文档库 最新最全的文档下载
当前位置:文档库 › 萃取精馏技术的研究进展及其应用论文

萃取精馏技术的研究进展及其应用论文

萃取精馏技术的研究进展及其应用论文
萃取精馏技术的研究进展及其应用论文

分离工程大作业

萃取精馏技术的研究进展及其应用专业:化学工程与工艺

萃取精馏技术的研究进展及其应用

摘要:萃取精馏是近沸点混合物分离的主要方法, 本文对萃取精馏技术及其

在分离过程中的研究与应用进行了讨论。结合国内外萃取精馏技术中溶剂选取方法、萃取工艺及设备改进方面取得的研究进展,介绍了近年来萃取精馏技术的应用新情况。

萃取精馏作为一种分离络合物、近沸点混合物及其他低相对挥发度混合物技术,在石油化学工业中的1,3-丁二烯的分离、芳烃抽提、乙醇/水分离、环己烷提纯等过程得到广泛的应用。它是通过向精馏塔中加入1种或2种可以与分离混合物相溶的溶剂,提高了待分离组分的相对挥发度,从而达到分离沸点相近组分的目的[1]。

萃取精馏中溶剂的选择占有十分重要的地位,早期的溶剂选取方法决定了其选择的范围较窄,从而使萃取精馏技术的应用受到限制。萃取精馏采用的溶剂具有沸点高、相对不易挥发,并与其他组分不易形成络合物的特点。随着萃取溶剂探索方法的发展、萃取精馏系统的进一步优化及高效设备的采用,提高了萃取精馏系统的适用性、可控制性和操作性,使其与其他精密分离技术和液液萃取技术相比,显示出了越来越明显的优越性。

1萃取精馏的原理

在基本有机化工生产中,经常会遇到组分的相对挥发度接近于1,甚至组分之间能形成共沸物。若采用普通精馏的方法进行分离,将很困难,或者不可能。对于这类物系,可以采用特殊精馏方法,向被分离物系中加入第三种组分(称为溶剂),改变被分离组分的活度系数,增加组分之间的相对挥发度,达到分离的目的[2]。

如果加入的溶剂与原系统中的一些轻组分形成最低共沸物,溶剂(也称共沸剂,挟带剂)与轻组分将以共沸物形式从塔顶蒸出,塔底得到重组分,这种操作称为共沸精馏;如果加入的溶剂不与原系统中的任一组分形成共沸物。其沸又较任一组分的沸点高,溶剂(也称萃取剂)与重组分将随釜液离开精馏塔,塔顶得到轻组分,这种操作称为萃取精馏。萃取精馏过程中,由于溶剂的沸点大大高于进料组分的沸点,且溶剂又不与组分形成共沸物,所以,只要利用普通精馏即可回收溶剂,过程较简单;同时,由于溶剂的引入。增加了各组分问的相对挥发度,萃取精馏过程所需的塔板数急剧减少,从而降低了能耗。

溶剂的好坏是萃取精馏成败的关键,工业生产过程的经济效果如何,与溶剂的选择密切相关。为了适用于工业化生产,溶剂的选择要考虑其选择性、沸点、溶解度、热稳定性和化学稳定性及适宜的物性[3]。此外,无毒、无腐蚀、来源丰富也是选择溶剂要考虑的因素。

影响溶剂选取的因素很多,在其筛选过程中需要对各个因素进行综合考虑,需要大量的试验工作为基础。通过多年来人们在物理化学领域的深入研究,对现有化合物及官能团性能的认识已经取得了很大的进展。目前,不仅从理论上可以较准确地预测现有各种化合物的物理化学性质,同时也具备了根据目标性质设计某种功能化合物的手段。所有这些成果都大大拓宽了溶剂选取的范围,相对提高了选取过程的准确性、可靠性, 降低了筛选试验工作量。

2.1溶剂筛选原理

溶剂筛选的主要指标是寻求溶剂对分离物系的最大选择度,它表示溶剂使被分离组分相对挥发度改变的程度。把加入溶剂后和未加入溶剂时组分A(1)对组分B(2)的相对挥发度分别表示为a12和b12,二者的比值称为选择度S,比值越大,说明选择性越好,溶剂的效果就越好。

2.2溶剂的物理特性

萃取精馏过程的实现,经济效果如何,与选择的溶剂密切相关。由于萃取精馏混合物多为强非理想性的系统,所以工业生产中选择适宜溶剂时主要应考虑以下几点:

(1)选择性:溶剂的加入要使待分离组分的相对挥发度提高显著,即要求溶剂具有较高的选择性,以提高溶剂的利用率;

(2)溶解性:要求溶剂与原有组分间有较大的相互溶解度,以防止液体在塔内产生分层现象,但具有高选择性的溶剂往往伴有不互溶性或较低的溶解性,因此需要通过权衡选取合适的溶剂,使其既具有较好的选择性,又具有较高的溶解性;

(3)沸点:溶剂的沸点应高于原进料混合物的沸点,以防止形成溶剂与组分的共沸物。但也不能过高,以避免造成溶剂回收塔釜温过高;

