文档库 最新最全的文档下载
当前位置:文档库 › 浅谈造气工艺

浅谈造气工艺

浅谈造气工艺
浅谈造气工艺

毕业论文

论文题目浅谈造气工艺

学院云锡职业技术学院专业应用化工技术

年级 11级应用化工技术姓名谷智敏

指导教师李德

2013年9月10日

毕业设计(论文)

任务书

题目浅谈造气工艺

专业应用化工技术班级 11级应用化工技术

学生姓名谷智敏学号 11121401020 指导教师李德学号 11121401020

摘要

造气主要任务是以无烟块煤、小籽煤、煤棒或煤球为原料,采用固定床连续气化法,在高温条件下,交替或同时通空气和蒸汽进行气化反应,制得合格、充足的半水煤气供后工段使用。

关键词:造气,工艺流程,工艺指标

目录

前言 (1)

1富富氧造气的性质与用途 (1)

1.1富富氧造气的物理性质 (1)

1.2富氧造气的化学性质 (1)

1.3富氧造气的用途 (1)

1.4富氧造气的生产方法 (1)

2 工艺流程 (2)

2.1气体流程 (2)

2.2煤气系统工艺流程图 (2)

3富氧制气操作规程 (3)

3.1工艺流程 (3)

3.2工艺指标 (3)

3.3富氧炉正常操作要点: (4)

4常见事故判断与处理 (5)

4.1富氧炉上气道温度过高 (5)

4.2灰仓温度超指标 (5)

4.3过氧 (6)

4.4炉内阻力增大 (6)

4.5炉下压力过大 (6)

4.6炉下压力过低 (6)

4.7安全注意事项: (7)

5 正常操作要点 (7)

5.1工艺调节、操作原则 (7)

5.2工艺调节操作要点 (7)

总结 (12)

参考文献 (12)

致谢 (13)

前言

富氧造气主要是为合成氨做准备,目前,中国是世界上最大的化肥生产和消费大国,合成氨年生产能力已达4222万吨。但合成氨一直是化工产业的耗能大户。6月7日~8日,全国合成氨节能改造项目技术交流会在北京召开,明确了“十一五”期间合成氨节能工程在降耗、环保等方面要达到的具体目标。

大型合成氨装置采用先进节能工艺、新型催化剂和高效节能设备,提高转化效率,加强余热回收利用;以天然气为原料的合成氨推广一段炉烟气余热回收技术,并改造蒸汽系统;以石油为原料的合成氨加快以洁净煤或天然气替代原料油改造;中小型合成氨采用节能设备和变压吸附回收技术,降低能源消耗。煤造气采用水煤浆或先进粉煤气化技术替代传统的固定床造气技术。到2010年,合成氨行业节能目标是:单位能耗由目前的1700千克标煤/吨下降到1570千克标煤/吨;能源利用效率由目前的42.0%提高到45.5%;实现节能570万~585万吨标煤,减少排放二氧化碳1377万~1413万吨。

1富富氧造气的性质与用途

1) 1.1富富氧造气的物理性质

以含氧量大于21%的空气和水蒸气为气化剂在高温下进行煤)连续气化的方法。富氧空气可由空气分离或变压吸附方法制得。富氧气化可在固定床炉中也可在流化床炉中进行。采用含氧量50%左右的富氧空气可制得符合合成氨原料气要求的合成气。

1) 1.2富氧造气的化学性质

以无烟煤块、小籽煤、煤棒为原料,采用间歇式固定层气化法,在高温条件下,交替同空气和蒸汽进行气化反应,制得合格、充足的半水煤气。

1) 1.3富氧造气的用途

富氧造气的气体主要是半水煤气,是气体燃料的一种。主要成分是氢和一氧化碳。由水蒸气和赤热的无烟煤或焦炭作用而得。工业上大多用蒸气和空气轮流吹风的间歇法,或用蒸气和氧一起吹风的连续法。热值约为10500千焦/标准立方米。此外,尚有用蒸气和空气一起吹风所得的“半水煤气”。可作为燃料,或用作合成氨、合成石油、有机合成、氢气制造等的原料。

1) 1.4富氧造气的生产方法

目前的中氮厂大多以焦炭或山西无烟煤(白煤)为原料,采用间歇法工艺技术,生产半水煤气加工合成氨。

2 工艺流程

1) 2.1 气体流程

向造气炉内交替通入空气和蒸汽,与炉内灼热的炭进行气化反应。吹风阶段生成的吹风气根据要求送三气岗位回收热量或直接由烟囱放空,并根据需要回收一小部分进入气柜,用以调节循环氢。从造气炉出来的半水煤气经显热回收、洗气塔冷却后,在气柜中混合,然后经静电除尘去压缩工段。

上述制气过程在微机集成油压系统控制下,往复循环进行,每一个循环一般分六个阶段,其流程如下:

(1)吹风阶段

空气由鼓风机来→吹风阀→自炉底鼓风箱入炉→旋风除尘器→三气阀(或烟道阀)→三气岗位(或烟囱放空)

(2)回收阶段

空气由鼓风机来→吹风阀→自炉底鼓风箱入炉→旋风除尘器→上行煤气阀→煤气总阀入煤气总管→显热回收→洗气塔→气柜→静电除焦→压缩

(3)上吹(加氮)制气阶段

蒸汽(加氮空气)由蒸汽总管来→上吹蒸汽阀→自炉底入造气炉→旋风除尘器→上行煤气阀→煤气总阀入煤气总管→显热回收→洗气塔→气柜→静电除焦→压缩

(4)下吹制气阶段

蒸汽由蒸汽总管来→下吹蒸汽阀→自炉顶入造气炉→下行煤气阀→煤气总阀入煤气总管→显热回收→洗气塔→气柜→静电除焦→压缩

(5)二次上吹制气阶段

蒸汽由蒸汽总管来→上吹蒸汽阀→自炉底入造气炉→旋风除尘器→上行煤气阀→煤气总阀入煤气总管→显热回收→洗气塔→气柜→静电除焦→压缩

(6)空气吹净阶段

空气由鼓风机来→吹风阀→自炉底鼓风箱入炉→旋风除尘器→上行煤气阀→煤气总阀入煤气总管→显热回收→洗气塔→气柜→静电除焦→压缩

1) 2.2煤气系统工艺流程图

单台造气炉工艺流程图

3富氧制气操作规程

1) 3.1 工艺流程

富氧制气过程是指将氧压缩机来的纯氧减压后与空气按照一定比例混合,然后与蒸汽混合从炉底进入与煤发生气化反应的过程。

富氧空气与蒸汽混合→自炉底入造气炉→旋风除尘器→上行煤气阀→煤气总阀入煤气总管→显热回收→洗气塔→气柜

主要化学反应: C+O

2=CO

2

+409.1kJ

2C+O

2

=2CO+246.6 kJ

2CO+O

2=2CO

2

+573.2 kJ

C+H

2O=CO+H

2

-122.7 kJ

C+2H

2O=CO

2

+2H

2

-80.4 kJ

CO

2

+C=2CO-165.0 kJ 1) 3.2 工艺指标

(1)纯氧指标

压力:减压前4.0MPa,减压后0.025MPa

流量:正常使用时5000m3/h。

(2)富氧指标

压力:混合后富氧空气0.025MPa。

富氧浓度:<50~60%

正常流量:9000~10000 m3/h。

(3)混合气化剂指标

入炉压力:0.025 MPa

气汽比:富氧/蒸汽=1/1~1.2

(4)炉内反应指标

加炭周期:3min/次,后根据实际反应情况进行调整。碳层控制高度:与水夹套上沿平齐。

炉内温度:上行煤气温度≦800℃,灰仓温度≦120℃

出口煤气成分:CO

2:12~16%,O

2

≦0.4%;CO+H

2

>70%;其中CO≦45%。

1) 3.3富氧炉正常操作要点:

3.3.1 间歇炉转富氧炉

主操工在微机上对该炉先进行间歇炉停炉操作,副操工对各阀门开启状况进行确认后,主操工再点击“转换”按钮(未停炉时对其进行锁定保护)进入富氧炉操作界面,手动点击“停炉/运行”按钮(阀门状态为:上行煤气阀-开、煤气总阀-开、蒸总-开、上吹蒸汽阀-开、吹风,上加N

2

阀-关、下吹蒸汽阀-关、下行煤气阀-关、烟道阀-关),同时根据氧表显示调节富氧空气中氧含量到50-60%,副操工打开二楼平台处该炉富氧手动闸阀,10s后富氧液压闸阀开启,主操工开启该炉富氧自调阀,并根据炉温逐步增加富氧入炉流量至正常工艺指标,并根据炉况调节炉条机转速。

3.3.2 富氧炉转间歇炉

主操工在微机上关闭该炉富氧自调阀,停炉条机,再点击“运行/停炉”按钮(此时,富氧液压闸阀、煤气总阀关闭,烟道阀、蒸总和上吹蒸汽阀开启),同时,副操工关闭二楼平台处该炉富氧手动闸阀,10s后蒸总阀关闭,“转换”按钮解除锁定保护,点击“转换”按钮进入间歇炉操作界面,同时,副操对各阀门开启状况进行确认后,按照原间歇炉操作进行即可。

3.3. 3开炉

主操工观察确认富氧空气中氧含量是否达标后,手动点击“停炉/运行”按钮(此时煤气总阀、蒸总阀开启),10s后富氧液压闸阀开启,主操工再开启该炉富氧自调阀,并根据炉温逐步增加富氧入炉流量至正常工艺指标,并根据炉况调节炉条机转速。

