文档库 最新最全的文档下载
当前位置:文档库 › 数学实验四(概率论) (4)

数学实验四(概率论) (4)

数学实验四(概率论) (4)
数学实验四(概率论) (4)

数学实验四(概率论)

一.用MATLAB 计算随机变量的分布

1.用MA TLAB 计算二项分布

当随变量(),X B n p 时,在MATLAB 中用命令函数

(,,)Px binopdf X n p =

计算某事件发生的概率为p 的n 重贝努利试验中,该事件发生的次数为X 的概率。

例1 在一级品率为0.2的大批产品中,随机地抽取20个产品,求其中有2个一级品的概率。 解 在MATLAB 中,输入 >>clear

>> Px=binopdf(2,20,0.2) Px =

0.1369

即所求概率为0.1369。

2.用MA TLAB 计算泊松分布

当随变量()X P λ 时,在MATLAB 中用命令函数

(,)P poisspdf x lambda =

计算服从参数为lambda 的泊松分布的随机变量取值x 的概率。用命令函数

(,)P poisscdf x lambda =

计算服从参数为lambda 的泊松分布的随机变量在[]0,x 取值的概率。

例2 用MATLAB 计算:保险公司售出某种寿险保单2500份.已知此项寿险每单需交保费120元,当被保人一年内死亡时,其家属可以从保险公司获得2万元的赔偿(即保额为2万元).若此类被保人一年内死亡的概率0.002,试求:

(1)保险公司的此项寿险亏损的概率;

(2)保险公司从此项寿险获利不少于10万元的概率; (3)获利不少于20万元的概率.

利用泊松分布计算. 25000.0025np λ==?=

(1) P(保险公司亏本)= ()()15

250025000(3020)1(15)10.0020.998k

k

k

k P X P X C -=-<=-≤=-

?∑

=15

5

051!

k k e k -=-∑

在MATLAB 中,输入 >> clear

>> P1=poisscdf(15,5) P1 =

0. 9999

即 15

5

05!

k k e k -=∑= P1 =0.9999

故 P(保险公司亏本)=1-0.9999=0.0001

(2) P(获利不少于10万元)= ()()

10

10

25002500

25000

(30210)(10)0.0020.998k k

k k

k k P X P X C

C -==-≥=≤=

?≈∑∑

=10

5

05!

k k e k -=∑ 在MATLAB 中,输入 >>P=poisscdf(10,5) P =

0.9863

即 10

5

05!

k k e k -=∑=0.9863

(3) P(获利不少于20万元)= ()()

5

25002500

(30220)(5)0.0020.998k k

k k P X P X C

-=-≥=≤=?∑ =5

5

05!

k k e k -=∑ 在MATLAB 中,输入 >>P=poisscdf(5,5) P =

0.6160

即 5

5

05!

k k e k -=∑= 0.6160

3.用MA TLAB 计算均匀分布

当随机变量(),X U a b 时,在MATLAB 中用命令函数

(),,P unifpdf x a b =

计算在区间[],a b 服从均匀分布的随机变量的概率密度在x 处的值。用命令函数 (),,P unifcdf X a b =

计算在区间[],a b 服从均匀分布的随机变量的分布函数在X 处的值。

例3乘客到车站候车时间ξ()0,6U ,计算()13P ξ<≤。 解 ()13P ξ<≤()()31P P ξξ=≤-≤ 在MATLAB 中,输入 >>p1=unifcdf(3,0,6) p1 =

0.5000

>>p2=unifcdf(1,0,6) p2= 0.1667 >>p1-p2 ans = 0. 3333

即 ()13P ξ<≤=0.3333

4.用MA TLAB 计算指数分布

当随变量()X E λ 时,在MATLAB 中用命令函数

()exp ,P pdf x lamda =

计算服从参数为λ的指数分布的随机变量的概率密度。用命令函数

()exp ,P cdf x lamda =

计算服从参数为1

λ-的指数分布的随机变量在区间[]0,x 取值的概率。

例4 用MATLAB 计算:某元件寿命ξ服从参数为λ(λ=1

1000-)的指数分布.3个这样的元件使用1000小时后,都没有损坏的概率是多少?

解 由于元件寿命ξ服从参数为λ(λ=1

1000-)的指数分布, )1000(1)1000(≤-=>ξξP P 在MATLAB 中,输入 >>p=expcdf(1000,1000) p =

0. 6321 >>1-p ans =

0.3679

即 )1000(1)1000(≤-=>ξξP P = 0.3679 再输入

>>p2=binopdf(3,3,0.3679) p2 = 0.0498

即3个这样的元件使用1000小时都未损坏的概率为0.0498。

5。用MATLAB 计算正态分布

当随变量()

2

,X N μσ 时,在MATLAB 中用命令函数

(),,P normpdf K mu sigma =

计算服从参数为,μσ的正态分布的随机变量的概率密度。用命令函数

(),,P normcdf K mu sigma =

计算服从参数为,μσ的正态分布的随机变量的分布函数在K 处的值。

例5 用MA TLAB 计算:某厂生产一种设备,其平均寿命为10年,标准差为2年.如该设备的寿命服从正态分布,求寿命不低于9年的设备占整批设备的比例?。

解 设随机变量ξ为设备寿命,由题意)2,10(~2

N ξ )9(1)9(<-=≥ξξP P 在MATLAB 中,输入 >>clear

>> p1=normcdf(9,10,2)

p1 =

0. 3085 >>1-p1

ans = 0.6915

二.利用MATLAB 计算随机变量的期望和方差

1. 用MATLAB 计算数学期望

(1)用MATLAB 计算离散型随机变量的期望

通常,对取值较少的离散型随机变量,可用如下程序进行计算:

1212[,,,];[,,,];*n n X x x x P p p p EX X P '===

对于有无穷多个取值的随机变量,其期望的计算公式为:

0()i i i E X x p ∞

==∑

可用如下程序进行计算:

(,0,inf)i i EX symsum x p =

例6 一批产品中有一、二、三等品、等外品及废品5种,相应的概率分别为0.7、0.1、0.1、0.06及0.04,若其产值分别为6元、5.4元、5元、4元及0元.求产值的平均值

解 将产品产值用随机变量ξ表示,则ξ的分布为:

产值ξ 6 5.4 5 4 0 概率p 0.7 0.1 0.1 0.06 0.04

产值的平均值为ξ的数学期望。在MA TLAB 中,输入

[]654540.ξ=; []0701*******

4p .....=; '*p E ξξ= =ξE

54800.

即产品产值的平均值为5.48.

