文档库 最新最全的文档下载
当前位置:文档库 › 怎样控制隧道的工后沉降

怎样控制隧道的工后沉降

怎样控制隧道的工后沉降
怎样控制隧道的工后沉降

怎样控制客运专线隧道的工后沉降

无砟轨道铁路对线下工程变形有严格的限制要求,在无砟轨道铺设前需要对线下工程的工后沉降进行预测和评估,确认满足无砟轨道铺设条件后方能进行无砟轨道的铺设,因此,工后沉降在路基、桥涵、隧道工程中有着重要的意义。

1.工后沉降控制的作用、意义及其必要性

严格控制隧道工后沉降,控制隧道的不均匀沉降,才能保证客运专线铁路轨道高平顺性。这就要求隧道的设计和施工必须满足隧道的工后沉降小、不均匀沉降小,在动力作用下的变形小、稳定性高。铁路客运专线时速高,其基础设施标准一般按350 km/h 设计,为确保行车安全与乘客舒适,对线路的平顺性标准要求极高,线路工后沉降量,特别是无碴轨道线路的工后沉降量,一般应控制在2~3em内,几乎是“零沉降”。

2. 沉降问题现状与加强沉降控制意识

2.1 工后沉降问题现状

(1)现行铁路规范对工后沉降的规定,140km/h铁路一般地段不大于30em,桥台台尾过渡段不大于15em;160 km/h铁路一般地段不大于20em,桥台台尾过渡段不大于10em;200 km/h客货共线铁路一般地段不大于15em,桥台台尾过渡段不大于8em。

(2)目前工后沉降控制与应对的主要措施是预留沉落量、补碴抬道。

(3)长期以来,对工后沉降控制除施工预留沉降外,养护维修部门普遍采用补碴抬道这一简单的措施补救,而施工期间采取技术措施来控制工后沉降的意识则相当淡薄。2.2 加强沉降控制意识

(1)隧道的长度在整个线路长度中占有一部分比例,隧道的沉降将极大地影响线路的平顺性。

(2)由于客运专线采用无碴轨道结构,对下沉采用补碴抬道已不可行,必须采用积

极的、主动的预控措施,以确保隧道工后沉降控制在允许范围内。

(3)工后沉降控制是一项系统工作,涉及地质勘察、设计、施工、预测、沉降观测分析、补救等,必须重视每一个环节,进行全过程控制。

3.控制工后沉降的主要途径

3.1 加强技术培训,明确控制标准

(1)由于承包商对工后沉降控制缺乏经验,可聘请专家现场指导。加强技术培训,大力培训沉降观测人员、整理分析人员、计算预测人员,从控制方案、预测分析、观测操作上采取主动预控措施。

(2)制定隧道工后沉降控制标准。工后沉降及沉降差控制标准一般采用四项指标:工后沉降不大于30mm、不均匀沉降不大于20mm/20m、错台不大于5mm、折角不大于1/1000。3.2 重视黄土地质核查

(1)加强黄土地质核查,使采取的技术措施达到沉降预测与实际相符。

(2)在选定黄土的物理力学指标时,必须注意其地理环境、地貌单元、微地貌、沉积年代及成因类型等条件影响所产生的差异性,同时掌握这些自然条件与黄土性质之间的规律。

(3)黄土分布评价、湿陷性评价、现场浸水试验以及微观电镜分析是了解黄土的重要手段。

3.3 加强隧道沉降分析与预测

(1)沉降问题包括隧道本身的沉降、隧道周边的压缩变形,各类变形均包括沉降量与沉降过程两个方面。

(2)工后沉降量的延续时间考虑在实测曲线拟合的基础上外延预估,与计算值对比分析。实测曲线的拟合常用三点法和双曲线法。为了分析沉降过程,按一维固结理论计

算得到瞬时加载的沉降一时间曲线,按加载过程采用沉降量一时间关系进行修正,由修正后的曲线预估工后沉降及其完成所需的时间。

(3)沉降分析、预测采用半经验半理论模式,根据实测资料不断调整计算参数、模型,使预测与实测尽量吻合,确保实际工后沉降满足要求。

(4)积极开展地质核查、沉降预测等专题研究,以科研成果指导沉降分析、预测。3.4 做好隧道沉降观测(沉降变形观测技术要求)

(1)隧道沉降观测的主要目的是确定无碴轨道工程的施工时间及工后沉降量,确保工后沉降量满足要求。

(2)沉降观测以二等几何水准测量高程,观测精度不低于1mm。采用精密水准仪、铟化水准尺。观测做到四个固定:固定观测人员;固定仪器及水准尺;固定后视尺读数;固定测站及转点。

(3)隧道内一般根据地质围岩情况布设沉降观测断面,一般情况下,Ⅲ级围岩每400m、Ⅳ级围岩每300m、Ⅴ级围岩每200m布设一个观测断面。地应力较大、断层破碎带、膨胀土、湿陷性黄土等不良和复杂地质区段适当加密布设。隧道洞口至分界里程范围内应至少布设一个观测断面。

(4)每次观测完毕,及时绘制沉降点的时间一沉降量的关系曲线。

(5)隧道主体工程完工后,变形观测期一般不应少于3个月。

(6)观测期内,线下工程沉降实测值超过设计值20%及以上时,应及时会同建设、勘察设计等单位查明原因,必要时进行地质复查,并根据实测结果调整计算参数,对设计预测沉降进行修正或采取沉降控制措施。

(7)评估时发现异常现象或对原始记录资料存在疑问,可进行必要的检查。

(8)观测精度:线下工程沉降水准测量精度为±1mm,读数取位至0.1mm,剖面沉降

的测量精度为8mm/30m。

(9)沉降观测装置应埋设稳定,观测期间应对观测装置采取有效的保护措施。3.5 施工控制措施

隧道工后沉降的控制贯穿于隧道施工整个全过程。要控制隧道工后沉降满足设计要求,必须控制好隧道施工质量,全过程对质量进行控制、监测。主要从施工前对地质补勘(即对地质勘察深度及所采用的设计方法和计算参数进行复核审核),施工中对各施工部位填料特性全过程监控,施工完成后对隧道均匀或不均匀沉降及其沉降值监测、检查、调整等方面进行控制。对施工过程质量的控制要建立先进、可靠、精确、完整、有效的质量控制与检测体系,保证隧道工后沉降满足规范验标、设计要求。