3.3.4停炉

主操工在微机上关闭该炉富氧自调阀,停炉条机,再点击“运行/停炉”按钮

(此时,富氧液压闸阀、煤气总阀关闭,烟道阀、蒸总阀开启),10s后蒸总阀关闭,“转换”按钮解除锁定保护,此时打出联系灯(铃)。

3.3.5下灰

副操得到停炉下灰信号,检查确认富氧阀、煤气总阀等落到位处安全停炉状态后,向一楼下灰作业人员发出下灰指令。

4常见事故判断与处理

1) 4.1富氧炉上气道温度过高

原因:

1炉下结块

2灰渣层过厚

3富氧浓度高或富氧流量过大

4炉内炭层产生风洞

5蒸汽用量过小

6炭层过低

处理:

(4)加快炉条机转速,适当加大蒸汽用量,停炉人工扒块,减负荷操作

(5)加快炉条机转速,适当减少负荷

(6)调节富氧浓度和富氧流量在指标范围内

(7)处理火层

(8)调节蒸汽用量

(9)提高炭层

1) 4.2灰仓温度超指标

原因:

1灰渣层过薄

2炉下结大块

3富氧浓度突然增高

4火层偏移

5有风洞漏炭

6气汽比偏低

处理:

2减慢炉条机转速,适当增加负荷

3加快炉条机转速,适当加大蒸汽用量,并打开灰仓蒸汽吹扫手动阀;停炉人工

扒块,减负荷操作

4调节富氧浓度和富氧流量在指标范围内5注意操作,稳定火层

6处理火层

7调节气汽比

1) 4.3过氧

原因:

1炉温过低或火层上移

2炭层过低

3火层偏、火层薄

4炉内有大块产生风洞

处理:

2提高炉温,火层拉低

3提高炭层

4注意操作,稳定火层

5炉内有大块时,扒出大块处理

1) 4.4炉内阻力增大

原因:

1炭层增高

2负荷过大

3炉内结块

4原料过碎或含粉太多

处理:

1降低炭层

2适当减小负荷

3扒出大块

4提高原料质量

1) 4.5炉下压力过大

原因:

1炉内炭层阻力增大

2带出物多,中心管堵

处理:根据情况酌情处理

1) 4.6炉下压力过低

原因:

(1)炉底煤气总冲破

(2)汽化剂混合罐防爆板鼓破,大量漏气

(3)断富氧或蒸汽

(4)烟囱阀未关或未关严

处理:

2停炉加水,使煤气总有水溢流

3更换防爆板

4停车处理

5检修烟囱阀使其正常

1) 4.7 安全注意事项:

4富氧与间歇制气相互切换前必须检查各阀门开、关是否正常,且切换后先进行10s上吹流程。

5开富氧炉时,先通蒸汽,再通入富氧;停富氧炉时,先断开氧气,再断开蒸汽。6炉内进行检修前,必须插富氧空气管道盲板。

5正常操作要点

1) 5.1工艺调节、操作原则

根据原料煤的灰熔点,尽可能提高气化层温度,以降低半水煤气中二氧化碳含量,提高发气量。

·根据煤质、吹风强度等变化情况,及时调整循环时间、吹风百分比及二楼手轮门(车间工艺人员操作);

·按时加煤、出渣。根据炉内炭层高度、分布及灰渣情况,及时调节炉条机转速,使气化层厚度及所处位置相对稳定,保证炉况良好,控制好炉上、炉下温度,使其符合工艺指标;

·根据蒸汽分解情况,调节好蒸汽压力和用量,同时注意各相关锅炉液位,防止蒸汽带水,并注意吹风排队,防止重风;

·严格把握入炉煤棒、小籽煤的质量,发现问题及时与原料岗位联系。

1) 5.2 工艺调节操作要点

5.2.1 造气炉合理工艺指标的制定

煤气发生炉要想达到优质、高产、安全、低耗,除了受设备状况和原料性质的影响外,如何制定出合理的工艺指标是直接影响造气炉工况好坏的一项很重要的工作。

主要工艺指标的制定依据:

炉渣含碳量:≤20%

半水煤气成分: O

2<0.5%(CO+ H

2

≥65%)

循环时间与百分比的分配

-循环时间长短:目前我公司造气炉所采用的时间为2.5分钟/循环。循环时间长短的制定,主要依据原料的化学活性,活性差的原料,循环时间宜短,反之则宜长。时间过长或过短均不利于生产,过长气化层温度和产气量以及气体成分波动大;过短虽能获得气化层温度稳定、产气量佳的效果,但是自动阀门动作所需要的时间占去太多,相应地降低了有效制气时间。

-循环百分比的分配:吹风和制气各个阶段的时间分配,总的原则是使吹风后燃料层中具有理想的较高温度,且吹风阶段的时间要短,以增加制气阶段的时间,从而获得高产、优质的煤气。

当吹风量确定后,吹风时间长短的选择,主要依据热量平衡。在实现热量平衡时,则吹风时间越短越好。一次上吹和下吹制气时间分配,主要决定于能够使上行温度和气化层温度(火层)维持正常稳定为原则。二次上吹和空气吹净无较高要求,只要能达到安全生产和回收余气的目的就可以。

(1)温度

-上行温度:原料化学活性和灰熔点是制定上行温度的重要依据。煤球和煤棒的冷、热强度差,不宜高,一般在300~400℃。

-下行温度:下行温度的制定,主要防止炉下温度过高而烧坏设备,其温度高低也决定于气化层上下移动的变化。一般下行温度在200~300℃为宜。

-气化层温度(火层):在实际生产中气化层温度目前还无法用仪表直接测量出,只能通过炉上、下温度和用探测炉内火层情况来推测。根据不同的炉型,有两种方法:一种使用钢钎垂直插入炉内,钢钎在炉内烧2~3分钟后拔出,烧红部分在200~300毫米为宜,另一种是钢钎(俗称火棍)水平方向查入炉内2~3分钟,烧红部位在200~400毫米为宜。在制定工艺指标时切忌盲目追求大火层,虽然火层大,气化层温度高,产气量高,气体成分好,但是火层大易造成炉内结大块,烧坏炉篦和灰盘,给生产带来更大损害。

(2)流量

-空气流量:根据不同的炉型和燃料性质来选择造气炉的理想吹风强度,应在不破坏固定床层的条件下,送入的空气量达到最大值,使炭的燃烧达到最佳状态。从节能角度考虑,吹风气中CO含量要求越低越好,可减少能量损失。在燃烧较好的情况下,吹风气中CO和O

2

含量应在1.0%以下较为合理。

-入炉蒸汽流量:入炉蒸汽流量适中与否是决定造气炉气化效率高低的一项重要因素。入炉蒸汽量过少,造成炉内气化层温度过高,结疤结块,严重影响煤气的产量和质量;入炉蒸汽量过多,蒸汽分解率下降,气化层温度下降过快,燃料

气化不完全,炉渣含炭量过高,也同样影响到煤气的产量和质量。

-半水煤气中CO

2含量:半水煤气中CO

2

含量指标,是诊断造气炉气化情况正常

与否的脉搏,也是判断入炉蒸汽用量是否恰当的一个重要指标。控制好上、下吹

半水煤气中CO

2

指标,是调节蒸汽流量的主要依据。

(3)灰盘转速

灰盘转速指标的制定,主要决定于燃料本身灰份含量的多少、造气炉负荷的高低以及灰盘本身转速的快慢。平时的调节主要依造气炉火层和炭层下降情况而加以调节。

(4)炭层高度

合理的炭层指标,大都是通过生产实践不断摸索出来的。要根据炉型和所使用原料性质及系统阻力而定。一般认为,燃料层的阻力不宜太大,在炉内风量达到最大时,以不破坏气化层为宜,我公司一般控制在见夹套为宜。

5.2.2 造气炉理想生产负荷的选择

煤气发生炉的负荷,实质上是指吹风强度,理想的吹风强度是在炉内燃料层不被吹翻原则下,尽量加大吹风量(燃料层的总高度也要在理想高度范围内,不宜太高或太低)。高风量的目的是在较小的吹风百分比的条件下,能保持气化层有较高的温度。

在高风量、高炉温的条件下,气化反应速度快,生成的吹风气能迅速地离开

燃料层表面,炭和氧接触时间短,不利于吹风气中的CO

2

还原成CO,有利于降低能耗。

高负荷生产能使气化层温度迅速上升,可以缩短吹风阶段时间,增加制气时间。另外,由于高负荷条件下气化层温度升高,入炉蒸汽用量也相应地增加,故发气量也大。

需要说明的是,因使用的原料性质不同,其最佳吹风强度也不同,要根据本企业自己实际情况选择造气炉最佳负荷,不可盲目追求造气炉高负荷。值得注意的是,造气炉处于高负荷生产时,许多工艺条件大都处于临界状态,要求高度集中精力操作,一旦疏忽,即会造成气化层情况恶化,出现结疤、结块、风洞等异常情况。

5.2.3 造气炉合理吹风率的调节

吹风率(即单位时间内吹风空气流量)的选择,主要依据燃料的特性及燃料层的控制高度的变化。

粒度比较小或热稳定性比较差的燃料,一般应选择比较低的吹风率,反之,应选择较高的吹风率。当造气炉所用燃料的粒度和品种变更时,吹风率也要及时进行调整。另外,燃料层的控制高度比较高时,其燃料层的阻力也相应增加,会

使吹风率降低,此时如果盲目提高吹风率,容易造成燃料层吹翻。如果保持或提高气化层温度,只宜增加吹风百分比。燃料层的控制高度较低时,一般由于燃料层的阻力相应减少,会使吹风率增高,其燃料层温度会相应增高,可适当提高燃料高度,或适当降低吹风率,否则会使燃料吹翻。