例7 已知随机变量X 的分布列如下:

{}k

k X p 21

== ,,2,1n k = 计算.EX

解 112k

k EX k

==∑ 在MA TLAB 中,输入

k syms ;

inf),1,,)^2/1(*(k k k symsum

=ans

2 即 2=EX

值得注意的是,对案例3.15中简单随机变量,直接用公式计算即可,不一定使用软件计算。

(2)用MATLAB 计算连续型随机变量的数学期望

若X 是连续型随机变量,数学期望的计算公式为:

()EX xf x dx +∞-∞

=?

程序如下:

int(*(),inf,inf)EX x f x =-

例8 用MATLAB 计算:假定国际市场上对我国某种商品的年需求量是一个随机变量ξ(单位:吨),服从区间[],a b 上的

均匀分布,其概率密度为: 1

()0

a x b

x b a

??≤≤?

=-???其它

计算我国该种商品在国际市场上年销售量的期望.ξE .

解 ()1

b

a

E xf x dx x

dx b a

ξ∞-∞

==-?

? 在MA TLAB 中,输入

;;b a x syms clear

ξE =int (b a x a b x ,,),/(-) ξE =1/2/(b-a)*(b^2-a^2)

即 ξE =()/2a b +

(3)用MATLAB 计算随机变量函数的数学期望

若()g X 是随机变量X 的函数,则当X 为离散型随机变量且有分布律k k p x X P ==}{n k ,2,1(=或 21

,=k )时,随机变量()g X 的数学期望为:

0[()]()k k k E g X g x p ∞

==∑

其MA TLAB 计算程序为:

[()](()*,0,inf)k k E g X symsum g x p =

当X 为连续型随机变量且有概率密度)(x ?时,随机变量()g X 的数学期望为:?

+∞

-=

dx x x g x g E )()()]([?

其MA TLAB 计算程序为:

int(()*(),inf,inf)EX g x f x =-

例9 利用MATLAB 计算:假定国际市场每年对我国某种商品的需求量是随机变量X (单位:吨),服从[20,40]上的均匀分布,

已知该商品每售出1吨,可获利3万美元,若销售不出去,则每吨要损失1万美元,如何组织货源,才可使收益最大?

解 设y 为组织的货源数量,R 为收益,销售量为ξ.依题意有

3()3()y R g y ξξξ?

==?--?

y y ξξ≥<

化简得

3()4y

g y ξξ?=?-?

y y ξξ≥<

又已知销售量ξ服从[20,40]上的均匀分,即

1

2040

()20

x x ξ??<

=??? 其它

于是 ()[()]()()E R E g g x x dx ξ?+∞

-∞

==?

40

20

1()20g x dx =

? 40

2011(4)32020y y

x y dx ydx =

-+??

在MA TLAB 命令窗口输入

>>;clear syms x y

>>EY=1/20*(int((4*x-y),x,20,y)+int(3*y,x,y,40))

结果显示

1/10*y^2-40-1/20*y*(y-20)+3/20*y*(40-y) 将其化简,输入命令

>>simplify(1/10*y^2-40-1/20*y*(y-20)+3/20*y*(40-y)) 结果显示

-1/10*y^2-40+7*y

再对y 在区间[]20,40上求最大值,在命令窗口输入 >>min ('1/10*^27*40',20,40)f bnd x x -+

结果显示

3.5000e+001

即当组织35吨货源时,收益最大。

(注: simplify (f )是对函数f 化简;fminbnd(‘f ’,a,b)是对函数f 在区间[a,b]上求极小值。要求函数的极大值时只需将‘f ’变为 ‘-f ’)

2. 用MATLAB 计算方差

计算方差的常用公式为:22()()[()]D X E X E X =-

若离散型随机变量X 有分布律k k p x X P ==}{n k ,2,1(=或 21,=k ),

其MA TLAB 计算程序为

1212[,,,];[,,,];;*n n X x x x P p p p EX X P '===

2^().*2D X X P EX '=-

若X 是连续型随机变量且密度函数为()f x ,则方差的MA TLAB 计算程序为

int(*(),inf,inf);EX x f x =-

2^()int(*(),inf,inf)2D X x f x EX =--

例10 利用10元,一年后它们的价格及其分布分别如下表:

试比较购买这两种股票时的投资风险.

解 两公司的股票价格都是离散型随机变量.先计算甲公司股票的方差,在MATLAB 命令窗口输入

[8,121,15];[0.4,0.5,0.1];.*;

.^2*^2X P EX X P DX X P EX '==='=-

运行结果显示

5.7425DX =

类似的程序我们可得乙公司股票的方差为 39.09DY =

相比之下,甲公司股票方差小得多,故购买甲公司股票风险较小。

例11 用MATLAB 计算:例8中我国商品在国际市场上的销售量的方差. 解 已知销售量为[],a b 上均匀分布,即密度函数为

1()0

a x b

x b a

??≤≤?

=-???其它

在MATLAB 命令窗口输入

;;b a x syms clear

ξE =int (b a x a b x ,,),/(-);

int(1/()^2,,,)^2D b a x x a b E ξξ=--

运行后结果显示

1/3/(b-a)*(b^3-a^3)-1/4/(b-a)^2*(b^2-a^2)^2

将其化简,在命令窗口中输入

simplify(1/3/(b-a)*(b^3-a^3)-1/4/(b-a)^2*(b^2-a^2)^2)

结果显示

1/12*a^2-1/6*b*a+1/12*b^2

即 ()2

/12b a -,这与前面的结论是一致的。

3. 常见分布的期望与方差

例12 求二项分布参数100,0.2n p ==的期望方差 解 程序如下

100;0.2;

[,](,)

n p E D binostat n p ===

结果显示 E= 20 D= 16

例13 求正态分布参数100,0.2MU SIGMA ==的期望方差 解 程序如下

6;0.25;

[,](,)MU SIGMA E D normstat MU SIGMA ===

结果显示 E= 6 D=

0.062 5

数学实验报告

《数学实验》实验报告 实验四 MATLAB 的作图功能 1、画出y=x+cosx 在[02]π,上的图形。 >> x=linspace(0,0.1,30); >> y=x+cos(x); >> plot(x,y) 1234567 2、在同一坐标系中作出两曲线y=tanx 、y=x-cosx 、2 y x =、2 1y x =-在[0]π,上的图形;要求曲线分别用虚实线表示,并注明曲线名称及适当的标注。 x=0:0.1:pi; y1=tan(x); y2=x-cos(x); y3=x.*x; y4=1-x.*x; plot(x,y1,'k-',x,y2,'k:',x,y3,'k-.',x,y4,'k--'); title('四条平面曲线'); gtext('y=tantx'); gtext('y=x-cosx'); gtext('y=x^2'); gtext('y=1-x^2 ');

