文档库 最新最全的文档下载
当前位置:文档库 › 微束等离子焊接

微束等离子焊接

微束等离子焊接是一种精密的焊接技术,它利用等离子弧作为焊接热源,具有能量集中、电弧稳定、焊接变形小等特点,广泛应用于精密仪器、电子、航空航天等领域。本文将从焊接原理、设备组成、操作步骤、注意事项等方面,对微束等离子焊接进行1500字的详细介绍。

一、焊接原理

微束等离子焊接利用等离子弧作为焊接热源,将工件熔化形成焊缝。等离子弧是一种压缩电弧,具有能量集中、温度高、稳定性强的特点,能够满足微小焊缝的焊接需求。在焊接过程中,高频振荡器产生高频电压,激发等离子电弧,通过微调喷嘴孔径和各电极间隙,控制电弧在微小区域内稳定燃烧,使焊缝成形良好。

二、设备组成

微束等离子焊接设备主要由焊接电源、喷嘴、工件夹持装置、控制系统等组成。

1. 焊接电源:用于提供焊接所需的电能。通常采用具有大功率输出的等离子焊接专用电源。

2. 喷嘴:用于产生等离子电弧,喷嘴的孔径和形状对电弧燃烧有重要影响。通常采用具有高精度制造和严格控制的喷嘴。

3. 工件夹持装置:用于固定和保护待焊接工件,确保焊接过程中的稳定性和安全性。

4. 控制系统:用于控制焊接过程,包括喷嘴调节、电弧电压调节、送丝速度调节等,使焊接过程自动化或半自动化。

三、操作步骤

1. 准备工件:选择合适的待焊工件,确保其表面清洁、无油污、无裂纹。根据工件大小和形状选择合适的夹具。

2. 连接电源:连接焊接电源和控制系统,确保电源和控制系统工作正常。

3. 调节喷嘴:根据焊接需求调节喷嘴孔径和形状,控制电弧在微小区域内燃烧。

4. 施加电压:将焊接电源输出电压调节至适当值,启动焊接过程。

5. 焊接操作:根据焊接规范进行适当的送丝速度和焊枪移动速度调节,确保焊缝成形良好。在焊接过程中,需要注意观察焊缝成形和飞溅情况,及时调整参数。

6. 结束焊接:在焊接完成后,关闭焊接电源和控制系统,松开工件夹具,取出工件并进行后续处理。

四、注意事项

1. 操作人员需经过培训,熟悉微束等离子焊接设备的操作方法和安全规程。

2. 确保设备工作在稳定状态下再进行焊接操作,避免因设备不稳定导致的不良焊缝。

3. 操作过程中需注意防护,避免直接视线受到电弧损伤。应佩戴护目镜、面罩等防护设备。

4. 确保工件固定稳定,避免在焊接过程中发生位移或松动。

5. 观察焊缝成形和飞溅情况,如有异常及时停止操作并检查设备及工件,排除故障后再进行焊接。

6. 结束后及时关闭电源和控制系统,清理工作区域。

7. 定期对设备进行维护保养,确保设备性能稳定。

总之,微束等离子焊接是一种精密的焊接技术,需要操作人员具备相应的技能和知识,严格按照操作规程进行操作,确保焊接质量和安全。

微束等离子弧焊工艺

微束等离子弧焊工艺 索引:微束等离子弧焊的工艺参数,主要是焊接电流、焊接速度、工作气体流量、保护气体流量、电弧长度、喷嘴直径、喷嘴通道比和钨极的内缩量等,它们对焊缝的形状和焊接质量都有影响。 关键词:微束等离子弧焊,工艺参数 人们通常将焊接电流在30A以下的等离子弧焊接,称为微束等离子弧焊接。由于是在小电流条件下,无论是等离子弧的形态、稳定性及其对电源,设备的要求,还是焊接工艺过程及其操作方法,都有一系列的特殊性。 (1)微束等离子弧焊的特点 微束等离子焊接是一种小电流(通常小于30A)熔人型焊接工艺,为了保持小电流时电弧的稳定,一般采用小孔径压缩喷嘴(0.6~1.2mm)及联合型电弧。即焊接时会存在两个电弧,一个是燃烧于电极与喷嘴之间的非转移弧,另一个为燃烧于电极与焊件之间的转移弧,前者起着引弧和维弧作用,使转移弧在电流小至0.5A时仍非常稳定,后者用于熔化工件。 微束等离子弧是等离子弧的一种。在产生普通等离子弧的基础上采取提高电弧稳定性措,进一步加强电弧的压缩作用,减小电流和气流,缩小电弧室的尺寸。这样,就使微小的等离子焊枪喷嘴喷射出小的等离子弧焰流,如同缝纫机针一般细小。与钨极氩弧焊相比,微束等离子弧焊接的优点是: a.可焊更薄的金属,最小可焊厚度为0.01mm b.弧长在很大的范围内变化时,也不会断弧,并能保持柱状特征,巳焊接速度快、焊缝窄、热影响区小、焊接变形小。 (2)获得微束等离子弧的三要素 获得微束等离子弧,必须满足以下三个基本条件。 ①微束等离子弧发生器是产生微束等离子弧的器件,也称为等离子枪,它是以等离子电弧室为主体组成的。产生微束等离子弧的第一要素是要有一个良好的等离子枪,要求不漏气、不漏水、不漏电,电极对中且调整更换方便,喷嘴耐用又便于更换。 电弧室由上下两体构成,中间加以绝缘。上枪体的主要功能是:夹持钨极并使之接人电源负极,以使钨极尖端能产生电弧放电的阴极斑点;将电弧放电产生在钨极区的热量及时排出;钨极应能始终保持对准下枪体的喷嘴孔径中心,且应能调整极尖的高度和更换新钨极,导人惰性压缩气体。这样,上枪体应有电、气、水三个导人孔道和一个水的出口。下枪体上安装经常更换的喷嘴,要接电源的正极,要有进出冷却水的散热系统。有的微束等离子弧焊枪上设有保护气系统,也设置在下枪体上。

