文档库 最新最全的文档下载
当前位置:文档库 › 物质的新状态——玻色-爱因斯坦凝聚——2001年诺贝尔物理奖介绍

物质的新状态——玻色-爱因斯坦凝聚——2001年诺贝尔物理奖介绍

物质的新状态——玻色-爱因斯坦凝聚——2001年诺贝尔物理奖介绍
物质的新状态——玻色-爱因斯坦凝聚——2001年诺贝尔物理奖介绍

莫言诺贝尔奖演讲稿

12-03 19:28 北京时间2012年12月8日0:25,诺贝尔文学奖得主莫言将发表演讲,敬请期待。 12-08 00:31 莫言:尊敬的瑞典学院各位院士,女士们、先生们: 12-08 00:31 通过电视或者网络,我想在座的各位,对遥远的高密东北乡,已经有了或多或少的了解。你们也许看到了我在九十岁的老父亲,看到了我的哥哥姐姐我的妻子和我的一岁零四个月的外 孙女。但有一个我此刻最想念的人,我的母亲,你们永远无法看到了。我获奖之后,很多人 分享了我的光荣,但我的母亲却无法分享了。 12-08 00:31 我母亲生于1922年,卒于1994年。她的骨灰,埋葬在村庄东边的桃园里。去年,一条铁路要从那儿穿过,我们不得不将她的坟墓迁移到距离村子更远的地方。掘开坟墓后,我们看到, 棺木已经腐朽,母亲的骨殖,已经与泥土混为一体。我们只好象征性地挖起一些泥土,移到 新的墓穴里。也就是从那一时刻起,我感到,我的母亲是大地的一部分,我站在大地上的诉 说,就是对母亲的诉说。 12-08 00:32 我是我母亲最小的孩子。 12-08 00:32 我记忆中最早的一件事,是提着家里唯一的一把热水瓶去公共食堂打开水。因为饥饿无力,失手将热水瓶打碎,我吓得要命,钻进草垛,一天没敢出来。傍晚的时候,我听到母亲呼唤 我的乳名。我从草垛里钻出来,以为会受到打骂,但母亲没有打我也没有骂我,只是抚摸着 我的头,口中发出长长的叹息。 12-08 00:33 我记忆中最痛苦的一件事,就是跟随着母亲去集体的地里捡麦穗,看守麦田的人来了,捡麦穗的人纷纷逃跑,我母亲是小脚,跑不快,被捉住,那个身材高大的看守人搧了她一个耳光。 她摇晃着身体跌倒在地。看守人没收了我们捡到的麦穗,吹着口哨扬长而去。我母亲嘴角流 血,坐在地上,脸上那种绝望的神情让我终生难忘。多年之后,当那个看守麦田的人成为一 个白发苍苍的老人,在集市上与我相逢,我冲上去想找他报仇,母亲拉住了我,平静地对我 说:“儿子,那个打我的人,与这个老人,并不是一个人。” 12-08 00:34 我记得最深刻的一件事是一个中秋节的中午,我们家难得地包了一顿饺子,每人只有一碗。 正当我们吃饺子的时候,一个乞讨的老人,来到了我们家门口。我端起半碗红薯干打发他, 他却愤愤不平地说:“我是一个老人,你们吃饺子,却让我吃红薯干,你们的心是怎么长的?” 我气急败坏地说:“我们一年也吃不了几次饺子,一人一小碗,连半饱都吃不了;给你红薯干 就不错了,你要就要,不要就滚!”母亲训斥了我,然后端起她那半碗饺子,倒进老人碗里。 12-08 00:36 我最后悔的一件事,就是跟着母亲去卖白菜,有意无意地多算了一位买白菜的老人一毛钱。 算完钱我就去了学校。当我放学回家时,看到很少流泪的母亲流泪满面。母亲并没有骂我, 只是轻轻地说:“儿子,你让娘丢了脸。” 12-08 00:38 我十几岁时,母亲患了眼中的肺病,饥饿,病痛,劳累,使我们这个家庭陷入困境,看不到光明和希望。我产生了一种强烈的不祥之感,以为母亲随时都会自寻短见。每当我劳动归来, 一进大门,就高喊母亲,听到她的回应,心中才感到一块石头落了地,如果一时听不到她的 回应,我就心惊胆颤,跑到厢房和磨坊里寻找。有一次,找遍了所有的房间也没有见到母亲 的身影。我便坐在院子里大哭。这时,母亲背着一捆柴草从外面走进来。她对我的哭很不满, 但我又不能对她说出我的担忧。母亲看透了我的心思,她说:“孩子,你放心,尽管我活着没 有一点乐趣,但只要阎王不叫我,我是不会去的。” 12-08 00:38 我生来相貌丑陋,村子里很多人当面嘲笑我,学校里有几个性格霸蛮的同学甚至为此打我。

玻色一爱因斯坦凝聚

第六章 近独立粒子的最概然分布 教学目标:1. 理解玻色分布和费米分布。 2. 理解三种分布之间的关系。 授课方式:理论讲授。 教学重点:1. 分布与微观状态 2. 三种分布之间的关系 教学难点:非简并性条件 教学内容: 玻色分布和费米分布 上节课中已经求出了玻耳兹曼系统的最概然分布,本节将推导玻色系统和费米系统中粒子的最概然分布。现对费米分布推导如下 : 对! !()!l F D l l l l a a ωω?Ω= -∏取对数得:().ln ln !ln !ln !F D l l l l l a a ωωΩ=---???? ∑ 1N ,若假设1l a ,1l ω可得到: ()()[] ∑----=Ωl l l l l l l l l D F a a a a ωωωωln ln ln ln .. 约束条件: l l a N =∑ ; l l l a E ε =∑。 为求在此约束条件下的最大值,使用拉格朗日乘数法,取未定因子为α和β则拉格朗日函数为:.ln ln 0l F D l l L l l a N E a a δαδβδαβεδω??Ω--=- ++= ?-?? ∑ 若令上式为零,则有:ln 0l l l l a a αβεω++=- , 即 1l l l a e αβεω+=+。 上式给出了费米系统粒子的最概然分布,称为费米——狄拉克分布。 玻色分布的推导作为练习,请同学们课后自己推导。 三种分布的关系 1 、由: l l a N =∑ ; l l l a E ε =∑ 确定拉氏乘子a 和β的值。在许多实际问题中,也 往往将β看作由实验确定的已知参量而由: l l l a E ε =∑ 确定系统的内能.或将a 和β都 当作由实验确定的已知参量,而由:l l a N =∑ ;l l l a E ε=∑ 确定系统的平均总粒子数 和内能。

