文档库 最新最全的文档下载
当前位置:文档库 › 基于纠缠信号的高精度时钟同步技术研究

基于纠缠信号的高精度时钟同步技术研究

基于纠缠信号的高精度时钟同步技术研究
基于纠缠信号的高精度时钟同步技术研究

高精度时钟芯片的测试方法介绍

高精度时钟芯片的测试方法介绍 中国电子科技集团公司第五十八研究所武新郑解维坤 摘要: 高精度时钟芯片是一种能够提供精确计时的芯片,相对于普通的时钟芯片,它的晶体和温度补偿集成在芯片中,为提高计时精度提供了保障,它同时还具备日历闹钟功能、可编程方波输出功能等。本文以DS3231芯片为例,以J750Ex测试机和相关仪表为测试环境,重点介绍以I2C总线协议为基础的内部寄存器功能和芯片各模块功能的测试。通过测试机测试保存在寄存器中秒、分、时、星期、日期、月、年和闹钟设置等信息,以及电源控制功能,通过测试机对示波器和频率计的程控实现对老化修正和输出频率的测试,同时还会重点介绍该芯片时钟精度的测试方法和测试环境。 关键词: 高精度时钟芯片;DS3231芯片;J750Ex测试机;I2C总线协议 Introduction of testing method of the extremely accurate RTC Wu Xin-zheng (China Electronic Technology Group Corporation, No.58 Research Institute , Jiangsu Wuxi 214035, China) Abstract: The extremely accurate real time clock is a piece of chip which can maintain accurate timekeeping, compared with the ordinary RTC chip, its integrated temperature compensated crystal oscillator and crystal are located in the center of the chip, which provides an assurance for promoting the exacticy, it also has two programmable time-of-day alarms and a programmable square-wave output. This paper takes DS3231 for instance, the environment with J750Ex and related instruments, introduces inner register with I2C and the testing method of every module. The ATE tests seconds, minutes, hours, day, date, month, and year information, the function of power. By means of OSC and frequency meter, it can test the output wave and register for aging trim, at the same time, also introduced the testing method and environment of accuracy. Key words:

时间同步系统的要求

4.3.12时间同步系统的要求 4.3.12.1总的要求 4.3.12.1.1 时间同步系统的构成 1)时间同步系统由一级主时钟和时钟扩展装置组成。 2)一级主时钟用于接收卫星或上游时间基准信号,并为各时间扩展装置提供时间信号。3)一级主时钟与时钟扩展装置均配置时间保持单元,保证在输入信号中断的情况下,依然不间断地提供高精度的输出信号。 4.3.12.1.2时间同步系统的布置 根据本期工程情况,将配置1面主时钟装置屏和2面时钟扩展装置屏。主时钟本体装置屏安装在集控楼内,主时钟屏配置的2台主时钟为整个时间同步系统提供2路冗余的时间基准信号输出。机组保护室和网络继电器室各设1面时钟扩展装置屏,主时钟装置与时钟扩展装置之间采用光纤连接。时间同步系统天线安装在集控楼楼顶上。 4.3.12.1.3时间同步系统的运行条件 1)电源要求 同步时钟装置(一级主时钟和二级扩展)采用两路AC220V电源供电,投标方应配置双电源自动切换装置(美国ASCO 7000系列产品)实现双电源自动切换。 2)工作环境 工作温度: -10~+55℃ 贮存温度: -40~+55℃ 湿度: 5%~95%(不结露)。 所有设备均可放置在无屏蔽、无防静电措施的机房内。 4.3.12.1.4 时间同步系统的电磁兼容性 时间同步系统在集控楼的电磁场环境下能正常工作,符合“GB/T13926-1992 工业过程测量和控制装置的电磁兼容性”中有关规定的要求,并达到Ш级及以上标准。 4.3.12.2功能要求 4.3.12.2.1 时间同步系统配置的主时钟及时间同步信号扩展装置对厂内DCS、SIS、电气控制装置及其他需要时钟同步的设备进行时间同步,并应能提供满足这些设备需要的各种时间同步信号及接口(含接口装置、通讯电缆等设备)。 4.3.12.2.2时间同步系统两台主时钟的时间信号接收单元应能独立接收GPS卫星和我国北斗卫星发送的无线时间信号作为主外部时间基准信号。当某一主时钟的时间接收单元发生故