(4)其它:溶剂的粘度、密度、表面张力、比热和蒸发潜热等的大小都直接影响到塔板效率和热量消耗,对过程的经济指标产生影响。

此外,溶剂使用安全、无毒性、无腐蚀性、热稳定性好、价格便宜及来源丰富等也都是选择溶剂时要考虑的因素。

目前萃取精馏溶剂筛选的方法有实验法、数据库查询法、经验值方法、计算机辅助分子设计法(CAMD)等。用实验法筛选溶剂是目前应用最广的方法,可以取得很好的结果,但是实验耗费较大,实验周期较长。实验法有直接法、沸点仪法、色谱法、气提法等。实际应用过程中往往需要几种方法结合使用,以缩短接近目标溶剂的时间。溶剂筛选的一般过程为:经验分析、理论指导与计算机辅助设计、实验验证等。若文献资料和数据不全,则只有采取最基本的实验方法,或者采取颇具应用前景的计算机优化方法以寻求最佳溶剂[4]。

3萃取工艺及设备的改进

一般的萃取精馏过程采用2(或3)塔工艺流程,设备主要由萃取塔和溶剂回收塔组成。目前,萃取精馏技术的研究重点是进一步提高萃取剂的选择性、改进工艺过程,减少单元操作和建设成本。雷志刚[5]等针对C4气体萃取精馏丁烯/丁二烯工艺流程中第一精馏塔底出料存在一定热聚合损失、第二精馏塔液相负荷大、板效率低的问题,通过采用第一精馏塔下段汽相采出方式,解决了存在的诸多问题,改进、优化了工艺流程。Gerald Meyer 等在C4气体分离过程开发中,为了进一步提高分离效率,在采用新分离工艺(萃取精馏—选择加氢—丁二烯纯)的过程,将萃取精馏和加氢过程耦合在同一塔中。这样既提高了操作安全性,也提高1 ,3-丁二烯的收率,降低了建设成本。除了加氢反应精馏的耦合外,尝试络合萃取、恒沸精馏萃取的开发工作一直在进行,通过开发复合功能萃取塔,使得在原有低能耗基础上,进一步拓宽了萃取精馏的使用范围,提高了目的产品的收率和质量。

萃取精馏塔采用是板式塔型式,由于浮阀塔板具有高效率、高弹性和高生产能力等优点,所以目前在国内外是采用最为广泛的塔板之一。随着塔器技术的不断进步,原塔板上存在的液流方向气体分布不均匀、液体返混大、浮阀易磨损、脱落等缺点日益突出,导致塔板效率低,塔设备能力受到限制,增加了实际塔板数,同时也造成分离系统能量、溶剂消耗高[6]。近年来,塔板技术有了明显的进步,国内外相继推出了一系列结构新颖、性能优良的新板型。多溢流斜孔塔板、立体传质塔板在国内萃取精馏塔中的应用,提高了原萃取精馏塔的生产能力,同时,回流比明显降低,分离的质量得到提高。虽然,萃取溶剂对萃取精馏过程产生重大的影响,但是通过工艺及设备方面的改进,仍然可以在一定程度上提高该工艺的整体技术水平,降低建设成本,提高其应用范围。

4萃取精馏技术的新应用

4.1芳烃分离过程

在芳烃回收方面,液液萃取技术已经有很长的使用历史,液液萃取技术基于组分的极性,来影响组分间的分离,而对于沸点的影响较小。因为受到溶剂选择的限制,对于较宽沸点混合料的分离,采用萃取精馏很难实现,早先它只能对窄沸点物料使用,如采用N-甲基吡咯烷酮或N-甲酰吗啉作为溶剂进行的C6和C7物料的分离过程。

然而,随着萃取精馏技术的发展,采用混合溶剂进行的萃取精馏解决了以上问题。美国GTC技术公司(前身为HFM International,Inc.)的GT-BTX技术具体体现了现代萃

取精馏技术在混合芳烃(苯、甲苯、二甲苯)分离过程中的应用[7]。与传统混合芳烃分离过程相比, GT-BTX工艺具有投资成本低、所需设备单元数少、溶剂性能优异、产品被污染的风险小、产品回收率高、纯度高,同时能量消耗低、操作弹性大。经过工业化(120万t/a)技术经济指标的考核, 苯和甲苯的纯度分别达到99.995%和99.99%。总芳烃回收率高于99.19%,溶剂中抽余液和萃取液的质量分数小于10-6,每千克进料的能量消耗为798kJ。

4.2催化裂化汽油的脱硫

催化裂化(FCC)汽油中所含的硫化物中50%-60%(质量分数)是噻吩及其烷基衍生物,其余为硫醇及其他硫化物。在催化裂化条件下噻吩化合物稳定性较强,国外公司普遍采用加氢脱硫方法,为了进一步降低汽油中的硫含量,目前采取的措施是提高加氢处理能力。加氢有利于进行燃料中脱硫处理,但是它存在运行费用高、深度加氢将降低汽油辛烷值等缺点。根据油品所含硫化物的特点,目前普遍采用催化氧化、络合法、催化吸附、生物法、溶剂萃取和碱洗法等进行油品中硫化物脱除。在这些方法中,萃取精馏技术具有其自身优势,在处理FCC汽油时,该工艺技术采用一种可以改变进料中非芳烃组分(含烯烃)和噻吩化合物相对挥发度的溶剂,在萃取噻吩化合物的同时,也萃取其他芳烃硫化物(由于这些化合物的强极性),而不含烯烃的组分进入加氢系统进行处理。采用萃取精馏和碱洗法,具有无辛烷值损失、加氢负荷低、可处理较宽范围硫含量的裂解料、操作弹性大的特点[8]。