等离子焊接工艺

等离子焊接工艺 (1)焊接电流 焊接电流是根据板厚或熔透要求来选定。焊接电流过小,难于形成小孔效应:焊接电流增大,等离子弧穿透能力增大,但电流过大会造成熔池金属因小孔直径过大而坠落,难以形成合格焊缝,甚至引起双弧,损伤喷嘴并破坏焊接过程的稳定性。因此,在喷嘴结构确定后,为了获得稳定的小孔焊接过程,焊接电流只能在某一个合适的范围内选择,而且这个范围与离子气的流量有关。 (2)焊接速度 焊接速度应根据等离子气流量及焊接电流来选择。其他条件一定时,如果焊接速度增大,焊接热输入减小,小孔直径随之减小,直至消失,失去小孔效应。如果焊接速度太低,母材过热,小孔扩大,熔池金属容易坠落,甚至造成焊缝凹陷、熔池泄漏现象。因此,焊接速度、离子气流量及焊接电流等这三个工艺参数应相互匹配。 (3)喷嘴离工件的距离 ·喷嘴离工件的距离过大,熔透能力降低:距离过小,易造成喷嘴被飞溅物堵塞,破坏喷嘴正常工作。喷嘴离工件的距离一般取3~8mm。与钨极氩弧焊相比,喷嘴距离变化对焊接质量的影响不太敏感。 (4)等离于气及流量 等离子气及保护气体通常根据被焊金属及电流大小来选择。大电流等离子弧焊接时,等离子气及保护气体通常采取相同的气体,否则电弧的稳定性将变差。小电流等离子弧焊接通常采用纯氩气作等离子气。这是因为氧气的电离电压较低,可保证电弧引燃容易。 离子气流量决定了等离子流力和熔透能力。等离子气的流量越大,熔透能力越大。但等离子气流量过大会使小孔直径过大而不能保证焊缝成形。因此,应根据喷嘴直径、等离子气的种类、焊接电流及焊接速度选择适当的离子气流量。利用熔人法焊接时,应适当降低等离子气流量,以减小等离子流力。 保护气体流量应根据焊接电流及等离子气流量来选择。在一定的离子气流量下,保护气体流量太大,会导致气流的紊乱,影响电弧稳定性和保护效果。而保护气体流量太小,保护效果也不好,因此,保护气体流量应与等离子气流量保持适当的比例。 小孔型焊接保护气体流量一般在15~30L/min范围内。采用较小的等离子气流量焊接时,电弧的等离子流力减小,电弧的穿透能力降低,只能熔化工件,形不成小孔,焊缝成形过程与TIG焊相似。这种方法称为熔入型等离子弧焊接,适用于薄板、多层焊的盖面焊及角焊缝的焊接。 (5)引弧及收弧

独特的Ultima150等离子焊接系统原厂配置有150A电源

独特的Ultima150等离子焊接系统原厂配置有150A电源,内置冷却系统和气体控制箱。Ultima150等离子焊接系统占地面积小、安装简单,这使它的设备初期投入费用比自动TIG系统的设备初期投入费用更具竞争力。同时,生产效率的大幅度提高和良好的性能重现性,使购买者在更短时间内可获取投资回报。1、电流0.5-150A可调范围,在广泛的应用范围里,可获得良好的性能。2、稳定的直流电弧,重复性好,焊缝质量高。3、具备引导电弧,可重复起弧,减少焊接缺陷,和返工时间,大大提高生产效率。4、多种电压输入:200-460 VAC, 1或3相,50或60 赫兹(575 VAC带有选择模块) 5、智能逻辑电路功能,保护电源在电压输入错误时免于受损。6、限流器:限制从电源到焊枪的输出电流,避免焊枪受损。7、电流预设功能:用户无需进行系统设置测试,即可预览焊机真实的电流与电压数值,由此降低焊接操作成本,提高焊接生产效率。8、保护装置具有:- 冷却液脱离子器和离子化冷却液保护功能- 冷却液流量保护和互锁功能- 冷却液温度保护和互锁功能- 气体控制模块温度过载监测和互锁功能9、界面简单,可机用控制或手动控制。10、可与现有飞马特焊枪搭配使用额定输出- A - 100/150A - V - 18/25 V - 暂载率- 100/60 % 输入范围- 低- .5-15 A - 高- 5-150A 负载电压- 12-25 V 空载电压- 60 V DC 输入频率- 50/60 Hz 流量计- 离子气- .5-3.0 SCFH (.25-1.5 lpm) - 保护气- 5-30 SCFH (2.5-15 Lpm) 压缩机控制- 远控输入电流控制- 远控或面板控制模拟控制- 0-10 V直流输入尺寸高:18 英寸/457毫米宽:15英寸/381毫米长:28.5英寸/724毫米重量:130磅/59千克运输重量- 154磅/72千克缩写abbr.:PAW. [军] Plasma-Arc Welding, 等离子弧焊 ——简明英汉词典 等离子弧有两种工作方式。一种是“非转移弧”,电弧在钨极与喷嘴之间燃烧,主要用於等离子喷镀或加热非导电材料;另一种是“转移弧”,电弧由辅助电极高频引弧后,电弧燃烧在钨极与工件之间,用於焊接。形成焊缝的方式有熔透式和穿孔式两种。前一种形式的等离子弧只熔透母材,形成焊接熔池,多用於0.8~3毫米厚的板材焊接;后一种形式的等离子弧只熔穿板材,形成钥匙孔形的熔池,多用於3~12毫米厚的板材焊接。此外,还有小电流的微束等离子弧焊,特别适合於0.02~1.5毫米的薄板焊接。等离子弧焊接属于高质量焊接方法。焊缝的深/宽比大,热影响区窄,工件变形小,可焊材料种类多。特别是脉冲电流等离子弧焊和熔化极等离子弧焊的发展,更扩大了等离子弧焊的使用范围。 等离子弧焊与TIG焊十分相似,它们的电弧都是在尖头的钨电极和工件之间形成的。但是,通过在焊炬中安置电极,能将等离子弧从保护气体的气囊中分离出来,随后推动等离子通过孔型良好的铜喷管将弧压缩。通过改变孔的直径和等离子气流速度,可以实现三种操作方式:1、微束等离子弧焊:30A以下的熔透型等离子弧焊 是指电流在30A以下的熔透型等离子弧焊,通常称为微束等离子弧焊。为了保证小电流等离子弧的稳定,一般采用混合型等离子弧。主要用于超薄件的焊接。 2、熔透型等离子弧焊:15~200A 它是采用较小的焊接电流和较小的离子气流量,等离子弧在焊接过程中只熔化焊件不产生小孔效应,焊接方法与钨极氩弧焊很相似,焊接时可以不添加金属,主要用于薄板(0.5~2.5mm)的焊接。 3、穿透型等离子弧焊:100~300A 又称穿孔型焊接法,通过增加焊接电流和等离子气流速度,可产生强有力的等离子束,利用它温度高、能量密度强、穿透力强的特点,焊接时等离子弧把焊件完全熔透并在等离子流量的作用下形成一个穿透焊件的小孔(小孔背面露出等离子弧),形成了正反面都有波纹的焊

第5讲 等离子弧焊及切割简介

第5讲等离子弧焊及切割 等离子弧是利用等离子枪将阴极(如钨极)和阳极之间的自由电弧压缩成高温、高电离度、高能量密度及高焰流速度的电弧。等离子弧可用于焊接、喷涂、堆焊及切割。本章只介绍焊接及切割。 1 等离子弧工作原理 1.1等离子弧的形式 等离子枪按用途可分为焊枪及割枪,枪的主要组成部分及术语如图1所示。