爱因斯坦与诺贝尔奖

爱因斯坦与诺贝尔奖 首先我们了解一下诺贝尔奖的由来:诺贝尔奖是以瑞典著名的化学家、硝化甘油炸药的发明人阿尔弗雷德.贝恩哈德.诺贝尔的部分遗产(3100万瑞典克朗)作为基金创立的。诺贝尔奖分设物理、化学、生理或医学、文学、和平五个奖项,以基金每年的利息或投资收益授予前一年世界上在这些领域对人类作出重大贡献的人,1901年首次颁发。诺贝尔奖包括金质奖章、证书和奖金。1968年,在瑞典国家银行成立三百周年之际,该银行捐出大额资金给诺贝尔基金,增设“瑞典国家银行纪念诺贝尔经济科学奖”,1969年首次颁发,人们习惯上称这个额外的奖项为诺贝尔经济学。 诺贝尔奖奖章 那么在了解一下爱因斯坦:爱因斯坦1900年毕业于苏黎世联邦理工学院,入瑞士国籍。1905年获苏黎世大学哲学博士学位。曾在伯尔尼专利局任职,在苏黎世工业大学、布拉格德意志担任大学教授。1913年返德国,任柏林威廉皇帝物理研究所所长和柏林洪堡大学教授,并当选为普鲁士科学院院士。1933年因受纳粹政权迫害,迁居美国,任普林斯顿高级研究所教授,从事理论物理研究,1940年入美国国籍。有一句熟悉的格言是:“任何事都是相对的。”但爱因斯坦的理论不是这一哲学式陈词滥调的重复,而更是一种精确的用数学表述的方法。此方法中,科学的度量是相对的。显而易见,对于时间和空间的主观感受依赖于观测者本身。 那么爱因斯坦与诺贝尔奖有什么关系呢? 在20世纪700人(次)的诺贝尔奖颁奖历史当中,恐怕爱因斯坦获奖时引起的麻烦最多,而获奖原因更是奇怪得独此一家。很早就不断有人提名他为侯选人,但由于种种几乎无法置信的理由却一直没有成功。1922年,他才终于获得了补发的1921年度的诺贝尔物理学奖。1909年10月,德国著名化学家奥斯特瓦尔德首先提名爱因斯坦为1910年诺贝尔物理学奖候选人,推荐理由是爱因斯坦狭义相对论的伟大贡献。以后他又于1912年、1913年再度提名爱因斯坦。那时反对相对论的势力很强,评奖委员会没有把奖给爱因斯坦情有可原。1912年,德国物理学家普林斯海姆推荐爱因斯坦(推荐理由还是他在相对论方面的成就)为获奖候选人时,写了一句很有分量的话:“我相信诺贝尔奖委员会很少有机会为一件具有类似意义的工作而颁奖。” 从后来物理学的发展来看,普林斯海姆的话非常准确。但令人遗憾和惊讶的是,诺贝尔奖委员会却千真万确地没有因20世纪最伟大的理论之一——相对论而颁奖给爱因斯坦。恐怕无论怎么说,这也是诺贝尔奖颁奖史上的极大缺憾。 1919年11月,英国皇家学会会长J. J.汤姆逊(1906年获诺贝尔物理学奖)就郑重宣称:“(爱因斯坦的引力理论)是牛顿时代以来最重要的进展,是人类思想上最高的成就之一。”

玻色_爱因斯坦凝聚领域Feshbach共振现象研究进展

玻色—爱因斯坦凝聚领域Feshbach 共振现象研 究进展 摘要玻色—爱因斯坦凝聚领域中的Feshbach共振现象是当前的一个研究热点。在很多相关实验都已观测到Feshbach共振现象。在实验里通过调节外加磁场用原子散射的Feshbach共振可以任意改变这些系统中原子之间的相互作用强度,从强相互排斥作用到强相互吸引作用都可以实现。文章详细介绍Feshbach共振现象以及目前它在原子气体系统里的最重要的两个应用,研究有强相互作用的玻色子气体和费米子气体里的超流态。最后,阐述了Feshbach共振现象研究意义,以及对玻色—爱因斯坦凝聚体系统的应用前景作了展望。 关键词Feshbach 共振,玻色- 爱因斯坦凝聚,超流态,强相互作用 Abstract Feshbach resonace is currently a very hot topic in the of Bose-Einstein condensa -tion ,and has already been observed in most low- temperture alkali gases. In these systems the interaction between atoms can be tuned from strong repulsion to strong attraction. A detailed overview is guven of the Feshbach resonance and two of its most important aspects, the superfluid phase in Fermi gases and the strong-interaction regime in Bose gase.Finally,this paper expounds the significance of feshbach resonace research,and the Bose-Einstein conden –sation application prospects are described. Key words Feshbach resonance,Bose-Einstein condensation ,superfluid, strong interaction

关于爱因斯坦一生的20个问题

关于爱因斯坦一生的20个问题

关于爱因斯坦一生的20个问题 据国外媒体报道,1955年4月18日,理论物理学家、相对论创立者阿尔伯特-爱因斯坦逝世,享年76岁。 1915年,爱因斯坦广义相对论的终审稿出版,这是继狭义相对论之后,近代科学的又一个重大成就。 1921年,爱因斯坦因其1905年发表的论文"光电效应",即狭义相对论而获得诺贝尔物理奖。他的相对论理论是历史上最重要的科学著作之一。 对于这位伟人,我们究竟知道多少。以下是国外媒体归纳的你该知道的有关爱因斯坦的二十件事。 1 童年的爱因斯坦学习迟钝? 小的时候,爱因斯坦学说话很慢。事实上,爱