中国TD系统移动高精度时间同步设备技术规范

中国移动通信企业标准 中国移动高精度时间同步设备 技术规范 中国移动通信集团公司 发布 2011-4-8发布 2011-4-8实施 QB-B-018-2010 版本号 :1.0.0

目录 前言 ................................................................... II 1. 范围 (1) 2. 规范性引用文件 (1) 3. 符号和缩略语 (1) 4. 高精度时间同步设备定义及构成 (2) 4.1. 定义 (2) 4.2. 构成 (2) 5. 高精度时间同步设备的功能要求 (2) 5.1. 定时输入功能 (2) 5.1.1. 时间同步输入基本要求 (2) 5.1.2. 卫星定位系统接收机 (2) 5.1.3. 地面时间输入 (3) 5.1.4. 频率输入(可选) (3) 5.2. 本地时钟功能 (3) 5.3. 定时输出功能 (3) 5.3.1. 时间输出接口功能 (3) 5.3.2. 频率输出接口功能 (4) 5.4. 监控管理功能 (4) 5.4.1. 时间输入信号的告警监测 (4) 5.4.2. 时间输入信号的性能监测(可选) (4) 5.4.3. 网管功能 (4) 6. 高精度时间同步设备的性能要求 (5) 6.1. 频率同步性能 (5) 6.2. 时间同步性能 (5) 6.2.1. 时间精度要求 (5) 6.2.2. 时间稳定度要求 (5) 6.2.3. 守时精度的要求 (5) 6.2.4. 时间源倒换的性能要求 (6) 7. 可靠性及环境要求 (6) 7.1. 可靠性要求 (6) 7.2. 环境要求 (6) 7.2.1. 电源要求 (6) 7.2.2. 温度要求 (6) 7.2.3. 湿度要求 (6) 8. 编制历史 (7)