切割用枪无保护气体2及保护气罩6。压缩喷嘴5是等离子枪的关键部件,一般需用水冷。喷嘴孔径dn及孔道长度l0是压缩喷嘴的两个主要尺寸。喷嘴内通的气体称离子气。中性的离子气在喷嘴内电离后使喷嘴内压力增加,所以喷嘴内壁与电极4之间的空间称增压室。电离了的离子气从喷嘴流出时受到孔径限制,使弧柱截面变小,该孔径对弧柱的压缩作用称机械压缩。水冷喷嘴内壁表面有一层冷气膜,电弧经过孔道时,冷气膜一方面使喷嘴与弧柱绝缘,另一方面使弧柱有效截面进一步收缩,这种收缩称热收缩。弧柱电流自身磁场对弧柱的压缩作用称磁收缩。在机械压缩与热收缩的作用下,弧柱电流密度增加,磁收缩随之增强,如电流不变,弧柱电场强度及弧压降都随电流密度增加而增加,所以等离子弧(也称压缩电弧)的电弧功率及温度明显高于自由电弧。图2a所示的对比中,等离子弧的电弧温度比自由电弧高30%,电弧功率高100%。

由于电离后的离子气仍具有流体的性质,受到压缩从喷嘴孔径喷射出的电弧带电质点的运动速度明显提高(可达300m/s),所以等离子弧具有较小的扩散角及较大的电弧挺度(图2b),这也是等离子弧最突出的优点。电弧挺度是指电弧沿电极轴线的挺直程度。 等离子弧具有的电弧力、能量密度及电弧挺度等与加工有关的物理性能取决于下列五个参数: 1)电流; 2)喷嘴孔径的几何尺寸; 3)离子气种类; 4)离子气流量; 5)保护气种类; 调整以上五个参数可使等离子弧适应不同的加工工艺。如在切割工艺中,应选择大电流、小喷嘴孔径、大离子气量及导热好的离子气,以便使等离子弧具有高度集中的热量及高的焰流速度。而在焊接工艺中,为防止焊穿工件则应选择小的离子气量及较大的喷嘴孔径。 1.2等离子弧的类型 等离子弧按电源的供电方式分为非转移型、转移型及联合型三种形式,其中非转移弧及转移弧是基本的等离子弧形式。 (1)非转移型等离子弧电弧建立在电极与喷嘴之间,离子气强迫等离子弧从喷嘴孔径喷出,也称等离子焰,见图3a。非转移弧主要用于非金属材料的焊接与切割。

等离子弧焊

等离子弧焊 等离子弧焊成品 等离子弧焊是利用等离子弧作为热源的焊接方法。气体由电弧加热产生离解,在高速通过水冷喷嘴时受到压缩,增大能量密度和离解度,形成等离子弧。它的稳定性、发热量和温度都高于一般电弧,因而具有较大的熔透力和焊接速度。形成等离子弧的气体和它周围的保护气体一般用氩。根据各种工件的材料性质,也有使用氦或氩氦、氩氢等混合气体的。 目录

基本信息 缩写abbr. :PAW. [军] Plasma-Arc Welding, 等离子弧焊 ——简明英汉词典 工作方式 等离子弧有两种工作方式。一种是“非转移弧”,电弧在钨极与喷嘴之间燃烧,主要用於等离子喷镀或加热非导电材料;另一种是“转移弧”,电弧由辅助电极高频引弧后,电弧燃烧在钨极与工件之间,用於焊接。形成焊缝的方式有熔透式和穿孔式两种。前一种形式的等离子弧只熔透母材,形成焊接熔池,多用於0.8~3毫米厚的板材焊接;后一种形式的等离子弧只熔穿板材,形成钥匙孔形的熔池,多用於 3~12毫米厚的板材焊接。此外,还有小电流的微束等离子弧焊,特别适合於0.02~1.5毫米的薄板焊接。等离子弧焊接属于高质量焊接方法。焊缝的深/宽比大,热影响区窄,工件变形小,可焊材料种类多。

特别是脉冲电流等离子弧焊和熔化极等离子弧焊的发展,更扩大了等离子弧焊的使用范围。 过程特点 操作方式 等离子弧焊与TIG焊十分相似,它们的电弧都是在尖头的钨电极和工件之间形成的。但是,通过在焊炬中安置电极,能将等离子弧从保护气体的气囊中分离出来,随后推动等离子通过孔型良好的铜喷管将弧压缩。通过改变孔的直径和等离子气流速度,可以实现三种操作方式: 1、微束等离子:0.1~15A 在很低的焊接电流下,材苁褂梦⑹?壤胱踊<词乖诨〕け浠?怀??0mm时,柱状弧仍能保持稳定。 2、中等电流:15~200A 在较大的15~200A电流下,等离子弧的过程特点与TIG弧相似,但由于等离子被压缩过,弧更加挺直。虽然可提高等离子气流速度来增加焊接熔池的度深,但会造成在紊乱的保护气流中,混入空气和保护气体的风险。 3、小孔型等离子:大于100A 通过增加焊接电流和等离子气流速度,可产生强有力的等离子束,与激光或电子束焊接一样,它能够在材料上形成充分的熔深。焊接时,随着焊接熔池的流动,金属穿过小孔被切割后在表面张力作用下形成焊道。单道焊时,该过程可用于焊接较厚的材料(厚度不超过10mm的不锈钢)。 电源 使用等离子弧焊时,通常采用直流电流和垂降特性电源。由于从特别的焊炬排列方式和各自分离的等离子、保护气流中获得了独特的操作特性,可在等离子控制台上增加一个普通的TIG电源,还可以使用特别组建的等离子系统。采用正弦波交流电时,不容易使等离子弧稳定。当电极和工件间距较长且等离子被压缩时,等离子弧很难发挥作用,而且,在正半周期内,过热的电极会使导电嘴变成球形,从而干扰弧的稳定。

等离子焊机使用说明

目录 1.等离子焊接方法简介 (2) 1.1简介 (2) 1.2等离子电弧 (2) 1.3等离子基本焊接方法 (3) 2.等离子焊接设备及其主要功能 (3) 2.1 PHOENIX EWA 400DC-P等离子焊接电源 (3) 2.2 HP400等离子焊枪 (5) 2.3等离子焊接控制电源 (6) 2.4 RC-3型冷却水箱 (6) 2.5焊接工装 (7) 3.等离子焊接方法的主要参数 (8) 3.1焊接电流 (8) 3.2等离子气流量 (8) 3.3焊接速度 (8) 3.4喷嘴距离 (9) 3.5正面保护气流量 (9) 4.等离子焊接操作及其注意事项 (9) 5.常见故障及其解决方法 (11)

1.等离子焊接方法简介 1.1简介 等离子焊接是当今焊接中等厚度金属材料的首选方法,电流范围可达0.1~500A,适合于厚度在0.1mm~9mm的不锈钢、合金钢、钛合金、镍基合金及铝合金的焊接,采用这种焊接方法可以获得质量优良的焊缝和更快的焊接速度,从而大大提高产品的制造质量和竞争优势。 华恒公司自创立之出一直致力于等离子焊接设备的研究及生产,以及等离子焊接工艺拟订和更新,并取得了显著的成果。目前已制造出了等离子焊接电源及焊枪等整套设备,并已成功的应用到染整、食品、管道等行业的生产和制造之中,并得到了广大用户的一致好评。 下图为等离子焊接在全国各种行业中的几个应用实例: 图1 操作机等离子焊接的应用图2 边梁等离子焊接的应用1 图3边梁等离子焊接的应用2 图4 纵环缝等离子焊接的应用 1.2 等离子电弧 等离子焊接主要是获得等离子弧,等离子弧是利用等离子枪将阴极和阳极之间的自由电弧压缩成高温、高电离度、高能量密度及高焰流速度的电弧。