5.2.4 吹风百分比的最佳选择

最佳吹风时间的分配,以使燃料层具有较高温度为主要原则,即利用较短的时间达到最高温度。实现这个目的,决定于空气鼓风机能否提供较高的空气流速和燃料层是否能承受较高的空气流速。

原料煤性质与吹风时间分配随燃料的机械强度、热稳定性及化学活性的不同而有差别。一般而言,上述三种性质较好,燃料层阻力小,有利于提高空气流速,只要用较少的时间就能使燃料层达到高温,反之则相反。

燃料层的阻力,除了受燃料的机械强度和热稳定性的影响外,与燃料层的高度和煤的粒度都有很大的关系。此外,气化剂在燃料层的分布均匀与否与炉篦结构也有关系。

我厂吹风百分比大都在24~26%之间,利用高强度风机后,吹风百分比可下降到20%左右。

5.2.5 造气炉一个工作循环内各阶段产气量的变化

吹风阶段结束后,炉内气化层温度最高,一次上吹制气初期是气化最佳时期,产气量和煤气质量好。随着制气时间的推移和阶段的转化,产气量逐渐下降,气体质量也随之下降,至二次上吹结束前,是一个工作循环中制气最差阶段。

5.2.6 上下吹蒸汽用量不当的危害

上、下吹入炉蒸汽用量不当会影响炉内工况的正常,严重时还会使炉内气化层恶化,甚至于迫使炉子熄火,进入炉内打疤打块。

·上、下吹蒸汽用量同时过大,炉内气化层温度低,产气率低,蒸汽分解率低,灰渣中返炭高。有些企业所谓开太平炉,就是这种状况,不挂壁、不结疤、不结块,但产气量低,而且能耗很高;

·上、下吹蒸汽用量同时都过少,则会出现炉上挂壁结疤,炉下结大块,虽然蒸汽分解率高,但是因炉况恶化无法维持生产,最终只有熄火处理;

·上吹蒸汽用量大于下吹蒸汽用量太多,会出现气化层严重上移,炉上表面因温度过高,而造成结疤挂壁。炉下则出现温度低返炭高,整个气化层上移到炉面气化,无疑气化效率相当低;

·下吹蒸汽用量大于上吹蒸汽用量过多,则会出现气化层严重下移,炉上温度低,炉下温度高,严重时会出现烧坏炉篦和灰盘等设备,此种情况,一般炉篦传动机构因炉下温度高灰盘膨胀无法启动,也就是人们常说的“造气炉变成了炼

铁炉了”。

5.2.7 上下吹蒸汽用量差值的选择

一般来说,下吹蒸汽用量要大于上吹蒸汽用量,因为下吹蒸汽用量大,可使气化层集中在比较理想的位置,不会造成炉上温度偏高而发亮挂壁;上下吹蒸汽用量的差值究竟多大为宜,主要根据造气炉使用原料品种而定,一般烧优质原料的蒸汽差值在1.0~1.5吨/时范围内,如果烧劣质原料其差值就可以小些,可在0~1.0吨/时之间,有时因为所用的原料熔点过低,还会出现上吹蒸汽用量大于下吹蒸汽用量的现象。

5.2.8 制定造气炉上下吹时间和蒸汽用量的依据

一般是根据造气炉所使用的原料性质和以往的实践经验订出百分比和上、下吹蒸汽用量,然后根据分析测定数据加以调整。

·如果造气炉所使用的原料灰熔点低,灰份高,固定碳低,则上吹蒸汽用量适当加大些,上吹制气时间适当加长些,同时灰盘转速适当加快,使气化层稳定在规定的位置上;

·对那些粒度或机械强度差的原料煤,炉内床层阻力大,吹风时空气中的氧与炭的燃烧反应往往集中在炉下部,所以上吹制气时间要长些,上吹蒸汽用量也应放大些,反之则相反;

·在理论上还可通过原料的发热值和吹风时间的长短来决定上、下吹百分比和蒸汽用量之差。一般使上吹时间的蒸汽用量与炭起反应所吸收的热量,基本上等于下吹时间的蒸汽用量与炭起反应所吸收的热量;

·造气炉使用任何不同品种的原料都要通过实践摸索,逐步达到最佳制气条件。通常调节上、下吹百分比和蒸汽用量多少的主要依据是根据单炉上、下吹气体成分中CO

2

含量多少和蒸汽分解率高低来决定的;

·实践证明下吹CO

2<上吹CO

2

1~1.5%为宜,一般而言,蒸汽用量改变0.25吨/

时,相当于改变1%制气百分比,在调节两者之间的分配时,以改变百分比的效果

更好些。造气炉一次产气量增加1500m3/时左右,则需要增加上、下吹蒸汽各0.25吨/时。

5.2.9 正确调节造气炉上下吹入炉蒸汽用量

上、下吹入炉蒸汽用量的多少,是直接影响气化炉炉内工况好坏的重要因素之一。当上、下吹百分比分配比较合理时,一般都采用上、下吹蒸汽来维持造气炉的正常工况,调节上、下吹蒸汽用量的主要依据如下:

·根据炉上、炉下温度高低变化情况进行调节;

·视单炉上、下吹半水煤气成份CO

2

含量高低进行调节,在炉况正常的情况下

CO

2

偏高,则说明蒸汽用量过多,反之则蒸汽用量太少;

·根据炉内出灰渣情况进行调节,排出渣中块度太大且又硬,应适当增加上吹蒸汽用量,如排出渣较碎而且返炭高,则应适当减少上吹蒸汽用量。

5.2.10 炉渣含炭量高的原因

·造气炉操作失控,造成气化层下移或偏移,致使未燃尽的炭进入灰渣区;

·灰盘转速过快;

·蒸汽用量过大;

·造气炉负荷太低,致使气化层温度低;

·气化床被破坏,出现漏炭或炉下有大块;

·原料粒度不均,大小悬殊太大;

·原料含粉量太多,致使床层阻力增加;

·原料中煤矸石过多,影响气化层温度提高;

·灰盘排灰口过高或灰犁过长,易形成漏炭和排渣强度增大;

·炉篦通风不均或通风面积过小,炉篦无破渣力;

·加煤不匀,截面炭层高低悬殊过大,造成床层阻力偏差。

5.2.11 造气炉正常生产时加减负荷

·加负荷的步骤

-炉温维持不变,适当提高炭层(即增加入炉煤量);

-加大吹风量,如果入炉风量到了极限值时,可增加吹风百分比;

-炉温上涨后,适当加大上下吹蒸汽用量。

·减负荷的步骤

-减小吹风量或吹风百分比;

-炉温维持不变,炭层高度适当降低;

-如果炉温开始下降即减少入炉蒸汽用量。

·加减负荷时均不能过猛,要慢慢进行,另外蒸汽用量要及时进行调整;

·加减负荷一段时间之后,要注意及时调整灰盘转速。

总结

从公司富氧气化装置的实际运行情况不难看出,无论是工艺的技术性、经济性,还是装置的操作、维修、环保,富氧气化工艺均不同程度的优于间歇气化工艺,但真正要把气化工艺装置开好、开稳,多产气、产好气,仍须在工艺上不断优化、设备上进一步改进、操作上不断提高,从而使富氧气化工艺在节能降耗、提高合成氨产量等方面发挥更大优势。

参考文献

[1]沈光林. 膜法富氧技术及其在环境保护中的应用研究[J]. 环境保护,1997(9)

[2]付宝东. 膜法富氧技术及其在玻璃炉窖的应用[J]. 天津建设科技,2000(4)

[3]温志宏, 郭汉杰. 加热炉富氧燃烧技术的应用研究[J]. 轧钢,2004(4)

[4]方寿奇. 膜分离富氧技术在燃烧锅炉上的应用[C].全国化工热工设计技术中心站论文集,2008

[5]贺华, 周晓霊. 降低炉上温度,减少潜热损失[J].中氮肥,2006(1)

[6]找绍明. 煤气炉炉条机转速的优化[J].中氮肥,2005(4)

[7]李永恒. 中氮肥煤造气技术改造调查与评述(上)[J];化肥工业;1996年06期

[8]田建安. Φ2610造气炉可行性设计及运行[J];小氮肥;1997年06期

[9]曾湖汉. φ2 754造气炉的综合改造[J] .化肥工业;1998年01期

[10]李永恒. φ2745煤气炉物料性状测定与分析(上)[J]. 化肥设计;1997年06期

致谢

岁月如梭,如歌。转眼间,三年的求学生活即将结束,回收往昔,奋斗和辛劳成为丝丝的回忆,甜美与欢笑也都尘埃落定。值此毕业论文完成之际,我谨向所有关心、爱护、帮助我的人们表示最真挚的感谢与最美好的祝愿。

本论文是在李德老师的悉心指导下完成的。李老师以其渊博的专业知识、严谨的治学态度,精益求精的工作作风,诲人不倦的高尚师德,朴实无华、平易近人的人格魅力对我影响深远。本论文从选题到完成,几易其稿,每一步都是在李老师的指导下完成的,在此我向李德老师表示深切的谢意与祝福!