浅析智能变电站高精度时钟同步方法 杨富栋

浅析智能变电站高精度时钟同步方法杨富栋 发表时间:2018-03-14T10:29:13.807Z 来源:《电力设备》2017年第29期作者:杨富栋[导读] 摘要:近年来,IEC61850的标准得到进一步完善,关于智能变电站的同步时钟精度与稳定性能带来了更高的要求。 (国网烟台供电公司山东烟台 264000) 摘要:近年来,IEC61850的标准得到进一步完善,关于智能变电站的同步时钟精度与稳定性能带来了更高的要求。为符合智能变电站更大的对时精准度需要与适应智能变电站的时钟同步系统本身的特征,本文综合了智能变电站对时钟同步的实际需要与参照的IEC61850相关标准,探讨了智能变电站的卫星时钟同步的几种方法。为进一步研究智能变电站与电网时间统一技术打下了基础。 关键词:智能变电站;IEEE1588; DPSM;随着我国社会经济的发展,人们对智能变电站的建设也得到了进一步地发展。其中高精度的时钟同步方法得到了相关研究人员的关注与重视。应当具备下以的原则:建设统一的同步对时的系统,时钟的同步网一定要符合智能变电站关于时精度的要求,时钟同步系统要有效地应用网络同步技术,支持NTP/SNTP, IEEE1588等同步技术等。本文针对智能变电站精度时钟的同步方法进行较为详细地阐述。 一、关于智能变电站的构成以及特征第一,从智能电网的构成上分析,智能变电站是智能电网的发电、输电、变电、配电、用电和调度等几个环节衔接的重要平台,作为智能电网变换电压、接受以及分配电能、调节电压与控制电力方向的主要电力设施。它既是智能电网安全运行的关键,又是信息流、电力流以及业务流的交汇点,对于建设优化的智能电网有着极大的意义。第二,智能变电站其结构大体划分三个层面:战控层、间隔层与过程层。第三,智能变电站的设计与建设一定要符合我国当前智能电网信息化、数字化等发展要求,以提升变电站的自动化程度。 二、智能变电站的时钟同步方法的重要性与精度要求第一,重要性分析:IEC61850的指标在不断地更新与完善,智能变电站关于同步时钟的精准度与稳定性能也有了更高的要求。建设适宜的智能变电站的精确网络时钟同步系统可以提升变电站设备的时间同步精度、集成程度、运行安全性,减少系统的成本,提升工作效率,且可以保障变电站的安全可靠等相关性能。能明显降低因系统时钟的不同步产生的很大损失,为推动中国智能电网的建设有着重大作用。第二,时钟同步精度要求。智能变电站测量、控制和保护等自动化设备对时间同步精度的要求各不相同,例如同步向量测量、故障定位、IED同步采样要求对时精度为微妙级;而故障录波、时间顺序记录、变电站之间的同步实验要求对时精度为毫秒级。 三、智能变电站时钟同步的几种方法(一)GPS卫星时钟的同步方法当前变电站广泛采样GPS授时系统为站中的网络时钟来源,其可靠性与自主性无法获得保障。所以,本文构建了智能变电站卫星时钟同步统一系统模型这个模型里各个智能变电站作为一个时间的节点,各个节点有其独立的卫星同步的时钟源,担负着本节点中全部电力设备的时间同步,且经过通信网和其它厂站端或上级的调度机构互相监测时间的同步性,若某个时间节点时间的同步时钟失效以后,则借助通信网里的同步时间信息保持同步。智能变电站的卫星同步时钟能够同时接受GPS卫星时钟与北斗卫星时钟为站中的时间基准源;依据卫星时钟无累计的误差与晶振时钟无随机误差的特征,应用GPS卫星时钟、北斗卫星时钟以及晶振时钟比较法进行分析,产生了高精度的同步时钟源。可以提升了智能变电站同步时钟源的精度与可靠性能。(二)SNTP+IEEE1588的网络时钟同步方法依据智能变电站中的站控层、间隔层以及过程层关于时钟同步精度与功能的标准,应用分层同步的方式,在站级总线网络应用SNTP 的协议对时,在过程层的总线网应用IEEE1588协议对时,这一方法应用了北斗/GPS时钟组成的双模授时系统和晶振时钟融合而成的高精度同步时钟为站中时间同步网络的时钟源。卫星时钟和世界标准时间保持高度的同步,为变电站带来稳定且精确的时间指标。站中时钟同步网应用对独立总线的网络结构设计方案,两层子网分别进行时间同步。因站级总线网络对时精度要求不高,因此在站级网络里能够接入专门的SNTP服务器来同步站级网络上的各种设备。过程层要求同步精度达到亚微秒级,所以采用IEEE 15 8 8协议来实现过程总线的网络同步,在过程总线网络中接入专门的IEEE 15 8 8主时钟(Master Clock)和支持边界时钟(Boundary Clock)的交换机。边界时钟先与主时钟进行时间同步,然后自己扮演主时钟去同步过程层的设备。为提升时钟同步网络的可靠性,又给出了SNTP+IEEE 1588变电站时钟同步网络的冗余方法构成图。系统接入两套北斗/GPS和晶振时钟融合授时系统。另外,配置两套SNTP服务器和IEEE1588主时钟互为备用,时钟同步网络采用双总线冗余方式。备用时钟同步网络在线监测工作时钟同步网络,当工作网络出现故障时,自动进行冗余切换。(三)IEEE 1588网络时钟同步方法应用单一的IEEE 1588网络时钟协议为全站网络时钟的同步方式。由北斗/GPS时钟构成的双模授时系统和晶振时钟融合生为高精度同步时钟为IEEE1588时钟同步网的时钟源。这一时钟源为系统的跟时钟节点安装于服务器里。卫星时钟与世界标准时间保持高度地同步,为变电站带来稳定且精确的时间标准。站中的时钟同步网应用全站总线的网络构成同步方法,全站接入很多边界时钟同步于IEEE1588主时钟,与此同时又对从时钟独立来授时,进而达到整个智能变电站的时间同步。在时钟源的工作异常或者站中某个节点时钟失步时,其各个节点能够实现互备授时,就是旁路节点能够作为主时钟向时钟失步节点发送全新的同步信号源。另外,为提升智能电网的时间同步的精度度,站外应用了电力通信SDH恺装电缆达到和调度中心以及相近变电站间的时间同步。经过在站间网络时钟同步线路中安设的透明时钟,一定程度上降低了因长距离的传输带来的网络延迟。提升了广域同步网的授时精准度,进而达到了整个智能电网的时间同步。结束语: IEEE1588的时钟同步方法应用的是全站唯一的总线网构成,这种方法与IEC61850的标准时间同步模型是一致的。IEEE1588应用最佳主时钟的算法,自动对最佳时钟的节点作出选择,达到每个节点之间的互备授时。这种方法既提升了智能变电站的时钟同步网的准确率与安全性能,又符合了广域网的时钟同步精度的相关标准。然而它的协议正在研究与健全过程中,其技术以及经济方面尚未成熟,故这种方法的成本很高。因此,现阶段智能变电站能够将SNTP+IEEE1588时钟同步当作一种过渡的方法。在其时钟的同步协议得到不断地进步之下,IEEE1588时钟同步方法一定会成为智能变电站时钟同步系统的主体方法。参考文献:

PCF8563实时时钟高精度调整方法

广州周立功单片机发展有限公司 Tel: (020)38730976 38730977 Fax: 38730925 https://www.wendangku.net/doc/bc13472184.html, PCF8563实时时钟高精度调整方法 一、概述 PCF8563是PHILIPS公司设计生产的经典工业级实时时钟芯片(RTC),I2C总线接口,具有功耗低、精度高等特点,广泛应用于电表、水表、气表、电话等产品。本文将介绍如何调整PCF8563时钟精度的方法。 二、电路原理 图1 PCF8563高精度调整 三、相关说明 如图1所示,R3、R4为I2C总线上拉电阻,若总线速度高于100KHz,电阻阻值要更小。由于PCF8563的中断输出及时钟输出均为开漏输出,所以要外接上拉电阻(如图1的R1、R2),若不使用这两个信号,对应的上拉电阻可以不用。 对于PCF8563芯片,需外接时钟晶振32768Hz(如图1的X1),推荐使用5ppm或更稳定的晶振。PCF8563典型应用电路推荐使用15pF的晶振匹配电容,实际应用时可以作相应的调整,以使RTC获得更高精度的时钟源。一般晶振匹配电容在15pF~21pF之间调整(相对于5ppm精度的32768Hz晶振),15pF电容时时钟频率略偏高,21pF电容时时钟频率略偏低。 四、操作方法 1. 设置PCF8563时钟输出有效(CLKOUT),输出频率为32.768KHz。 使用高精度频率计测量CLKOUT输出的频率。 2. 根据测出的频率,对JC1、JC2、JC3作短接或断开调整。频率比32768Hz偏高时, 3. 加大电容值;频率比32768Hz偏低时,减小电容值。 说明:图1中的C1、C2、C3的值在1pF~5pF之间,根据实际情况确定组合方式,以便于快速调整。推荐使用(3pF、3pF、3pF)、(1pF、2pF、3pF)、(2pF、3pF、4pF)。 - 1 -

时钟同步系统施工方案

时钟同步系统施工方案

施工方案审批表 审核单位:审核意见:审核人: 日期:监理单位:监理意见:监理人: 日期:批准单位:审批意见:审批人: 日期:

目录 一、施工方案综述............................................................................................... - 3 - 二、工程概况及特点........................................................................................... - 4 - 三、施工步骤....................................................................................................... - 5 - 四、风险分析..................................................................................................... - 14 - 五、生产安全及文明施工................................................................................. - 14 - 一、施工方案综述 根据中韩(武汉)石油化工有限公司PLC系统的改造技术要求和我公司对改造要求的理解来编制施工方案。

中国移动TD无线系统高精度时间同步技术规范-TOD协议规范(接受修订)

中 国 移 动 通 信 企 业 标 准
QB-X-XXX-XXXX
1pps+ TOD 时 间 接 口 规 范
╳ ╳ ╳ ╳ -╳ ╳ -╳ ╳ 发 布
征求
中国移动通信有限公司
意见 稿- xur o
版 本 号 : 1.0.0
中 国 移 动 TD 无 线 系 统 高 精 度 时 间同步技术规范
ng
╳ ╳ ╳ ╳ -╳ ╳ -╳ ╳ 实 施
发布

QB-X-XXX-XXXX 目
1 2 3 4 5 6

范围 ........................................................................................................................................................................ 1 引用标准 ................................................................................................................................................................ 1 符号及缩略语 ........................................................................................................................................................ 1 概述 ........................................................................................................................................................................ 1 基于 1PPS+TOD方式的时间同步功能要求 ........................................................................................................... 2 1PPS+TOD接口中TOD的协议规范 .......................................................................................................................... 3 6.1 6.2 6.2.1 6.2.2 6.2.3 TOD帧定义...................................................................................................................................................... 3 TOD消息定义.................................................................................................................................................. 4
7
编制历史 ................................................................................................................................................................ 7
征求
意见 稿- xur o
ng
时间信息消息 ....................................................................................................................................... 4 时间状态消息 ....................................................................................................................................... 5 数据类型定义 ....................................................................................................................................... 6