0.5 1 1.5 2 2.5 3 3.5 -35-30-25-20-15-10-505 10 15四条平面曲线 3、22 2351 ,cos ,21,1 x x x y e z x u x v x +-===-=+将在同一窗口画出图形。 >> x=linspace(0,2*pi,30); >> y=exp(x); z=cos(x); u=2*x.^2-1; v=(3*x.*x+5*x-1)./(x.*x+1); >> subplot(2,2,1),plot(x,y),title('y=e^x') >> subplot(2,2,2),plot(x,z), title('y=cosx') >> subplot(2,2,3),plot(x,u), title('y=2x^2-1') >> subplot(2,2,4),plot(x,v), title('y=(3*x^2+5*x-1)/(x^2+1)')

概率统计-习地的题目及答案详解(1)

习题一 1.1 写出下列随机试验的样本空间,并把指定的事件表示为样本点的集合: (1)随机试验:考察某个班级的某次数学考试的平均成绩(以百分制记分,只取整数); 设事件A 表示:平均得分在80分以上。 (2)随机试验:同时掷三颗骰子,记录三颗骰子点数之和; 设事件A 表示:第一颗掷得5点; 设事件B 表示:三颗骰子点数之和不超过8点。 (3)随机试验:一个口袋中有5只球,编号分别为1,2,3,4,5,从中取三个球; 设事件A 表示:取出的三个球中最小的号码为1。 (4)随机试验:某篮球运动员投篮练习,直至投中十次,考虑累计投篮的次数; 设事件A 表示:至多只要投50次。 (5)随机试验:将长度为1的线段任意分为三段,依次观察各段的长度。 1.2 在分别标有号码1~8的八张卡片中任抽一张。 (1)写出该随机试验的样本点和样本空间; (2)设事件A 为“抽得一张标号不大于4的卡片”,事件B 为“抽得一张标号为偶数的 卡片”,事件C 为“抽得一张标号能被3整除的卡片”。 试将下列事件表示为样本点的集合,并说明分别表示什么事件? (a )AB ; (b) B A +; (c) B ; (d) B A -; (e) BC ; (f) C B + 。 1.3 设A 、B 、C 是样本空间的事件,把下列事件用A 、B 、C 表示出来: (1)A 发生; (2)A 不发生,但B 、C 至少有一个发生; (3)三个事件恰有一个发生; (4)三个事件中至少有两个发生; (5)三个事件都不发生; (6)三个事件最多有一个发生; (7)三个事件不都发生。 1.4 设}10,,3,2,1{ =Ω,}5,3,2{=A ,}7,5,3{=B ,}7,4,3,1{=C ,求下列事件: (1)B A ; (2))(BC A 。 1.5 设A 、B 是随机事件,试证:B A AB A B B A +=-+-)()(。 1.6 在11张卡片上分别写上Probability 这11个字母,从中任意抽取7张,求其排列结果为ability 的概率。 1.7 电话号码由6位数字组成,每个数字可以是0,1,2,…,9中的任一个数字(但第一位不能为0),求电话号码是由完全不相同的数字组成的概率。 1.8 把10本不同的书任意在书架上放成一排,求其中指定的3本书恰好放在一起的概率。

《数学实验》试题答案

北京交通大学海滨学院考试试题 课程名称:数学实验2010-2011第一学期出题教师:数学组适用专业: 09机械, 物流, 土木, 自动化 班级:学号:姓名: 选做题目序号: 1.一对刚出生的幼兔经过一个月可以长成成兔, 成兔再经过一个月后可以 繁殖出一对幼兔. 如果不计算兔子的死亡数, 请用Matlab程序给出在未来24个月中每个月的兔子对数。 解: 由题意每月的成兔与幼兔的数量如下表所示: 1 2 3 4 5 6 ··· 成兔0 1 1 2 3 5··· 幼兔 1 0 1 1 2 3··· 运用Matlab程序: x=zeros(1,24); x(1)=1;x(2)=1; for i=2:24 x(i+1)=x(i)+x(i-1); end x 结果为x = 1 1 2 3 5 8 13 21 3 4 5 5 89 144 233 377 610 987 1597 2584 4181 6765 1094 6 7711 2865 7 46368 2.定积分的过程可以分为分割、求和、取极限三部分, 以1 x e dx 为例, 利用

已学过的Matlab 命令, 通过作图演示计算积分的过程, 并与使用命令int() 直接积分的结果进行比较. 解:根据求积分的过程,我们先对区间[0,1]进行n 等分, 然后针对函数x e 取和,取和的形式为10 1 i n x i e e dx n ξ=≈ ∑ ? ,其中1[ ,]i i i n n ξ-?。这里取i ξ为区间的右端点,则当10n =时,1 x e dx ?可用10 101 1.805610 i i e ==∑ 来近似计算, 当10n =0时,100 100 1 01 =1.7269100 i x i e e dx =≈ ∑?,当10n =000时,10000 10000 1 1 =1.718410000 i x i e e dx =≈ ∑ ?. 示意图如下图,Matlab 命令如下: x=linspace (0,1,21); y=exp(x); y1=y(1:20); s1=sum(y1)/20 y2=y(2:21); s2=sum(y2)/20 plot(x,y); hold on for i=1:20 fill([x(i),x(i+1),x(i+1),x(i),x(i)],[0,0,y(i),y(i),0],'b') end syms k;symsum(exp(k/10)/10,k,1,10);%n=10 symsum(exp(k/100)/100,k,1,100);%n=100 symsum(exp(k/10000)/10000,k,1,10000);%n=10000

matlab——大学数学实验报告

济南大学2012~2013学年第二学期数学实验上机考试题 班 级 计科1201 学号 20121222044 姓 名 黄静 考试时间 2014年6 月 17日 授课教师 王新红 说明:每题分值20分。第5题,第6题, 第7题和第8题可以任选其一, 第9题和第10题可以任选其一。每个同学以自己的学号建立文件夹,把每个题的文件按规定的方式命名存入自己的文件夹。有多余时间和能力的同学可以多做。 1、自定义函数:x x x y tan ln sin cos ln -=,并求 ?)3 (=π y (将总程序保存为test01.m 文件) %%代码区: y=inline('log(cos(x))-sin(x)*log(tan(x))','x'); y(pi/3) %%answer ans = -1.1689 2、将一个屏幕分4幅,选择合适的坐标系在左与右下幅绘制出下列函数的图形。 (1)衰减振荡曲线: x e y x 5sin 5.0-= (2)三叶玫瑰线:θρ3sin a = (将总程序保存为test02.m 文件) %%代码区: x=linspace(0,2*pi,30); y=exp(-0.5*x).*sin(5*x); subplot(2,2,1),plot(x,y),title('衰减振荡曲线') hold on theta=linspace(0,2*pi); r=sin(3*theta); subplot(2,2,4); polar(theta,r); xlabel('三叶玫瑰线')