因斯坦把所有的句子都要在脑子里过一遍,然后觉得没问题了才说出来。有记载显示,爱因斯坦直到九岁之后才不继续这么做。因此,爱因斯坦的父母常常觉得自己的孩子智力有问题,甚至还为此咨询过医生。 他还对抗权威,导致一位中小学校长将他开除。他取笑历史,说他从来不需要知道这么多。但这些特点让他成了天才。大多数成人都认为,他对权威的过度轻蔑让他怀疑常规的至理名言。 他说话慢让他对普通事情特好奇,比如时空。他的父亲在他5岁时给了他一个罗盘,以至于让他在晚年时还苦苦思索磁场的自然属性。他更喜欢想图像而不是文字。 2 爱因斯坦学习不行? 一些研究人员声称发现了爱因斯坦童年时表现出轻微的孤独症症状,也叫艾斯伯格症候。剑桥大学孤独症研究中心的主任西蒙-巴伦-柯洪(Simon Baron-Cohen)就是其中之一。

他在文章中声称,孤独症患者通常"有着很强的系统思维能力,但是情感比较冷淡",这也可以解释为什么这种类型的人在数学、音乐或者绘画等学科中的系统思维能力突出。 但是这看起来并不可信。爱因斯坦十几岁的时候就有很亲密的朋友,他们之间感情很好,爱因斯坦同样热衷参与大学组织的讨论,有很好的言辞交流,总之对待朋友很热情友爱。 3 爱因斯坦的数学不及格? 一个广为流传的说法是,爱因斯坦学生时代数学很差,经常不及格。这个说法出现在各种各样的用于激励学习不好的学生的书籍和网站。它通常这样开头,"大家都知道"。如果在Google搜索"爱因斯坦数学很差"的关键词可以得到超过50万的条目。这个说法甚至出现在一个著名的报纸专栏——Ripley 的"信不信由你"。 是的,爱因斯坦童年确实有很多(对传统教育)

自旋F=1旋量玻色—爱因斯坦凝聚的基态和动力学性质

自旋F=1旋量玻色—爱因斯坦凝聚的基态和动力学性质 【摘要】:自从MIT小组成功地实现用光阱束缚冷原子23Na以来,旋量玻色爱因斯坦凝聚(BEC)作为一门新兴学问在多个方面取得了突破性的进展:比如自旋磁畴,涡旋态,自旋组分相分离,破裂凝聚态,及自旋相干混合动力学等等。本文研究了旋量混合物基态特性和非均匀外场中旋量BEC的动力学两方面内容。首先,我们探讨了由两种不同的自旋都为1的原子组成的旋量凝聚体混合物的基态特性。当两种不同类的玻色子发生碰撞时,由于玻色对称性的限制被打破,这导致两种F=1旋量凝聚体混合物(简称自旋1+1系统)会有种间耦合相互作用和种间配对相互作用。首先,通过角动量耦合理论给出了简并内态近似(DIA)下系统所有可能的基态,另外,我们还研究了特殊相AA相中各个塞曼能级的粒子数分布和量子涨落,并发现在这种情况下系统基态是破裂凝聚体,粒子数涨落的分布与单原子破裂凝聚体有很大不同。然后我们用精确对角化方法数值结果做了验证,严格符合。用精确对角化方法可以数值地给出了更一般的存在单态配对项时的基态解,我们展示了两种配对机制之间的竞争,发现系统总自旋为零的情况下,体系仍然有不同的配对机制之间的竞争,由种间耦合项所决定。其次,我们研究存在磁场梯度的弱磁场中旋量BEC的动力学性质。因为磁场的非均匀性,磁场梯度使得原子自旋在1到-1之间反转,导致系统磁化强度不再守恒。我们分别展示了在平均场理论下铁磁和反铁磁两种原子的磁化强度和mF=0塞曼能级上的粒子布居的动力学行为。当初态是三个

能级粒子数目非平衡分布时,我们发现磁化强度的动力学类似于双阱中的约瑟夫森振荡并伴随有自俘获现象,同时mF=0塞曼能级上的粒子布居数的动力学被充分抑制。当初态是三个能级粒子数目均匀分布时,反铁磁原子凝聚体系统磁化强度出现拍频振荡。【关键词】:旋量凝聚体BEC混合物破裂凝聚体单态配对自旋混合动力学 【学位授予单位】:山西大学 【学位级别】:博士 【学位授予年份】:2011 【分类号】:O469;O562 【目录】:中文摘要10-11ABSTRACT11-13第一章绪论13-231.1引言13-211.1.1旋量玻色-爱因斯坦凝聚体15-161.1.2自旋交换相互作用16-181.1.3Feshbach共振和BEC混合物18-191.1.4旋量BEC自旋相干混合动力学19-201.1.5平均场与量子多体理论20-211.2我们的工作211.3本文内容21-23第二章旋量BEC的基态性质23-452.1多粒子系统的二次量子化23-242.2平均场方法24-322.2.1多分量耦合Gross-Pitaevskii方程组24-262.2.2旋量BEC基态问题的平均场处理26-322.3量子多体方法32-452.3.1单模近似下的有效哈密顿量32-332.3.2赝角动量算符与系统基态33-362.3.3破裂凝聚态36-422.3.4磁场梯度与自旋反转42-45第三章旋量BEC的动力学性质45-553.1平均场动力学45-523.1.1等效非刚性单摆模型45-493.1.2非刚性单摆模型的解49-503.1.3无磁场时的动力学50-523.2量子动力学52-55第四章旋量BEC混合物的基态特性55-794.1旋量BEC混合物的哈密顿