总之,通过经验及技术验证总结出建立高精度测量控制网、科学的沉降观测方案及其实施、正确的工后沉降评估技术是实现隧道工后沉降有效控制的一个重要的环节和措施。

郭丹丹

2011年3月23日

路基工后沉降分析

路基工后沉降标准资料分析 随着高速铁路的发展,对路基工后沉降的要求越来越高。路基的工后沉降包括:路堤填筑部分的沉降和地基的沉降。一般路基施工完成后的工后沉降,路堤填筑部分的沉降极小,主要是地基的沉降。各国对路基工后沉降的要求是考虑线路维修养护条件及路基不均匀沉降差对线路的影响。 法国高速铁路对于有碴轨道不均匀沉降差为20mm/10m,最大沉降量为5cm;对于无碴轨道不均匀沉降差为30mm/20m,最大沉降量为5cm。 德国高速铁路对于无碴轨道考虑扣件调整范围为20mm,在保证轨道线形的情况下,路基工后最大沉降量为3倍的扣件允许调整量,则路基工后最大沉降量为6cm。 日本高速铁路对于无碴轨道考虑路基工后最大沉降量为3cm。 韩国高速铁路考虑路基工后沉降最大沉降量为7cm。(可能为有碴轨道) 台湾高速铁路考虑路基工后沉降标准是采用法国标准。 目前各国高速铁路在制定路基工后沉降标准时主要是考虑线路的维修养护标准,特别是考虑了无碴轨道结构对路基沉降的高标准要求,其工后沉降较小。从高速铁路线路平顺性考虑,路基应控制沉降差和最大沉降量。我们认为高速铁路路基是免维修的,而实际上高速铁路路基是处于常维护的状态(每天要对线路状况进行检查,按日常养护维修标准对其进行调整)。高速铁路的每2年要进行一次大的维修养

护。高速铁路的养护维修模式与一般铁路有了质的变化。 对于路基工后沉降应提出路基工后沉降差和最大沉降量的标准,供设计和施工考虑。路基工后沉降从轨道养护维修标准考虑,路基工后沉降差应考虑线路短波不平顺和扣件可调值,路基工后最大沉降量应考虑线路长波不平顺和钢轨位置的可调整量。 着国民经济的发展和人民生活水平的不断提高,旅客对于乘坐车辆舒适度和速度的要求越来越高,具体到客运专线而言,即是对路桥结构变形和强度指标的要求越来越高。从德、法、日三国针对我国高速铁路设计咨询结果来看,德、法强调控制路基的不均匀沉降,其追求沉降的目标是不均匀沉降为零;工后沉降5cm或3cm的指标相对而言较为严格,如何确保路基沉降变形满足质量标准要求成为路基工程的重点课题。我国很早开始对高速铁路基础关键技术进行了一系列的研究,在借鉴国外高速铁路大量理论、试验和建设实践的基础上,相继制定了有关设计暂行规定和设计指南,初步形成了我国客运专线技术体系。为保证列车高速、平稳、舒适、安全运行,我国相关规定路基工后沉降量不应大于5cm,沉降速率应小于2cm/年,桥台台尾过度段路基工后沉降量不应大于3cm;无蹅轨道路基工后沉降量不大于15mm,不均匀沉降变形20mm/20m。详见表1-1。 二、路基沉降的概念 1.工后沉降:在铺轨工程完后(指有蹅轨道工程竣工或无蹅轨道道床工程完后,下同)以后,基础设施产生的沉降量。工后沉降标准与项目建设速度目标、轨道类型、施工类型、施工日期、轨道维修养护标准和维修周期、工程投资大小等因素相关,同时也与地质勘探试验、沉降计算、沉降观测、工后沉降预测等的方法和精度密切相关,表1-1正是上述思想的反映。 2.均匀沉降:铺轨工程完成后,一定区域范围内路基沉降量的相同性及其分布。 3.不均匀沉降:铺轨工程完成后,一定区域范围内不同测点路基沉降量的差异大小及其分布。 4.台后沉降:铺轨工程完成后,桥台台尾过渡段路基工后沉降量。 5.差异沉降:铺轨工程完成后,路基与桥台、隧道等结构物间的沉降变形量差。 三、路基沉降的组成 路基的变形主要由路基本体和地基基础的变形组成;路基本体的变形通常指机床表层、机床底层和基床下路堤的变形。路堤结构各部的沉降组成见表3-1。 1、基床表层:通常由级配碎石或级配砂砾石组成。基床表层的变形在填筑完成约1周后基本自调完毕,该变形量可以忽略不计。

铁路路基施工中关于地基下沉问题分析

铁路路基施工中关于地基下沉问题分析 发表时间:2018-08-28T12:01:46.563Z 来源:《建筑学研究前沿》2018年第10期作者:李亮亮[导读] 在经济高速发展的今天,我国对于基础设施的投入呈现逐年增加的态势。中铁十八局集团轨道交通工程有限公司天津市 30000 摘要:目前,随着我国经济发展速度的加快,从而为民众提供了更加丰富的出行机遇。其中,铁路由于具有速度快以及优越的安全性等优势,使得其成为的民众公出、旅游等常用的交通工具。此外,鉴于我国铁路提速频率的加快,传统铁路设施由于建造标准较低,使得其难以满足现阶段铁路运载的要求,从而造成铁路路基出现下沉,对铁路运行的稳定性方面有所影响。本文将对铁路路基施工中关于地基 下沉问题进行简要分析,以供参考。关键词:铁路路基;施工;地基下沉 引言:在经济高速发展的今天,我国对于基础设施的投入呈现逐年增加的态势。与此同时,随着民众出行需求的提升,我国在近几年对于铁路基础设施的投入处于持续增长的态势。其中,在铁路路基施工过程中,由于火车对于铁路路基存在着巨大的荷载作用力,导致地基极易出现下沉,进而严重的威胁铁路中火车运行的稳定性。所以,为了保障铁路可以安全、稳定的运行,急需采取措施对地基下沉问题予以解决,对于提升我国铁路设施建设水平有着关键的意义。 一、铁路路基施工中地基下沉问题相关简述在铁路路基施工过程中,地基下沉是其中最为常见的问题。其中,铁路地基下沉情况的出现,将会造成铁路机床出现形变,对列车运行的稳定性造成影响。在对地基下沉进行分析后发现,均匀下沉与不均匀下沉是其中两种下沉方式,而最具危害性的便是不均匀下沉。此外,存在多种因素导致铁路路基出现下沉,而地基填筑的强度与密度不达标是导致此问题出现的直接原因。与此同时,铁路地基同样存在较多因素的制约,例如,铁路中列车的行驶速度、地基土层结构特性以及地基中的地质水文状态等。同时,地基下沉问题的检测技术与其下沉原因有着密切联系,所以需要对地基下沉进行确切分析后,方可对检测技术进行有针对性的选择,其中常用的检测方法有物探法、静力触探检测法以及落锤式路基刚度检测法等。 二、铁路路基施工中地基下沉问题的具体原因 1、地基土层特性的影响对于地基沉降问题的产生因素而言,地基土层特性是其中影响最为密切的因素。一般来说,以下几方面因素对地基土层的特性有所影响,即:(1)土层的颗粒组成特性会对地基沉降产生重要的影响。在实际中,铁路路基地基沉降“病害”问题主要出现在粉质性粘土、砂性粘土、石质风化较为严重的基床等特性土层上。(2)土层的可塑性也是影响地基沉降的一个主要因素,根据相关实践,出现地基下沉问题的土层液限指标要大于32,而土层可塑性指数要大于12,低于这个数值范围的土层基本不会出现地基下沉问题。因此,在铁路路基施工过程中要对基层土层的可塑性进行科学测算。 2、列车荷载对地基沉降产生的影响列车在运行的过程中会对地基产生重复载荷的冲击作用,导致地基的土体结构发生变化,进而在道床枕木下的基床表层产生积水坑、道砟坑等问题。如果在降水较多的季节,地基填土的饱和度会大大增加,土体的强度在列车荷载的冲击下逐渐变弱,形成翻浆冒泥,造成道床稳固性能急剧下降。如果没有进行及时处理,会对列车的行车安全产生极为不利的影响。 3、温度和水等要素对地基沉降产生的影响温度会对地基土壤的结构产生影响。在寒冷的冬季,铁路路基经常会出现不均匀的冻胀问题,加剧地基沉降“病害”。铁路路基沉降的大部分原因都与水有着较大的关系,水会对地基产生侵蚀、造成地基软化、破坏地基结构等,从而导致地基沉降问题的出现,且水分较多的土壤对地基沉降产生的影响更为明显。 三、铁路路基施工中地基下沉问题的解决对策 1、科学地预测和评估地基下沉变形问题科学地预测和评估地基下沉变形问题,是解决铁路路基地基下沉问题的重要基础。一般情况下,相关人员需要在铁路路基施工结束后,设置相应的沉降变形监测断面,对铁路路基下沉的状态进行实时动态的监控,从而在第一时间内掌握地基下沉的情况。 2、强化铁路路基及地基填料的质量控制在铁路路基的施工过程中,不同路段选择的路基填料是不同的。为了确保填料施工质量控制效果,要对不同类型的土壤进行相应的对比试验,一般情况下,铁路路基及地基填料对比试验主要有三个。首先,在使用同样压实机械的情况下,为了让不同性质的土壤达到相同的压实度,从而对土壤的压实系数与填料的摊铺厚度间的关系进行试验确定,在对比相关指标要求的基础上,选择最适合的填料材料对地基进行换填。其次,对填料土壤的液限值以及塑性联合值进行相关测试,即进行击实试验和实验筛分两个测试。最后,从工程经济性的角度出发,对填料进行选择,即在确保铁路路基及地基填料符合地基土壤特性和相关压实要求的基础上,兼顾工程经济效益,如,是选择AB 组填料还是对土质进行改良等,以确保铁路路基下沉问题控制方案的整体效益。 3、完善路基的排水系统水是铁路基床的“病害”之源,要对铁路路基的综合排水系统进行有效改善,才能确保路基边坡的稳定性。尤其是在膨胀土地段的铁路地基,更要确保地基排水系统的通畅度,避免出现积水冲刷路基的现象发生。另外,在实际施工过程中,为了有效改善地基下沉问题,确保边坡的质量和稳定,往往会铺设土工隔栅和骨架防护以强化加固效果,并在路堤和路堑边坡上种植灌木,避免出现溜坍的现象。 4、做好过渡地段的处理工作桥涵过渡地段是铁路路基下沉“病害”发生的主要地段,一定要对过渡段进行妥善处理。一般是在过渡段使用级配碎石进行填筑,个别地段还应对地基采取CFG桩或混凝土搅拌桩进行加固处理等,且填筑的时间要与路基施工的时间保持同步,从而确保地基的强度、刚度和平稳度。 5、其他控制措施