卫星共视高精度时间比对与传递

卫星共视法高精度时间频率比对与传递系统

目录 1.概述 (3) 2.卫星共视时间比对与传递系统组成及工作原理 (4) 2.1 卫星共视时间比对与传递工作原理 (4) 2.2 时间比对和传递系统设备配置及连接 (7) 3.经费预算................................................. 错误!未定义书签。

1.概述 时间是物理学的基本参量之一。随着科学技术的发展,高精度的时间和频率在国民经济发展中的地位日趋重要,诸如通信、电力、交通、高速数字网同步等高新技术领域有着广泛的应用,特别是我国国防建设和空间技术领域,如空间目标探测与拦截(类似于美国爱国者导弹防御系统)、我国第二代战略武器试验、载人航天工程和拟建中的二代卫星导航系统对时间和频率的精度提出了更高的要求。 二十世纪末,随着空间技术的发展,GPS和北斗卫星导航系统相继问世,授时具有了全方位性(陆地、海洋、航空和航天)、全球性、全天候、连续性和实时性,并提供了高精度的授时覆盖和服务。“时间统一系统”为精密时间产生、传递、恢复和保持、科学研究、科学实验和工程技术及一切动力学系统和时序过程的测量和定量研究提供了必不可少的时间基准和依据。 就高精度时间传递与比对系统而言,可以应用于工程项目的主要包括以下几种: 1.RNSS卫星共视时间比对与传递; 2.RNSS卫星载波相位时间同步; 3.卫星双向时间比对与传递; 4.搬运钟时间比对与传递。 在以上几种方法中,卫星共视时间比对与传递是一种较为优秀的高精度时间比对与传递系统。

2.卫星共视时间比对与传递系统组成及工作原理 2.1 卫星共视时间比对与传递工作原理 所谓“共视”(Common View)就是位于两个不同位置的观测者,在同一时刻对同一颗卫星进行观测,其原理如下图所示。 图1 GPS 共视法高精度时间同步原理图 图1给出了一个单收系统示意图,在每个比对点,本地钟均按自己的速率运行。根据比对需求,利用卫星所发射的1PPS 秒信号、或其它固定速率发射的时钟脉冲信号。 在每个测站,利用本地钟的1PPS 信号打开时间间隔计数器闸门,再用从共视接收机所输出的1PPS 秒信号关闭时间间隔计数器的闸门。这样,我们可以得到以下的时间关系(图2): 在钟1处: 接收时间 1τ+=卫接收T t 计数器读数 1d T =)(11τ+-卫T T (1) GPS 卫星

DS3231高精度时钟模块程序

模块参数: 1.尺寸:38mm(长)*22mm(宽)*14mm(高) 2.重量:8g 3.工作电压:3.3--5.5V 4.时钟芯片:高精度时钟芯片DS3231 5.时钟精度:0-40℃范围内,精度2ppm,年误差约1分钟 6.带2个日历闹钟 7.可编程方波输出 8.实时时钟产生秒、分、时、星期、日期、月和年计时,并提供有效期到2100年的闰年补偿 9.芯片内部自带温度传感器,精度为±3℃ 10.存储芯片:AT24C32(存储容量32K) 11.IIC总线接口,最高传输速度400KHz(工作电压为5V时) 12.可级联其它IIC设备,24C32地址可通过短路A0/A1/A2修改,默认地址为0x57 13.带可充电电池LIR2032,保证系统断电后,时钟任然正常走动 接线说明,以Arduino uno r3为例: SCL→A5 SDA→A4 VCC→5V GND→GND 代码部分: #include #include #define uchar unsigned char #define uint unsigned int sbit SDA=P3^6; //模拟I2C数据传送位SDA sbit SCL=P3^7; //模拟I2C时钟控制位SCL sbit INT=P3^2; sbit RESET=P3^3; sbit led0=P1^0; sbit led1=P1^1; sbit led2=P1^2; sbit led3=P1^3; sbit led4=P1^4;

