进场检验时,可比常规检验批数量扩大一倍。旨在鼓励使用通过产品认证 的材料或选取质量稳定的生产厂家的产品。 5.2 材料 主控项目 19 5.2.1 钢筋进场时,应按国家现行相关标准的规定抽取试件作屈服强度、抗拉强 度、伸长率、弯曲性能和重量偏差检验,检验结果必须符合相关标准的规定。 检查数量:按进场批次和产品的抽样检验方案确定。 检验方法:检查质量证明文件和抽样复验报告。 〔说明〕钢筋的进场检验,应按照现行国家标准《钢筋混凝土用钢第部分: 1 热轧光圆钢筋》、《钢筋混凝土用钢第部分:热轧带肋钢筋》GB1499.2 2GB1499.1 规定的组批规则、取样数量和方法进行检验,检验结果应符合上述标准的规定。 一般钢筋检验断后伸长率即可,牌号带的钢筋检验最大力下总伸长率。钢筋 E 的质量证明文件主要为产品合格证和出厂检验报告。 5.2.2 成型钢筋进场时,应抽取试件作屈服强度、抗拉强度、伸长率和重量偏差 检验,检验结果必须符合相关标准的规定。

钢筋混凝土板式楼梯设计 楼梯板及平台板配筋图

六、钢筋混凝土板式楼梯设计 楼梯设计包括建筑设计和结构设计两部分。 一、设计资料 建筑设计 1、楼梯间建筑平面,开间:3300mm。进深:4800mm。 5楼梯形式尺寸:双跑楼梯,层高4600mm,踏步采用180mm×270mm,每层共需4600/180=25步。如图建筑图中所示。 二、结构设计采用板式楼梯 1、楼梯梯段板计算: 混凝土采用C20,单d≤10mm时,采用Ⅰ级钢筋;单d≥12mm时,采用Ⅱ级钢筋,fc=mm2,fy=210 kN/mm2 2假定板厚:h=l/30=2700/30=90mm,取h=100mm。 3荷载计算(取1米板宽计算) 楼梯斜板倾角: a=tg-1(180/270)= cosa= 恒载计算: 踏步重()××××25= kN/m 斜板重()××25=m 20mm厚面层粉刷层重: [(+)/]××20×=m 15mm厚板底抹灰: ()××17=m 恒载标准值 gk=+++= kN/m 恒载设计值 gd=×= kN/m 活载计算: 活载标准值 Pk=×= kN/m 活载设计值 Pd=×= kN/m 总荷载设计值 qd=gd+pd=+=m (3)内力计算 跨中弯矩:M=qdl2/10=×10= (4)配筋计算(结构重要系数r = h0= h-20=100-20=80mm ɑs=r 0M/(fcbh 2)=××106/(×1000×802)= ξ=1-(1-2ɑs)= As= fcbh ξ/fy=×1000××80/210= 受力钢筋选用10@150(As=604 mm2) 分布钢筋选用6@300 2、平台板计算 (1)荷载计算(取1米板宽计算) 假定板厚80mm,平台梁TL-1截面尺寸200×300mm,TL-2截面尺寸为150×300mm。

ABAQUS混凝土塑性损伤模型

4.5.2 混凝土和其它准脆性材料的塑性损伤模型 这部分介绍的是ABAQUS提供分析混凝土和其它准脆性材料的混凝土塑性损伤模型。ABAQUS 材料库中也包括分析混凝的其它模型如基于弥散裂纹方法的土本构模型。他们分别是在ABAQUS/Standard “An inelastic constitutive model for concrete,” Section 4.5.1, 中的弥散裂纹模型和在ABAQUS/Explicit, “A cracking model for concrete and other brittle materials,” Section 4.5.3中的脆性开裂模型。 混凝土塑性损伤模型主要是用来为分析混凝土结构在循环和动力荷载作用下的提供一个普遍分析模型。该模型也适用于其它准脆性材料如岩石、砂浆和陶瓷的分析;本节将以混凝土的力学行为来演示本模型的一些特点。在较低的围压下混凝土表现出脆性性质,主要的失效机制是拉力作用下的开裂失效和压力作用下的压碎。当围压足够大能够阻止裂纹开裂时脆性就不太明显了。这种情况下混凝土失效主要表现为微孔洞结构的聚集和坍塌,从而导致混凝土的宏观力学性质表现得像具有强化性质的延性材料那样。 本节介绍的塑性损伤模型并不能有效模拟混凝土在高围压作用下的力学行为。而只能模拟混凝土和其它脆性材料在与中等围压条件(围压通常小于单轴抗压强度的四分之一或五分之一)下不可逆损伤有关的一些特性。这些特性在宏观上表现如下: ?单拉和单压强度不同,单压强度是单拉强度的10倍甚至更多; ?受拉软化,而受压在软化前存在强化; ?在循环荷载(压)下存在刚度恢复; ?率敏感性,尤其是强度随应变率增加而有较大的提高。 概论 混凝土非粘性塑性损伤模型的基本要点介绍如下: 应变率分解 对率无关的模型附加假定应变率是可以如下分解的: 是总应变率,是应变率的弹性部分,是应变率的塑性部分。 应力应变关系 应力应变关系为下列弹性标量损伤关系: 其中是材料的初始(无损)刚度,是有损刚度,是刚度退化变量其值在0(无损)到1(完全失效)之间变化,与失效机制(开裂和压碎)相关的损伤导致了弹性刚度的退化。在标量损伤理论框架内,刚度退化是各向同性的,它可由单个标量d来描述。按照传统连续介质力学观点,有效应力可定义如下:

GB1499.2《钢筋混凝土用热轧带肋钢筋》国家标准修订

GB1499.2《钢筋混凝土用热轧带肋钢筋》国家标准修订 编制说明 一.工作简况 1.任务来源 根据冶信标院[2010]87号文转发的国家标准制修定计划的要求,GB1499.2《钢筋混凝土用热轧带肋钢筋》列入国家标准修订计划。标准修订的起草单位为:中冶集团建筑研究总院、冶金工业信息标准研究院等单位。 2.工作简要过程 标准修订计划下达后,标准主要起草单位于2011年5月召开了标准修订启动会议,对标准的修订内容进行了讨论,提出了修改意见。在进行了较充分的前期调研和资料收集、整理、分析的基础上,标准起草小组于2011年5月提出标准修订草案,于2011年5月27日召开了“标准修订启动会”.根据启动会的意见,对标准草案进行适当修改后,于2011年7月提出了“标准讨论稿”,于2011年8月在昆明召开标准讨论会。 二.标准修订的原则 本标准此次修订非等效采用国际标准ISO6935-2:2005《钢筋混凝土用钢第2部分:带肋钢筋》的基本框架,并参考了其他国家同类标准的内容,同时充分考虑了我国高强钢筋生产和推广使用的时间,结合国家产业政策和节能减排要求,对原标准的内容作了相应的修改和调整。 修订和调整的主要内容有: ●取消了HRB335牌号,增加了HRB600牌号,拟增加HRB300; ●增加8.3.4横肋末端间隙的测量方法; ●对重量允许偏差进行了适当加严,明确重量偏差不允许复验; ●增加反向弯曲试验频率,要求抗震钢筋进行反向弯曲试验; ●对钢筋型式检验进行明确规定。 三.标准修订内容的说明

1.标准名称及适用范围 本标准仍旧适用于热轧钢筋、控轧细晶粒钢筋, ,故本标准仍称“钢筋混凝土用热轧带肋钢筋”。 2 钢筋的分类和牌号 2.1 取消了HRB335钢筋 本次取消这个级别主要因为: (1)根据《钢铁产业调整和振兴规划》“(六)调整钢材品种结构,提高产品质量”中关于:“修改相关设计规范,淘汰强度335MPa及以下热轧带肋钢筋,加快推广使用强度400MPa及以上钢筋,促进建筑钢材的升级换代。”的要求。今年国家发改委9号令将HRB335列入落后产品。 (2)GB 50010-2010中也弱化了335级别的用途 ?纵向受力普通钢筋宜采用HRB400、HRB500、HRBF400、HRBF500钢筋,也可采用HRB335、HRBF335、HPB300、RRB400钢筋; ?梁、柱纵向受力钢筋应采用HRB400、HRB500、HRBF400、HRBF500钢筋; ?箍筋宜采用HRB400、HRBF400、HPB300、HRB500、HRBF500钢筋,也可采用HRB335、HRBF335钢筋; (3)经过向生产企业征求意见,大部分企业支持取消该级别钢筋 企业支持取消该级别的理由主要包括: 1)节约能源; 2)加快推广使用400MPa及以上级别钢筋; 2.2 拟增加HRB300钢筋 根据中国钢铁工业协会、住宅与建设部专家的意见,标准分类和牌号应宽泛设定。应包括各个层次的使用要求,且考虑某些专业领域仍在使用HPB235、HRB335钢筋。所以将原HRB335级调整为HRB300,一方面可以拉大极差,使原使用HRB335的钢筋采用HRB400 ;另一方面,也考虑一些配筋可以采用HRB300。但是,增加这一级别钢铁企业与一些部门持不同意见,认为本次标准应该从HRB400起步,以便更好地推广高强钢筋。我们拟广泛征求意见,最后按标准制定的程序要求,协商一致确定。 2.2 增加了HRB600钢筋 目前,我国处于工业化和城镇化快速发展时期,建筑业发展十分迅猛,已成为我国

相关文档
相关文档 最新文档