围墙基础沉降处理方案

场地塌陷处理专项 施工方案 山西潞安工程有限公司 2016年8月

目录 第一章编制说明与依据 (1) 第二章工程概况 (1) 第三章地基塌陷处理方案 (1) 第四章质量保证措施 (2) 第五章安全文明施工措施 (3)

第一章编制说明与依据 1.1编制说明 为了尽快处理围墙地基塌陷问题,项目技术人员在深入、细致地现场勘查,结合本企业同类工程施工经验、技术资料和行业内已妥善处理的类似案例,编制本施工方案。 1.2编制依据 1)现行规范: 《建筑工程施工质量验收统一标准》GB50300-2013 《建筑施工规范大全》2002版 《砌体工程施工质量验收规范》GB50924-2014 第二章工程概况 2.1工程现状 1)机械、设备、施工人员已到位。 2)对处理塌陷所需施工材料进行采购。 第三章地基塌陷处理方案 3.1施工部署 3.1.1施工组织机构:由工长负责组织实施,其他人员配合。施工所需材料、劳动力计划均由工长负责编制,材料员负责组织进场。技术交底由工长负责。 3.1.2劳动力准备:施工需要泥瓦工3名,技术人员1名,质量员1名。上述人员均必须持有相应操作上岗证。(以上为基本配备人员,视裂缝修补工作量的大小,操作人员可做增减)。

3.1.3材料准备:所用材料一次备齐。各项材料应有出厂合格证、检验报告等质量证明文件。 3.1.4施工条件: 1)项目技术负责人、施工员、质量员、测量员、专业安全员等管理人员必须全部到岗;所有施工人员需经过专项安全操作教育。 3.2处理步骤 场地塌陷质量问题,要根据检查情况,判断其严重程度,对症下药,才能起到最佳的解决效果。经过技术人员、业主现场查看,确认本工程塌陷是由于地基软弱大雨浸泡后造成的。因此,现场主要采取对塌陷区域地基换填方案。换填范围为塌陷区域外扩一米,回填采用素土分层夯填,厚度为每步300mm厚,压实遍数3-4遍。地基处理完成后,恢复地面原有建筑。 第四章质量保证措施 1、处理专项方案需经监理单位的专业工程师审批同意后,报建设单位同意后,工程才能实施。 2、施工过程中,加强对施工人员的教育,在质量事故处理中,全体施工人员树立起“质量第一”的意识,并落实到到各个施工环节及日常管理中去,确保整改过后,排除围墙沉降及开裂带来的安全隐患,做到质量达标,验收合格。 3、认真实施本项目的质量保证体系,严格执行技术标准、规范要求。实行项目经理、技术负责人负责制,施工技术人员岗位责任制,并根据现场整改进度情况,实行严格的监督检查措施。

隧道沉降观测方案

中交第一公路工程局有限公司 CHINA FIRST HIGHW A Y ENGINEERING CO.,L TD. 新建沪昆铁路客运专线长沙至昆明段(贵州)CKGZTJ-4 标二工区 隧道沉降变形观测方案中交第一公路工程局有限公司沪昆客专贵州段工程指挥部二工区 二○一一年一月

目录 一、总则 (2) 二、主要依据的标准及规范 (2) 三、沉降变形监测网建立及测量技术要求 (2) 四、一般规定 (3) 五、沉降观测的内容 (4) 六、沉降观测点的布置 (4) 七、观测精度 (4) 八、沉降观测频度 (4) 九、分析评估方法及判定标准 (5) 十、组织与管理 (6) 一、总则 1、为指导沪昆客运专线贵州段土建工程四标段二工区做好施工期间的沉降观测,通过对隧道工程的沉降观测资料进行分析,预测工后沉降,确定无碴轨道的铺设时间,评估路基工后沉降控制效果,确保无碴轨道结构的安全,制定本方案。 2、无碴轨道铺设条件评估的重点是线下工程的变形,评估综合考虑沿线路方向各种结构物间的变形关系进行实施。 3、基础工程的沉降观测数据必须采用先进、成熟、科学的检测手段取得,且必须真实可靠,全面反映工程实际状况。 4、本规定适用于施工期及正式验收通过前的沉降观测评估工作。 二、主要依据的标准及规范 1、《客运专线无碴轨道铺设条件评估技术指南》(铁建[2006]158号); 2、《高速铁路工程测量规范》及条文说明(TB10601-2009); 3、《工程测量规范》(GB50026-2006) 4、《国家一、二等水准测量规范》GB12897-2006 5、《客运专线铁路变形观测评估技术手册》工管技2009-77号 6、沪昆客专隧道设计图纸 三、沉降变形监测网建立及测量技术要求 1、沉降监测网的建立、精度要求等应符合相关规范的要求; 2、沉降监测网应在施工高程控制网的基础上进行加密建立,按二等水准测