sbit led5=P1^5; sbit led6=P1^6; sbit led7=P1^7; bit ack; //应答标志位 #define DS3231_WriteAddress 0xD0 //器件写地址 #define DS3231_ReadAddress 0xD1 //器件读地址 #define DS3231_SECOND 0x00 //秒 #define DS3231_MINUTE 0x01 //分 #define DS3231_HOUR 0x02 //时 #define DS3231_WEEK 0x03 //星期 #define DS3231_DAY 0x04 //日 #define DS3231_MONTH 0x05 //月 #define DS3231_YEAR 0x06 //年 //闹铃1 #define DS3231_SALARM1ECOND 0x07 //秒 #define DS3231_ALARM1MINUTE 0x08 //分 #define DS3231_ALARM1HOUR 0x09 //时 #define DS3231_ALARM1WEEK 0x0A //星期/日 //闹铃2 #define DS3231_ALARM2MINUTE 0x0b //分 #define DS3231_ALARM2HOUR 0x0c //时 #define DS3231_ALARM2WEEK 0x0d //星期/日 #define DS3231_CONTROL 0x0e //控制寄存器 #define DS3231_STATUS 0x0f //状态寄存器 #define BSY 2 //忙 #define OSF 7 //振荡器停止标志#define DS3231_XTAL 0x10 //晶体老化寄存器 #define DS3231_TEMPERATUREH 0x11 //温度寄存器高字节(8位) #define DS3231_TEMPERATUREL 0x12 //温度寄存器低字节(高2位) uchar code dis_code[11]={0xc0,0xf9,0xa4,0xb0, // 0,1,2,3 0x99,0x92,0x82,0xf8,0x80,0x90, 0xff}; // 4,5,6,7,8,9,off

高精度 GPS 同步时钟设计

高精度GPS同步时钟设计 王伟 武汉理工大学信息学院,武汉(430070) E-mail: zgkjww@https://www.wendangku.net/doc/bc13472184.html, 摘要:本文提出了一种基于专用的RTC(Real-Time Clock实时时钟)芯片的高精度守时电路的设计方案,并且把其应用到GPS自主导航用户机上。守时电路采用GPS导航电文校时与实时守时模块相结合,采用模块化、同步化设计;在实际应用中,导航电文中精确的时间信息可以对守时模块的时间进行设定和修改。结合高精度的石英晶体振荡器,该守时模块达到了设计的预期目标,合乎GPS用户机高精度守时的需要。 关键词:GPS;RTC;高精度守时电路 中图分类号:TN911 1 引言 近年随着卫星技术的发展,全球定位系统(Global Positioning System-GPS)也越来越广泛的渗透进了大众的生活,手持以及车载GPS的普及化发展让这个几年前还比较神秘的产品与人们的生活息息相关起来,GPS是具有高精度、全天候、多功能、并且拥有全球覆盖能力的导航系统,该系统不但在导航定位以及测量方面有着广泛的应用,在精确授时方面也是目前全世界都广泛采用的重要方式[1]。在电力系统,电视广播播出系统中,为取得通信网络的同步,GPS授时系统也得到了大量的应用。 本文提出了一种基于低功耗CPLD的高精度守时电路设计方案,整个守时模块采用模块化设计,各实时分频计时子模块采用可综合的VerilogHDL语言编写,对各子模块进行功能和时序仿真,在实际应用中,用户机接收的导航电文中精确的时间信息可以随时被用于调整和设定守时模块的时间[2],配合高精度的石英晶体振荡器,该守时模块达到了预期的设计目标。 2 相关技术概述 2.1 GPS本地守时电路解决方案概述 为了能够输出高精度和高稳定性的时钟,目前国内外产品普遍采用的方法是:用GPS 时钟信息来同步(校正)本地钟(原子钟、晶振时钟):正常运行时,由卫星接收机通过捕获GPS信号、定位解算来获得GPS 系统的时钟信息,并用于校正本地钟,使本地钟保持与GPS系统时间的同步;当GPS信号不稳定时,由本地钟负责维持时钟信号的输出,直到GPS 信号重新稳定并再次获得GPS的时钟信息后,回到正常运行状态[3]。 2.2 守时系统指标参数选择 综合考虑系统时钟信号的频率稳定度和功耗等方面的因素,我们采用高稳定,低功耗10Mhz晶振作为本地守时频标。这样测试终端可以达到在2个月不开机情况下,时间漂移小于1s的要求,另外用户终端具有靠电池维持工作的低功耗守时单元。通过对10Mhz信号分频计数,产生时间信息[4]。本地钟由导航电文得到,也可以通过外部时间码和1PPS信号对本地时间初始化。 在目前的时间基准振荡器中,石英晶体振荡器具有高稳定度和低功耗的特点。按指标要可估算出守时频标的频率准确度应优于2×10-7,考虑使用环境和功耗要求,采用了高精度,