%%answer 02468 -1 -0.500.5 1衰减振荡曲线 三叶玫瑰线 3、作马鞍面:22 ,66,8823 x y z x y =--≤≤-≤≤ (将总程序保存为test03.m 文件) %%代码区: [x,y]=meshgrid(linspace(-6,6,70),linspace(-8,8,70)); z=x.^2/2-y.^2/3; mesh(x,y,z) surface(x,y,z)%让曲面光滑并填满 shading interp ;

《概率论与数理统计》实验报告答案

《概率论与数理统计》实验报告 学生姓名李樟取 学生班级计算机122 学生学号201205070621 指导教师吴志松 学年学期2013-2014学年第1学期

实验报告一 成绩 日期 年 月 日 实验名称 单个正态总体参数的区间估计 实验性质 综合性 实验目的及要求 1.了解【活动表】的编制方法; 2.掌握【单个正态总体均值Z 估计活动表】的使用方法; 3.掌握【单个正态总体均值t 估计活动表】的使用方法; 4.掌握【单个正态总体方差卡方估计活动表】的使用方法; 5.掌握单个正态总体参数的区间估计方法. 实验原理 利用【Excel 】中提供的统计函数【NORMISINV 】和平方根函数【SQRT 】,编制【单个正态总体均值Z 估计活动表】,在【单个正态总体均值Z 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【总体标准差】的具体值,就可以得到相应的统计分析结果。 1设总体2~(,)X N μσ,其中2σ已知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为 样本的观测值 于是得到μ的置信水平为1-α 的置信区间为 利用【Excel 】中提供的统计函数【TINV 】和平方根函数【SQRT 】,编制【单个正态总体均值t 估计活动表】,在【单个正态总体均值t 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【样本标准差】的具体值,就可以得到相应的统计分析结果。 2.设总体2~(,)X N μσ,其中2 σ未知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为样本的观测值 整理得 /2/21X z X z n n P αασαμσ? ?=-??? ?-<<+/2||1/X U z P n ασμα????==-??????-

概率统计实验报告

概率统计实验报告 班级16030 学号16030 姓名 2018 年1 月3 日

1、 问题概述和分析 (1) 实验内容说明: 题目12、(综合性实验)分析验证中心极限定理的基本结论: “大量独立同分布随机变量的和的分布近似服从正态分布”。 (2) 本门课程与实验的相关内容 大数定理及中心极限定理; 二项分布。 (3) 实验目的 分析验证中心极限定理的基本结论。 2、实验设计总体思路 2.1、引论 在很多实际问题中,我们会常遇到这样的随机变量,它是由大量的相互独立的随机 因素的综合影响而形成的,而其中每一个个别因素在总的影响中所起的作用是微小的,这种随机变量往往近似的服从正态分布。 2.2、 实验主题部分 2.2.1、实验设计思路 1、 理论分析 设随机变量X1,X2,......Xn ,......独立同分布,并且具有有限的数学期望和方差:E(Xi)=μ,D(Xi)=σ2(k=1,2....),则对任意x ,分布函数 满足 该定理说明,当n 很大时,随机变量 近似地服从标准正 态分布N(0,1)。因此,当n 很大时, 近似地服从正 态分布N(n μ,n σ2). 2、实现方法(写清具体实施步骤及其依据) (1) 产生服从二项分布),10(p b 的n 个随机数, 取2.0=p , 50=n , 计算n 个随 机数之和y 以及 ) 1(1010p np np y --; 依据:n 足够大,且该二项分布具有有限的数学期望和方差。 (2) 将(1)重复1000=m 组, 并用这m 组 ) 1(1010p np np y --的数据作频率直方图进 行观察. 依据:通过大量数据验证随机变量的分布,且符合极限中心定理。

小学数学实验报告

竭诚为您提供优质文档/双击可除 小学数学实验报告 篇一:小学数学课题实验总结报告 《实施合作学习,发挥优势互补的研究》 课题实验总结 在上级主管部门和学校领导关心支持下我们开展了《实施合作学习,发挥优势互补》的课题研究。在课题组全体老师两年的不懈努力下,已基本完成本课题研究任务,并取得预期成果。 开展课题实验以来,我们坚持在实践中探索,在探索中实践,取得了初步的成效,主要体现在实验促进了三个方面的转变,一个方面的提高。 一、促进教师教学观念的转变。 参加课题实验后,实验组的老师们通过边实验边学习,不断总结与反思,提升了自己的科研水平,并树立了以“教学是为了促进学生发展”为最终目标的新型教育教学观念。课堂上,老师与学生建立了和谐融洽的师生关系,在精心创设的良好的教学氛围中鼓励学生独立思考、大胆质疑、敢于

探索、勇于创新。让学生在自主、合作、探究的学习过程中,激发学习热情,养成学习习惯,提高学习能力,从而促进了学生的发展。 二、促进学生学习方式的转变。 学生正在由被动学习逐步向主动学习转变,由老师教转变为我能学,由师生间的单向性活动转变为双向性互动、多边性互动,增大了课堂信息量,学生积极主动学习,小组合作、乐于探究,他们发扬团队精神,团队之间互相竞争、优势互补,并培养学生动手、动脑、动口的能力,培养创新意识。课前,学生能积极主动地预习信息窗内容,提出问题并尝试解决。课堂上,学生能够热烈地交流预习所得,积极主动地参与课堂讨论,参与面广,讨论热烈而且有序。课后,能自觉温习知识,深化学习,拓展延伸,并加以运用。绝大部分学生善于表达,敢于提出自己的不同见解,有较强的探究精神,能够提出问题积极思考,并能够多角度思维寻找解决问题的策略,并且培养了学生良好的合作学习的习惯。 学习方式的转变促进了学生全面发展,他们乐学,善学,学有所成。随着学生自主合作探究能力的不断提高,自主性合作性探究性已多个学习层面辐射,辐射到其它学科、班级管理、文体活动等方面。实验班班风好,学风浓,学生对所有科目的学习兴趣盎然、积极主动,全面发展。 三、促进课堂教学格局的转变。