路基沉降的原因及处理措施

路基沉降的原因及处理措施 作者:唐勇军来源:本站原创发布时间:2010年01月06日点击数: 1275 摘要:文中就路基沉降的原因进行了分析,并就路基产生沉降的处理措施进行了探讨,指出应从设计方法与施工两个方面着手,分析路基沉降造成的原因并采取切实有效的措施,以避免及减小路基沉降的发生。 关键词:路基沉降原因措施 路基是路面的基础,路基不均匀沉降必然会引起路面的不平整,导致路面产生许多病害,主要表现为坑凹、起拱、波浪、接缝台阶、碾压车辙、桥头或涵洞两端路面沉降、桥梁伸缩缝的跳车等,不仅难以满足汽车高速行驶的要求,而且还会增加汽车的燃料消耗和轮胎磨损,加大运输成本,增加运输时间,降低社会经济效益甚至危及行车安全。 一、路基不均匀沉降的原因 造成路基不均匀沉降的原因很多,下面笔者从以下几点进行论述:1. 1路基填土压实度不足 由于压实度不足,往往导致填方路基的不均匀沉降变形,路基两侧出现纵向裂缝,路基土体压实度不足的主要原因有以下几点: (1)施工受实际条件的限制。路基施工时,天气太干燥,局部路堤填料粘土土块粉碎不足致使路基压实度不均匀;暗埋式构造物处因构造物长度限制使路基边缘不能超宽碾压,致使路基边缘压实度不够;某些加减速车道与行车道没有同步施工,当拼接处理得不好时,其拼接处也会产生压实度不足的情况。

(2)考虑到施工安全和进度,使得压力或压力作用时间不足,路基压实不充分,致使路基压实度达不到规范要求。 (3)由于填方土体的最佳含水量控制不好,压实效果达不到规范要求。 (4)在填方路堤施工中,当路堤施工到一定高度以后,路堤边缘土体往往存在压实度不足问题,对于较高的填方路基,通常都要做相应的处治。 填方土体压实度不足,其结果是土体前期固结压力小于自重应力和各种附加应力之和,在自重作用下就会发生沉降变形,这些附加应力主要来自以下几个方面: ①车载,尤其超载情况;②含水量变化造成土体容重的改变;③地下水位升降而导致浮力作用改变;④土体饱和度改变,引起负孔隙水压力改变。这些附加应力引起土体中有效应力改变,从而导致土体发生压缩变形。 土体压实度不足还会导致填土路基的侧向变形。目前采用的地基沉降计算方法是假定侧向完全受限,仅有竖向变形,实际路基土中存在有侧向变形,这种侧向变形会引起沉降。 1.2路堤填料不均匀,控制不当 在公路施工过程中,对填料、级配很难得到有效的控制,填料常常是开挖路堑、隧道掘进产生的废方,这些填料性质差异大、级配也相差很远。一方面,在施工过程中,如果分层碾压厚度过大,小颗粒填料和软弱物质很难得到有效压实,在荷载的长期作用下,回填料会产生不协调沉降变形,路面会产生局部沉陷,刚性路面还可能产生裂纹。

城市浅埋暗挖隧道沉降控制与分析

城市浅埋暗挖地铁隧道沉降控制与分析 中铁十三局集团二处南京地铁TA25项目部 蒲开勇范文兴黄捷胜 【摘要】本文按地面建筑物沉降、地面沉降变形的不同要求对沉降控制问题作出分析,给出了相关的控制基准经验公式,结合南京地铁鼓楼站-玄武门站区间具体情况,对浅埋暗挖隧道地表、建筑沉降进行细致监测,并根据现场实测数据进行较为深入的分析,阐述在设计及施工浅埋暗挖地铁隧道时应注意的事项,以供类似工程参考。 【关键词】地铁隧道浅埋暗挖沉降监测控制分析 引言 随着城市地铁在我国的陆续兴建,浅埋暗挖法在地铁隧道施工中得到广泛的应用,由于其埋置深度小,随着地层物质被挖出,自洞室临空面向地层深处一定范围内地层应力场将发生调整,宏观表现为地层物质的移动,施工引起的地层变位将波及地表,产生地面沉降,形成施工沉降槽,过大的地面沉降和地层变位将直接危及地面建筑物的正常使用,进而危及施工安全,因此施工中必须对有害沉降进行控制,这就要解决沉降的控制基准问题,并通过控制基准在施工过程中对地面建筑、地表沉降等,在理论分析指导下进行有计划的监测,以监测数据为依据,对暗挖隧道进行动态管理。 1.工程概况 南京地铁南北线一期工程TA12标鼓楼站~玄武门站区间隧道开挖方法为矿山法,在鼓楼站北修建一停车渡线,其起始里程为K10+337.7,终点里程为K10+671.286,渡线段长333.586m,实际施工开挖最大断面(马蹄形)。该段覆土厚度11.9~17.30m。地质情况从上至下依次为松散~稍密状杂填土、软塑状粉质粘土、残积土、强风化安山岩、中风化破碎安山岩。区间地下水主要为松散层的孔隙潜水和基岩裂隙水,地下水位埋深 1.2~4.5m。渡线段地表建筑物、地下管线较密集且安全度较低。地表有二层以上建筑物19幢,建筑物最早年代为1947年;部分建筑物已有多条裂缝;玄武门站南端有307.6 m的软~流塑地质段,该段土体具有高压缩性,高灵敏度,易产生土体流动、开挖面不稳等现象,地面有五层住宅楼3幢和两层砖房两处(为民国时期建筑)并穿越市区道路。 2.沉降控制基准值的确定 沉降控制基准由两个方面确定:其一是出于环控的需要;其二是出于隧道工程结构稳定本身的需要。实施的控制基准必须两者兼顾。 沉降对城市环境、隧道结构本身造成的危害主要表现在地面建筑物的过量倾斜及地下管线的变形、断裂而影响其正常使用和威胁结构安全。通常的地面沉降控制值即是出于对环境和结构稳定要求的考虑,其根据主要来源于已有的建设规范及以往的工程实例。但是由于地面建筑及地下管线种