玻色—爱因斯坦凝聚体的腔光力学

玻色—爱因斯坦凝聚体的腔光力学 【摘要】:在最近几年中腔光力学正经历着飞速的发展,成为了大量理论与实验研究的焦点。其中十分诱人的一项进展是使用原子玻色-爱因斯坦凝聚体取代被光压驱动的腔镜展示出各种腔光力学效应。而本文则设计了一个将凝聚体与腔镜结合在一起的混合腔光力学系统,试图通过这个系统把光学、腔量子电动力学、超冷原子物理、凝聚态物理、纳米技术、量子信息等学科交融在了一起来推动腔光力学的发展。本文的内容可根据原子与腔相互作用的不同区域而分成两个部分。当腔与原子的相互作用处于弱色散耦合区域时,腔内的驻波光场会使原子凝聚体感受到一个周期性的偶极势——光晶格,但凝聚体作为色散介质对腔场的影响却可以忽略不计。腔内光场的强度由于腔镜位置与光压之间的非线性耦合而具有双稳的性质,而这种双稳性质也同样反映在了光晶格的深度以及取决于这个深度的凝聚体多体基态上。同一个输入光强可以使腔内的凝聚体处于超流或者绝缘这两种迥然不同的状态,而对输入光进行特殊的时序控制,则可能实现凝聚体的双稳量子相变。尤其是在双稳切换点附近光场强度发生跳变时,原子凝聚体的动力学是本文的研究重点之一。当腔与原子的相互作用处于强色散耦合区域时,腔内的凝聚体被驻波光场激发出的动量边模能够等效为一个光压驱动的腔镜。而驻波场除了驱动凝聚体和腔镜外还像一个非线性的弹簧一样把两者连接起来形成一对非线性耦合振子。在适当的参量下,整个系统,无论是腔内光强,腔镜位置,还是凝聚体的激发都是

双稳的。我们发现在这个双稳区域附近,如果忽略系统的耗散,则其经典动力学能够展现奇异的哈密顿混沌行为。此外我们还在频率空间中分析了腔镜与凝聚体之间的量子关联,给出了两者之间实现纠缠的条件。【关键词】:玻色-爱因斯坦凝聚体腔光力学光学双稳量子相变混沌量子纠缠 【学位授予单位】:华东师范大学 【学位级别】:博士 【学位授予年份】:2010 【分类号】:O431.2 【目录】:摘要6-7Abstract7-9目录9-12第一章绪论12-221.1光压的故事12-141.2腔光力学14-161.3向量子区域迈进16-201.4本文内容安排20-22第二章腔光力学装置基本原理22-442.1光力学腔的经典模型22-292.1.1法布里-珀罗型光学腔23-252.1.2辐射压力的经典理论25-262.1.3单镜光力学腔26-282.1.4双镜光力学腔28-292.2光力学腔的非线性效应29-352.2.1稳态分析30-312.2.2动力学分析31-352.3光力学腔的量子模型35-442.3.1腔的输入输出理论36-382.3.2振子的量子布朗运动38-402.3.3辐射压力的本征模理论40-412.3.4单镜光力学腔的量子模型41-44第三章光晶格中的原子玻色-爱因斯坦凝聚体44-683.1稀薄原子气体的玻色-爱因斯坦凝聚44-473.1.1无相互作用玻

诺贝尔奖与科学精神---爱因斯坦

爱因斯坦与诺贝尔奖 信息管理与信息系统12级2班 摘要 爱因斯坦作为20世纪最伟大的科学家之一,他的科学贡献对于诺贝尔奖绝对是受之无愧的。然而,众所周知,在1921年授予爱因斯坦物理学奖时,诺贝尔委员会给出的说辞是“为了表彰他在理论物理学上的研究,特别是发现了光电效应的定律”。2000年,美国“时代周刊”把爱因斯坦评为20世纪最伟大的人物。 关键字:诺贝尔奖相对论光电效应科学革命 Sunmmaries: Albert Einstein as one of the greatest scientist of the 20th century, his scientific contribution for richly deserved the Nobel Prize is absolutely. However, as is known to all, in Einstein's physics prize, awarded in 1921 the Nobel committee of rhetoric is "in appreciation of his research in theoretical physics, in particular, discovered the law of the photoelectric effect". In 2000, the United States "time magazine" named Einstein in the 20th century's greatest characters. Key word:Nobel Prize Relativity Theory The Photoelectric Effect Science Revolution 引言 诺贝尔奖已经成立了百余年,至此诺贝尔奖仍被视作世界上最高荣誉之一,能拿到这个奖项,不仅是个人的骄傲,也是这个国家的骄傲。然而,纵观国内外,获得诺贝尔奖的人虽不在少数,但我国国内获此奖项的仅只一人。而美国华裔科学家中就有杨政宁,李政道,丁肇中等获得了诺贝尔奖,这表明中国人民是聪明能干、认真钻研的。[1]本论文通过爱因斯坦的诺贝尔故事来攫取激励中国人民进行艰苦科学探索,摘取诺贝尔奖金冠的精神力量。一、爱因斯坦的光量子理论 关于量子假说,这是普朗克在黑体辐射的实验中做出的一个大胆的尝试,但是它的量子概念仅限于辐射的发射和吸收。真正对量子理论做出推广应用的是爱因斯坦。爱因斯坦总结了光学发展史中微粒说与波动说两种理论,他创新应用量子化理论合理的解释了这两种观点所不能解释的问题,于是,他大胆的将这一观点公之于众,发表了《关于光的产生和转化的一个试探性观点》,文中不仅阐述了这一理论,同时给出了两个相关公式,光子能量公式:E=hv(v是光的频率,h是普朗克常量)和能量守恒原理:eV=hv-W(e为电子电荷,V是遏 止电压,W是电子逸出金属表面所做的功)。[2] 二、爱因斯坦的相对论

莫言诺贝尔奖演讲全文

莫言诺贝尔奖演讲全文 莫言:我是一个讲故事的人尊敬的瑞典学院各位院士,女士们、先生 们: 通过电视或网络,我想在座的各位对遥远的高密东北乡,已 经有了或多或少的了解。你们也许看到了我的九十岁的老父亲,看到了我的哥哥姐姐、我的妻子女儿,和我的一岁零四个月的外 孙子。但是有一个此刻我最想念的人,我的母亲,你们永远无法 看到了。我获奖后,很多人分享了我的光荣,但我的母亲却无法分享了。 我母亲生于1922年,卒于1994年。她的骨灰,埋葬在村庄 东边的桃园里。去年,一条铁路要从那儿穿过,我们不得不将她 的坟墓迁移到距离村子更远的地方。掘开坟墓后,我们看到,棺木已经腐朽,母亲的骨殖,已经与泥土混为一体。我们只好象征 性地挖起一些泥土,移到新的墓穴里。也就是从那一时刻起,感到,我的母亲是大地的一部分,我站在大地上的诉说,就是对母亲的诉说。 我是我母亲最小的孩子。 我记忆中最早的一件事,是提着家里唯一的一把热水壶去公 共食堂打开水。因为饥饿无力,失手将热水瓶打碎,我吓得要命,钻进草垛,一天没敢出来。傍晚的时候我听到母亲呼唤我的乳名,