基于DS12C887时钟芯片的高精度时钟的设计

华侨大学厦门工学院本科生毕业设计(论文) 时钟芯片地高精度时钟地设计基于DS12C887题目: 吴挺名:姓 0902106019 号:学 电气工程系别: 专业:电气工程及其自动化 年级:2009 指导教师:刘晓东 年月日 独创性声明 本毕业设计(论文)是我个人在导师指导下完成地.文中引用他人研究成果地部分已在标注中说明;其他同志对本设计(论文)地启发和贡献均已在谢辞中体现;其它内容及成果为本人独立完成.特此声明. 日期:论文作者签名: 关于论文使用授权地说明 本人完全了解华侨大学厦门工学院有关保留、使用学位论文地规定,即:学院有权保留送交论文地印刷本、复印件和电子版本,允许论文被查阅和借阅;学院可以公布论文地全部或部分内容,可以采用影印、缩印、数字化或其他复制手段保存论文.保密地论文在解密后应遵守此规定. 日期:指导教师签名:论文作者签名: 时钟芯片地高精度时钟地设计DS12C887基于摘要

随着社会地发展人们地生活节奏越来越快,每天地工作,学习,休息地时间都安排地很紧,需要一个时钟准确地报时.人们对时钟地要求越来越高,不仅要求每天地地时间误差小于几毫秒,还要求具有定时闹钟,具有万年历等功能.传统地日历电子钟元器件多、维修麻烦、误差大、功能更新不方便.DS12C887时钟芯片能够自动显示年、月、日、时、分、秒等时间信息,同时还具有校时,报时,闹钟等功能.DS12C887也可以很方便地由软件编程进行功能地调整或增加.所以设计基于DS12C877时钟芯片地高精度时钟地设计具有十分重要地现实意义和实用价值. 关键词:DS12C887,时钟芯片,单片机STC89C52,高精度时钟 Design of high precision clock based on clock chip DS12C887 Abstract With the development of society, people life rhythm faster and faster, a day's work, study and rest time arrangement is very tight, need a clock tell the time accurately. People is higher and higher requirement for the clock, every day not only requires the time error is less than a few milliseconds, also requires a timing alarm clock, a calendar, and other functions. Traditional electronic clock calendar components, maintenance trouble, big error, function more update is not convenient. Chip DS12C887 clock automatically display year, month, day, hours, minutes and seconds time information, but also with the school, the time, alarm clock, and other functions. DS12C887 can also be very convenient by the software programming to adjust function or to increase. So the design is based on DS12C877 clock chip design of high precision clock has very important practical significance and practical value. Keywords: DS12C887,clock chip microcontroller STC89C52,high-precision clock

电力时钟同步系统解决方案

电力GPS时钟同步系统解决方案 北京创想京典科技发展有限公司 科 技 领先铸就最佳

什么是时间? 时间是一个较为抽象的概念,爱因斯坦在相对论中提出:不能把时间、空间、物质三者分开解释,"时"是对物质运动过程的描述,"间"是指人为的划分。时间是思维对物质运动过程的分割、划分。 在相对论中,时间与空间一起组成四维时空,构成宇宙的基本结构。时间与空间都不是绝对的,观察者在不同的相对速度或不同时空结构的测量点,所测量到时间的流逝是不同的。广义相对论预测质量产生的重力场将造成扭曲的时空结构,并且在大质量(例如:黑洞)附近的时钟之时间流逝比在距离大质量较远的地方的时钟之时间流逝要慢。现有的仪器已经证实了这些相对论关于时间所做精确的预测,并且其成果已经应用于全球定位系统。另外,狭义相对论中有“时间膨胀”效应:在观察者看来,一个具有相对运动的时钟之时间流逝比自己参考系的(静止的)时钟之时间流逝慢。 就今天的物理理论来说时间是连续的,不间断的,也没有量子特性。但一些至今还没有被证实的,试图将相对论与量子力学结合起来的理论,如量子重力理论,弦理论,M理论,预言时间是间断的,有量子特性的。一些理论猜测普朗克时间可能是时间的最小单位。

什么是时间? 根据斯蒂芬·威廉·霍金(Stephen William Hawking)所解出广义相对论中的爱因斯坦方程式,显示宇宙的时间是有一个起始点,由大霹雳(或称大爆炸)开始的,在此之前的时间是毫无意义的。而物质与时空必须一起并存,没有物质存在,时间也无意义。

卫星时钟系统为什么含有精确的时间信息? 地球本身是一个不规则的圆,加上地球自转和公转的误差,如果仅仅依靠经度、纬度、海拔高度三个参数来定位的偏差会很大,所以 引入了一个时间参数,每个卫星都内置了一个高稳定度的原子钟!