墩台工后沉降、变形控制技术措施

墩台工后沉降、变形控制技术措施 1,地基条件判定和核实: (1)明挖基坑地质条件判定与核实: 工程地质相似比较法:根据施工图纸中所附地质条件说明,对所开挖基坑的地层断面、地下水情况进行对比,尤其是对基底的地层岩性与结构进行核查,判定其条件是否满足设计要求; 承载力判定法:当基坑开挖距基底30~50cm时,根据基底土层岩性选定动力触探类型,判别承载力是否满足设计要求;对每个基坑承载力至少检查9个点,根据基底岩性检测方法分别采用N63.5动力触探或标准贯入试验。 (2)钻孔桩地质条件判定与核实: 补充钻孔勘探法:钻孔内未见采空区或掏煤洞时,每个桥墩考虑3孔(周边出露岩层或钻孔发现有采空区或掏煤洞时,每墩5孔);钻孔见采空区或掏煤洞时,逐桩勘探。施工过程中的施工记录与勘测钻孔资料进行对比。 2,明挖、挖井基础沉降的技术保证措施及方法: 机械开挖基坑离设计高程应保留30cm,由人工清除,经检查地质情况符合设计要求后及时进行基础施工。 基础浇筑前不得泡水。当发生泡水情况时,应复查地基承载力,并根据情况对地基表层进行处理,使地基承载力满足设计要求。 施工中采取可靠的降排水措施,保证砼浇筑在无水条件下施工,并保证砼在终凝前不得浸水。

建立桥梁基础沉降观测系统,在承台上埋设观测点,定期对其观测记录。 3,桩基础沉降的技术保证措施及方法: 在准确探明地质的条件下,采取施工措施控制沉降: ⑴钻孔桩要支承于可靠的持力层内; ⑵钻孔桩成孔采用悬浮力强、比重较小的高性能泥浆,机械排渣和清孔,电子测孔仪检测孔底沉渣厚度及成孔质量; ⑶缩短空孔时间,及时灌筑桩身砼。对成桩质量进行检测; ⑷在正式施工前进行试桩。通过载荷试验,检测桩基的承载力与桩基的沉降数据,取得能满足基础沉降要求的、经济的桩基设计参数。 (5)置于土层、岩层的全风化和强风化层的桩基础,进行单桩静载试验,确定桩基础的承载力和沉降值,以满足设计及施工规范要求。4,墩台工后沉降的技术保证措施及方法: (1)桥梁墩台基础变位限值的要求 墩台基础的沉降量按恒载计算。对于外部静定结构,其墩台总沉降量与墩台施工完成时的沉降量之差不得超过下列容许值:墩台的均匀沉降量不得超过设计值,相邻墩台沉降量之差不应超过设计值。 (2)测试数据的取得 所有桥梁的墩台顶部两侧均预埋N16钢管并套丝,顶端安设M16带帽不锈钢螺杆。测量体系的设置考虑了各个施工阶段和运营期间的测试,以便获取更多的数据,校核测试结果。仪器采用精密水准仪,测量控制精度为1mm。架梁前,每周观测一次,架梁后第一个月,每

铁路路基病害类型

铁路路基病害按表现形式可分为翻浆冒泥、路基下沉、挤出变形、边坡坍方、边坡冲刷、陷穴、滑坡、水侵路基、冻害等。 1.1.1翻浆冒泥 路基强度因含水过多而急剧下降,在行车作用下发生裂缝、鼓包、冒泥等现象,称之为翻浆。 翻浆冒泥一般易发生于基床土质不符合要求的部位,特别是以细粒土作路基填料、风化石质作基床,降雨量大的路堤和路堑地段为病害多发地段一定条件的含粘粒、粉粒的基床表层土在和列车反复振动的作用下,发生软化或触变、液化,形成泥浆。列车通过时轨枕上下起伏使泥浆受挤压抽吸而通过道床孔隙向上翻冒,造成道碴脏污、板结进而使道床降低或丧失弹性。轨道几何尺寸变化.危及行车安全。翻浆冒泥分为土质基床翻浆、风化石质基床翻浆和裂隙泉眼翻浆。 1.1.2路基下沉 路基下沉主要是路基填筑密度不够和强度不足所致,表现形式有路基下沉、道砟囊或道砟袋。填方路基下沉导致断面尺寸改变的病害现象,为路堤沉陷。由于路基土密实度不足或地基松软。在水、荷重、自重及振动作用下发生局部或较大面积的竖向变形。一般经过列车运行一段时间后。下沉会趋于缓解。但有时冈荷重增加或水的作用使沉降速率加大。局部下沉也会造成陷槽使线路不平顺。下沉分为基床下沉、堤体下沉和基底下沉 1.1.3挤出变形 表现形式有路肩隆起、侧沟被挤,路肩外挤和边缘外膨。主要是由于土体强度不足而产生的剪切破坏或塑性流动,基床内的土经常处于软塑状态,在基床内的影响深度较大,在列车

荷载的作用下,基床上发生剪切破坏,发乍外挤变形。外挤是因为基床强度不足引起,。外挤分为路肩隆起、。 1.1.4边坡坍方 坍方的表现形式有剥落、碎落、滑坍和崩坍。剥落、碎落、滑坍主要发生在路堑边坡。剥落是指边坡表层土壤,岩石风化成零碎薄片,从坡面上脱落下来的现象,剥落碎屑的堆积。会堵塞边沟,影响路基稳定。 碎落是岩石碎块的一种剥落现象.落石产生的冲击力可使路基、路面遭到破坏,威胁行人及车辆的安全。崩坍是大量土石脱离坡面翻滚于边坡下部形成倒石堆或岩堆的现象。 崩坍的土石方往往造成交通中断,也是危害最大的路基病害。崩坍的发生主要是路堑的开挖使原有自然坡面失去平衡所致。滑塌是指边坡上的大量土石沿着一定滑动面整体向下滑移的现象。 1.1.4边坡冲刷 边坡冲刷指较高大的土质路堑、路堤边坡、岸坡(滨河、河滩、海滩和水库(塘)的路堤边坡)或严重风化的软质岩石边坡受到水流的冲蚀、冲刷作边坡冲刷用向形成冲沟或冲坑为边坡冲剧。边坡冲刷分为边坡淘刷和边坡冲沟。 1.1.5陷穴 陷穴指路基下及其附近存在洞穴,其坍塌可引起基床和道床突然沉落.轨道悬宅,中断行车,甚事造成列车颠覆。陷穴病害分为黄土陷穴、岩溶洞穴、盐蚀溶洞和墓穴兽洞等。 1.1.6 滑坡 滑坡指影响路基稳定的土(岩)体滑动。分为边坡的深层滑动、路基滑移及山体滑坡。