焊接教案

第一章焊接概述 一、焊接的定义 被焊工件的材质(同种或异种),通过加热或加压或两者并用,并且用或不用填充材料,使工件的材质达到原子间的建和而形成永久性连接的工艺过程。焊接过程中,工件和焊料熔化形成熔融区域,熔池冷却凝固后便形成材料之间的连接。这一过程中,通常还需要施加压力。焊接的能量来源有很多种,包括气体焰、电弧、激光、电子束、摩擦和超声波等。 二、焊接的分类 按工艺过程的特点分有熔焊,压焊和钎焊三大类. 1、熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。熔池随热源向前移动,冷却后形成连续焊缝而将两工件连接成为一体。 2、压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接。常用的压焊工艺是电阻对焊,当电流通过两工件的连接端时,该处因电阻很大而温度上升,当加热至塑性状态时,在轴向压力作用下连接成为一体。 3、钎焊是使用比工件熔点低的金属材料作钎料,将工件和钎料加热到高于钎料熔点、低于工件熔点的温度,利用液态钎料润湿工件,填充接口间隙并与工件实现原子间的相互扩散,从而实现焊接的方法。

二、焊接的常用方法与特点 1、焊条电弧焊: 原理—用手工操作焊条进行焊接的电弧焊方法。利用焊条与焊件之间建立起来的稳定燃烧的电弧,使焊条和焊件熔化,从而获得牢固的焊接接头。属气-渣联合保护。 主要特点——操作灵活;待焊接头装配要求低;可焊金属材料广;焊接生产率低;焊缝质量依赖性强(依赖于焊工的操作技能及现场发挥)。 应用——广泛用于造船、锅炉及压力容器、机械制造、建筑结构、化工设备等制造维修行业中。适用于各种金属材料、各种厚度、各种结构形状的焊接。 2、埋弧焊(自动焊): 原理——电弧在焊剂层下燃烧。利用焊丝和焊件之间燃烧的电弧产生的热量,熔化焊丝、焊剂和母材(焊件)而形成焊缝。属渣保护。 主要特点——焊接生产率高;焊缝质量好;焊接成本低;劳动条件好;难以在空间位置施焊;对焊件装配质量要求高;不适合焊接薄板(焊接电流小于100A时,电弧稳定性不好)和短焊缝。 应用——广泛用于造船、锅炉、桥梁、起重机械及冶金机械制造业中。凡是焊缝可以保持在水平位置或倾斜角不大的焊件,均可用埋弧焊。板厚需大于5毫米(防烧穿)。焊接碳素结构钢、低合金结构钢、不锈钢、耐热钢、复合钢材等。 3、二氧化碳气体保护焊(自动或半自动焊): 原理:利用二氧化碳作为保护气体的熔化极电弧焊方法。属气保护。 主要特点——焊接生产率高;焊接成本低;焊接变形小(电弧加热集中);焊接质量高;操作简单;飞溅率大;很难用交流电源焊接;抗风能力差;不能焊接易氧化的有色金色。 应用——主要焊接低碳钢及低合金钢。适于各种厚度。广泛用于汽车制造、机车和车辆制造、化工机械、农业机械、矿山机械等部门。 4、MIG/MAG焊(熔化极惰性气体保护焊): 原理——采用惰性气体作为保护气,使用焊丝作为熔化电极的一种电弧焊方法。 保护气通常是氩气或氦气或它们的混合气。MIG用惰性气体,MAG在惰性气体中加入少量活性气体,如氧气、二氧化碳气等。 主要特点——焊接质量好;焊接生产率高;无脱氧去氢反应(易形成焊接缺陷,对焊接材料表面清理要求特别严格);抗风能力差;焊接设备复杂。

焊接方法有哪几种

焊接方法 焊接: 通常是指金属的焊接。是通过加热或加压,或两者同时并用,使两个分离的物体产生原子间结合力而连接成一体的成形方法。 分类:根据焊接过程中加热程度和工艺特点的不同,焊接方法可以分为三大类。 (1)熔焊。 将工件焊接处局部加热到熔化状态,形成熔池(通常还加入填充金属),冷却结晶后形成焊缝,被焊工件结合为不可分离的整体。常见的熔焊方法有气焊、电弧焊、电渣焊、等离子弧焊、电子束焊、激光焊等。 (2)压焊。 在焊接过程中无论加热与否,均需要加压的焊接方法。常见的压焊有电阻焊、摩擦焊、冷压焊、扩散焊、爆炸焊等。 (3)钎焊。 采用熔点低于被焊金属的钎料(填充金属)熔化之后,填充接头间隙,并与被焊金属相互扩散实现连接。钎焊过程中被焊工件不熔化,且一般没有塑性变形。 焊接生产的特点: (1)节省金属材料,结构重量轻。 (2)以小拼大、化大为小,制造重型、复杂的机器零部件,简化铸造、锻造及切削加工工艺,获得最佳技术经济效果。 (3)焊接接头具有良好的力学性能和密封性。 (4)能够制造双金属结构,使材料的性能得到充分利用。 应用:焊接技术在机器制造、造船工业、建筑工程、电力设备生产、航空及航天工业等应用十分广泛。

不足:焊接技术也还存在一些不足之处,如焊接结构不可拆卸,给维修带来不便;焊接结构中会存在焊接应力和变形;焊接接头的组织性能往往不均匀,并会产生焊接缺陷等。 各种焊接技术介绍 一、电弧焊 电弧: 一种强烈而持久的气体放电现象,正负电极间具有一定的电压,而且两电极间的气体介质应处在电离状态。引燃焊接电弧时,通常是将两电极(一极为工件,另一极为填充金属丝或焊条)接通电源,短暂接触并迅速分离,两极相互接触时发生短路,形成电弧。这种方式称为接触引弧。电弧形成后,只要电源保持两极之间一定的电位差,即可维持电弧的燃烧。 电弧特点: 电压低、电流大、温度高、能量密度大、移动性好等,一般20~30V的电压即可维持电弧的稳定燃烧,而电弧中的电流可以从几十安培到几千安培以满足不同工件的焊接要求,电弧的温度可达5000K以上,可以熔化各种金属。 电弧组成:阴极区、阳极区、弧柱区三部分, 弧焊电源: 焊接电弧所使用的电源称为弧焊电源,通常可分为四大类:交流弧焊电源、直流弧焊电源、脉冲弧焊电源和逆变弧焊电源。 直流正接: 采用直流焊机当工件接阳极,焊条接阴极时,称为直流正接,此时工件受热较大,适合焊接厚大工件; 直流反接: 当工件接阴极,焊条接阳极时,称为直流反接,此时工件受热较小,适合焊接薄小工件。采用交流焊机焊接时,因两极极性不断交替变化,故不存在正接或反接问题。 焊接冶金过程