通过在加氢前加入萃取精馏,解决了传统工艺中存在的问题,芳烃中的噻吩硫化物被高选择性的溶剂萃取,减少了抽余液中的烯烃含量,低硫、高烯烃的抽余液可以直接与含10-6噻吩硫的汽油掺混。而高含量的硫醇在进料或抽余液中可以采用传统的碱洗方式进行处理,这样总的硫含量很容易降低到(5-110)×10-6,同时不用降低辛烷

值。

4.3 裂解汽油回收和苯乙烯提纯

裂解汽油副产品中含有丰富的石油化工化合物,如果对其进行提纯并加以充分利用,将产生相当大的经济效益。由于这些组分沸点接近,形成了络合物,采用传统分离方法很难将其分离。而萃取精馏技术的发展为其提供了可能,萃取精馏技术通常用于从裂解汽油的轻组分中提纯丁二烯和异戊二烯,实际上也可以用于从C8料中有效分离苯乙烯。传统的裂解过程存在一个加氢工艺步骤,该步骤中一方面存在结焦问题,同时,反应也需要大量的氢源。近年研究表明,苯乙烯是结焦的根源之一,降低苯乙烯含量是解决结焦较好的方法。采用混合溶剂进行的萃取精馏技术,可以以较小的成本实现苯乙烯的提取,因此,萃取精馏技术应用一方面使得苯乙烯从燃料产品转化为石化产品,价值得到提升[9]。另外,加氢处理氢消耗减少,结焦问题得到解决。

超临界萃取技术研究及应用概况

摘要:超临界流体萃取(SFE)技术开辟了分离工业的新领域,是一种新型的分离技术。本文对超临界萃取的基本原理进行了阐述,介绍了超临界萃取的特点及其在天然香料工业、食品和天然中草药等方面的应用和研究进展,并对今后的发展趋势进行了展望。

超临界萃取技术也叫做超临界流体萃取技术。超临界流体 (Supercritical Fluid) 是指处于超过物质本身的临界温度和临界压力状态的流体。这种状态下的流体具有与气体相当的高渗透能力和低粘度,又兼有与液体相近的密度和对物质优良的溶解能力[1]。

超临界流体萃取技术 (Supercritical Fluid Extraction简称SEE) 以超临界状态下的流体作为溶剂,利用该状态下流体所具有的 y 渗透能力和 y 溶解能力萃取分离混合物的过程超临界流体的溶解能力随体系参数(温度和压力)而发生连续性变化,因而通过改变操作条件,稍微提y温度或降低压力,便可方便地调节组分的溶解度和萃取的选择性

超临界溶剂包括 CO

2,NO

2

,SO

2

,N

2

低链烃等,而 CO

2

是最常用的超临界萃取

介质,这是因为它的临界温度 (31. 1) 接近室温,临界压力 (7. 3AmPa) 较低,萃取可以在接近室温下进行,对热敏性食品原料、生理活性物质、酶及蛋自质等无破坏作用,同时又安全、无毒、无臭,因而广泛应用于食品、医药、化妆品等领域中;具有广泛的适应性。由于超临界状态流体溶解度特异增大的现象,因而理论上超临界流体萃取技术可作为一种通用高效的分离技术而应用。

1. 超临界萃取技术概述

1.1. 原理及特点

超临界流体处于临界温度和临界压力以上,兼具气体和液体的双重性质和优点,粘度小,接近于气体,而密度又接近于液体,扩散系数为液体的10~100倍,具有良好的溶解特性和传质特性[4]。

由于在超临界状态下的压力太高以及内部相平衡模拟体系等原因,所以超临界流体的基础理论研究还处于发展阶段,尚未形成系统的理论。对于计算超临界物质的状

态参数,通常用的是Redich和Kwong的RK—EOS方程,同时后人又进行了一些改进,如Soave的SRK—EOS方程,Peng和Robinso的PR—EOS方程。Brenneche对SCF相平衡作了系统的应用分析,提出将SCF作为密相气体或膨胀液体处理的模型,并指出状态方程对临界点和临界区计算的局限性,尤其对于不对称混合物组成的物系,难以找到适应性比较好的混合规则。近年来许多研究者对SCF密度、极性、溶解度、相平衡和溶剂相互作用等,利用分子动力学和蒙特卡罗等计算机模拟方法作了大量工作,但仍难以满足要求。寻求新的和准确的模型方程和计算方法是预测SCF相行为和进行SCF反应研究的保证[5]。

1.2. 超临界下反应动力学和反应选择性

超临界状态下反应动力学通常利用过渡状态原理,许多学者利用它描述了超临界反应速率常数和压力、活化体积等因素的关系。Troe及其合作者、Yoshimura和Kimura 在很宽的流体密度范围内研究了简单反应的动力学和热力学。Troe及其合作者公式化了扩散(笼效应)对表观速率常数的影响,并用范德瓦尔斯簇的形成解释了他们的试验结果。Yoshimura和Kimura在超临界CO2流体中很宽的密度范围内研究了2-甲基-2-亚硝基丙烷的分解动力学,发现速率常数随密度增加而减小,但是在中等密度范围内,密度的依赖性很小[6-7]。