本论文的完成也离不开其他各位老师、同学和朋友的关心和帮助。感谢他们在本论文开题、初稿、预答辩期间所提出的宝贵意见,还要感谢同门的师兄师妹们,给我以许多鼓励和帮助。回想整个论文的写作过程,虽然不易,却让我除却浮躁,经历了思考和启示,也更加深切地体会了专业知识的精髓和意义,因此倍感珍惜。

求学生涯暂告段落,但求知的道路却永无停滞。三年的大学生活让我得到了很多难能可贵的财富,培养了我为人和做事的一些经验和方法。最后,我还要借此机会向在这三年中给予了我帮助和指导的所有老师表示由衷的谢意,感谢他们三年的辛勤栽培。

生产工艺流程图及说明

(1)电解 本项目电解铝生产采用熔盐电解法:其主要生产设备为预焙阳极电解槽,项目设计采用大面六点进电SY350型预焙阳极电解槽。铝电解生产所需的主要原材料为氧化铝、氟化铝和冰晶石,原料按工艺配料比例加入350KA 预焙阳极电解槽中,通入强大的直流电,在945-955℃温度下,将一定量砂状氧化铝及吸附了电解烟气中氟化物的载氟氧化铝原料溶解于电解质中,通过炭素材料电极导入直流电,使熔融状态的电解质中呈离子状态的冰晶石和氧化铝在两极上发生电化学反应,氧化铝不断分解还原出金属铝——在阴极(电解槽的底部)析出液态的金属铝。 电解槽中发生的电化学反应式如下: 2323497094032CO Al C O Al +?-+℃ ℃直流电 在阴极(电解槽的底部)析出液态的金属铝定期用真空抬包抽出送往铸造车间经混合炉除渣后由铸造机浇铸成铝锭。电解过程中析出的O 2同阳极炭素发生反应生成以CO 2为主的阳极气体,这些阳极气体与氟化盐水解产生的含氟废气、粉尘等含氟烟气经电解槽顶部的密闭集气罩收集后送到以Al 2O 3为吸附剂的干法净化系统处理,净化后烟气排入大气。被消耗的阳极定期进行更换,并将残极运回生产厂家进行回收处置。吸附了含氟气体的截氟氧化铝返回电解槽进行电解。 电解槽是在高温、强磁场条件下连续生产作业,项目设计采用大面六点进电SY350型预焙阳极电解槽,是目前我国较先进的生产设备。电解槽为6点下料,交叉工作,整个工艺过程均自动控制。电解槽阳极作业均由电解多功能机组完成。多功能机组的主要功能为更换阳极、吊运出铝抬包出铝、定期提升阳极母线、打壳加覆盖料等其它作业。 (2)氧化铝及氟化盐贮运供料系统 氧化铝及氟化盐贮运系统的主要任务是贮存由外购到厂的氧化铝和氟化盐 ,并按需要及时将其送到电解车间的电解槽上料箱内。

水平输气干线工艺设计(末端储气)

重庆科技学院 《管道输送工艺》 课程设计报告 学院:_ 石油与天然气工程学院_ 专业班级:油气储运工程 学生姓名:学号: 设计地点(单位)________ 石油科技大楼K704 _____ ___ __设计题目:______ _水平输气干线工艺设计(末端储气)____ _ ___ 完成日期:年月日 指导教师评语: ___________ ___________ _________________ __________________________________________________________________________________ __________________________________________________________________________________ _____________________________________ __________ _ 成绩(五级记分制):______ __________ 指导教师(签字):________ ________

目录 摘要..................................................................... I 1 总论. (1) 1.1 设计依据及原则 (1) 1.1.1设计依据 (1) 1.1.2 设计原则 (1) 1.2 总体技术水平 (1) 2 工程概况 (3) 3 输气管道工艺计算 (4) 3.1 末端管道规格 (4) 3.1.1 天然气相对分子质量 (4) 3.1.2 天然气密度及相对密度 (4) 3.1.3 天然气运动粘度 (4) 3.2 管道内径的计算 (5) 3.3 确定管壁厚度 (5) 3.4 确定管道外径及壁厚 (6) 3.5末段长度和管径的确定原则 (7) 3.6 末段最大储气能力的计算 (8) 4 结论 (10) 参考文献 (11)

天然气造气工艺流程说明

天然气造气工艺流程说明 一、合成氨工序造气流程: 经加压脱硫来的天然气和蒸汽混合分别送进各自的混合气 预热器预热后进入箱式一段转化炉和换热式转化炉进行转 化反应,反应后的气体和甲醇工段送来的驰放气进入二段炉。压缩送来的空气,经过空气预热器预热达到一定温度后进入二段炉,空气中的氧与转化气中的氢燃烧释放热量在二段炉内继续进行甲烷转化(当有甲醇弛放气时,配适量的纯氧)。出二段炉的工艺气体进入换热式转化炉的管间,作为热源供换热式转化炉转化管内天然气的转化,然后管间的二段转化气离开换热式转化炉进入换转炉的混合气预热器,预热进换转炉的混合气,换热后的二段转化气经过废热锅炉进一步回收热量产生蒸汽,气体降至一定温度后进入中温变换炉进行一氧化碳的变换,中温变换炉出来的气体进入甲烷化第二换热器,预热甲烷化入口气,换热后的中温变换气进入中变废锅,气体降至一定温度后进入低温变换炉,进一步将一氧化碳变换为二氧化碳,出低温变换炉一氧化碳达到≤. 0.3%,经低变废锅回收部份热量产蒸汽,回收热量后的低变气进入脱碳系统低变气再沸器预热再生塔底部溶液,最后进入低变冷却系统降温至35℃以下进入压缩工段或碳化工段。脱碳来的净化气或压缩来的碳化气进入甲烷化第一换热器

预热后进入甲烷化第二换热器进一步预热,气体达到一定温度后进入甲烷化炉,残余的一氧化碳和二氧化碳在镍触媒作用下生成甲烷,使CO+CO的含量<10PPm,甲烷化出来的气2体进入甲一换回收部份热量后进入甲烷化第一、第二冷却器,气体温度降至35℃以下送压缩加压,最后送往合成氨工序。 二、甲醇造气流程 经加压脱硫来的天然气和蒸汽混合分别送进各自的混合气 预热器预热后进入箱式一段转化炉和换热式转化炉进行转 化反应,反应后的气体进入二段炉。空分来的氧气经预热后达到一定温度进入二段炉,氧与转化气中的氢燃烧释放热量在二段炉内继续进行甲烷转化。出二段炉的工艺气体进入换热式转化炉的管间,作为热源供换热式转化炉转化管内天然.气的转化,然后管间的二段转化气离开换热式转化炉进入换转炉的混合气预热器,预热进换转炉的混合气,换热后的二段转化气经过废热锅炉进一步回收热量产生蒸汽,气体降至一定温度后根据甲醇合成气体成分情况通过中变近路阀调 整入中温变换炉的气量进行一氧化碳的变换,以便调整气体成分。中温变换炉出来的气体和中变近路转化气进入甲化第二换热器,预热甲醇合成来的弛放气,换热后的中温变换气或转化气进入中变废锅,气体降至一定温度后根据中变气体的成分通过低变近路阀调整入低温变换炉的气量,进一步调整气体成分,低变炉或低变近路来的气体经低变废锅回收部

LNG气化站工艺流程

LNG气化站工艺流程 LNG通过低温汽车槽车运至LNG卫星站,通过卸车台设置的卧式专用卸车增压器对汽车槽车储罐增压,利用压差将LNG送至卫星站低温LNG储罐。工作条件下,储罐增压器将储罐内的LNG增压到0.6MPa。增压后的低温LNG进入空温式气化器,与空气换热后转化为气态天然气并升高温度,出口温度比环境温度低10℃,压力为0.45-0.60 MPa,当空温式气化器出口的天然气温度达不到5℃以上时,通过水浴式加热器升温,最后经调压(调压器出口压力为0.35 MPa)、计量、加臭后进入城市输配管网,送入各类用户。

进入城市管网 储罐增压器 整个工艺流程可分为:槽车卸液流程、气化加热流程(含热水循环流程)、调压、计量加臭流程。 卸液流程:LNG由LNG槽车运来,槽车上有3个接口,分别为液相出液管、气相管、增压液相管,增压液相管接卸车增压器,由卸车增压器使槽车增压,利用压差将LNG送入低温储罐储存。卸车时,为防止LNG储罐内压力升高而影响卸车速度,当槽车中的LNG温度低于储罐中LNG的温度时,采用上进液方式。槽车中的低温LNG通过储罐上进液管喷嘴以喷淋状态进入储罐,将部分气体冷却为液体而降低罐内压力,使卸车得以顺利进行。若槽车中的LNG温度高于储罐中LNG的温度时,采用下进液方式,高温LNG由下进液口进入储罐,与罐内低温LNG混合而降温,避免高温LNG由上进液口进入罐内蒸发而升高罐内压力导致卸车困难。实际操作中,由于目前LNG气源地距用气城市较远,长途运输到达用气城市时,槽车内的LNG温度通常高于气化站储罐中LNG的温度,只能采用下进液方式。所以除首次充装

LNG 时采用上进液方式外,正常卸槽车时基本都采用下进液方式。 为防止卸车时急冷产生较大的温差应力损坏管道或影响卸车速度,每 次卸车前都应当用储罐中的LNG 对卸车管道进行预冷。同时应防止快速开启或关闭阀门使LNG 的流速突然改变而产生液击损坏管 道。 气化流程: 靠压力推动,LNG 从储罐流向空温式气化器,气化为气态天然气后供应用户。随着储罐内LNG 的流出,罐内压力不断降低,LNG 出罐速度逐渐变慢直至停止。因此,正常供气操作中必须不断向储罐补充气体,将罐内压力维持在一定范围内,才能使LNG 气化过程持续下去。储罐的增压是利用自动增压调节阀和自增压空温式气化器实现的。当储罐内压力低于自动增压阀的设定开启值时,自动增压阀打开,储罐内LNG 靠液位差流入自增压空温式气化器(自增压空温式气化器的安装高度应低于储罐的最低液位),在自增压空温式气化器中LNG 经过与空气换热气化成气态天然气,然后气态天然气流入储罐内,将储罐内压力升至所需的工作压力。利用该压力将储罐内LNG 送至空温式气化器气化,然后对气化后的天然气进行调压(通常调至0.4MPa)、计量、加臭后,送入城市中压输配管网为用户供气。在夏季空温式气化 加压蒸发器卸车方式二 槽车自增压/压缩机辅助方式 BOG加热器 LNG气化器 加压蒸发器 卸车方式三 气化站增压方式 LNG贮罐 LNG贮罐 BOG压缩机 加压蒸发器 卸车方式五低温烃泵卸车方式 V-3 PC LNG贮罐 LNG贮 低温烃泵