砖砌围墙施工方案_最新版

砖砌围墙施工方案 1 设计要求 (1)围墙采用砖砌,墙厚240mm,高2.5m,总长约1.3km(以业主代表现场收方为准)。两侧用灰白色合成树脂乳液外墙涂料,墙面分格条宽12mm深8mm。 (2)沿围墙纵向每4m设置360×360mm砖壁柱。 (4)挖填方交界处,基础高差较大时或围墙长度超过30米(实土地基)或9米(填土地基)时,应设置沉降缝或伸缩缝(可合在一起设置),缝宽25mm,缝内用沥青麻丝填充,缝处设双壁柱。 (5)围墙基础下土层为填土地基时,基础下回填土层应分层压实,压实系数不小于0.94,每层厚度为300mm,再置换3:7砂石垫层压实,厚0.5m,每边比基础宽300mm。基础宽500mm,高600mm。采用M7.5浆砌片石基础。 (7)砖墙外侧50cm处沿墙走向设排水沟,排水沟采用砖砌,2cm厚M10砂浆抹面,沟内侧宽300mm,深600mm,墙厚120mm。 第五,砖墙基础±0.000m标高以下部分采用同一材质,±0.000m 标高处设防潮层,用1:2水泥砂浆,内掺5%防水剂25mm厚; 第六,砖采用蒸压灰砂砖等符合要求的砌体材料,砖墙砌筑砂浆采用混合砂浆或水泥砂浆,强度等级M10,砂浆饱满度不得小于80%,缝宽10mm。 (9)质量要求: 第一,轴线位移偏差≤5mm(每100m);

第二,平整度偏差≤5mm; 第三,垂直度偏差≤10mm; 第四,墙顶水平偏差≤10mm; 第五,墙身截面尺寸偏差-5mm~+8mm。 图1.3-1 围墙平面图 图1.3-2 围墙外立面图 图1.3-3 围墙内立面图

图1.3-4 围墙剖面图 图1.3-5 围墙水沟 2 施工工艺要点 (1)在围墙基础施工过程中,对轴线控制桩应经常进行复测,以防桩位移影响围墙施工定位。 (2)围墙基础基槽开挖时,至基底设计标高,留300mm土层人工清底、修坡,基槽挖好后,要防止雨水及地下水浸泡,开挖完成后

黄土地质地铁隧道施工降水与沉降控制

黄土地质地铁隧道施工降水与沉降控制 摘要:地铁暗挖隧道施工降水的成功与否是决定隧道施工安全、优质、高效完成的保证,又是地层沉降控制的关键。针对西安特有的黄土地质条件下地铁深基坑施工,从土层地质、水文、降水方式、降水参数等各个方面进行分析和研究,对黄土地质条件下地铁深基坑降水与沉降控制的施工技术进行了阐述。 关键词:黄土地铁隧道施工降水沉降控制 1工程概况 西安地铁一号线朝阳门站~康复路站区间隧道起始于朝阳门车站,沿长乐西路向东,下穿中兴路人行天桥,终止于康复路车站;左右线隧道分别长774.597米、776.2米,均采用喷锚构筑法施工;左右线隧道线间距15米,拱顶埋深约14.87米(朝阳门端)~9.48米(康复路端),隧道按照地质地段不同分为a、b、c、d、e五种断面结构。区间隧道在zdk22+651.627~zdk22+695.851段下穿中兴路人行天桥,天桥基础为钻孔灌注桩基,桩长30m,桩径1m,桩基础与隧道的最小净距0.487m。区间隧道在z(y)dk22+534.604和z(y)dk23+247.780处设置两个施工竖井;在zdk22+751.197(ydk22+750.950)处设置联络通道兼废水泵房一座。f 朝阳门外地裂缝在区间近朝阳门车站段通过,f4地裂缝在区间近康复路车站段通过。 2 工程地质特征 2.1地形地貌

朝康区间隧道位于长乐西路下方,区间场地标高404.99~407.91m,全段东高西低,高差2.92m,地貌单元属黄土梁洼。 2.2工程地质 2.2.1全更新统地层(q4) 1-1层杂填土():主要以路面及路基组成,较密实,全场地分布,层厚0.7~1.9m,层底深度0.7~1.9m。 1-2层素填土():主要有黏性土组成,含白灰渣及少量砖瓦碎块,较松散,局部分布,属高压缩型土,具湿陷性,层厚0.7~5.10m ,层底深度1.20~5.80m。 2.2.2全更新统地层(q3) 3-1-1层新黄土():褐黄色,大孔、虫孔发育,ā1-2=0.88mpa-1,硬塑-可塑状态,属高压缩型土,δs2.0=0.041,具湿陷性,层厚0.5~5.50m ,层底深度3.00~6.50m。 3-1-2层饱和软黄土():褐黄色,大孔、虫孔发育,见少量白色钙质条纹及蜗牛壳碎片,ā1-2=0.32mpa-1,属中压缩型土,i=0.95,软塑,局部流塑,s=96%,层厚2.50~10.30m ,层底深度8.70~13.70m。3-2-2层古土壤():红褐色,具针状孔隙,含多量白色钙质条纹及结核,团粒结构,底部结核富集成30cm左右硬层。可塑,ā1-2=0.25mpa-1,属中压缩型土。层厚3.20~5.50m,层底深度12.50~18.30m。 2.2.3全更新统地层(q2) 4-1-2层老黄土(): 褐黄色,具针状孔隙,含少量钙质结核,可塑

建筑物沉降观测实用标准及验收要求规范47375

高层建筑沉降观测技术的应用 摘要: 随着社会的不断进步,物质文明的极大提高及建筑设计施工技术水平的日臻成熟完善,同时,也因土地资源日渐减少与人口增长之间日益突出的矛盾,高层及超高层建(构)筑物越来越多。为了保证建构筑物的正常使用寿命和建(构)筑物的安全性,并为以后的勘察设计施工提供可靠的资料及相应的沉降参数,建(构)筑物沉降观测的必要性和重要性愈加明显。 关键词:高层沉降观测

前言 随着社会的不断进步,物质文明的极大提高及建筑设计施工技术水平的日臻成熟完善,同时,也因土地资源日渐减少与人口增长之间日益突出的矛盾,高层及超高层建(构)筑物越来越多。为了保证建构筑物的正常使用寿命和建(构)筑物的安全性,并为以后的勘察设计施工提供可靠的资料及相应的沉降参数,建(构)筑物沉降观测的必要性和重要性愈加明显。 现行规范也规定,高层建筑物、高耸构筑物、重要古建筑物及连续生产设施基础、动力设备基础、滑坡监测等均要进行沉降观测。特别在高层建筑物施工过程中应用沉降观测加强过程监控,指导合理的施工工序,预防在施工过程中出现不均匀沉降,及时反馈信息为勘察设计施工部门提供详尽的一手资料,避免因沉降原因造成建筑物主体结构的破坏或产生影响结构使用功能的裂缝,造成巨大的经济损失。 根据本人在高层建筑施工过程中沉降观测的应用,在此对高层建筑施工过程中沉降观测工作浅谈管窥之见。

一、沉降观测的基本要求 1、仪器设备、人员素质的要求 根据沉降观测精度要求高的特点,为能精确地反映出建构筑物在不断加荷作下的沉降情况,一般规定测量的误差应小于变形值的1/10——1/20,为此要求沉降观测应使用精密水准仪(S1或S05级),水准尺也应使用受环境及温差变化影肉小的高精度铟合金水准尺。在不具备铟合金水准尺的情况下,使用一般塔尺尽量使用第一段标尺。 人员素质的要求,必须接受专业学习及技能培训,熟练掌握仪器的操作规程,熟悉测量理论能针对不同工程特点、具体情况采用不同的观测方法及观测程序,对实施过程中出现的问题能够会分析原因并正确的运用误差理论进行平差计算,做到按时、快速、精确地完成每次观测任务。 2、观测时间的要求 建构筑物的沉降观测对时间有严格的限制条件,特别是首次观测必须按时进行,否则沉降观测得不到原始数据,而是整个观测得不到完整的观测意义。其他各阶段的复测,根据工程进展情况必须定时进行,不得漏测或补测。只有这样,才能得到准确的沉降情况或规律。相邻的两次时间间隔称为一个观测周期,一般高层建筑物的沉降观测按一定的时间段为一观测周期(如:次/30天)或按建筑物的加荷情况