我从草垛里钻出来,以为会受到打骂,但母亲没有打我也没有骂 我,只是抚 摸着我的头,口中发出长长的叹息。 我记忆中最痛苦的一件事, 就是跟着母亲去集体的地理拣麦 穗,看守麦田的人来了,拣麦穗的人纷纷逃跑,我母亲是小脚, 跑不快,被捉住,那个身材高大的看守人煽了她一个耳光, 长而去。我母亲嘴角流血, 坐在地上,脸上那种绝望的神情深我 终生难 忘。多年之后,当那个看守麦田的人成为一个白发苍苍的 老人,在集市上 与我相逢,我冲上去想找他报仇,母亲拉住了我, 平静的对我说:“儿 子,那个打我的人,与这个老人,并不是 个人。” 我记得最深刻的一件事是一个中秋节的中午, 我们家难得的 包了一顿饺子,每人只有一碗。 正当我们吃饺子时, 一个乞讨的 平地说:“我是一个老人,你们吃饺子,却让我吃红薯干。你们 倒进了老人碗里。 我最后悔的一件事,就是跟着母亲去卖白菜, 有意无意的多 她摇 晃着身体跌倒在地, 看守人没收了我们拣到的麦穗, 吹着口哨扬 老人来到了我们家门口, 我端起半碗红薯干打发他,他却愤愤不 的心是怎么长的?” 我气急败坏的说: “我们一年也吃不了几次 饺子,一人一小碗, 连半饱都吃不了!给你红薯干就不错了,你 要就要,不要就滚! ”母亲训斥了我,然后端起她那半碗饺子,

玻色_爱因斯坦凝聚的研究

玻色———爱因斯坦凝聚的研究 谢世标 (广西民族学院物理与电子工程系,广西 南宁 530006) 摘 要: 综述了玻色—爱因斯坦凝聚的由来、概念及其形成条件,并介绍了当前国内外玻色—爱 因斯坦凝聚研究的动态与进展及其前景展望。 关键词: 玻色—爱因斯坦凝聚;临界温度;激光冷却;磁陷阱 中图分类号: O469 文献标识码:A 文章编号:1003-7551(2002)03-0047-04 1 玻色—爱因斯坦凝聚的由来 我们知道,自然界中,粒子按统计性质分为玻色(Bose)子和费米(Fermi)子。自旋为整数的粒子,如光子、π介子和α粒子是玻色子,玻色子服从玻色—爱因斯坦统计;自旋为半整数的粒子,如电子、质子、中子、μ介子是费米子,费米子服从费米—狄拉克统计。1924年6月24日,30岁的印度物理教师玻色送一份手稿给爱因斯坦,试图不依赖经典电动力学来推导普朗克(黑体辐射)定律的系数8πν2/c3,办法是假定相空间最基本区域的体积为h3。爱因斯坦亲自把玻色的手稿译成德文,送去发表,并在文末加注说:“我以为玻色对普朗克公式的推导乃是一项重大进步,所用方法也将导致理想气体的量子理论”。爱因斯坦意识到玻色工作的重要性,立即着手这一问题的研究。他于1924年和1925年发表两篇论文,将玻色对光子的统计方法推广到某类原子,并预言当这类原子的温度足够低时,所有的原子就会突然聚集在一种尽可能低的能量状态,这就是我们所说的玻色—爱因斯坦凝聚。但在很长一段时间里,没有任何物理系统认为与玻色—爱因斯坦凝聚现象有关。直到1938年,伦敦(F.London)指出,超流和超导现象可能是玻色—爱因斯坦凝聚的表现,玻色—爱因斯坦凝聚才真正引起物理学界的重视。不过这两种现象都发生在强相互作用的体系中。超流液氦中只有10%的原子凝聚;超导与玻色—爱因斯坦凝聚的关系要经过电子的配对,涉及更复杂的相互作用。只有近理想或弱相互作用的玻色气体的玻色—爱因斯坦凝聚,才更易于同理论比较,但一直没有实验证实。在上个世纪五十年代,物理学家发展了很多弱相互作用玻色系统的理论,华人物理学家杨振宁、李政道和黄克逊在这方面做了很出色的工作。然而这些理论在1995年之前都没有得到很好的验证。 随着实验技术的发展,在上世纪80年代初,物理学家开始了在气体中实现玻色—爱因斯坦凝聚的尝试。终于在爱因斯坦理论预言之后的70年,于1995年在实验室看到了中性原子的玻色—爱因斯坦凝聚。7月13日,美国科罗拉多大学和国家标准局合办的实验天体物理研究所发布新闻说:在冷却到绝对温度170nk(毫微度)的碱金属铷(87Rb)蒸气中观察到了玻色—爱因斯坦凝聚。8月底,休斯顿市Rice大学的一个小组发表文章说在锂(7Li)中看到玻色—爱因斯坦凝聚(BEC)的迹象。11月间,麻省理工学院宣布,在钠(23Na)蒸汽中实现了玻色—爱因斯坦凝聚(BEC)。为此,科罗拉多大学和国家标准局实验天体物理研究所的美国科学家埃里克?康奈尔、卡尔?维曼和麻省理工学院的德国科学家沃尔夫冈?克特勒获2001年诺贝尔物理学奖。 2 玻色—爱因斯坦凝聚的概念 设在体积为V的容器中存在由N个同种玻色粒子组成的理想气体。理想玻色气体处于热平衡状态3 收稿日期:2002-07-08