概率论与数理统计实验报告

概率论与数理统计 实验报告 概率论部分实验二 《正态分布综合实验》

实验名称:正态分布综合实验 实验目的:通过本次实验,了解Matlab在概率与数理统计领域的应用,学会用matlab做概率密度曲线,概率分布曲线,直方图,累计百分比曲线等简单应用;同时加深对正态分布的认识,以更好得应用之。 实验内容: 实验分析: 本次实验主要需要运用一些matlab函数,如正态分布随机数发生器normrnd函数、绘制直方图函数hist函数、正态分布密度函数图形绘制函数normpdf函数、正态分布分步函数图形绘制函数normcdf等;同时,考虑到本次实验重复性明显,如,分别生成100,1000,10000个服从正态分布的随机数,进行相同的实验操作,故通过数组和循环可以简化整个实验的操作流程,因此,本次实验程序中要设置数组和循环变量。 实验过程: 1.直方图与累计百分比曲线 1)实验程序 m=[100,1000,10000]; 产生随机数的个数 n=[2,1,0.5]; 组距 for j=1:3 for k=1:3 x=normrnd(6,1,m(j),1); 生成期望为6,方差为1的m(j)个 正态分布随机数

a=min(x); a为生成随机数的最小值 b=max(x); b为生成随机数的最大值 c=(b-a)/n(k); c为按n(k)组距应该分成的组数 subplot(1,2,1); 图形窗口分两份 hist(x,c);xlabel('频数分布图'); 在第一份里绘制频数直方图 yy=hist(x,c)/1000; yy为各个分组的频率 s=[]; s(1)=yy(1); for i=2:length(yy) s(i)=s(i-1)+yy(i); end s[]数组存储累计百分比 x=linspace(a,b,c); subplot(1,2,2); 在第二个图形位置绘制累计百分 比曲线 plot(x,s,x,s);xlabel('累积百分比曲线'); grid on; 加网格 figure; 另行开辟图形窗口,为下一个循 环做准备 end end 2)实验结论及过程截图 实验结果以图像形式展示,以下分别为产生100,1000,10000个正态分布随机数,组距分别为2,1,0.5的频数分布直方图和累积百分比曲线,从实验结果看来,随着产生随机数的数目增多,组距减小,累计直方图逐渐逼近正态分布密度函数图像,累计百分比逐渐逼近正态分布分布函数图像。

概率论与数理统计数学实验

概率论与数理统计数学实验 目录 实验一几个重要的概率分布的MATLAB实现 p2-3实验二数据的统计描述和分析 p4-8实验三参数估计 p9-11实验四假设检验 p12-14实验五方差分析 p15-17实验六回归分析 p18-27

实验一 几个重要的概率分布的MATLAB 实现 实验目的 (1) 学习MATLAB 软件与概率有关的各种计算方法 (2) 会用MATLAB 软件生成几种常见分布的随机数 (3) 通过实验加深对概率密度,分布函数和分位数的理解 Matlab 统计工具箱中提供了约20种概率分布,对每一种分布提供了5种运算功能,下表给出了常见8种分布对应的Matlab 命令字符,表2给出了每一种运算功能所对应的Matlab 命令字符。当需要某一分布的某类运算功能时,将分布字符与功能字符连接起来,就得到所要的命令。 例1 求正态分布()2,1-N ,在x=处的概率密度。 解:在MATLAB 命令窗口中输入: normpdf,-1,2) 结果为: 例2 求泊松分布()3P ,在k=5,6,7处的概率。 解:在MATLAB 命令窗口中输入: poisspdf([5 6 7],3) 结果为: 例3 设X 服从均匀分布()3,1U ,计算{}225P X .-<<。 解:在MATLAB 命令窗口中输入: unifcdf,1,3)-unifcdf(-2,1,3) 结果为:

例4 求概率995.0=α的正态分布()2,1N 的分位数αX 。 解:在MATLAB 命令窗口中输入: norminv,1,2) 结果为: 例5 求t 分布()10t 的期望和方差。 解:在MATLAB 命令窗口中输入: [m,v]=tstat(10) m = 0 v = 例6 生成一个2*3阶正态分布的随机矩阵。其中,第一行3个数分别服从均值为1,2,3;第二行3个数分别服从均值为4,5,6,且标准差均为的正态分布。 解:在MATLAB 命令窗口中输入: A=normrnd([1 2 3;4 5 6],,2,3) A = 例7 生成一个2*3阶服从均匀分布()3,1U 的随机矩阵。 解:在MATLAB 命令窗口中输入: B=unifrnd(1,3,2,3) B = 注:对于标准正态分布,可用命令randn(m,n);对于均匀分布()1,0U ,可用命令rand(m,n)。

概率论与数理统计实验报告

概率论与数理统计实验报告 一、实验目的 1.学会用matlab求密度函数与分布函数 2.熟悉matlab中用于描述性统计的基本操作与命令 3.学会matlab进行参数估计与假设检验的基本命令与操作 二、实验步骤与结果 概率论部分: 实验名称:各种分布的密度函数与分布函数 实验内容: 1.选择三种常见随机变量的分布,计算它们的方差与期望<参数自己设 定)。 2.向空中抛硬币100次,落下为正面的概率为0.5,。记正面向上的次数 为x, (1)计算x=45和x<45的概率, (2)给出随机数x的概率累积分布图像和概率密度图像。 3.比较t(10>分布和标准正态分布的图像<要求写出程序并作图)。 程序: 1.计算三种随机变量分布的方差与期望 [m0,v0]=binostat(10,0.3> %二项分布,取n=10,p=0.3 [m1,v1]=poisstat(5> %泊松分布,取lambda=5 [m2,v2]=normstat(1,0.12> %正态分布,取u=1,sigma=0.12 计算结果: m0 =3 v0 =2.1000 m1 =5 v1 =5 m2 =1 v2 =0.0144 2.计算x=45和x<45的概率,并绘图 Px=binopdf(45,100,0.5> %x=45的概率 Fx=binocdf(45,100,0.5> %x<45的概率 x=1:100。 p1=binopdf(x,100,0.5>。 p2=binocdf(x,100,0.5>。 subplot(2,1,1>

plot(x,p1> title('概率密度图像'> subplot(2,1,2> plot(x,p2> title('概率累积分布图像'> 结果: Px =0.0485 Fx =0.1841 3.t(10>分布与标准正态分布的图像 subplot(2,1,1> ezplot('1/sqrt(2*pi>*exp(-1/2*x^2>',[-6,6]> title('标准正态分布概率密度曲线图'> subplot(2,1,2> ezplot('gamma((10+1>/2>/(sqrt(10*pi>*gamma(10/2>>*(1+x^2/10>^(-(10+1>/2>',[-6,6]>。b5E2RGbCAP title('t(10>分布概率密度曲线图'> 结果:

数学实验四(概率论)_6

数学实验四(概率论) 一.用MATLAB 计算随机变量的分布 1.用MA TLAB 计算二项分布 当随变量(),X B n p 时,在MATLAB 中用命令函数 (,,)Px binopdf X n p = 计算某事件发生的概率为p 的n 重贝努利试验中,该事件发生的次数为X 的概率。 例1 在一级品率为0.2的大批产品中,随机地抽取20个产品,求其中有2个一级品的概率。 解 在MATLAB 中,输入 >>clear >> Px=binopdf(2,20,0.2) Px = 0.1369 即所求概率为0.1369。 2.用MA TLAB 计算泊松分布 当随变量()X P λ 时,在MATLAB 中用命令函数 (,)P poisspdf x lambda = 计算服从参数为lambda 的泊松分布的随机变量取值x 的概率。用命令函数 (,)P poisscdf x lambda = 计算服从参数为lambda 的泊松分布的随机变量在[]0,x 取值的概率。 例2 用MATLAB 计算:保险公司售出某种寿险保单2500份.已知此项寿险每单需交保费120元,当被保人一年内死亡时,其家属可以从保险公司获得2万元的赔偿(即保额为2万元).若此类被保人一年内死亡的概率0.002,试求: (1)保险公司的此项寿险亏损的概率; (2)保险公司从此项寿险获利不少于10万元的概率; (3)获利不少于20万元的概率. 利用泊松分布计算. 25000.0025np λ==?= (1) P(保险公司亏本)= ()()15 250025000(3020)1(15)10.0020.998k k k k P X P X C -=-<=-≤=- ?∑ =15 5 051! k k e k -=-∑ 在MATLAB 中,输入 >> clear >> P1=poisscdf(15,5) P1 = 0. 9999 即 15 5 05! k k e k -=∑= P1 =0.9999 故 P(保险公司亏本)=1-0.9999=0.0001

东南大学数学实验报告(1)

高等数学数学实验报告实验人员:院(系) 土木工程学院学号05A11210 姓名李贺__ 实验地点:计算机中心机房 实验一空间曲线与曲面的绘制 一、实验题目:(实验习题1-2) 利用参数方程作图,做出由下列曲面所围成的立体图形: 2 2 2 2 ⑴ Z 1 X y,x y X 及xOy平面; ⑵ z xy,x y 1 0 及z 0. 二、实验目的和意义 1、利用数学软件Mathematica绘制三维图形来观察空间曲线和空间曲面图形的特点,以加 强几何的直观性。 2、学会用Mathematica绘制空间立体图形。 三、程序设计 空间曲面的绘制 x x(u, V) y y(u,v),u [u min , max ],V [V min , V max ] 作参数方程z z(u,v)所确定的曲面图形的Mathematica命令

为: ParametricPlot3D[{x[u,v],y[u,v],z[u,v]},{u,umi n,umax}. {v,vmi n,vmax}, 选项] ⑵ t2 = ParametricPlotJD [{u f 1 v}, [u^ ?0?§尸1}^ (v, 0F 1}, HxegLabel {"x" 11 y" J1 z" }. PlotPolnts t 5B, Dlspla^unction -> Identity」: t3 = ParametricPlotSD[{u f 0}* (u, -U.J5』1}^ {v z-0.5, 1} f AxesLabel {"x" 11y" 11 z" PlotPoints 50, Display1 unction — Identity]: Slinw[tl z t2, t3 f DisplayFunction -> SDlsplajfunction] 四、程序运行结果 ⑴ (2) 五、结果的讨论和分析 1、通过参数方程的方法做出的图形,可以比较完整的显示出空间中的曲面和立体图形。 2、可以通过mathematica软件作出多重积分的积分区域,使积分能够较直观的被观察。

重庆大学数学实验报告七

开课学院、实验室:数统学院DS1421实验时间:2013年03月17日

由于matlab中小数只能是四位,所以我在编程的过程中将距离扩大了1000倍,但是并不会影响我们所求得的结果。 运行程序之后我们得到的结果为: 我们可以得到当金星与地球的距离(米)的对数值为9.9351799时,只一天恰好是25号。 8.编写的matlab程序如下: x=0:400:2800; y=0:400:2400; z=[1180 1320 1450 1420 1400 1300 700 900 1230 1390 1500 1500 1400 900 1100 1060 1270 1500 1200 1100 1350 1450 1200 1150 1370 1500 1200 1100 1550 1600 1550 1380 1460 1500 1550 1600 1550 1600 1600 1600 1450 1480 1500 1550 1510 1430 1300 1200 1430 1450 1470 1320 1280 1200 1080 940]; [xi,yi]=meshgrid(0:5:2800,0:5:2400); zi=interp2(x,y,z,xi,yi,'cubic'); mesh(xi,yi,zi); xlabel('x'),ylabel('y'),zlabel('高程'); title('某山区地貌图'); figure(2); contour(xi,yi,zi,30); 运行程序我们得到的结果如下所示: 山区的地貌图如下所示:

等高线图如下所示: 三、附录(程序等) 6. y=18:2:30;

数学实验报告反思与总结

数学实验报告反思与总结 教学情境,是学生参与学习的具体的现实环境。知识具体情境性,是在情境中通过活动而产生的。生动有趣的教学情境,是激励学生主动参与学习的重要保证;是教学过程中的一个重要环节。一个好的教学情境可以沟通教师与学生的心灵,充分调动学生的既有经验,使之在兴趣的驱动下,主动参与到学习活动中去。那么在数学课堂教学中,创设一个优质的情境是上好一堂课的重要前提。 一、创设实际生活情境,激发学生学习兴趣 数学来源于生活,生活中又充满数学。著名数学家华罗庚说过:"人们对数学早就产生了枯燥乏味、神秘、难懂的印象,原因之一便是脱离了实际。"因此,教师要善于从学生熟悉的实际生活中创设教学情境,让数学走进生活,让学生在生活中看到数学,接触数学,激发学生学习数学的兴趣。如:在教学《分类》时,我首先让学生拿出课前已准备的自己最喜爱的东西[玩具(汽车、火车、坦克、手枪……),图片(奥特曼、机器人、孙悟空、哪吒……),水果(苹果、梨子、香蕉、桔子……)],提问:"同学们都带来了这么多好玩、好看、好吃的东西,应该怎样分类摆放呢?"学生兴趣盎然,各抒己见。生1:把这些东西都放在一起。生2:摆整齐。生3:把好玩的放在一起,好看的放在一起,好吃