超临界状态下压力和粘度可以影响某些反应的选择性或某些分解反应的途径,同时超临界流体的溶剂效应可以影响异构化反应的机理,对某些反应的中间态起到稳定或促进作用[8]。Hrnjez的工作表明,SCF可以改变化学反应的立体选择性和配位选择性,并认为是由于压力引起的溶剂极性变化所致。Kimura研究了SCF的性质对超临界反应平衡的影响。Peck的研究认为对可逆反应,极性超临界溶剂有利于反应朝极性化合物的方向移动[7]。

2. 超临界革取技术的应用

2.1. 临界流体萃取技术在天然香料工业中的应用[8]

20世纪80年代以来国外的工业装置儿乎都是以天然香料分离提取为对象。传统的提取方法部分不稳定的香气成分受热变质,但在超临界条件卜,可以将整个分离过程在常温卜进行,萃取物的主要成分一精油和特征的星味成分同时被抽出,并且CO

2无毒、无残留现象[9-11]。从洗涤用品、化妆品中的添加剂到香水,使得植物芳香成分

对桂花、茉莉花在精细日用化工中是不可或缺的一部分。何春茂[9]等人用超临界CO

2

萃取精馏及共沸精馏在化工中的应用

萃取精馏及共沸精馏在化工中的应用 摘要:选择好的溶剂是提高萃取精馏生产能力和降低能耗的有效途径;开发易分离回收、汽化潜热低、用量少、无毒无腐蚀的共沸剂将是共沸精馏的研究方向。本文综述了萃取精馏及共沸精馏的基本原理,并介绍了萃取精馏及共沸精馏在化工中的最新应用。 关键词:共沸精馏共沸剂萃取精馏萃取剂 在化工产品生产过程中,不可避免地需要对各种各样的混合物进行分离。一般认为挥发度小于1.05的物系或沸点差小于3℃的物系,用普通的精馏方法进行分离在经济上是不适宜的。对于这类物系可以釆用萃取精馏或共沸精馏。萃取精馏即时向待分离物系中加入第三种组分(称为溶剂),增大组分间的挥发性差异,从而达到分离目的的特殊精馏方法。而共沸精馏则是向待分离物系中加入共沸剂,使新组分和被分离系统中的一个或几个组分形成最低共沸物并从塔顶蒸出的特殊精馏方法。 1 萃取精馏 萃取精馏的关键在于溶剂的选择,选择好的溶剂是提高萃取精馏生产能力和降低能耗的有效途径,近年来,许多研究者针对萃取精馏普遍存在的溶剂用量大、能耗大、板效率低等问题,从溶剂的选择入手,对其进行了改进和优化。目前新型溶剂主要包括离子液体、加盐溶剂及复合溶剂。 1.1 离子液体 离子液体是指在室温及相邻温度下完金由离子组成的有机液体物质,具有不挥发、不可燃以及呈液态的温度范围宽等特点。离子液体的溶解性可随阴阳离子类型及取代基的调变而变化,应用范围广泛,可用于分离含水共沸物等物系。 1.2 加盐溶剂 加盐溶剂萃取精馏的理论基础是盐效应。盐对物系相对挥发度的改变远远大于溶剂对其相对挥发度的改变,即盐效应大于溶剂效应,因此加盐萃取精馏的溶剂用量小。同时由于盐能循环利用,可改善塔内汽液平衡关系,减少理论塔板数,降低能耗。 1.3 复合溶剂 由于单一溶剂往往不能同时具有高选择性和溶解性,所以一般在选择性较高的溶剂里配比一定量溶解性较好的溶剂(称助溶剂),改善原溶剂的溶解性,使其更大限度地改变物系的相对挥发度。

反应萃取技术地研究进展与应用

反应萃取技术的研究进展与应用 摘要:化工过程强化技术是节能减排的重要途径,其包括设备强化和方法强化,反应萃取技术就是方法强化的技术之一。本文综述了反应萃取技术的基本原理及其分类。并介绍了其研究现状和在各个领域的应用,并对其今后的发展前景做出了预测。与传统的萃取技术相比较,反应萃取技术作为一种新型耦合技术能显著提高效率、减少废物排放,是一种高效、节能、清洁、安全、可持续发展的化工新技术。 关键词:反应萃取;进展;应用;超临界 Research Progress and Application of Reactive Extraction Technology ABSTRACT:Chemical process intensification technology is an important way of energy saving and emission reduction. It includes equipment strengthening and methods strengthening, and reaction extraction technology is one of the methods strengthening. The basic principle and classification of reaction extraction technique are reviewed in this paper.Its research status and application in various fields are introduced, and the prospect of its future development is forecasted. Compared with the traditional extraction technology, the reaction extraction technology can improve efficiency and reduce waste emissions, which is a new technology for chemical engineering, energy saving, clean, safe and sustainable development. KEY WORDS:Reaction extraction; Development; Application; Super critical