50万吨年煤气化生产工艺

咸阳职业技术学院生化工程系毕业论文(设计) 50wt/年煤气化工艺设计 1.引言 煤是由古代植物转变而来的大分子有机化合物。我国煤炭储量丰富,分布面广,品种齐全。据中国第二次煤田预测资料,埋深在1000m以浅的煤炭总资源量为2.6万亿t。其中大别山—秦岭—昆仑山一线以北地区资源量约2.45万亿t,占全国总资源量的94%;其余的广大地区仅占6%左右。其中新疆、内蒙古、山西和陕西等四省区占全国资源总量的81.3%,东北三省占 1.6%,华东七省占2.8%,江南九省占1.6%。 煤气化是煤炭的一个热化学加工过程,它是以煤或煤焦原料,以氧气(空气或富氧)、水蒸气或氢气等作气化剂,在高温条件下通过化学反应将煤或煤焦中的可燃部分转化为可燃性的气体的过程。气化时所得的可燃性气体称为煤气,所用的设备称为煤气发生炉。 煤气化技术开发较早,在20世纪20年代,世界上就有了常压固定层煤气发生炉。20世纪30年代至50年代,用于煤气化的加压固定床鲁奇炉、常压温克勒沸腾炉和常压气流床K-T炉先后实现了工业化,这批煤气化炉型一般称为第一代煤气化技术。第二代煤气化技术开发始于20世纪60年代,由于当时国际上石油和天然气资源开采及利用于制取合成气技术进步很快,大大降低了制造合成

气的投资和生产成本,导致世界上制取合成气的原料转向了天然气和石油为主,使煤气化新技术开发的进程受阻,20世纪70年代全球出现石油危机后,又促进了煤气化新技术开发工作的进程,到20世纪80年代,开发的煤气化新技术,有的实现了工业化,有的完成了示范厂的试验,具有代表性的炉型有德士古加压水煤浆气化炉、熔渣鲁奇炉、高温温克勒炉(ETIW)及干粉煤加压气化炉等。 近年来国外煤气化技术的开发和发展,有倾向于以煤粉和水煤浆为原料、以高温高压操作的气流床和流化床炉型为主的趋势。 2.煤气化过程 2.1煤气化的定义 煤与氧气或(富氧空气)发生不完全燃烧反应,生成一氧化碳和氢气的过程称为煤气化。煤气化按气化剂可分为水蒸气气化、空气(富氧空气)气化、空气—水蒸气气化和氢气气化;按操作压力分为:常压气化和加压气化。由于加压气化具有生产强度高,对燃气输配和后续化学加工具有明显的经济性等优点。所以近代气化技术十分注重加压气化技术的开发。目前,将气化压力在P>2MPa 情况下的气化,统称为加压气化技术;按残渣排出形式可分为固态排渣和液态排渣。气化残渣以固体形态排出气化炉外的称固态排渣。气化残渣以液态方式排出经急冷后变成熔渣排出气化炉外的称液态排渣;按加热方式、原料粒度、汽化程度等还有多种分类方法。常用的是按气化炉内煤料与气化剂的接触方式区分,主要有固定床气化、流化床气化、气流床气化和熔浴床床气化。 2.2 主要反应 煤的气化包括煤的热解和煤的气化反应两部分。煤在加热时会发生一系列的物理变化和化学变化。气化炉中的气化反应,是一个十分复杂的体系,这里所讨论的气化反应主要是指煤中的碳与气化剂中的氧气、水蒸汽和氢气的反应,也包括碳与反应产物之间进行的反应。 习惯上将气化反应分为三种类型:碳—氧之间的反应、水蒸汽分解反应和甲烷生产反应。 2.2.1碳—氧间的反应 碳与氧之间的反应有: C+O2=CO2(1)

包装机械生产工艺流程图及说明

钣金件工艺 机加工生产加工工艺 钣金车间工艺要求流程 (1)钣金车间可根据图纸剪板下料,在相应位置冲孔和剪角剪边。以前工序完成后进行折弯加工;第一步必须进行调整尺寸定位,经检查后进行下一步折弯工艺。折弯后经检查合格组焊;组焊要求必须在工装和模型具下进行组焊。根据图纸要求焊接深度和点处焊接。焊点高度不得超过设计要求、焊机工艺要求;2mm以下必须用二氧化碳保护焊和氩弧焊接。不锈钢板必须用氩弧焊。焊接件加工成形后进行校整,经检查符合图纸要求后进行下一步打磨拉丝。打磨必须以

量角样板进行打磨,不得有凸出和凹缺。拉丝面光吉度必须按图纸要求进行。 (2)外协碳钢件表面处理喷漆工艺要求:喷沙或氧化面积不得小于总面积的95%,除去沙和氧化液进行表面防锈喷漆和电镀处理。经底部处理后再进行表漆加工,表漆加工必须三次进行完成。喷塑厚度不得小于0.35mm。钣金件经检验合格后进厂入半成品库待装。 (3)入库件摆放要求:小件要求码齐入架存放。大件必须有间隔层,可根据种类整齐存放。 机加件加工流程: (1)机加工件工艺要求;原材料进厂由质检部进行检验,根据国家有关数据进行检测,进厂材料必须检测厚度、硬度、和其本几何尺寸。 (2)下料;根据图纸几何尺寸加其本加工量下料,不得误差太大。 (3)机床加工;根据零件图纸选择基本定位面进行粗加工、精加工,加工几何尺寸保留磨量。 (4)铣床加工;根据零件图纸选择基本刀具装入刀库,在加工过程中注意更换刀库刀具,工件要保整公差。 (5)钳工;机加件加工完成后根要求进行画线钳工制做,在加工过程中必须用中心尖定位。大孔首先打小孔定位再用加工大孔。螺纹加工要在攻丝机进加工,不得有角度偏差。螺纹孔加工后螺栓要保

输气工艺计算.

输气管道工艺计算 第一节 管内气体流动的基本方程 1.1气体管流基本方程 气体在管内流动时,沿着气体流动方向,压力下降,密度减少,流速不断增大,温度同时也在变化。在不稳定流动的情况下,这些变化更为复杂。描述气体管流状态的参数有四个:压力P 、密度ρ、流速v 和温度T 。为求解这些参数有四个基本方程:连续性方程、运动方程、能量方程和气体状态方程。 1、连续性方程 连续性方程的基础是质量守恒定律。科学实践证明,在运动速度低于光速的系统中,质量不能被创造也不能被消灭,无论经过什么运动形式,其总质量是不变的。气体在管内流动过程中,系统的质量保持守恒。 对于稳定流,常用的连续性方程为: 常数=vA ρ 或 222111A v A v ρρ= 2、运动方程 运动方程的基础是牛顿第二定律。也就是控制体内流体的动量改变等于作用该流体上所有力的冲量之和:即 ()τd N mv d i ∑= 式中:()mv d ——动量的改变量; τd N i ∑——流体方向上力的冲量 稳定流常用的运动方程为: 02 2 =+++ρλρρv D dx ds g dx dv v dx dP 3、能量方程 能量方程的基础是能量守恒定律。根据能量守恒定律,能量既不能被创造,也不能被消灭,而是从一种形式转变为另一种形式,在转换中能量的总量保持不变。对任何系统而言,各项能量之间的平衡关系一般可表示为: 进入系统的能量-离开系统的能量=系统储存能的变化。 稳定流常用的能量方程为:

dx dQ dx ds g dx dv v dx dp p h dx dT T h T p -=++???? ????+??? ???? 4、气体状态方程 ZRT PV = ZRT P ρ= 由连续性方程、运动方程、能量方程、气体状态方程组成的方程组可以用来求解管道中任一断面和任一时间的气体流动参数压力P 、密度ρ、流速v 和温度T 由于这是一组非线性偏微分方程一般情况下没有解析解,因而只能在一定条件下以简化、线性化和数值化的方法求得近似解。 1.2稳定流动的气体管流的基本方程 为了简化上述方程组,假设: (1) 气体在管道中的流动过程为等温流动,即温度不变,T 为常数。 (2) 气体在管道中作稳定流动,即在管道的任一截面上,气体的质量流量M 为一常数, 也就是说气体的质量流量不随时间和距离的改变而改变,常数==vA M ρ。 等温流动则认为温度T 已知,实际上是采用某个平均温度,这样就可以在方程组中除去能量方程,使求解简化;稳定流动则可从运动方程和连续性方程中舍去随时间改变的各项。 这样的假设和简化对输气管,特别是长距离输气管可以认为是基本相符的。 稳定流动的运动方程: 02 2 =+++ρλρρv D dx ds g dx dv v dx dP 两边乘以dx ,并用 22 dv ρ 代替 2vdv ρ 整理后得: 2 22 2dv gds v D dx dP ρρρλ++=- 或: 2 222dv gds v D dx dP ++=-λρ (2-1) 式中: P ——压力,Pa ; ρ——气体得密度,㎏/m3; λ ——水力摩阻系数;