微束等离子焊接

微束等离子焊接是一种精密的焊接技术,它利用等离子弧作为焊接热源,具有能量集中、电弧稳定、焊接变形小等特点,广泛应用于精密仪器、电子、航空航天等领域。本文将从焊接原理、设备组成、操作步骤、注意事项等方面,对微束等离子焊接进行1500字的详细介绍。 一、焊接原理 微束等离子焊接利用等离子弧作为焊接热源,将工件熔化形成焊缝。等离子弧是一种压缩电弧,具有能量集中、温度高、稳定性强的特点,能够满足微小焊缝的焊接需求。在焊接过程中,高频振荡器产生高频电压,激发等离子电弧,通过微调喷嘴孔径和各电极间隙,控制电弧在微小区域内稳定燃烧,使焊缝成形良好。 二、设备组成 微束等离子焊接设备主要由焊接电源、喷嘴、工件夹持装置、控制系统等组成。 1. 焊接电源:用于提供焊接所需的电能。通常采用具有大功率输出的等离子焊接专用电源。 2. 喷嘴:用于产生等离子电弧,喷嘴的孔径和形状对电弧燃烧有重要影响。通常采用具有高精度制造和严格控制的喷嘴。 3. 工件夹持装置:用于固定和保护待焊接工件,确保焊接过程中的稳定性和安全性。 4. 控制系统:用于控制焊接过程,包括喷嘴调节、电弧电压调节、送丝速度调节等,使焊接过程自动化或半自动化。 三、操作步骤 1. 准备工件:选择合适的待焊工件,确保其表面清洁、无油污、无裂纹。根据工件大小和形状选择合适的夹具。 2. 连接电源:连接焊接电源和控制系统,确保电源和控制系统工作正常。 3. 调节喷嘴:根据焊接需求调节喷嘴孔径和形状,控制电弧在微小区域内燃烧。 4. 施加电压:将焊接电源输出电压调节至适当值,启动焊接过程。 5. 焊接操作:根据焊接规范进行适当的送丝速度和焊枪移动速度调节,确保焊缝成形良好。在焊接过程中,需要注意观察焊缝成形和飞溅情况,及时调整参数。 6. 结束焊接:在焊接完成后,关闭焊接电源和控制系统,松开工件夹具,取出工件并进行后续处理。 四、注意事项 1. 操作人员需经过培训,熟悉微束等离子焊接设备的操作方法和安全规程。 2. 确保设备工作在稳定状态下再进行焊接操作,避免因设备不稳定导致的不良焊缝。 3. 操作过程中需注意防护,避免直接视线受到电弧损伤。应佩戴护目镜、面罩等防护设备。 4. 确保工件固定稳定,避免在焊接过程中发生位移或松动。 5. 观察焊缝成形和飞溅情况,如有异常及时停止操作并检查设备及工件,排除故障后再进行焊接。 6. 结束后及时关闭电源和控制系统,清理工作区域。 7. 定期对设备进行维护保养,确保设备性能稳定。

微束等离子弧焊工艺知识

微束等离子弧焊工艺知识 人们通常将焊接电流在30A 以下的等离子弧焊接,称为微束等离子弧焊接。由于是在小电流条件下,无论是等离子弧的形态、稳定性及其对电源,设备的要求,还是焊接工艺过程及其操作方法,都有一系列的特殊性。 (1)微束等离子弧焊的特点 微束等离子焊接是一种小电流(通常小于30A)熔人型焊接工艺,为了保持小电流时电弧的稳定,一般采用小孔径压缩喷嘴(0.6?1.2mm)及联合型电弧。即焊接时会存在两个电弧,一个是燃烧于电极与喷嘴之间的非转移弧,另一个为燃烧于电极与焊件之间的转移弧,前者起着引弧和维弧作用,使转移弧在电流小至0. 5A时仍非 常稳定,后者用于熔化工件。 微束等离子弧是等离子弧的一种。在产生普通等离子弧的基础上采取提高电弧稳定性措,进一步加强电弧的压缩作用,减小电流和气流,缩小电弧室的尺寸。这样,就使微小的等离子焊枪喷嘴喷射出小的等离子弧焰流,如同缝纫机针一般细小。与钨极氩弧焊相比,微束等离子弧焊接的优点是: a .可焊更薄的金属,最小可焊厚度为0. 01mm b .弧长在很大的范围内变化时,也不会断弧,并能保持柱状特征,巳焊接速度快、焊缝窄、热影响区小、焊接变形小。

(2)获得微束等离子弧的三要素 获得微束等离子弧,必须满足以下三个基本条件。 ①微束等离子弧发生器是产生微束等离子弧的器件,也称为等离子枪,它是以等离子电弧室为主体组成的。产生微束等离子弧的第一要素是要有一个良好的等离子枪,要求不漏气、不漏水、不漏电,电极对中且调整更换方便,喷嘴耐用又便于更换。 电弧室由上下两体构成,中间加以绝缘。上枪体的主要功能是:夹持钨极并使之接人电源负极,以使钨极尖端能产生电弧放电的阴极斑点;将电弧放电产生在钨极区的热量及时排出;钨极应能始终保持对准下枪体的喷嘴孔径中心,且应能调整极尖的高度和更换新钨极,导人惰性压缩气体。这样,上枪体应有电、气、水三个导人孔道和一个水的出口。下枪体上安装经常更换的喷嘴,要接电源的正极,要有进出冷却水的散热系统。有的微束等离子弧焊枪上设有保护气系统,也设置在下枪体上。 ②直流电源作为微束等离子弧的电源,除了普通等离子弧的直流电源、下降伏安特性、电流可以细微调节等要求外,还有一个重要的特殊要求,即高空载电压。一般直流电源的空载电压是80?100V,微束等离子弧的电源空载电压应是120?160V,有时还要高达200V。因为微束等离子弧的电流小(<30A),电弧气体介质质点的电离、发射作用弱,为便于引弧和稳弧,就需要提高空载电压来加强场致发射作 用,所以微束等离子弧焊的电源需要特制专用。