特殊精馏综述

特殊精馏技术及其应用研究进展 张静 (兰州大学化学学院10级在职研究生,甘肃兰州 730030) 摘要:本文综述了各种特殊精馏的方法,归纳分析了各种特殊精馏方法的原理及应用研究情况 关键词:特殊精馏;应用;研究进展 混合物的分离是化工生产中的重要过程。蒸馏是分离液体混合物的典型单元操作。它是通过加热造成气、液两物系,利用物系中各组成部分挥发度不同的特性以实现分离的目的。按蒸馏方式可将蒸馏分为简单蒸馏、平衡蒸馏、精馏和特殊精馏。 1. 精馏原理 在连续精馏塔内, 原料液自塔的中部某适当位置连续地加人塔内, 塔顶设有冷凝器将塔顶蒸汽冷凝。冷凝液的一部分作为回流液, 其余作为塔顶产品馏出液连续排出。加料位置以上部分是精馏段, 此段内上升蒸汽和回流液体之间进行着逆流接触和物质传递, 使易挥发组分不断增浓。加料位置以下部分是提馏段, 塔底装有再沸器蒸馏釜, 以加热液体产生蒸汽, 蒸汽沿塔上升, 与下降的液体逆流接触并进行物质传递, 使难挥发组分不断富集, 并于塔底连续排出, 作为塔底产品[1]。 2. 特殊精馏概述[1-3] 当待分类组分之间形成共沸物或相对挥发度接近1时,用普通精馏是无法实现分离或是经济上不合理的。此时,向体系中加入一种适当的新组分,通过与原体系中各组分的不同作用,改变组分之间的相对挥发度,使系统变得易于分离,这类既加入能量分离剂又加入质量分离剂的精馏称为特殊精馏或称增强精馏。 3. 特殊精馏的分类及应用 按操作条件可将特殊精馏分为添加剂精馏,复合(或耦合)精馏以及非常规条件下的精馏。恒沸、萃取、加盐精馏输于添加剂精馏,反应精馏属复合精馏,分子精馏为非常规条件下的精馏。 3.1 恒沸精馏 恒沸精馏是在被分离的二元混合液中加入第三组分,该组分能与原溶液中的一个或者两个组分形成最低恒沸物,从而形成了"恒沸物- 纯组分"的精馏体系,恒沸物从塔顶蒸出,纯组分从塔底排出,这种形式的精馏称为恒沸精馏,其中所添加的第三个组分称为恒沸剂或者夹带

萃取精馏

实验十四萃取精馏实验 一、实验目的 二、基本原理 三、设备参数 四、实验步骤 五、注意事项 六、实验报告要求 七、思考题

实验目的 1、熟悉萃取精馏的原理和萃取精馏装置; 2、掌握萃取精馏塔的操作方法和乙醇水混合物的 气相色谱分析法; 3、利用乙二醇为分离剂进行萃取精馏制取无水乙 醇; 4、了解计算机数据采集系统和用计算机控制精馏 操作参数的方法。

基本原理 萃取精馏是在被分离的混合物中加入某种添加剂,以增加原混合物中两组分间的相对挥发度(添加剂不与混合物中任一组分形成恒沸物),从而使混合物的分离变得很容易。所加入的添加剂为挥发度很小的溶剂(萃取剂),其沸点高于原溶液中各组分的沸点。 由于萃取精馏操作条件范围比较宽,溶剂的浓度为热量衡算和物料衡算所控制,而不是为恒沸点所控制,溶剂在塔内也不需要挥发,故热量消耗较恒沸精馏小,在工业上应用也更为广泛。 乙醇一水能形成恒沸物(常压下,恒沸物乙醇质量分数95.57%,恒沸点78.15℃),用普通精馏的方法难以完全分离。本实验利用乙二醇为分离剂进行萃取精馏的方法分

设备参数 实验试剂 乙醇:化学纯(纯度95%); 乙二醇:化学纯(水含量<0.3%) 蒸馏水

向塔釜内加入少许碎瓷环(以防止釜液暴沸),39%(水),61%(乙醇)或者95.5%(乙醇) (wt%)为原料,以乙二醇为萃 取剂,采用连续操作法进行萃取精惰。在计量管内注入乙 二醇,另一计量管内注入水一乙醉混合物液体。乙二醇加料,口在上部:水一乙醇混合物进料,口在下部。向釜内 注入含少量水的乙二醇(大约60ml),此后可进行升温操作。同时开启预热器升温,当釜开始沸腾时,开保温电源,并 开始加料。控制乙二醉的加料速度为80ml/hr,水一乙醉液 与乙二醉之体积比)1:2.5~3,调节转子流量计的转子,使其稳定在所要求的范围。注意!用秒表定时记下计量管液面下 降值以供调节流量用。

催化精馏技术研究进展(DOC)

催化精馏技术应用研究进展 摘要:本文从催化精馏的发展史开始说起,进而介绍了催化精馏塔的内部件及其催化剂的装填方式。综述了国内催化精馏技术在醚化、酯化、加氢、烷基化、酯交换、水解等反应中的新应用与研究进展。指出探索出具有更高活性和选择性、更寿命的催化剂仍是催化精馏技术中的一个重要课题。 1、引言 反应精馏是化学反应与蒸馏技术相耦合的化工过程。最早的反应精馏研究始于1921年,之后,随着对反应精馏研究的不断深入和扩展,到20世纪70年代后期,反应精馏研究突破了均相体系,扩大到非均相体系,即出现了所谓的“催化精馏”工艺。催化精馏的特点是将催化剂引入精馏塔,固体催化剂在催化精馏工艺中既作为催化剂加速化学反应,又作为填料或塔内件提供传质表面。由于催化反应和精馏过程的高度耦合,反应过程中可以连续移出反应产物,使得催化精馏工艺具有高选择性,高生产能力、高收率、低耗能和低投资等优点。最早工业化的催化精馏工艺是甲基叔丁基醚的合成,该工艺由美国Chemical Research & Licensing公司于1978年开发,1981年在美国休斯敦炼厂工业化应用。1985年CR&L公司开始研究将催化精馏用于芳烃的烷基化反应,如用丙烯使苯烷基化制异丙苯。日本旭化成公司也于1984年开发成功了甲醛和甲醇催化精馏合成甲缩醛的技术,建立了工业装置。由于催化精馏技术的诸多优势,国内外学者在该领域已取得了长足发展。