浅谈劣质煤造气

浅谈劣质煤造气 晋丰-造气-张涛 近几年,国内化肥生产企业受煤的影响很大,绝大部分厂家陷入了极度困难的境地,处于停产半停产状态的为数不少,致使每年都有一些企业步入倒闭破产的绝境。绝大部分小氮肥企业由于资金缺少、不具备定点定矿购煤的能力,出现了购煤渠道混乱、煤质差、煤种杂的局面。改用劣质煤造气后很快便出现煤气炉运行不稳,结疤、挂炉、吹翻、塌炭现象,单炉发气量下降,煤气成分变差,使系统生产陷入被动局面。实际上,煤耗的增加与劣质煤固定碳含量低有直接关系,而造成发气量下降和炉况不稳是与工艺条件和操作方法没能尽快适应和尽快提高水平有直接关系。 煤的分类分为三种分别是煤的成因,煤的科学,煤的实用。煤的实用分类又称煤的工业分类。按煤的工艺性质和用途分类,称为实用分类。中国煤分类和各主要工业国的煤炭分类均属于实用分类 ①成因分类:成煤的原始物料和堆积环境分类,称为煤的成因分类 ②科学分类:煤的元素组成等基本性质分类,称为科学分类。

③实用分类:煤的实用分类又称煤的工业分类。按煤的工艺性质和用途分类,称为实用分类。中国煤分类和各主要工业国的煤炭分类均属于实用分类,以下详细介绍我国煤实用分类的情况。 根据煤的煤化度,将我国所有的煤分为褐煤、烟煤和无烟煤三大煤类。又根据煤化度和工业利用的特点,将褐煤分成2个小类,无烟煤分成3个小类。烟煤比较复杂,按挥发分分为4个档次,即Vdaf>10~20%、>20~28%、>28~37%和>37%,分为低、中、中高和高四种挥发分烟煤。按粘结性可以分为5个或6个档次,即GR.I.为0~5,称不粘结或弱粘结 煤;GR.I.>5~20,称弱粘结煤;GR.I.>20~50,称为中等偏弱粘结煤;GR.I.>50~65,称中等偏强粘结煤;GR.I.>65,称强粘结煤。在强粘结煤中,若y>25mm或b>150%(对于Vdaf>28%,的肥煤,b>220%)的煤,则称为特强粘结煤。各类煤的基本特征如下: (1)无烟煤。无烟煤固定碳含量高,挥发分产率低,密度大,硬度大,燃点高,燃烧时不冒烟。01号无烟煤为年老无烟煤;02号无烟煤为典型无烟煤;03号无烟煤为年轻无烟煤。如北京、晋城、阳泉分别为01、02、03号无烟煤。 (2)贫煤。贫煤是煤化度最高的一种烟煤,不粘结或微具粘结性。在层状炼焦炉中不结焦。燃烧时火焰短,耐烧。

合成气工艺

四合成气系化学品 由合成气可以生产一系列的化学品。 1.氨及其产品:合成氨指由氮和氢在高温高压和催化剂存在下直接合成的氨。 最主要的合成气化学品,是用合成气中的氢和空气中的氮在催化剂作用下加压反应制得的氨。氨加工产品有尿素、各种铵盐(如氮肥和复合肥料)、硝酸、乌洛托品、三聚氰胺等。它们都是重要的化工原料。 合成氨的生产分为三部分: 造气——原(燃)料通人空气(氧气)和蒸汽,汽化成为水煤气(半水煤气),该粗原料气由氢气、氮气、二氧化碳、一氧化碳和少量硫化氢、氧气及粉尘组成,原料气经废热锅炉回收热量后存于气柜; 变换净化——气柜来的原料气通过电除尘器除去粉尘进入气压机加压,经脱硫(脱除硫化氢)、变换(将一氧化碳转化为氢和二氧化碳)、脱碳(吸收脱除二氧化碳)后,再次加压进入铜洗塔(用醋酸铜氨液)和碱洗塔(用苛性钠溶液)进一步除去原料气中的一氧化碳和二氧化碳(含量降至十万分之三以下),获得纯氢气和氢气混合气体; 合成——净化后的氢氮混合气(H2:N2=3:1)经压缩机加压至30~32MPa进入合成塔,在铁触媒存在下高温合成为氨。 生产是在密封、高压、高温下连续进行的。 2.甲醇及其产品:甲醇是合成气化学品中第二大产品,是一氧化碳和氢气在催化剂作用下反应制得的,其用途和加工产品十分广泛。甲醇羰基化制得醋酸,是生产醋酸的主要方法,甲醇羰基化法是以甲醇、CO为原料合成乙酸。所用催化剂最初是Co配合物。1970年,美国Monsanto公司开发了CH3I促进的RhI3的催化剂体系,并使之工业化。Rh工艺的优点在于反应压力相对较低(10~25 bar pco),温度适中(175℃),选择性>99%,没有副产品生成,产品纯度达食品级、药典级;甲醇经氧化脱氢可得甲醛,进一步可制得乌洛托品,后两者都是高分子化工的重要原料。由醋酸甲酯羰基化生产醋酐,被认为是当前生产醋酐最经济的方法,1983年,美国田纳西伊斯曼公司建立了一个年产226.8kt(5亿磅)的工厂。此外,正在开发的尚有通过二醋酸乙二醇酯制醋酸乙烯,由甲醇生产低碳烯烃,由甲醇同系化生产乙醇,由甲醇通过草酸酯合成乙二醇等工艺。 以天然气为原料生产甲醇,大多采用蒸汽一段转化,低压合成,三塔精馏的技术, 工艺过程:以天然气为原料,采用中压蒸汽转化制甲醇合成气中、低压合成甲醇,三塔精馏制取精甲醇的工艺。 工艺装置共分以下四个工序: (1)造气工序 a天然气脱硫 在一定的温度、压力下,天然气通过氧化锰脱硫剂及氧化锌脱硫剂,将天然气中的有机硫、H2S脱至1PPM以下,以满足蒸汽转化催化剂对硫的要求,其主要反应为:COS+MnO →MnS+CO2;H2S+MnO→MnS+H2O;H2S+ZnO→ZnS+H2O b 烃类的蒸汽转化 烃类的蒸汽转化是以水蒸汽为氧化剂,在镍催化剂的作用下将烃类物质转化,得到合成甲醇的原料气。这一过程为吸热过程故需外供热量,转化所需的热量由转化炉辐射段燃烧燃料气提供。 在镍催化剂存在下其主要反应如下:CH4+H2O→CO+3H2+Q;CO+H2O→CO2+H2+Q (2)压缩工序 压缩工序包括原料气压缩、合成气压缩和循环气压缩。 由造气工序来的转化气,经合成气压缩到一定的压力,与合成工序来的循环气混合,进入循环气压缩机升压后返回合成系统。 (3)合成工序 甲醇合成是在一定的压力下,在催化剂的作用下,合成气中的一氧化碳,二氧化碳与氢反应生成甲醇,基本反应式为: CO+2H2=CH3OH+Q;CO2+3H2=CH3OH+H2O+Q. 在甲醇合成过程中,尚有如下副反应; 2CO+4H2=(CH3)O+H2O;2CO+4H2=C2H5OH+H2O;4CO+8H2=C4H5OH+3H2O。

2.1造气工艺

生产车间工艺原理及主要设备 (一)造气车间 1、概述 合成气是重要的氨合成原料,在化学工业中有着重要作用。合成气指CO和H2的混合物,现在工业上采用天然气、炼厂气、焦炉气、石脑油、重油、焦炭和煤作为生产合成气的原料。固体燃料(煤或焦炭等)在高温下与气化剂反应,是碳转变为可燃性气体的过程称为固体燃料气化。将空气和蒸汽分别送入燃料层,以蓄热补充热量,称为间歇气化法。南化集团的合成气生产工艺便是主要以无烟煤、水蒸汽、空气为原料,采用间歇气化法通过固定层煤气发生炉生产合格的水煤气。 2、基本生产原理、方法及工艺流程简述 2.1生产原理 固体燃料的气化反应主要是碳与氧的反应和碳与水蒸气的反应。白煤在煤气炉内制成水煤气的化学反应过程极为复杂,随着燃料性质、反应温度、气体流速等工艺操作条件的改变,都会影响这些化学反应。以下的(1)~(8)反应式用来指出反应的开始与最终状态,对之进行平衡常数和物料能量计算。这些反应结果无非是取决于各种反应平衡和反应速度的综合影响。 吹风时主要发生以下反应: C + O2 = CO2 +Q (1) 2C + O2 = 2CO +Q (2) CO2 + C = 2CO-Q (3) CO2 + O2 = 2CO2 +Q (4) 四种物质两种元素,故此系统独立反应式为两个,一般用(1)和(3)式计算平衡组成。反应主要在气化区进行,气化区的下部主要进行碳的燃烧反应,为氧化层;上部主要进行二氧化碳的还原反应,为还原层。(1)式反应在大于800度时反应非常迅速,可认为是不可逆反应,O2的扩散速度是主要控制因素,吹风时风速越大,对其反应越有利。而还原层中二氧化碳还原反应中CO2和CO的相对含量随温度的变动有很大差别,必须认为是可逆反应,属于动力学控制,反应速度远比碳的燃烧速度小,在低温时反应速度更小。低炉面温度操作由于停用下吹氮空气,加大下吹比例,使火层适当下移,同时又因二次风停用,造成一次风量加大,这样做结果是还原层减薄,而氧化层温度更高也更厚些,CO2的还原反应受到更好地抑制,最终表现为吹风气中CO的含量大幅度降低。由于低炉面温度操作,吹风气带走的显热损失也较小。 制气时主要发生以下反应: C+H2O=CO+H2-Q (5) C+2H2O=CO2+H2 -Q (6) CO+H2O=CO2+H2 +Q (7) C+2H2=CH4+Q (8) 在此反应系统中,6个组份3个元素,独立反应式为三个,可选(5)(6)(8)式来计算平衡组成。气化区不再分为氧化层和还原层,温度提高对(7)(8)反应不利,对(5)(6)反