的放在一起。生4:把同样的东西放在一起。教师抓住这个有利时机导入课题,探求新知。然后通过小组合作把学生带来的东西进行分类,并说明分类理由,总结分类的方法。各小组操作完后,小组代表汇报结果,生1:我们组整理玩具有:汽车、火车、手枪……生2:我们组整理图片有:奥特曼、机器人、哪吒……生3:我们组整理水果有:苹果、梨子、香蕉……(学生回答分类理由和方法时,教师适时引导,及时地给予肯定和评价。)师:各小组再按不同标准把东西分类细化。各小组操作完后,小组代表汇报结果,生1:我们把汽车放一起,把火车放一起……生2:我们把奥特曼放一起,把机器人放一起……生3:我们把梨子放一起,把苹果放一起…… 这样将知识与实际生活密切联系起来,巧妙地创设教学情境,激发了学生的学习兴趣和求知欲望,放飞了学生的思维,学生把自己好玩、好看、好吃的东西通过动手实践、自主探索、合作交流、体验,参与知识的形成过程和发展过程,理解掌握了分类的思想方法,获取了学习数学的经验,成为数学学习活动中的探索者、发现者、创造者,同时也提高了学生的观察能力,判断能力和语言表达能力。 二、创设质疑情境,引发自主探究 创设质疑情境,就是在教师讲授内容和学生求知心理之间搭建一座"桥梁",将学生引入一种与问题有关的情境中,

关于大学数学实验的心得体会

关于大学数学实验的心得体会数学,在整个人类生命进程中至关重要,从小学到中学,再到大学,乃至更高层次的科学研究都离不开数学,随着时代的发展,人们越来越重视数学知识的应用,对数学课程提出了更高层次的要求,于是便诞生了数学实验。 学期最初,大学数学实验对于我们来说既熟悉又陌生,在我们的记忆中,我们做过物理实验、化学实验、生物实验,故然我们以为数学实验与它们一样,当我们在网上搜索有关数学实验的信息时,我们才知道,大学数学实验作为一门新兴的数学课程在近十年来取得了迅速的发展。数学实验以计算机技术和数学软件为载体,将数学建模的思想和方法融入其中,现在已经成为一种潮流。 当我们怀着好奇的心情走进屈静国老师的数学实验课堂时,我们才渐渐懂得,数学实验是一门有关计算机软件的课程,就像c语言一样,需要编辑运行程序,从而进行数学运算,它不需要自己来运算,就像计算器一样,只要我们自己记下重要程序语句,输入运行程序,便可得到运行结果,大大降低了我们的运算量,给我们生活带来许多便捷,在大一时,我学过c语言,由于这样的基础,让我能够更快的学会并应用此软件。 时间飞逝,转眼间,我们就要结课了,这学期我们学习了mathematics的基础,微积分实验,线性代数实验,概率

论与数理统计实验,数值计算方法及实验。通过这学期的学习,我也积累了些自己的学习方法和心得。首先,我们要在平时上课牢记那些mathematics语言和公式,那些东西就想单词和公式一样,只需要背诵;然后,我们要看几遍书,并多看一下例题;最后,我们要多应用mathematics软件去练习。正所谓熟能生巧,我坚信,只要我们能够做到这三步,我们就能很好的掌握这门课程。 通过学习使用数学软件,数学实验建模,使我们能够从实际问题出发,认真分析研究,建立简单数学模型,然后借助先进的计算机技术,最终找出解决实际问题的一种或多种方案,从而提高了我们的数学思维能力,为我们参加数学竞赛和数学建模打下了坚实的基础,同时也为我们进一步深造和参加工作打下一定的实践基础!

概率统计数学实验一

概率统计数学实验一 实验内容:随机模拟 实验目的:掌握随机模拟的思想和基本方法,能利用C语言,Java,matlab或其它数学软件编程解决简单的实际问题。 [练习1]模拟德.梅尔问题: (1)一枚骰子掷4次,至少出现一个6点的概率是多少? (2)两枚骰子掷24次,至少出现一对6点的概率是多少? [练习2] 模拟生日问题:在一个有n个人的集体,至少有两个人生日相同的概率是多少?(n=20,25,30,40,50) [练习3] 一个有奖竞猜的游戏:假若有三扇可供选择的门,其中一扇门后面放有一辆豪华轿车,其它两扇门后面是空的,主持人首先让你随意挑选一扇门,但在你选定后并不急于打开,而是将未选中的两扇门中的一扇空门打开,然后问你,为了有更大的机会选中轿车,你是否会重新选择另一扇门? 请用模拟的方法模拟如何选择得到轿车的可能性更大一些,并分析你的模拟结果。 [练习4] 某报童以每份0.3元的价格买进报纸,以0.5元的价格出售. 根据长期统计,报纸每天的销售量及百分率为 销售量200 210 220 230 240 250 百分率0.10 0.20 0.40 0.15 0.10 0.05 已知当天销售不出去的报纸,将以每份0.2元的价格退还报社.试用模拟方法确定报童每天买进报纸数量,使报童的平均总收入为最大? [练习5] 设某仓库前有一卸货场,货车一般是夜间到达,白天卸货。每天只能

卸货2车,若一天内到达数超过2车,那么就推迟到次日卸货。根据表3-1所示的经验货车到达数的概率分布(相对频率)平均为1.5车,求每天推迟卸货的平均车数。 到达车 0 1 2 3 4 5 6 数 概率0.23 0.30 0.30 0.10 0.05 0.02 0.00 这是一个单服务台的排队系统, 属于常见的随机问题,但由于其分布是一般分布,无法利用服从特定分布的排队系统理论求解,请用随机模拟的方法解决。[练习6]某设备上安装有四只型号规格完全相同的电子管,已知电子管寿命为1000--2000小时之间的均匀分布。当电子管损坏时有两种维修方案,一是每次更换损坏的那一只;二是当其中一只损坏时四只同时更换。已知更换时间为换一只时需1小时,4只同时换为2小时。更换时机器因停止运转每小时的损失为20元,又每只电子管价格10元,试用模拟方法决定哪一个方案经济合理?