2、催化精馏塔及其填料方式 2.1催化精馏塔 催化精馏塔是催化精馏过程的主要设备,常见的催化精馏塔结构如图2-1 所示。催化精馏塔从上到下分为三个部分,依次为精馏段、反应段和提馏段,原料送入到反应段后先进行反应,反应后的混合物中的轻重组分再分别进入精馏段和提馏段进行精馏和提浓。进料位置根据物料的挥发度不同可设置在反应段的上端或下端,对于原料组成不同的可以从不同位置同时进料。反应段的位置和高度以及操作压力、回流比等操作条件取决于进料的组成、组分的物性和产品的纯度要求等因素[1]。

萃取精馏综述

摘要 萃取精馏是一种特殊精馏方法,适用于近沸点物系和共沸物的分离。萃取精馏按操作方式可分为连续萃取精馏和间歇萃取精馏,间歇萃取精馏是近年发展起来的新的萃取精馏方法。萃取剂的选择是萃取精馏的关键,因此,萃取剂的选择方法很重要。 关键词:萃取精馏;间歇萃取精馏;萃取剂选择

Abstract Extractive distillation is a kind of special rectification method, applicable to almost boiling point system and the separation of azeotrope. Extractive distillation according to the operation mode can be divided into continuous batch extractive distillation, extractive distillation and batch extractive distillation is a new extraction distillation method developed in recent years. The selection of extraction agent is the key of extractive distillation, therefore, the selection of extraction agent method is very important. Key words: extractive distillation; The batch extractive distillation; Extracting agent selection

精馏技术研究进展与工业应用分析 颜志明

精馏技术研究进展与工业应用分析颜志明 发表时间:2019-05-08T16:35:06.583Z 来源:《防护工程》2019年第1期作者:颜志明 [导读] 化学工业是国民经济的支柱产业,分离技术则为化工生产过程中的原料净化、产品提纯和废物处理等提供了技术保证。 浙江新化化工股份有限公司浙江杭州 311607 摘要:化学工业是当今国民经济发展的支柱型产业,分离技术是化工生产过程中保证对原料进行净化、对相关产品进行提纯、对产生的废物进行处理的支撑。伴随着科学技术的发展,化学工程中的分离技术呈现出多元化的发展趋势,精馏就是其中应用最广泛、技术最成熟的分离方式之一,在化工工业生产中扮演着重要角色。国家的精馏技术在研究和应用的过程中取得了极大进步,精馏塔在此技术发展的进程中,也体现出举足轻重的作用。 关键词:精馏技术;研究进展;工业应用 1、概述 化学工业是国民经济的支柱产业,分离技术则为化工生产过程中的原料净化、产品提纯和废物处理等提供了技术保证。随着化学工程技术的发展,分离技术逐渐向着多元化发展。常规的化工分离技术包括精馏、吸收、萃取、结晶、吸附、膜分离等。精馏仍是应用最广泛、技术最成熟的分离方法之一,在工业生产中占有相当的比重。 精馏塔伴随着板式塔和填料塔交替式发展,两者各有其优缺点,现呈现出并行发展的趋势。板式塔具有结构简单、适应性强、造价较低、易于放大等特点;填料塔具有高效率、高通量、低压降、低持液等优势。尽管随着精馏塔的广泛应用,人们对精馏塔的认识越来越深刻,但由于塔内部流体流动及传质过程的复杂性,致使精馏塔的设计仍依靠大量的经验和半经验的数据。塔内流体力学、传质动力学、过程动态学的计算等基础传递问题的研究仍需重视,尽可能地摆脱经验的束缚。