由爱因斯坦带来的感悟

由爱因斯坦带来的感悟 爱因斯坦,一位众所周知的物理学家,他早在29岁的时候就获得了诺贝尔奖,33岁被封为皇家科学院院长,还成为了德国物理科学皇家院士,是20世纪最伟大的科学家之一。爱因斯坦做到了用数学公式了解上帝的思想,将其无限的美,庄严和力量都用公式描述出来。他毕其一生投身于科学领域的探索,探求自然的奥秘,为后世创造了一个又一个的传奇,狭义相对论,广义相对论,光电效应,波色——爱因斯坦统计。让每一个人为他深邃头脑的巨大力量所折服。 一、曲折的人身经历 爱因斯坦的伟大在于他对科学事业的坚守,尽管人生经历曲折艰辛,他从未放弃过自己对自然奥秘的探索,怀着热忱与激情的踏上了科学之旅的征程。爱因斯坦起初可以说是抑郁沮丧的,他未能找到自己热衷的学术工作,而是屈身于一个专利局的小职员。也许若是其他人,他的人生将完全踏上一条不同之路,但爱因斯坦并未因此走向平庸,仍然坚持着他的物理学探究,并且可以说得上是勇敢的挑战当时的物理学体系。不得不佩服他深邃敏锐的大脑,在每天的工作时间内,以其独特的思想实验来继续科学研究。他早年很多极富科学价值的成果曾经辗转于高深科学殿堂之外很长时间无法发表,如果不是普朗克等科学家的慧眼识金,他可能由于长期得不到承认而最终消磨了斗志,那么相对论就可能晚很多年出自另一个人之手了。这将是科学界的一大遗憾。他的成名之旅艰辛而漫长,他的思想超越了他所处的时代而备受质疑,但一切都未将其打倒,而是致力于寻找自己理论的证据。这是一个科学家的坚持,永不被面前的挫折所打倒。 二、高尚的科学精神 爱因斯坦在科学试验中,不怕一次次失败的挫折,当他发现自己的狭义相对论的局限性时,他没有丝毫的气馁,而是致力于发现一个具有普遍性的广义相对论。“一个人在科学探索的道路上,走过弯路,犯过错误,并不是坏事,更不是什么耻辱,要在实践中勇于承认和改正错误。”这期间的艰辛思考与巨大的运算量是很多人无法坚持的,可以说是一种让人崩溃的状态,然而他却能坚持并且保持冷静的思考,尽管一战的爆发和疾病的困扰,也不能打到他。他曾说过“· 科学研究好象钻木板,有人喜欢钻薄的;而我喜欢钻厚的。”这种精神深深地触动着我的内心。 爱因斯坦的科学精神是高尚的,在很多同行将科学利用到战争之时,他依旧保持本心,科学研究是造福人类而不是用于战场上的凶器,他认为“人只能有献身社会,才能找出那实际上是短暂而有风险的生命的意义。”他是一个信仰和平的科学家,他组织支持和平者签署《反战宣言》,闪烁着人性的光辉,让我油然生敬。 科学研究需要合作 一个人很难完成一个科学发现,对智慧无比的爱因斯坦也同样如此,当他计算出空间曲率数值之时,他也迫切的需要天文学家的观测证据,受自然,仪器,及战争环境的影响,使得测量无比艰辛,也使得这项理论久久无法得到证据,对科学家的心理是一种无比的煎熬,然而科学是无国界的,在战争之中,仍有科学家愿意共同参与到这项震惊物理学界的观点的证实中来,这里让我感受到了科学家们对真理追求的执着与伟大,也感受到科学研究中各领域合作的重要性。 观看了爱因斯坦的跌宕起伏的人生,让我对科学研究有了更深的体会,由衷的向伟大的科学家之境,向科学研究致敬。

莫言诺贝尔奖演讲(2012年12月7日瑞典斯特格尔摩)

讲故事的人 莫言 尊敬的瑞典学院各位院士,女士们、先生们: 通过电视或网络,我想在座的各位对遥远的高密东北乡,已经有了或多或少的了解。你们也许看到了我的九十岁的老父亲,看到了我的哥哥姐姐、我的妻子女儿,和我的一岁零四个月的外孙子。但是有一个此刻我最想念的人,我的母亲,你们永远无法看到了。我获奖后,很多人分享了我的光荣,但我的母亲却无法分享了。 我母亲生于1922年,卒于1994年。她的骨灰,埋葬在村庄东边的桃园里。去年,一条铁路要从那儿穿过,我们不得不将她的坟墓迁移到距离村子更远的地方。掘开坟墓后,我们看到,棺木已经腐朽,母亲的骨殖,已经与泥土混为一体。我们只好象征性地挖起一些泥土,移到新的墓穴里。也就是从那一时刻起,我感到,我的母亲是大地的一部分,我站在大地上的诉说,就是对母亲的诉说。 我是我母亲最小的孩子。 我记忆中最早的一件事,是提着家里唯一的一把热水壶去公共食堂打开水。因为饥饿无力,失手将热水瓶打碎,我吓得要命,钻进草垛,一天没敢出来。傍晚的时候我听到母亲呼唤我的乳名,我从草垛里钻出来,以为会受到打骂,但母亲没有打我也没有骂我,只是抚摸着我的头,口中发出长长的叹息。 我记忆中最痛苦的一件事,就是跟着母亲去集体的地理拣麦穗,看守麦田的人来了,拣麦穗的人纷纷逃跑,我母亲是小脚,跑不快,被捉住,那个身材高大的看守人煽了她一个耳光,她摇晃着身体跌倒在地,看守人没收了我们拣到的麦穗,吹着口哨扬长而去。我母亲嘴角流血,坐在地上,脸上那种绝望的神情深我终生难忘。多年之后,当那个看守麦田的人成为一个白发苍苍的老人,在集市上与我相逢,我冲上去想找他报仇,母亲拉住了我,平静的对我说:“儿子,那个打我的人,与这个老人,并不是一个人。” 我记得最深刻的一件事是一个中秋节的中午,我们家难得的包了一顿饺子,每人只有一碗。正当我们吃饺子时,一个乞讨的老人来到了我们家门口,我端起半碗红薯干打发他,他却愤愤不平地说:“我是一个老人,你们吃饺子,却让我吃红薯干。你们的心是怎么长的?”我气急败坏的说:“我们一年也吃不了几次饺子,一人一小碗,连半饱都吃不了!给你红薯干就不错了,你要就要,不要就滚!”母亲训斥了我,然后端起她那半碗饺子,倒进了老人碗里。