浅谈铁路路基沉降的控制办法

浅谈铁路路基沉降的控制办法 摘要: 随着我国铁路建设事业的蓬勃发展,建设高等级铁路的规模不断加大, 提升铁路建设的科技含量是铁路建设工作者义不容辞的责任。本文从路基沉降观测,路基沉降的原因进行了分析,并针对易发生路基沉降的部位提出了一些预防方法。 关键词:路基沉降控制 为满足铁路运输需要, 保证运输安全, 提高铁路路基质量, 铁道部建设公司近十几年先后几次对铁路路基设计规范进行了修订, 在我国铁路跨越式发展时提出了“强本简末”的要求, 设计标准有了很大提高。随着国家铁路的第六次大提速的完成, 快速铁路对路基的基床承载力与沉降变形要求更高, 仅局限于选线时尽量绕避不良地质地段, 避免高填深挖是不够的, 铁路路基的填料选择、沉降控制与观测、提高路基的防排水能力、加强过渡段设计及加强路基支挡防护设计显得更加重要。其中, 铁路路基的填料种类、压实标准与铁路路基的沉降控制有着密切的联系, 因此,本文就铁路路基的填料选择与沉降控制这两方面谈一下自己的看法及建议。 1、路基填料 1.1 路基填料适用性判别 高等级铁路的路基填筑标准及对路基工后沉降的要求均远高于普通铁路。因此必须特别重视对路基填料的勘察、鉴定、分类工作, 慎重对待取土场的选择。对填料需严格把关, 在勘察设计阶段就应当作为一项专门的工作来进行, 对其工程特性,适用性进行必要的试验工作后作出专门的评价, 以确定该取土场的填料用作路基本体或基床底层是否合格, 否则需考虑改良土方案或变更取土场。 由于地区不同, 路基填料也千差万别根据《铁路路基设计规范》相关规定, 对于巨粒土、粗粒土填料根据颗粒组成, 颗粒形状, 颗粒级配、细粒含量、抗风化能力等来分为A、B、C 、D组, 细粒土填料根据液限含水量ωL进行填料分组, 当ωL<40%时为粉土, 为C组,当ωL≥40%时为黏性土,为D组, 有机土为E组。 1.2 特殊填料在路基中的应用 在比较平坦的地区, 铁路路基取土较困难, 传统做法是在考虑经济成本与可行性的同时, 采取部分填料外运与集中挖坑取土或者薄取相结合, 在集中挖坑取土后, 再对取土场进行生态恢复, 如将取土坑留给当地百姓进行养鱼等经济生产。或者沿线与排水沟相结合, 挖深拓宽排水沟。这两种传统方法由于简单便于实施,得到了人们广泛的认同, 并在很多类似线路中得以应用。

高速铁路路基沉降浅析

高速铁路路基沉降浅析

在我国铁路“十五计划”编制中已经明确指出,要加强国快速客运专线的建设,逐步建成以北京、上海、广州为中心,临街各省会城市和其他大城市间铁路快速客运系统,2004年1月7日,国务院主持通过了《中长期铁路网规划》。规划指出:“到2020年,我国铁路运营总里程达到10万公里,要建设“四纵四横”快速客运专线及三处城际快速轨道交通系统,实现主要繁忙干线客货分线运输”。建设高标准的铁路客运专线,是《中长期铁路网规划》中的一项重要内容。 实施《中长期铁路网规划》,我国将大规模建设世界一流的高速客运专线。铁道部的一份研究报告指出,发展无碴轨道视为我国高速铁路建设特别是在线路设施方面一场深刻的技术变革,这足以说明无碴轨道技术的巨大作用和广阔前景。但是我国无碴轨道铺设的数量少、时间短,尚缺乏设计、施工和运营经验等方面的应验,对此,针对无碴轨道高速铁路的建设,我国需要通过国内外联合设计、试验段的建设和相关实验开展一系列的技术研究。在国际上,无碴轨道技术用于高速铁路中比较有经验的是德国和日本,因此,我国可借鉴的无碴轨道结构形式也主要来源于这两个国家,相对而言,对于路基上铺设无碴轨道,德国的经验明显更丰富一些。 无碴轨道由于受自身调整能力的限制,对线下工程的沉降变形提出了严格要求,因此要实现高速铁路全线铺设无碴轨道的目标,路基上铺设无碴轨道已经成为高速铁路工程建设的关键技术问题。而如何有效地控制路基工后沉降问题尤为突出。 高速铁路对轨道的平顺性提出了更高的要求,而路基是铁路线路工程的一个重要组成部分,是承受轨道结构重量和列车荷载的基础,它也是铁路工程中最薄弱最不稳定的环节,路基几何尺寸的不平顺,自然会引起轨道的几何不平顺,因此需要轨下基础有较高的稳定性和较小的永久变形,以确保列车高速、安全、平稳运行。由于软土特殊的工程性质和高速铁路路基的特点,在一般情况下,多数路段地基的强度与稳定性处理难度都不大,不成为控制因素;给工程带来的主要难题是沉降变形及其各种处理措施条件下的固结问题,所以路基沉降变形问题是高速铁路设计中所要考虑的主要因素。 日本对控制路基沉降的认识是一个发展得过程,1972年日本国

防沉降施工方案

园区道路与私家花园围墙防沉降方案 一、编制说明及编制依据 为了防止园区道路与私家花园围墙有部分不在地下车库顶板上,因不均匀沉降而引起地面及墙体开裂,墙下加设一道梁,梁下每三米一根柱子,地面铺设钢筋混凝土垫层,园区道路以铺设罚板基础为主,详细尺寸及钢筋配置见附图。 1.2 编制依据 1、华润橡府三标段园林景观工程结施图 2、华润橡府三标段园林景观工程建施图 3、工程地质和水文地质资料 4、本公司质量,职业健康安全,环境管理体系文件 5 、《混凝土质量控制标准》GB50164-92 6 、《地基基础工程施工规范》GB2002-05 7 、《混凝土工程施工及验收规范》GB50204-92 8 、《建筑工程施工质量验收统一标准》GB500300-2001 9 、《建筑施工安全检查标准》JGJ59-99 二、工程概况 本工程为华润置地(南昌)有限公司橡府住宅小区三标段园林绿化工程,工程建设地点位于南昌市西湖区云飞路与玉兰路交汇地点。 三、施工准备 1、组织工程技术人员认真学习施工图纸,了解施工图纸的设计意图,全面熟悉和掌握施工图纸的全部内容,检查各专业之间的预埋件,预埋洞位置的尺寸是否统一或遗漏,提出改进设计便于施工的合理化建议。 2、在筏型基础开挖前,项目技术负责人分别组织参加施工的人员进行技术交底,应结合具体操作部位,关键部位和施工难点的质量要求,操作要点及注意事项进行交底。技术交底采取“双层三级”制,即工程师同班组长和质检人员接受交底后要认真反复学习,班组接受交底后组织工人反复学习,认真贯彻执行。 3、对主要建筑材料,应根据实际情况做好材料采购计划,分批进场,对各种材料的入库、检验、保管和出库应严格遵守公司质量文件规定。 4、充足配置高素质的劳动力投入,是工程施工程序进度、质量按计划实施的保证