同时,随着化学工业的发展,生产大型化、优化节能、高效填料与新型塔板的开发与应用等问题仍需探索。因此,对精馏塔的研究非但不能削弱,而是需要进一步加强,以迎接新的挑战。 近年来,我国精馏塔技术在基础研究与应用方面取得了巨大进步,对精馏塔的结构、性能等进行了较为系统的实验研究,并且获得了丰富的实验数据和研究成果,为推动我国化学工业的发展与进步,做出了显著贡献。本文对精馏塔类型、流体力学性能、传质性能、塔器大型化、过程节能与强化等方面的研究进展进行综述。 2、精馏塔的种类 精馏分离技术是通过精馏塔来完成的,精馏塔有板式塔和填料塔两种,在精馏技术的发展过程中,精馏塔和板式塔也都在不断发展之中,两种精馏塔都是十分重要的应用,各自也具有比较明显的优缺点。其中,板式塔的优点在于其结构简单、适应性强,而且造价比较便宜等;填料塔则具有较高的分离效率,并且还具有高通量、低压降和低持液等方面的优点。下面对这两种精馏塔进行介绍: 2.1板式塔 板式塔最早出现于1813年,当时泡罩塔板是最主要的板式塔的塔板形式,这种板式塔的优点包括具有较大的适用范围、不易堵塞以及操作简单等方面。而后随着板式塔的不断发展,筛孔塔板、浮阀塔板固阀塔板、雾化概念塔板等诸多不同类型的塔板相继出现,这些类型的塔板各具优势,有效的促进了板式塔分离效果的提升。 2.2填料塔 按照填料形式的不同,可以将填料塔分为规整调料以及散堆填料等两种类型。其中,散堆填料是一种具有一定外形结构的颗粒体,包括环形填料、球形填料、鞍形填料等不同的形式。不同的填料形式在特点上有所区别,如鞍形填料明显的特点是压降小,而球形调料由于堆积比较均匀,利于流体的分布,因此在气体吸收以及除尘等方面具有优势。规整调料是指具有规则的几何图形,并且堆砌整齐的填料。应用规整填料的填料塔具有分离效率高、处理量低、压降低以及适应性强等优点,在化学分离装置中有着非常重要的应用,在规整填料中,以Sulzer公司开发的金属丝网波纹规整填料和金属板波纹规整填料最具代表性。 3、精馏技术的发展 3.1塔器大型化 随着化工行业的发展,千万吨炼油、甲醇制烯烃等大型工程开始建设并且投入应用,这些工程的开展促进了精馏塔大型化的发展,这是现代工业体系下精馏塔发展的必然方向。精馏塔的大型化有助于提高设备的分离效率,同时对于减少废物排放也有重要的作用。但是一当前情况来看,精馏过程的大型化还面临着很多科学上以及工程上的问题。首先,分离方面,由于塔器的大型化,导致塔内气液两相的接触状态发生了一定的变化,从而对塔的热量、质量传递造成影响,并且导致了精馏塔分离效率的降低。而且,随着塔板的大型化,其对精馏塔的内件结构造成了一定的影响,要求其在水平度、强度以及流体分布等方面的性能都有所提升。当前针对塔器大型化带来的分离以及内件结构方面的问题,研究人员正进行深入的研究。 3.2数据化设计技术的发展 随着计算机技术和计算机流体力学理论不断的发展完善,数字化设计技术在精馏塔的设计之中起到越来越重要的作用,其已经逐渐的成为了大型塔内件设计、问题诊断和优化的重要手段,在不久的将来计算机集成化系统将会在精馏中有非常重要的应用。当前数字化设计技术在精馏工程中已经有了广泛的应用,包括化工过程模拟技术、三维可视化技术等。其中,化工过程模拟技术是基于气液分离过程的MESH方程组,通过结合相关基础科学,包括综合化工热力学、化学反应以及化学操作单元等,通过这些技术建立化工过程仿真数学模型,并且利用其进行计算,从而得到工艺设计过程中所需要的基础数据。这一技术在精馏过程设计中具有重要的作用,包括塔器设备尺寸估算、工艺操作参数优化等方面,而且还能够为塔器设备的定型、选材以及载荷估算等提供有效的技术支持,从而保证各项参数的正确性。可视化技术在精馏设计中的应用包括液体可视化技术、力学性能可视化技术以及结构可视化技术等方面。 4、精馏技术的工业应用 4.1精馏过程节能技术 精馏过程中的节能技术是在精馏技术不断引用在各个领域中被提出的,精馏技术在各领域有着举足轻重的重要地位,同时精馏技术的应用也为企业的发展和技术的进步提供了巨大的支持,增加了企业的经济效益,经过不断的努力研究分析,人们对精馏技术的认识越来越