IEEE1588和高精度时间同步的方法

IEEE1588和高精度时间同步的方法[作者:阮於东] IEEE1588和高精度时间同步的方法 摘要 本文介绍网络时间同步和最佳时钟算法的概念,介绍用于分散测量和控制的精确时间同步协议IEEE1588的原理。 关键词:时间同步:时间标记:最佳时钟算法: IEEE1588 and Precise Time Synchronization Method Ruan Yu-dong SEARI Abstract:The paper introduce the time synchronization and the best master algorithm concept ,descripts the precise time synchronization principle of IEEE1588 protocol for networked measurement and control system 0引言 控制系统中的时间同步问题早就出现,而随着系统范围的扩大和分散控制的发展,通过网络联系的分散控制节点之间的时间同步变得越来越重要。系统中时间的使用通常有两种不同的应用类型:时间标记性应用和基于频率的应用。如配电应用可代表时间标记应用,在这种系统中绝对时间很重要,因为特定事件的定时不仅需要与本系统内的其他事件的时间作比较,而且由于电力系统的连贯性,经常可能需要与外部相关系统的事件的时间作比较。哪一个事件先发生?是电网A先跳闸,还是电网B先跳闸?这些事件相隔多少时间?在实际应用中这些事件可能发生在不同的地理区域。由于这个原因需要绝对时间值的概念,并且这个时间基准需要校正为世界各地使用的常用时间。由于特定的事件和报警是被打上时间标记的,只要这些时间标记具有相同的基准,就可以在事后进行这些事件的时间顺序的分析。 另一方面,在控制系统中存在大量基于频率的应用,如通过网络连接的多个分布驱动的协调控制,它们需要精确同时执行,因为它们不能过度拉伸或损坏驱动机架之间的织物。在这些应用中当这些驱动器是同步工作时过程最佳。如果每个驱动器精确地在同时采样反馈和执行控制算法,同时执行控制命令,那么作用力的施加是协调的。在这种应用中绝对时间不是很重要,但是控制周期的同步非常重要。 解决这些问题的关键是时间同步,时间同步的目的就是要将时间基准准确地传递到各控制点,传递并不困难,难于达到的是传递的精度。在2002年出现的IEEE1588标准(网络化测量和控制系统的精确时钟同步协议,通常称为Precision Time Protocol[PTP])在这方面取得了重大进展。使用这个方法并不需要很多资源就可以达到100纳秒级的同步精度。 IEEE1588标准出现后得到业界高度重视,在2002年,2004年举办专业会议,2006年将举办第三次专业会议。工业控制的领先厂商Rockwell,Siemens等立即投入产品开发,IEC已将它转化为IEC61588-2004标准,这个标准已为Ethernet/IP,Profinet,PowerLink,EtherCat 等基于以太网的总线采用,成为当前普遍采用的方法。

高精度大屏幕LED日历时钟设计

论文题目:高精度大屏幕LED日历时钟设计 A high precision and large screen LED calendar clock design 系别: 专业: 班级: 姓名: 学号: 指导老师: 职称: 日期:

目录 目录 ................................................................. I 摘要 ................................................................. II 第1章引言.. (4) 1.1背景与意义 (4) 1.2论文设计 (4) 1.2.1 系统设计实现的目标 (4) 1.2.2 系统的总体设计 (4) 第2章需求分析 (5) 2.1需求分析 (5) 2.2 可行性分析 (6) 2.3开发及运行环境 (7) 第3章硬件电路设计 (7) 3.1单片机最小系统 (7) 3.2时钟芯片设计 (8) 3.2.1时钟芯片引脚介绍 (8) 3.2.2 4个控制寄存器介绍 (9) 3.3按键调整电路 (11) 3.4电源模块 (11) 第4章软件设计 (12) 4.1主程序流程 (12) 4.2 时间设置子流程 (12) 4.3闹钟设置子程序流程 (13) 4.4程序设计问题 (13) 4.4.1 按键抖动问题 (13) 4.4.2 蜂鸣器设置 (14) 4.4.3 液晶显示器设置 (14) 4.4.4中断设置 (14) 第5章测试 (15) 5.1测试软件介绍 (15) 5.2软件调试 (15) 结束语 (17) 致谢 (18) 参考文献 (19) 附录 (20) 程序代码: (20)

相关文档