生产工艺流程图和工艺描述

生产工艺流程图和工艺描述 香肠工艺流程图 辅料验收原料肉验收 原料暂存肥膘解冻 精肉解冻水切丁辅料暂存分割热水漂洗1 漂洗2 加水绞肉 肠衣验收、暂存(处理)灌装、结扎 (包括猪原肠衣和蛋白肠衣) 咸水草、麻绳验收、暂存浸泡漂洗3 冷却 内包装 装箱、入库 出货

香肠加工工艺说明 加工步骤使用设备操作区域加工工艺的描述与说明 原料肉验收、暂存化验室、仓库 按照原料肉验收程序进行,并要求供应商 提供兽药残留达标保证函及兽医检疫检 验证明 辅料验收、暂 存 化验室、仓库按验收规程进行验收肥膘验收、暂 存 化验室、仓库按验收规程进行验收肠衣验收化验室按验收规程进行验收 肠衣处理腊味加工间天然猪肠衣加工前需用洁净加工用水冲洗,人造肠衣灌装前需用洁净加工用水润湿 咸水草、麻绳 验收 化验室按验收规程进行验收暂存仓库 浸泡腊味加工间咸水草、麻绳加工前需用洁净加工用水浸泡使之变软 解冻解冻间肉类解冻分 割间 ≤18℃、18~20h恒温解冻间空气解冻 分割分割台、刀具肉类解冻分 割间 将原料肉筋键、淋巴、脂肪剔除、并分割 成约3cm小肉块 加工步骤使用设备操作区域加工工艺的描述与说明 漂洗2 水池肉类解冻分 割间 加工用水漂洗,将肉的污血冲洗干净 绞肉绞肉机肉类解冻分 割间 12℃以下,采用Φ5mm孔板 肥膘切丁切丁机肉类解冻分 割间 切成0.5cm长的立方

漂洗1 水池肉类解冻分 割间 水温45-60℃,洗去表面游离油脂、碎肉 粒 灌装、结扎灌肠机香肠加工间按产品的不同规格调节肠体长度,处理量800~1200kg/h ,温度≦12℃ 漂洗3 水池香肠加工间水温45~60℃,清洗肠体表面油脂、肉碎 冷却挂肠杆预冷车间12℃下冷却0.5~1小时,中心温度≦25℃ 内包装真空机、电子 秤、热封口机 内包装间 将待包装腊肠去绳后按不同规格称重,装 塑料袋、真空包装封口 装箱、入库扣扎机、电子 秤 外包装间、成 品仓库 将真空包装的产品装彩袋封口,按不同规 格装箱、核重、扣扎放入成品库并挂牌标 识。

天然气长输管道的知识

关于天然气长输管道知识普及 随着我国天然气勘探开发力度的加大以及人民群众日益提高的物质和环保需要,近年来天然气长输管道的发展十分迅速。随着管道的不断延伸,管道企业所担负的社会责任、政治责任和经济责任也越来越大。因此,对于天然气长输管道知识普及显得尤为重要。 一、线路工程 输气管道工程是指用管道输送天然气和煤气的工程,一般包括输气线路、输气站、管道穿(跨)越及辅助生产设施等工程内容。 线路工程分为输气干线与输气支线。输气干线是由输气首站到输气末站间的主运行管线;输气支线是向输气干线输入或由输气干线输出管输气体的管线。 线路截断阀室属于线路工程的一部分,主要设备包括清管三通、线路截断球阀、上下游放空旁通流程、放空立管等,功能是在极端工况或线路检修时,对线路进行分段截断。阀室设置依据线路所通过的地区等级不同,进行不同间距设置。 阀室系统包括手动阀室和RTU阀室两大类。 二、工艺站场 输气站是输气管道工程中各类工艺站场的总称。一般包括输气首站、输气末站、压气站、气体接收站、气体分输站、清管站等站场。 输气站是输气管道系统的重要组成部分,主要功能包括调压、过滤、计量、清管、增压和冷却等。其中调压的目的是保证输入、输出

的气体具有所需的压力和流量;过滤的目的是为了脱除天然气中固体杂质,避免增大输气阻力、磨损仪表设备、污染环境等;计量是气体销售、业务交接必不可少的,同时它也是对整个管道进行自动控制的依据;清管的目的在于清除输气管道内的杂物、积污,提高管道输送效率,减少摩阻损失和管道内壁腐蚀,延长管道使用寿命;增压的目的是为天然气提供一定的压能;而冷却是使由于增压升高的气体温度降低下来,保证气体的输送效率。根据输气站所处的位置不同,各自的作用也有所差异。 1、首站 首站就是输气管道的起点站。输气首站一般在气田附近。 2、末站 末站就是输气管道的终点站。气体通过末站,供应给用户。因此末站具有调压、过滤、计量、清管器接受等功能。此外,为了解决管道输送和用户用气不平衡问题,还设有调峰设施,如地下储气库、储气罐等。 3、清管站 清管站是具有清管器收发、天然气分离设备设施及清管作业功能的工艺站场。 4、压气站 压气站是在输气管道沿线,用压缩机对管输气体增压而设置的站。 5、分输站

( 化工工艺学综述)由煤制合成气综述

由 煤 制 合 成 气 综 述 学院:化学化工学院班级:200 级化贸班姓名: 学号:09130

前言 传统的煤炭开发和利用对我国经济和环境产生了严重的影响,制约着国民经济的可持续发展。为了保证国民经济的可持续发展,必须提高煤炭的利用率,减少燃煤对大气的污染。发展洁净煤技术。 洁净煤技术(CCT——Clean Coal Technology)一词源于80年代的美国,是关于减少污染和提高效率的煤炭洗选加工及燃烧转化,烟气净化等一系列新技术的总称。1985年美国和加拿大曾就解决跨国界的酸雨问题进行谈判,关于1986年开始实施洁净煤技术计划(CCTP),其基本做法是把具有潜力的先进技术通过示范进入市场,所优选出的示范项目要有足够的普遍性和商业应用前景。现在已完成五轮计划项目,主要优选项目有:先进的选煤技术、先进的燃烧器、流化床燃烧、煤气联合循环发电、煤炭气化、煤油共炼、烟道气净化工艺及炼焦厂、水泥厂污染控制技术。该计划的实施将有助于扩大美国的煤炭生产和利用,减少石油进口、增强美国在高技术领域的国际竞争力。从长远看,也将对世界能源供应格局,煤炭工业的前景及改善环境产生重大影响。 由煤制合成气综述 摘要:论述了煤转化技术、煤气化工艺的技术特点、发展现状和工业应用;对比和分析了固定床、流化床和气流床气化炉的气化特点和工程应用概况;提出了目前国内可采用优先发展工业化成熟的Texaco气化技术和自主开发的对置式多喷嘴气化技术,适时发展具有广阔发展潜力的干煤粉气化技 术的参考性意见。 关键词:化工行业;煤制气;洁净煤技术 Abstract: Author has discussed the features, presently developing situation and industrial application of the coal conversion technology and coal gasification technology; has compared and analyzed gasification features and engineering application situation for gasifies of fixed bed, fluidized bed and gas flow bed technologies; has presented that it can be adopted in China at present to develop preferentially the ripped Texaco gasification and self-developed gasification technology with multi-burners oppositely arranged, has proposed to develop at the right moment the pulverized dry coal gasification technology which has wide development potential. Keyword: chemical industry; coal gasification; clean coal technology 煤制合成气,是指以煤或焦炭为原料,以氧气(空气、富氧或纯氧)、水蒸汽等为气化剂,在高温条件下,通过化学反应把煤或焦炭中的可燃部分转化为气体的过程。生产的气体作为生产工业燃料气、民用煤气和化工原料气。它是洁净、高效利用煤炭的最主要途径之一,是许多能源高新技术的关键技术和重要环节。如燃料电池、煤气联合循环发电技术等,煤制气应用领域非常广发。如图1-1示意图。

5供水工艺流程图及文字说明

5.供水工艺流程图及文字说明 5.1、工艺流程图如下: 5.2、地下水群井取水,由一级泵站加压到净水厂清水池进行调蓄,消毒后由二级泵站加压经管网到用户。

6、集中式供水单位卫生突发事故应急预案 6.1编制目的 为应对农村饮水安全卫生突发事件,建立健全农村饮水安全卫生应急机制,正确应对和高效处置农村饮水安全卫生突发性事件,保障人民群众饮水安全,维护人民群众的生命健康和社会稳定,促进社会全面、协调、可持续发展。 6.2指挥体系 区人民政府成立任城区农村饮水安全卫生应急指挥部,总指挥由区长担任,分管农业的副区长任副总指挥,区政府办、区发展和改革委员会、区水务局、区财政局、区民政局、区卫生局、区环保局、区公安局、区广电局等有关部门和单位为指挥部成员单位,其负责同志为应急指挥部成员。指挥部下设办公室及专家组,办公室设在区水务局,办公室主任由区水务局局长兼任。 各镇(街道)成立相应的指挥机构,由镇(街道)主要负责人任总指挥,相关部门为成员单位,办公室设在各镇(街道)农业服务中心。 6.3饮水安全组织机构的职责 一、指挥部职责 1、贯彻落实国家、省、市有关重大生产安全事故预防和应急救援的规定; 2、及时了解掌握农村饮水重大安全事件情况,指挥、协调和组织重大安全事件的应急处置工作,根据需要向上级政府和水利部门报告事件情况和应急措施; 3、审定全区农村饮水重大安全事件应急工作制度和应急预案; 4、在应急响应时,负责协调公安、水务、环保、卫生防疫、医疗救护等相关部门开展应急救援工作;