玻色-爱因斯坦凝聚及其研究进展简述

玻色-爱因斯坦凝聚及其研究进展 姓名:于超宇专业班级:201505080226 第1章前言 玻色-爱因斯坦凝聚实际是一类涉及原子分子物理学、量子光学、统计物理学和凝聚态物理学等相关物理学中许多领域的普通物理现象。1925年爱因斯坦根据玻色能量统计分布规律预言:当玻色系统的温度降低到一定程度,理想的全同玻色子会在动量空间最低能态上聚集,并达到宏观的数量。这就是玻色-爱因斯坦凝聚,而这种宏观数量级的原子凝聚在同一状态可视为一种新物态。这一物质形态具有的奇特性质,在芯片技术、精密测量和纳米技术等领域都有美好的应用前景。全世界已经有数十个实验室实现了9种元素的BEC(玻色-爱因斯坦凝聚态)。主要是碱金属,还有氦原子,铬原子和镱原子等。而本论文着手于玻色-爱因斯坦凝聚现象的理论与凝聚态的应用,对当下最新研究进展与研究结果进行文献综述,介绍达成凝聚态的几种方式以及对凝聚态在芯片技术等方面的的应用进行介绍。 第2章玻色-爱因斯坦凝聚的研究历史 2.1 玻色-爱因斯坦凝聚的起源与发展 1924年印度物理学家玻色提出以不可分辨的n个全同粒子的新观念,使得每个光子的能量满足爱因斯坦的光量子假设,也满足波尔兹曼的最大机率分布统计假设,这个光子理想气体的观点可以说是彻底解决了普朗克黑体辐射的半经验公式的问题。可能是当初玻色的论文因没有新结果,遭到退稿的命运。他随后将论文寄给爱因斯坦,爱因斯坦意识到玻色工作的重要性,立即着手这一问题的研究,并于1924和1925年发表两篇文章,将玻色对光子(粒子数不守恒)的统计方法推广到原子(粒子数守恒),预言当这类原子的温度足够低时,会有相变—新的物质状态产生,所有的原子会突然聚集在一种尽可能低的能量状态,这就是我们所说的玻色-爱因斯坦凝聚现象。 1938年:FritzLondon提出液氦(He4)超流本质上是量子统计现象,也是一种凝

从爱因斯坦到霍金的宇宙章节测验答案

从爱因斯坦到霍金的宇宙章节测验答案第一章爱因斯坦和量子论与相对论的诞生 一、物理学的开端:经验物理时期 1、“给我一个支点,我就可以耗动地球”这句话是谁说的(B、阿基米德) A、欧几里得 B、阿基米德 C、亚里士多德 D、伽利略 > 2、相对论是关于(A、时空和引力)的基本理论,分为狭义相对论和广义相对论。 A、时空和引力 B、时空和重力 C、时间和空间 D、引力和重力 3、“吾爱吾师,吾更爱真理”这句话是谁说的(C、亚里士多德) A、苏格拉底 B、柏拉图 · C、亚里士多德 D、色诺芬 4、下列人物中最早使用“物理学”这个词的是谁(D、亚里斯多德) A、牛顿 B、伽利略 C、爱因斯坦 D、亚里斯多德 5、“格物穷理”是由谁提出来的(B、朱熹) ) A、张载 B、朱熹 C、陆九渊 D、王阳明 6、欧洲奴隶社会比中国时间长,中国封建社会比西方时间长。(√) 7、西方在中世纪有很多创造。(×) 8 阿基米德是欧几里得的学生的学生。(√) % 二、伽利略与经典物理的诞生 1、哪位古希腊哲学家认为万物都是由原子构成的(D、德谟克利特) A、亚里士多德

B、毕达哥拉斯 C、色诺芬 D、德谟克利特 2、“地恒动而人不知,譬如闭舟而行,不觉舟之运也”体现了什么物理学原理(A、相对性原理) A、相对性原理 | B、惯性原理 C、浮力定理 D、杠杆原理 3、以下不属于伽利略的成就的是(B、发现万有引力) A、重述惯性定律 B、发现万有引力 C、阐述相对性原理 D、自由落体定律 4、~ 5、惯性定律认为物体在不受任何外力的作用下,会保持下列哪种运动状态 (C、匀速直线) A、匀速曲线 B、加速直线 C、匀速直线 D、加速曲线 5、伽利略的逝世和牛顿的出生都是在1642年。(√) 6、伽利略认为斜面上的运动是冲淡了的自由落体运动。(√) } 7、伽利略是奥地利物理学家,近代实验科学的先驱者。(×) 8、《关于托勒密和哥白尼两大世界体系的对话》与《天体运行论》都是伽利略的著作(×) 三、经典物理的三大支柱:经典力学、经典电动力学、经典热力学和统计力学 1、物理学家焦耳是哪个国家的人(C、英国) A、德国 B、奥地利 C、英国 } D、意大利 2、以下哪一项属于经典物理的范畴(A、万有引力定律) A、万有引力定律 B、热质学说 C、量子论 D、狭义相对性原理 3、谁完成了光的双缝干涉实验,认识到光是横波,并提出了颜色的三色定理(D、托马斯·杨) A、伽利略