铁路路基沉降问题及其控制措施 刘济华

铁路路基沉降问题及其控制措施刘济华 发表时间:2019-08-05T09:32:27.047Z 来源:《建筑学研究前沿》2019年8期作者:刘济华 [导读] 这就需要在施工中加强对铁路路基沉降变形的观测,并采取一定的措施来对路基沉降量进行控制。 石家庄铁道大学石家庄 050000 摘要:最近这些年,我国铁路工程建设数量越来越多,建设里程不断增加,覆盖范围不断扩大,且对工程施工质量也提出了更高的要求。铁路工程施工中,路基施工是决定其整体质量的关键因素,要求其具有足够的强度和规定范围内的沉降量来满足其轨道对行驶列车的支撑要求。而路基施工中的难点就是对路基沉降量的控制。路基在铺轨之前发生与预留沉降量不符的沉降,则会导致线路的整体高程不符合要求,这就需要在施工中加强对铁路路基沉降变形的观测,并采取一定的措施来对路基沉降量进行控制。 关键词:铁路;路基沉降;控制措施 引言 新时期下,我国交通运输事业得到了飞速的发展,而铁路作为我国交通事业的基础,为市场经济的高速发展提供了极大帮助,并且随着铁路事业的改革与转制,其在国家经济发展中的作用更为突显。2017年我国铁路的技术创新和实践应用得到了显著的提升,如铁路管理平台、BIM技术试点、交互信息化系统等,这为铁路建设技术的发展提供的必要的保障,但施工中铁路路基的沉降问题一直困扰着铁路技术人员,如何有效的提升路基沉降的施工工艺,促进路基沉降质量和标准的进一步发展,成为了时下铁路技术部门所关注的焦点问题。 1铁路路基沉降变形控制的必要性 铁路路基沉降问题一直困扰着铁路工程建设,最突出的是软土基层上的铁路路堤修筑,软土地基吸水饱和、剪切强度弱的问题是引发铁路路基沉降的重要原因。在铁路工程施工结束后会对沿线建筑特别是高层建筑、大型建筑产生影响,必须采取有效措施来避免铁路路基周边土层出现附加应力累积的不良后果。路基作为轨道结构、列车载荷的基础承载体系,若存在结构变形不仅会造成轨道发生形变,进而还会造成列车振动严重,甚至出现安全事故问题。因此,必须采取有效措施,严格控制好铁路路基沉降变形问题。 2铁路路基沉降问题出现的原因 一是在铁路路基施工过程中,由于下雨或者其他原因而导致进水,从而对路基内部的含水率造成改变,含水率的增加会破坏其内部的稳固性,在施工以及后续运营中,会在自身重力以及外界荷载的作用下而出现形变并引发沉降以及开裂等问题。 二是在对路基进行设计的过程中,没有对施工现场进行详细的勘察,进而在路基设计中的相关参数的分析和计算时出现误差或者不准确的问题,直接影响后期施工质量不达标而出现沉降问题。 三是在施工过程中对填筑材料等施工材料进行选择时,没有按照工程地质特点和施工设计要求来进行选择,导致所选用的材料不达标或者与施工现场的具体条件不符而导致出现沉降问题。 四是所采用的路基填筑方法不够正确和合理,主要是在碾压施工中没有按照规范进行以及通过实验来确定碾压次数,没有对碾压质量进行保障,因而导致碾压不均匀或者密实度不足而增加其出现不均匀沉降等版型以及开裂等缺陷的出现。 五是隐伏型岩溶路基塌陷的问题。此问题主要在岩溶化平原地区比较常见,其主要是由于地下水位下降而形成真空吸蚀作用,地下水潜蚀作用,列车或采石放炮引起的震动等因素导致土体强度降低以及土体破坏、土层负荷过重等因素引起的。 3铁路路基沉降控制措施 某高速铁路工程A标段总长约116.5km,采用CRTSII型板式无砟轨道。线路上共有6段路基,总长为16.3km,约占线路总长的14%。经地质勘察,路基表层以杂填土和素土为主,下部为松土。 3.1桩+筏板加固 采用刚性桩对路基进行加固,桩径和桩间距分别为0.4m、1.5m,桩端进入持力层的深度应达到1.0m以上。同时在顶部加设筏板,采用强度等级为C30的混凝土,其厚度按0.5m控制,筏板的下方设置垫层,厚0.15m。桩与桩间土的共同作业可以形成复合地基,由筏板将荷载传递至桩,以此减小沉降变形,保证沉降控制的有效性。 3.2桩基施工质量控制 ①开工前先进行试桩,确认桩身实际强度满足要求后,从中抽取1%进行静载试验,并抽取30%进行无损检测。 ②各类原材料进入施工现场前应对其品质和配合比等进行检测或试验。其中,水泥应为抗硫酸盐水泥;石料,即卵石或碎石,其粒径应在2~4cm范围内;中粗砂的含泥量不能超过5%;采用II级或III级优质粉煤灰。 ③采用长螺旋钻机进行成孔,钻进应匀速进行,不得产生螺旋孔,孔深应在钻杆上作出标记,以达到要求的深度,钻孔垂直度偏差不能超过1%。 ④孔深达到设计要求后,停钻并对钻杆进行提升,并同时进行灌注,实际泵送量需要和拔管速度保持协调,通常拔管速度不超过 1.2~1.5m/min,埋钻高度应达到1.0m以上,保证管中混合料充足,避免停泵待料。在灌注过程中,应超过桩顶高程一定距离。 ⑤桩体应保持连续和密实,避免缺陷,如夹砂、 断桩和缩径。 3.3严格把控路基填筑质量 ①不得使用大粒径填料,对天然集料进行集中堆放和筛分处理,所用筛网的筛孔尺寸按14cm×14cm控制,倾斜度为60°。对筛余部分进行破碎处理,与满足要求的填料相混合。在填料装车过程中,对填料进行均匀搅拌,保证运输到现场的填料是符合要求的。 ②在施工中,应对土料进行严格计量,保证掺量的准确性与适宜性。同时,还要安排专人对填料质量进行控制,使填料的级配达到规范要求。 ③为切实保证路基的压实效果,应根据填料产地开展工艺试验。通过工艺试验,确定松土厚度与压实系数,将含水量控制在“最优含水率的-5%~+3%范围内。 ④对填筑厚度和分层压实进行严格控制,填筑层厚度应保持均匀,这是使压实质量达到要求的重要过程。填筑施工中,应以填筑层的

相关文档