等离子操作规程及工艺

等离子焊接原理 等离子焊接是通过高度集中的等离子束流获得必要的熔化母材能量的这种焊接过程,通常等离子电弧的能量取决于等离子气体的流量,焊枪喷嘴的压缩效果和使用的电流大小。普通电弧射流速度为80~150米/秒,等离子电弧的射流速度可以达到300~2000米/秒,等离子电弧由于受到压缩,能量密度可达105—106W/cm2,而自由状态下TIG电弧能量密度50-100W/mm2,弧柱中心温度在24000K以上,而TIG电弧弧柱中心温度在5000~8000K左右【1】。因此,等离子电弧焊接与电子束(能量密度10 5W/mm2)、激光束(能量密度105W/mm2)焊接一同被称为高能密度焊接。等离子焊接及穿孔示意图如图1 等离子焊接及穿孔示意图 等离子电弧的分类 按电源的联接方式分类,等离子电弧分非转移弧,转移弧和联合型电弧三种形式【1】。三种形式都是钨极接负,工件或喷嘴接正。 非转移型电弧弧是在钨极与喷嘴之间形成电弧,在等离子气流压送下,弧焰从喷嘴中喷出,形成等离子焰【1】。主要适合于导热较好的材料焊接,但由于电弧的能量主要通过喷嘴,因此喷嘴的使用寿命较短,能量不宜过大,不太适合于长时间的焊接,这种形式较少应用在焊接。 转移型电弧是在喷嘴与工件之间形成电弧,由于转移弧难以直接形成,先在钨极与喷嘴之间形成小的非转移弧,然后过渡到转移弧,形成转移电弧时,非转移弧同时切断。 由于这种方式能将更多的能量传递给工件,因此该形式电弧普遍应用到金属材料焊接和切割中。 混合型电弧是指转移电弧和非转移电弧并存,主要用于微束等离子焊接和粉末堆焊。

按电弧形状或成形原理分类,等离子电弧分为微束等离子,熔透型等离子和小孔型等离子三种基本方法。 微束等离子是在小电流,一般在30A以下,通过熔透的方法进行焊接。通常适用于焊接细材,箔件等,在传感器元件,电子器件,电机接头,网筛加工等运用较为普遍。 熔透型等离子是在等离子气流较小,弧柱压缩较弱的情况下焊接,只对工件进行熔透而不形成小孔的这种方法。这种电弧非常类似TIG电弧结构和能量。常用在薄板的单面焊双面成型。 小孔型等离子利用等离子弧能量密度大和等离子流力大的特点,将工件完全熔透并产生一个贯穿工件的小孔的方法。小孔效应只有在能量密度足够的条件下才能形成,被焊板厚增加,能量密度也要增加。但等离子能量密度的提高有一定限制,因此小孔型等离子只能在有限的板厚范围内进行。通常情况下碳钢,不锈钢,镍基合金等在平焊位置一次单面焊双面焊成形小于8mm,钛合金小于10mm.采用特殊喷嘴和气体,不锈钢可提高至10mm,钛合金达12mm.可以实现不开坡口情况下单面焊双面成型。 结合弱弧等离子或TIG的特点,与小孔等离子效应结合,通过采用双枪同时焊接的工艺方法,可以得到更高的效率和质量。这种工艺适合长焊缝、大直径筒体的纵环缝焊接 等离子焊接优点 由于等离子焊接是高能束焊接,具有以下几个特点: ◆焊接速度可以明显提高( 可达手工TIG焊的4~5倍以上,工件厚度在可焊范围越 大,提高越明显); ◆可以获得性能优良的焊缝; ◆在可焊范围内容易得到完整的规则的全焊透焊缝; ◆满足100% 射线探伤要求; ◆可以得到同母材的化学成分和性能的焊缝; ◆由于电弧集中,焊缝热影响区减小,且具有较低的氧化; ◆优良的外观成形; ◆不用开坡口可以大大减少焊丝的用量和焊前坡口制备; ◆焊接过程由于电弧挺度好,电弧容易控制; ◆残余应力和焊接变形小。 等离子焊接工艺标准 由于等离子焊接只能采用自动焊方式并且参数影响因数比较多,焊接工艺复杂。所以选择几个影响最为主要的因数作为实验的研究对象:离子气,电流,焊接速度,喷嘴孔径。考虑到实际生产中焊接速度的重要性,我们选取了焊接速度做为定量,重点对离子气,电流,喷嘴孔径做实验对象。 为了减小对焊接工艺的影响因数,对实验设备和板材做如下要求: 设备:HPT400等离子焊枪、HPT500等离子焊枪、TETRIX400电源、406控制箱、RC-4水箱、HL2000纵缝焊机。 板材:304 焊丝 308 焊丝直径:Φ0.8,Φ1.0,Φ1.2 厚度3~8 mm 对接形式:I 型间隙≤0.5mm 错边量≤0.5mm HPT400等离子枪的焊接参数

微束等离子焊

微束等离子焊 微束等离子焊是一种高精度的焊接技术,它采用了等离子体的能量来完成焊接过程。相比传统的焊接方法,微束等离子焊具有更高的精度和可控性,可以在微小的焊接区域内完成高质量的焊接。本文将介绍微束等离子焊的原理、应用以及优势。 微束等离子焊的原理是利用高能量的等离子束将焊接材料加热至熔点,然后通过强大的焊接压力将焊接材料连接在一起。等离子束是通过加热气体产生的,气体被加热至高温后,会形成等离子体。等离子束在焊接过程中可以提供足够的能量来熔化焊接材料,并通过高速冷却来形成均匀致密的焊缝。 微束等离子焊的应用非常广泛,特别在微电子、光电子、航空航天等领域中得到了广泛的应用。在微电子领域,微束等离子焊可以用于连接微小的电子元件,如集成电路芯片、传感器等。在光电子领域,微束等离子焊可以用于连接光纤和光纤器件,实现光信号的传输和处理。在航空航天领域,微束等离子焊可以用于连接高强度的金属材料,如钛合金、镍基合金等,以满足航空航天器件对焊接强度和质量的要求。 与传统的焊接方法相比,微束等离子焊具有许多优势。首先,微束等离子焊可以实现高精度的焊接,焊接区域非常小,可以达到亚毫米甚至亚微米的级别。其次,微束等离子焊的热影响区非常小,可以有效减少焊接材料的变形和热应力,提高焊接质量。此外,微束

等离子焊的焊接速度快,效率高,可以大幅提高生产效率。最重要的是,微束等离子焊可以在无空气环境下进行焊接,避免了氧化和污染问题,提高了焊接质量和可靠性。 尽管微束等离子焊具有许多优势,但也存在一些挑战和局限性。首先,微束等离子焊的设备和工艺比较复杂,需要高精度的设备和技术支持。其次,微束等离子焊的成本相对较高,不适用于大规模生产。此外,微束等离子焊对焊接材料的适应性有一定要求,不同材料的焊接效果可能会有所差异。 微束等离子焊是一种高精度的焊接技术,具有广泛的应用前景和许多优势。随着科学技术的不断发展,微束等离子焊将在更多领域发挥重要作用,推动相关技术和产业的发展。同时,我们也期待未来能够解决微束等离子焊存在的挑战和局限性,进一步提高其应用范围和效果,为各行各业的发展做出更大的贡献。