实现玻色_爱因斯坦凝聚态的重大意义

!"实现玻色!爱因斯坦凝聚态的重大意义"#$%年印度物理学家玻色研究了“光子在各能量级上的分布&问题,他以不同于普朗克的方式推导出普朗克黑体辐射公式。玻色将这一结果寄给爱因斯坦,请其翻译成德文并在德国发表。爱因斯坦意识到玻色工作的重要性,立即着手研究这一问题。爱因斯坦于"#$%年和"#$’年发表了两篇文章,将玻色对光子的统计方法推广到某类原子,并预言这类原子的温度足够低时,所有的原子就会突然聚集在一种尽可能低的能量状态,这就是所谓的玻色!爱因斯坦凝聚(()*+,-.*/+-.0).1+.*2/-).,(,0),这时宏观量物质的状态可以用同一波函数来描写。自"#$’年提出(,0以来,陆续有不少寻求(,0实验实现的研究出现。首先是"#3%年提出的超流态液氦。后来的实验中确实看到量子简并的特性,但是由于系统中存在着强相互作用,很难看成是纯的(,0。接着"#’#年有人提出自旋极化氢原子气体可能是(,0的候选者,但至今仍未能在实验上实现。"#45年, 第三种重要的(,0候选者———氧化亚铜(06$7)中的激子被提出。 经过"5多年的努力, 虽然于"##8年在实验上观测到了,但是由于复杂的相互作用过程,(,0的特性得不到很好的研究。45年代中期,激光冷却和捕陷原子的研究已取得长足的进步,几个研究小组提出了冷却的碱金属原子可以形成只有弱相互作用的(,0。在不断克服实现(,0的一系列技术难题后,"##’年9月,威曼和康奈尔小组使用铷原子首次实现了玻色!爱因斯坦凝聚。 玻色!爱因斯坦凝聚是独一无二的量子力学相变,因为它是在原子间无相互作用条件下发生的,在科学上,玻色!爱因斯坦凝聚对基础研究具有重要意义,它证实了存在一种新的物质态,为实验物理学家提供了一种独一无二的新介质;在应用上,科学家们已提出了很多设想:如改善精密测量的准确度,制造原子钟、原子干涉仪,测量原子物理常数和微重力;实现光速减慢、光信息存储、量子信息传递和量子逻辑操作;进行微结构刻蚀等。例如,玻色!爱因斯坦凝聚体中的原子几乎不动,可以用来设计精确度更高的原子钟,以应用于太空航行和精确定位等。 凝聚体具有很好相干性,可以用于研制高精度的原子干涉仪,测量各种势场,测量重力场加速度和加速度的变化等。另外,以芯片技术为例,传统的芯片技术现已接近发展极限,因为目前的芯片都是利用普通激光来完成集成电路的光刻,而普通激光的波长是有限的。今后,如果利用原子激光来进行集成电路的光刻,将大大提高集成电路的密度,因此将大大提高电脑芯片的运算速度。随着对玻色!爱因斯坦凝聚研究的深入,也许它会像发现普通激光那样给人类带来另一次技术革命。 从实现玻色!爱因斯坦凝聚到获得诺贝尔奖只有9年时间,这在诺贝尔物理学奖授奖的百年史上是相对较短的。然而从爱因斯坦的预言到它的实现,物理学家却花了整整35年。曼才使用一个特制的外边缠有电 磁线圈的玻璃容器进行了他们的 实验。康奈尔说,如果科特勒和他 的同事们能够有类似的装置,那 么他们就不会因为他们的设备中 一个线圈熔化、污染了整个设备 而导致试验耽搁几周了,科学史 可能也会因此而改写了。 为科学家们制造实验用的专 门设备需要有一些创新的思维。 比如要正确使用电子元件,可能 需要查阅大量难懂的产品目录。 对于爱好这项工作的人来说,这 是非常有吸引力的。他们往往会坚持把它做到最好。高效的工作为技术上要求较高的实验创造良好的环境,这一点也表现在:;<=对于实验设备的购置方面。其订购一个部件乃至部件送达的时间都要比其他地方快很多。节省的时间对于实验的进度是至关重要的。但是和任何成功的实验室一样,:;<=不能在它的成绩面前止步不前。其实验计划的更新正在进行中,其中一个重要的领域就是超短激光脉冲。:;<=有专家正在一系列项目中使用最先进的激光技术,包括原子钟的改进研发、化学反应的精密控制、安全通讯的研究以及活体细胞成像等等。不过,这个实验室也遭遇到了一些挫折,其中最严重的就是>;?@在$5世纪#5年代逐步停止了对:;<=原子物理学计划的资金支持。为了不至于给:;<=造成重大的困难,>;?@的撤出是在足够长的时间内进行的。此外,尽管科罗拉多大学拥有很高的声誉,但毕竟不能与哈佛或斯坦福大学齐名,这就使得:;<=的一些资历较深的科学家对它是否能够 持久地吸引优秀的学生多少有些 担心。 然而人们知道,那些希望在 这里建立自己学术权威的人是不受欢迎的,因为这里是一个科学的自由之地。A 袁永康B 编译C ?团队?

玻色-爱因斯坦凝聚理论研究

南京师范大学泰州学院 毕业论文(设计) ( 2014 届) 题目:__玻色-爱因斯坦凝聚理论研究_院(系、部):信息工程学院____专业:物理学(师范)____姓名:严加林______学号: 12100134 _____指导教师:朱庆利____ 南京师范大学泰州学院教务处制

摘要 玻色-爱因斯坦凝聚(玻色—爱因斯坦凝聚)是科学巨匠爱因斯坦在80年前预言的一种新物态。这里的“凝聚”与日常生活中的凝聚不同,它表示原来不同状态的原子突然“凝聚”到同一状态(一般是基态)。即处于不同状态的原子“凝聚”到了同一种状态。形象地说,这就像让无数原子“齐声歌唱”,其行为就好像一个玻色子的放大,可以想象着给我们理解微观世界带来了什么。本文针对玻色-爱因斯坦凝聚这一课题,综述了玻色-爱因斯坦凝聚理论的诞生和发展、概念及其形成条件。在凝聚体实现发面,随着科学技术的发展,我们实现了玻色-爱因斯坦凝聚。1995年,随着 JILA 小组、MIT小组、Rice大学的试验成功,玻色-爱因斯坦凝聚到热浪被推上了高潮。本文中还将介绍一些玻色—爱因斯坦凝聚的实验和国内外的研究动态,最后展望了其发展前景。 关键词:玻色-爱因斯坦凝聚,激光冷却与囚禁,原子激光

Abstract Bose Einstein condensation (BEC) is a new material predicted by science master Einstein in 80 years ago. Here the "cohesion" is different from condensation in everyday life. It says that different states of atomic suddenly "condensed" to the same state (usually the ground state). In different states of atoms "condensed" to the same state. Figure ground says, this is like so many atomic "sing in union", amplifying its behavior as a boson, you can imagine what brings to our understanding of the microscopic world. According to Bose Einstein condensates of this topic, reviews the Bose Einstein condensates birth and development, theory and its formation conditions. In the realization of yeast aggregates, with the development of science and technology, we realize the Bose Einstein condensation. In 1995, with the test of JILA group, MIT group, Rice University's success, Bose Einstein condensates to heat was pushed to the climax. This paper will also introduce some of Bose Einstein condensation in the experiment and research dynamic status, and its development prospects. Keywords: Bose Einstein condensation, laser cooling and trapping, Atom laser

相关文档
相关文档 最新文档