数学实验综合实验报告

一、实验目的: 1、初步认识迭代,体会迭代思想的重要性。 2、通过在mathematica 环境下编写程序,利用迭代的方法求解方程的根、线性方程组的解、非线性方程组的解。 3、了解分形的的基本特性及利用mathematica 编程生成分形图形的基本方法, 在欣赏由mathematica 生成的美丽的分形图案的同时对分形几何这门学科有一个直观的了解。从哲理的高度理解这门学科诞生的必然性,激发读者探寻科学真理的兴趣。 4、从一个简单的二次函数的迭代出发,利用mathematica 认识混沌现象及其所 蕴涵的规律。 5、.进一步熟悉Mathematic 软件的使用,复习总结Mathematic 在数学作图中的应用,为便于研究数学图像问题提供方便,使我们从一个新的视角去理解数学问题以及问题的实际意义。 6、在学习和运用迭代法求解过程中,体会各种迭代方法在解决问题的收敛速度上的异同点。 二、实验的环境: 学校机房,mathematica4环境 三、实验的基本理论和方法: 1、迭代(一)—方程求解 函数的迭代法思想: 给定实数域上光滑的实值函数)(x f 以及初值0x 定义数列 1()n n x f x +=, ,3,2,1,0=n , (1) n x , ,3,2,1,0=n ,称为)(x f 的一个迭代序列。 (1)方程求根 给定迭代函数)(x f 以及初值0x 利用(1)迭代得到数列n x , ,3,2,1,0=n .如果数列收敛到某个*x ,则有 )(**x f x =. (2)

即*x 是方程)(x f x =的解。由此启发我们用如下的方法求方程0)(=x g 的近似解。 将方程0)(=x g 改写为等价的方程 )(x f x =, (3) 然后选取一初值利用(1)做迭代。迭代数列n x 收敛的极限就是方程0)(=x g 的解。 为了使得迭代序列收敛并尽快收敛到方程0)(=x g 的某一解的条件是迭代函数)(x f 在解的附近的导数将的绝对值尽量小,因此迭代方程修订成 x x f x h x )1()()(λλ-+== (4) 选取λ使得|)(|x h '在解的附近尽量小. 为此, 我们可以令 ,01)()(=-+'='λλx f x h 得 ) (11 x f '-= λ. 于是 1 )()()(-'-- =x f x x f x x h . 特别地,如果取x x g x f +=)()(, 则可得到迭代公式 .,1,0,) () (1 ='- =+n x g x g x x n n n n (5) (2)线性方程组的数值解的迭代求解理论与矩阵理论 给定一个n 元线性方程组 ??? ??=++=++, ,1 111111n n nn n n n b x a x a b x a x a (6) 或写成矩阵的形式

概率论和数理统计知识点总结(超详细版)

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

关于大学数学实验的心得体会

关于大学数学实验的心得体会 数学,在整个人类生命进程中至关重要,从小学到中学,再到 大学,乃至更高层次的科学研究都离不开数学,随着时代的发展,人 们越来越重视数学知识的应用,对数学课程提出了更高层次的要求, 于是便诞生了数学实验。 学期最初,大学数学实验对于我们来说既熟悉又陌生,在我们的记忆中,我们做过物理实验、化学实验、生物实验,故然我们以 为数学实验与它们一样,当我们在网上搜索有关数学实验的信息时, 我们才知道,大学数学实验作为一门新兴的数学课程在近十年来取得 了迅速的发展。数学实验以计算机技术和数学软件为载体,将数学建模的思想和方法融入其中,现在已经成为一种潮流。 当我们怀着好奇的心情走进屈静国老师的数学实验课堂时, 我们才渐渐懂得,数学实验是一门有关计算机软件的课程,就像c语言一样,需要编辑运行程序,从而进行数学运算,它不需要自己来运算,就像计算器一样,只要我们自己记下重要程序语句,输入运行程序,便可得到运行结果,大大降低了我们的运算量,给我们生活带来 许多便捷,在大一时,我学过c语言,由于这样的基础,让我能够更快的学会并应用此软件。 时间飞逝,转眼间,我们就要结课了,这学期我们学习了mathematics的基础,微积分实验,线性代数实验,概率论与数理统 计实验,数值计算方法及实验。通过这学期的学习,我也积累了些自

己的学习方法和心得。首先,我们要在平时上课牢记那些mathematics 语言和公式,那些东西就想单词和公式一样,只需要背诵;然后,我们要看几遍书,并多看一下例题;最后,我们要多应用mathematics 软件去练习。正所谓熟能生巧,我坚信,只要我们能够做到这三步, 我们就能很好的掌握这门课程。 通过学习使用数学软件,数学实验建模,使我们能够从实际问题出发,认真分析研究,建立简单数学模型,然后借助先进的计算机技术,最终找出解决实际问题的一种或多种方案,从而提高了我们的数学思维能力,为我们参加数学竞赛和数学建模打下了坚实的基 础,同时也为我们进一步深造和参加工作打下一定的实践基础! [关于大学数学实验的心得体会]

哈工大数学实验实验报告

实验一 2(1)(a) 程序语句: a=[-3 5 0 8;1 -8 2 -1;0 -5 9 3;-7 0 -4 5]; b=[0;2;-1;6]; inv(a)*b (b) 程序语句: a=[-3 5 0 8;1 -8 2 -1;0 -5 9 3;-7 0 -4 5]; b=[0;2;-1;6]; a\b (2)

4个矩阵的生成语句: e=eye(3,3); r=rand(3,2); o=zeros(2,3); s=diag([1,2]);%此为一个任取的2X2 矩阵 矩阵a 的生成语句: a=[e r;o s] 验证语句: a^2 b=[e r+r*s; o s^2]

(3)(a) 生成多项式的语句:poly ([2,-3,1+2i,1-2i,0,-6]) (b) 计算x=0.8,-x=-1.2 之值的指令与结果: 指令:polyval([1,5,-9,-1,72,-180,0],0.8) 指令:polyval([1,5,-9,-1,72,-180,0],-1.2)

(4) 求a的指令与结果:指令:a=compan([1,0,-6,3,-8]) 求a的特征值的指令与结果:指令:eig(a) roots(p)的指令与结果为: 指令:roots([1,0,-6,3,-8])

结论:利用友元阵函数a=company(p) 和eig(a) 可以与roots(p)有相同的作用,结果相同。 (5) 作图指令: x=0:0.01:1.5; y=[x.^2;x.^3;x.^4;x.^5]; plot (x,y) 作图指令: x=0:0.01:10; y1=x.^2; y2=x.^3; y3=x.^4; y4=x.^5; subplot(2,2,1),plot (x,y1),title('x^2') subplot(2,2,2),plot (x,y2),title('x^3') subplot(2,2,3),plot (x,y3),title('x^4') subplot(2,2,4),plot (x,y4),title('x^5')

相关文档
相关文档 最新文档