等离子弧焊操作规程

1.目的 规定等离子弧焊的焊接工艺及焊接操作技术要求, 2.范围 适用于低碳钢、低合金钢、不锈钢、银及银基合金、钛及钛合金、铜及铜合金的等离子弧焊。工艺文件如无特殊要求,可按本守则规定进行焊接,有特殊要求时按工艺文件的要求施焊。 3.等离子弧焊设备 等离子弧所采用的电源,大多数为具有陡降外特性的直流电源(如弧焊发电机、硅弧焊整流器)。根据工艺或材料焊接的需要,有的要求有垂直下降外特性的直流电源微弧等离子焊接:有的则需要交流电源(等离子粉末堆焊-喷焊:用微弧等离子焊接铝及铝合金)。常用国产等离子弧焊设备有:等离子弧焊机LH-300,自动等离子弧焊机LH-300,微束等离子弧焊机LHT6、LH-63,自动微束等离子弧焊机LH5-16,脉冲微束等离子弧焊机LH8T6、LHZ-300o 4.焊接材料 4.1根据焊件材质及工艺文件正确选用焊丝牌号,焊丝必须符合国家标准。4.2等离子弧常用的工作气体是氮、氮、氢以及它们的混合气体。用的最广泛的氮气,其纯度应不低于99.5%;氯气在焊接化学活泼必性较强的金属时是良好的保护介质,一般要求纯度在95%以上;氢气具有最大的热传递能力,在工作气体中混入氢,会明显地提高等离子弧的热功率,但氢是一种可燃性气体,与空气混合后易燃或爆炸,故不单独使用,多与其它气体混合使用。 4.3等离子弧电极材料是含少量⅛t(2%以内)的鸨极或许极。 5.焊接

等离子弧焊接按焊缝成形机理,可分为: 5.1大电流等离子弧焊接 大电流等离子弧焊接分穿透型和熔透型两种方法。 5.1.1穿透型等离子弧焊它是以电弧在熔池前穿透工件形成小孔后形成焊道的一种焊接方法。又称穿称焊或锁孔焊。在焊接厚度大于ZOmm以上的奥氏体型不锈钢焊件时,利用高温等离子弧将焊件待焊处加热窝经至烧穿,如果焊接规范参数调节适当,可以穿透工件形成小孔。此小孔面积较,熔化金属靠表面张力托往而不至于从小孔中跌落,这就是等离子弧焊接小孔效应。在焊接厚为5.2~8.0mm的奥氏体型不锈钢时,可以不开坡口,不留间隙或留间隙小于0∙5mm,依靠小孔效应实现单焊双面成形。这种焊接方法,目前只适用平焊位置对接焊。待焊处的正、反两面均通以保护气体,收弧时要填满小孔。填满小孔主要靠焊接电流和离子流气流同时衰减或先后衰减,才能消除弧孔和下凹孔。

等离子弧焊

等离子弧焊接(WP 15) 一、等离子弧焊原理及方法分类 1. 等离子弧: 是等离子体组成。自由电弧被强迫压缩后,电流密度增加,导致电弧温度升高,电离度增大,中性气体充分电离,就形成等离子弧。 2.等离子弧产生的三要素 (1)机械压缩作用: 利用水冷喷嘴孔道限制弧柱直径,提高弧柱的能量密度和温度。 (2)热收缩作用: 由于水冷喷嘴,在喷嘴内壁建立一层冷气膜,迫使弧柱导电断面进一步减小,电流密度进一步提高。这叫热收缩,也叫热压缩。 (3)磁收缩作用: 弧柱电流本身产生的磁场对弧柱再压缩作用。也叫磁收缩效应。电流密度越大,磁收缩作用越强。 3.等离子弧的特点 (1)能量集中(能量密度105~6 W/cm²TIG自由电弧<10 4W/cm²)。 (2)温度高(18000K~24000K)。 图1 自由电弧和等离子弧的比较图

4.等离子弧的三种基本形式 (1)非转移型等离子弧 钨极为负,喷嘴为正,钨极与喷嘴之间产生等离子弧。(等离子束焊接) 图2 非转移型等离子弧示意图 (2)转移型等离子弧 钨极为负,工件为正,钨极与喷嘴之间先引弧后,转移到钨极与工件之间产生等离子弧。(等离子弧焊接) 图3 转移型等离子弧示意

(3)联合型等离子弧 非转移型和转移型弧同时并存。主要用于微束等离子弧焊、粉末堆焊等方面。 图4 联合型等离子弧示意图 5.等离子弧焊基本方法 (1)小孔型等离子弧焊(穿孔、锁孔、穿透焊) 利用能量密度大和等离子流力大的特 点,将工件完全熔透并产生一个贯穿工件的 小孔,熔化金属被排挤在小孔的周围,沿着 电弧周围的熔池壁向熔池后方移动,使小孔 跟着等离子弧向前移动,形成完全熔透的焊 缝。 一般大电流等离子弧(100~300安培) 时采用该方法。 图5 小孔型等离子弧焊焊缝成形原理

等离子弧焊接和切割

等离子弧焊接和切割 等离子弧切割是一种常用的金属和非金属材料切割工艺方法。它利用高速、高温和高能的等离子气流来加热和熔化被切割材料,并借助内部的或者外 部的高速气流或水流将熔化材料排开直至等离子气流束穿透背面而形成割口。 等离子弧焊接和切割: 1。1 等离子弧的产生: (1)等离子弧的概念: 自由电弧:未受到外界约束的电弧,如一般电弧焊产生的电弧。 等离子弧:受外部拘束条件的影响使孤柱受到压缩的电弧。 自由电弧弧区内的气体尚未完全电离,能量未高度集中,而等离子弧弧 区内的气体完全电离,能量高度集中,能量密度很大,可达10~10W/cm2,电弧温度可高达24000~50000K(一般自由状态的钨极氩弧焊最高温度为10000~20000K,能量密度在10W/cm2以下)能迅速熔化金属材料,可用来焊接和切割。 (2)等离子弧的产生 在钨极与喷嘴之间或钨极与工件之间加一较高电压,经高频振荡使气 体电离形成自由电弧,该电弧受下列三个压缩作用形成等离子弧。 ①机械压缩效应(作用)——电弧经过有一定孔径的水冷喷嘴通道,使电弧截面受到拘束,不能自由扩展。 ②热压缩效应--当通入一定压力和流量的氩气或氮气时,冷气流均 匀地包围着电弧,使电弧外围受到强烈冷却,迫使带电粒子流(离子和电子)往弧柱中心集中,弧柱被进一步压缩。 ③电磁收缩效应—-定向运动的电子、离子流就是相互平行的载流导体,在弧柱电流本身产生的磁场作用下,产生的电磁力使孤柱进一步收缩。 电弧经过以上三种压缩效应后,能量高度集中在直径很小的弧柱中,弧柱中的气体被充分电离成等离子体,故称为等离子弧. 当小直径喷嘴,大的气体流量和增大电流时,等离子焰自喷嘴喷出的速度很高,具有很大的冲击力,这种等离子弧称为“刚性弧”,主要用于切割金属。反之,若将等离子弧调节成温度较低、冲击力较小时,该等离子弧称为“柔性弧”,主要用于焊接。 1。2 等离子弧焊接 1.2。1 基本知识 用等离子弧作为热源进行焊接的方法称为等离子孤焊接。 焊接时离子气(形成离子弧)和保护气(保护熔池和焊缝不受空气的有害作用)均为氩气。