5、负责指导、督促、检查下级应急指挥机构的工作。 二、指挥部办公室职责 指挥部办公室负责指挥部的日常工作。其职责是:起草全区农村饮水重大安全事件应急工作制度和应急预案;负责农村饮水突发性事件信息的收集、分析、整理,并及时向指挥部报告;协调指导事发地应急指挥机构组织勘察、设计、施工力量开展抢险排险、应急加固、恢复重建工作;负责协调公安、水务、环保、卫生等部门组织救援工作;协助专家组的有关工作;负责对潜在隐患工程不定期安全检查,及时传达和执行上级有关部门的各项决策和指令,并检查和报告执行情况;负责组织应急响应期间新闻发布工作。 三、指挥部成员单位职责 区发展和改革委员会:负责重点农村饮水安全工程、物资储备计划下达。 区财政局:负责农村饮水安全应急工作经费、恢复重建费用及时安排和下拨;负责农村饮水安全应急经费使用的监督和管理。 区公安局:负责维持水事秩序,严厉打击破坏水源工程、污染水源等违法犯罪活动,确保饮水工程设施安全。 区民政局:负责统计核实遭受农村饮水安全突发性事件的灾情;负责协助区、镇政府做好遭受农村饮水安全突发性事件群众的生活救济工作。 区水务局:负责全区农村饮水安全工程的规划,提供农村饮水重大安全事件信息、预案以及工作方案;负责恢复农村饮水安全工程所需经费的申报和计划编制。 区卫生局:负责遭受农村饮水安全突发性事件村、镇的卫生防疫和医疗救护工作及饮用水源的水质监测和卫生保障。 区环保局:负责水源地环境保护工作,制止向河流、水库等水域排放污水和固体废物的行为,应急处理水污染事件。 区广电局:负责农村饮水安全法规、政策的宣传,及时准确报道

172-工艺-浅谈造气炉系统阻力和发气量的关系

浅谈造气炉系统阻力和 发气量的关系 樊少波 山西省·阳煤丰喜肥业(集团)股份公司临猗分公司 摘 要:通过我公司对二分厂造气系统的改造,体现了降低系统运行阻力给企业带来的巨大经济效益,也间接体现了节能降耗的目的。 固定床造气炉的系统阻力问题,一直是业内人士探讨最多的话题。现就煤气炉系统阻力问题浅谈一下笔者的经验和看法,希望能提高大家对固定床造气炉系统阻力的认识。固定床造气炉的系统阻力主要分为吹风系统阻力和制气系统阻力等两个方面,降低吹风阶段系统阻力,有利于提高空气流速,减少CO2还原反应的发生,因此提高吹风效率和减少吹风时间对降低煤耗和提高单炉发气量是十分有益的。但结合实际情况来说造气炉制气

系统阻力的高低对造气炉发气量的影响有多大,众说不一。现结合我公司造气系统的改造来谈一下自己的观点,以供参考。 我公司现年产总氨43万t、尿素60万t、甲醇15万t,三个合成氨造气系统全部采用固定床煤气炉来生产半水煤气。下面结合我公司二分厂造气系统改造来说明降低系统阻力对生产的有利影响。 1 二分厂改造前状况 二分厂年产总氨8万t,造气车间有φ2400固定床煤气炉7台,正常生产时开6备1。造气系统采用单炉对应单台洗气塔和单台过热器流程,洗气塔出口煤气总管有两根,分别为φ800和φ600,正常送气时洗气塔进口阻力在80~90mmHg,气柜静压为380mmH2O,白煤消耗在1290~1310kg/tNH3,且生产中经常出现供气紧而发生滑汞柱等现象。 2 二分厂改造依据 我公司一分厂造气车间属于新建系统,煤气流程采用了多炉共用一台过热器和一台洗气塔流程,上、下行煤气显热全部进行回收。装置投产后,节能效果显著,φ2650煤气炉发气量达到9000~10000m3/h,单炉产氨量达到60t/d,白煤消耗1150kg/tNH3。分析后认为原因是

合成氨原料气的生产

合成氨原料气的生产 一.煤气化 (1)气化原理 煤在煤气发生炉中由于受热分解放出低分子量的碳氢化合物,而煤本身逐渐焦化,此时可将煤近似看作碳。 ①反应速率 以空气为气化剂 C+O2→CO2 △H=-393.770kJ/mol C+1/2O2→CO △H=-110.595kJ/mol C+CO2→2CO △H=172.284kJ/mol CO+1/2O2→CO2 △H=-283.183kJ/mol 在同时存在多个反应的平衡系统,系统的独立反应数应等于系统中的物质数减去构成这些物质的元素数。 以水蒸气为气化剂 C+H2O→CO+H2 △H=131.39kJ/mol C+2H2O→CO2+2H2△H=90.20kJ/mol CO+H2O→CO2+H2△H=-41.19kJ/mol C+2H2→CH4△H=-74.90kJ/mol ②反应速率 气化剂和碳在煤气发生炉中的反应属于气固相非催化剂反应。随着反应的进行,碳的粒度逐渐减小,不断生成气体产物。反过程一般由气化剂的外扩散、吸附、与碳的化学反应及产物的吸附,外扩散等组成。反应步骤分为: A. C+O2→CO2 的反应速率研究表明,当温度在775O C以下时,其反应速率大致表示为: R=ky o2 式中 r-碳与氧生成二氧化碳的反应速率 k-反应速率常数 y o2- 氧气的速率 B.C+CO2→2CO的反应速率此反应的反应速率比碳的燃烧反应慢得多, 的一级反应。 在2000O C以下属于化学反应控制,反应速率大致是CO 2

C.CO+H2O→CO2+H2的反应速率碳与水蒸气之间的反应,在400-1000O C 的温度范围内,速度仍较慢,因此为动力学控制,在此范围内,提高温度是提高反应速率的有效措施。 二.制取半水煤气的工业方法 由以上可知,空气与水蒸气同时进行气化反应时,如不提供外部热源,则气+CO)的含量大大低于合成氨原料气的要求。为解决气体成分与热量化产物中(H 2 平衡这一矛循,可采用下列方法: (1)外热法如利用原子能反应堆余热或其他廉价高温热源,用熔融盐、熔融铁等介质为热载体直接加热反应系统,或预热气化剂,以提供气化过程所需的热能。这种方法目前尚处于研究阶段。 50%左右)和水蒸气作为气化剂同 (2)富氧空气气化法用富氧空气(含O 2 时进行气化反应。由于富氧空气中含氮量较少,故在保证系统自热运行的同时,半水煤气的组成也可满足合成氨原料气的要求。此法的关键是要有较廉价的富氧空气来源。 (3)蓄热法空气和水蒸气分别送入燃料层,也称间歇气化法。其过程大致为:先送入空气以提高燃料层温度,生成的气体(吹风气)大部分放空;再送入水蒸气进行气化反应,此时燃料层温度逐渐下降。所得水煤气配入部分吹风气即成半水煤气。如此间歇地送空气和送蒸汽重复进行,是目前用得比较普遍的补充热量的方法,也是我国多数中、小型合成氨厂的重要气化方法。 三.间歇式生产半水煤气 工业上间歇式气化过程,是在固定层煤气发生炉中进行的,如图3-3。块状燃料由顶部间歇加入,气化剂通过燃料层进行气化反应,灰渣落入灰箱后排出炉外。

输气工艺计算试题

输气工艺计算题 1、一段输气管道,平均压力是1.2MPa,平均温度是19℃,管道规格 是φ457 mm×7 mm,管道长度25km,管道的平均压缩系数为1,请计算 该段管道的管道容积? 已知:t=19℃,P=1.2MPa,D=(457-7×2)mm,L=25km 求:V=? 解:根据公式得: ①A=1/4×3.14×((457-7×2)×10-3)2=0.1541 m2 ②V= A L= 0.1541×25×103=3852.5 m3 答:该段管道的管道容积是3852.5 m3。 2、一段输气管道,天然气的平均压力是4.5MPa,平均温度是15℃, 管道规格是φ559 mm×9 mm,管道长度25.4km,大气压力按0.1 MPa, 天然气的平均压缩系数为1,请计算该段管道的储气量? 已知:t=15℃,P=4.5MPa,D=(559-9×2)mm,L=25.4km,t0=20℃, P0=0.1MPa 求:V0=? 解:根据公式得: ①A=1/4×3.14×((559-9×2)×10-3)2=0.2298 m2 ②V= A L= 0.2298×25.4×103=5836.9 m3 ③T0 =273.15+20=293.15 K T=273.15+15=288.15 K ④P0 V0/ T0 = P V/ T Z0=Z=1

⑤V0 = P V T0/ (P0 T) =(4.5+0.1)× 5836.9 × 293.15/(0.1×288.15) = 273156 m3 答:该段管道的储气量是273156 m3。 3、输气站到邻近阀室距离16.9 km,输气站起点压力是3.8MPa,阀室压力是3.5MPa,距输气站5 km处的输气管道发生泄漏,请问发生泄漏时泄漏点的压力是多少? 已知:。P1=3.8MPa,P2=3.5MPa,L=16.9km,X=5km。 求:P X=? 解:根据公式得: ①P X=( P12 -(P12– P22)X/L )1/2 ②P X=( 3.82 -(3.82–3.52)×5/16.9 )1/2 ③P X=3.72 MPa 答:发生泄漏时泄漏点的压力是3.72 MPa。 4、输气站到邻近阀室距离25.9 km,输气站起点压力是2.9MPa,阀室压力是2.5MPa,输气管道在压力2.69MPa处发生泄漏,请问发生泄漏时泄漏点距输气站的距离有多远? 已知: P1=2.9MPa,P2=2.5MPa,L=25.9km,P X =2.69MPa。 求:X =? 解:根据公式得: ①P X=( P12 -(P12– P22)X/L )1/2 ②2.69=( 2.92 -(2.92–2.52)X /25.9 )1/2

相关文档