等离子熔覆与激光熔覆的优缺点

等离子熔覆与激光熔覆的优缺点 关键词:薄板焊接、等离子表面处理、中部槽堆焊、粉末堆焊机、等离子堆焊机、等离子堆焊、上海粉末堆焊哪家好、等离子焊机说明、等离子熔覆工艺 一、激光熔覆特点 1. 技术特点 激光熔覆最重要特点是热量集中,加热快冷却快热影响区小,特别对不同材质之间熔融有着其它热源无法比拟的特点,也正是这一特殊的加热和冷却过程,在熔铸区域产生的组织结构也不同于其它熔覆(喷焊·堆焊·普通焊接等)手段,甚至可以产生非晶态组织,特别是脉冲激光更为明显。这就是所谓激光熔覆不变形无退火的原因。但我以为这只是从工件整体宏观讲,而当你对熔覆层和热影响区进行微观分析时,你会看到另一种景象,这一点我将在后面讲到。 2. 设备特点 激光熔覆目前国内采用采用两种机型;CO2激光器,YAG激光器。前者为连续输出,熔覆用机一般在3KW以上;YAG激光为脉冲输出,一般在600W左右。对于设备,一般使用者很难吃透,严重依赖生产方的服务,购买价格昂贵,维护成本、零部件价格很高,再加上设备稳定性和耐受性与国外比较普遍都有差距。因此激光熔覆机一般用在特殊领域,普通工业制造、维修领域难有效益。 3. 工艺特点

第一前期处理:激光熔覆一般只需将工件打磨干净,除油,除锈,去疲劳层等,比较简单。 第二送粉:CO2激光器功率较大,一般用氩气送粉;YAG激光功率小, 一般用自然落粉的方式。这两种方式在熔覆时都基本在水平位置形成熔池,倾 斜稍大粉末便不能正常送达,激光的使用范围受到限制,特别是YAG激光器。 第三从熔池形成的状态看:由于激光的控制精度高,输出功率恒定,且没有电弧接触,所以熔池大小深度一致性好。 第四加热快冷却快:影响金属相形成的均匀度,也对排气浮渣不利,这也是造成激光熔覆形成气孔,硬度不均的重要原因,特别是YAG激光倾向更严重。 第五材料选择:由于不同材料对不同波长激光的吸收能力不同,造成激光熔覆材料选择限制较大,激光更适于镍基自熔性合金等一些材料,对碳化物, 氧化物的熔覆更困难一些。 二、微束等离子熔覆特点 1. 技术特点: 微束等离子熔覆机所采用的等离子束,是一种电离弧,比弧焊机热量更集中,所以加热速度更快,为了获得更集中的离子束,一般采用高压缩比孔径, 小电流,以便控制基体温度不致太高,避免引起退火变形。当然这与YAG激光器加热速度无法比拟。由于等离子弧为连续工作,造成机体冷却相对较慢,形 成的过渡区域比激光熔覆要深一些,这对硬面材料熔覆来说,应力会释放的好 一些。 2.设备特点: 微束等离子熔覆设备是在直流焊机的基础上发展而来,其电源·喷枪·送粉器·摆动器等,技术门槛低,容易制造,可靠性好,维护使用简单,耗电少,使用成本低,通用性好,生产成本低,适应性好,便于规模化生产,效益显著, 对环境要求低,对材料适应广泛。随着电气技术的进步,我国的焊机技术水平 已经具备足够的支持能力。另外设备体积小,重量小,焊枪可以手持把握,这 使它使用起来更灵活方便,辅助工装的造价便宜。 3. 工艺特点:

焊接方法代号(数字+字母)

焊接代号 AW——ARC WELDING——电弧焊 AHW——atomic hydrogen welding——原子氢焊 BMAW——bare metal arc welding——无保护金属丝电弧焊CAW——carbon arc welding——碳弧焊 CAW-G——gas carbon arc welding——气保护碳弧焊 CAW-S——shielded carbon arc welding——有保护碳弧焊 CAW-T——twin carbon arc welding——双碳极间电弧焊EGW——electrogas welding——气电立焊 FCAW——flux cored arc welding——药芯焊丝电弧焊 FCW-G——gas-shielded flux cored arc welding——气保护药芯焊丝电弧焊FCW-S——self-shielded flux cored arc welding——自保护药芯焊丝电弧焊GMAW——gas metal arc welding——熔化极气体保护电弧焊 GMAW-P——pulsed arc——熔化极气体保护脉冲电弧焊 GMAW-S——short circuiting arc——熔化极气体保护短路过度电弧焊

GTAW——gas tungsten arc welding——钨极气体保护电弧焊GTAW-P——pulsed arc——钨极气体保护脉冲电弧焊MIAW——magnetically impelled arc welding——磁推力电弧焊PAW——plasma arc welding——等离子弧焊 SMAW——shielded metal arc welding——焊条电弧焊 SW——stud arc welding——螺栓电弧焊 SAW——submerged arc welding——埋弧焊 SAW-S——series——横列双丝埋弧焊 RW——RWSISTANCE WELDING——电阻焊 FW——flash welding——闪光焊 RW-PC——pressure controlled resistance welding——压力控制电阻焊PW——projection welding——凸焊 RSEW——resistance seam welding——电阻缝焊 RSEW-HF——high-frequency seam welding——高频电阻缝焊RSEW-I——induction seam welding——感应电阻缝焊 RSEW-MS——mash seam welding——压平缝焊RSW——resistance spot welding——点焊 UW——upset welding——电阻对焊 UW-HF——high-frequency ——高频电阻对焊 UW-I——induction——感应电阻对焊 SSW——SOLID STATE WELDING——固态焊 CEW——co-extrusion welding—— CW——cold welding——冷压焊 DFW——diffusion welding——扩散焊 HIPW——hot isostatic pressure diffusion welding——热等静压扩散焊EXW——explosion welding——爆炸焊 FOW——forge welding——锻焊 FRW——friction welding——摩擦焊 FRW-DD——direct drive friction welding——径向摩擦焊FSW——friction stir welding——搅拌摩擦焊 FRW-I——inertia friction welding——惯性摩擦焊 HPW——hot pressure welding——热压焊 ROW——roll welding——热轧焊 USW——ultrasonic welding——超声波焊S——SOLDERING——软钎焊 DS——dip soldering——浸沾钎焊 FS——furnace soldering——炉中钎焊 IS——induction soldering——感应钎焊 IRS——infrared soldering——红外钎焊 INS——iron soldering——烙铁钎焊 RS——resistance soldering——电阻钎焊 TS——torch soldering——火焰钎焊 UUS——ultrasonic soldering——超声波钎焊 WS——wave soldering——波峰钎焊 B——BRAZING——软钎焊 BB——block brazing——块钎焊

相关文档