萃取精馏综述

萃取精馏综述 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

摘要 萃取精馏是一种特殊精馏方法,适用于近沸点物系和共沸物的分离。萃取精馏按操作方式可分为连续萃取精馏和间歇萃取精馏,间歇萃取精馏是近年发展起来的新的萃取精馏方法。萃取剂的选择是萃取精馏的关键,因此,萃取剂的选择方法很重要。 关键词:萃取精馏;间歇萃取精馏;萃取剂选择

Abstract Extractive distillation is a kind of special rectification method, applicable to almost boiling point system and the separation of azeotrope. Extractive distillation according to the operation mode can be divided into continuous batch extractive distillation, extractive distillation and batch extractive distillation is a new extraction distillation method developed in recent years. The selection of extraction agent is the key of extractive distillation, therefore, the selection of extraction agent method is very important. Key words: extractive distillation; The batch extractive distillation; Extracting agent selection

萃取精馏分离醋酸_水溶液溶剂研究进展及机理分析

修改稿日期:2005203224;作者简介:李新利(1978 -),女,硕研,助教,电邮nanjingli @1631com 。 萃取精馏分离醋酸/水溶液溶剂研究进展及机理分析3 李新利,唐聪明 (西华师范大学化学化工学院,南充 637002) 摘要:介绍了萃取精馏法分离醋酸水溶液萃取剂的研究进展,在此基础上初步分析了萃取剂与原溶剂组分间的相互作用,醋酸提供质子给萃取剂,与萃取剂分子之间产生松弛的化学作用,从而改变了醋酸在液相中的活度系数,即改变了水对醋酸的相对挥发度。针对几种分离效果较优的萃取剂,探讨了该萃取剂与醋酸发生质子化的可能位置。本文分析结果表明,对于醋酸水溶液的分离,酰胺和砜类是可能合适的萃取精馏溶剂。 关键词:醋酸;水;萃取精馏;质子化 中图分类号:TQ 42 文献标识码:A 文章编号:100129219(2005)06263204 0 前言 萃取精馏是一种特殊精馏方法。它是向共沸物 或不易分离的混合物中加入一种萃取溶剂,使难分离组分间的相对挥发度增大,从而达到设计的分离要求。醋酸水溶液是高度非理想物系,传统的普通精馏法不仅塔板数多,能耗大,而且难以分离彻底。以萃取精馏法分离醋酸水溶液的研究已有不少的文献报道[1212],但是前人的工作主要集中于萃取剂的选择和萃取精馏塔条件实验等方面。本文在对萃取剂进行综述的基础上,分析讨论了萃取剂与醋酸分子间质子化作用位置与形成的络合物结构。 1 萃取精馏法分离醋酸水溶液萃取剂 的研究进展 111 单一萃取剂的研究进展 人们很早就知道叔胺类物质对酸与非酸溶液具有很好的分离效果。因此,Von G arwin [2] 提出用二 甲基苯胺来分离醋酸水溶液。但是二甲基苯胺与水形成最低共沸物。 Wolgang Muller [3]提出以1,22吗啉乙烷(熔点72℃,沸点20418℃[01013MPa ])为萃取剂,对醋酸含量50%(质量分数,下同)的酸水溶液进行减压萃取精馏,塔顶水含酸仅0101%;虽然1,22吗啉乙烷分离效果很好,但存在因熔沸点过高引起的需保温 管路输 送、溶剂回收塔减压操作等问题。此外,吗啉乙烷不是很常见的溶剂也限制了它的应用。 Rudolf Sartorius [4]选用N 2甲基乙酰胺做萃取 剂,在处理含酸4515%的酸水溶液时,萃取精馏塔维持常压,塔顶水含酸0101%。溶剂回收塔减压操作,顶塔顶酸含量9918%。他还发现,在萃取剂循环使用过程中,加入5%的水对分离效果没有影响, 可以降低其熔点(降至15℃ ),便以输送。在德国专利[5]中,曾用N 2甲酰吗啉做萃取剂分离甲酸或乙酸水溶液。N 2甲酰吗啉熔点较低,但是同样也存在减压操作的问题。 N 2甲基吡硌烷酮常温下以液态形式存在,与 水、醋酸混溶,同时不形成共沸物、热稳定(分解温度 在425℃ )。Cohen [6]研究了这种环状酰胺对醋酸水溶液分离效果的改善。在萃取精馏塔顶含酸量低于011%。他认为N 2甲基吡咯烷酮与醋酸形成了一种 络合物,在精馏塔底部出来的是醋酸和这种络合物的混合物。适当调节溶剂回收塔温度和压力,这种络合物就会重新分解出醋酸和N 2甲基吡硌烷酮。 Lloyd Berg [729]研究了很多物质对水2醋酸相对 挥发度的改变,代表物质为N ,N 2二甲基甲酰胺和己二腈、二甲亚砜、环丁砜、庚酸、壬酸、新葵酸、异佛乐酮、苯乙酮等。 胡兴兰[10211]等综合研究了含氮类络合剂对水/醋酸体系气液平衡的影响,所选单一溶剂包括脂肪 族胺类,像N ,N 2二甲基甲酰胺(DMF )、N 2甲基乙酰胺(NMA )、N 2甲基吡硌烷酮(NMP )、己内酰胺,和

萃取精馏实验装置操作说明-

萃取精馏实验装置操作说明- 萃取精馏实验装置操作说明 一、前言 精馏是化工工艺过程中重要的单元操作,是化工生产中不可缺少的手段, 而萃取精馏是精馏操作的特殊形式,只有在普通精馏不能获得分离时才使用。其基本原理与精馏相同,也是利用组分的汽液平衡关系与混合物之间相对挥发度的差异,只不过要加入第三组分形成难挥的混合物,将沸点相近或有共沸组成的物质在塔内上部接触,使易挥发组分(轻组分)逐级向上提高浓度;而不易挥发组分(萃取剂与重组分)则逐级向下从塔底流出。若采用填料塔形式,对二元组分来说,则可在塔顶得到含量较高的轻组分产物,塔底得到萃取剂含量较高的重组分产物,当然,也与萃取剂的选择有关。 本装置是根据用户提出的技术指标而制作的、采用了双塔连续操作的流程,萃取剂能连续回收使用,加料采用了蠕动泵和双缸柱塞泵,同时,对萃取剂分离采用真空操作,能够取得较好的放大数据,可供有机化工、石油化工、精细化工、生物制药化工等专业部门的科研、教学、产品开发方面使用。用于有机物质的精制分离时,具有操作稳定、塔效率高、数据重现性好等优点。此外,它还可装填不同规格、尺寸的填料测定塔效率,也能用于小批量生产或中间模拟试验。当填装小尺寸的三角型填料或θ网环填料时,可进行精密精馏。装置结构紧凑,外形美观,控制仪表采用先进的智能化形式。 对一般教学用的常减压精馏、反应精馏、共沸精馏、萃取精馏玻璃塔来说只有一节塔体,它们在塔壁不同位置开有侧口,可供改变加料位置或作取样口用。塔体全部由玻璃制成,塔外壁采用新保温技术制成透明导电膜,使用中通电加热保温以抵消热损失。在塔的外部还罩有玻璃套管,既能绝热又能观察到塔内气液流动情

异戊二烯综述

摘要:异戊二烯是合成橡胶的重要单体,主要用于生成异戊橡胶、丁基橡胶和SIS热塑性弹性等,也广泛应用于医药、农药、黏结剂及香料等领域。本文介绍了传统的异戊烷和异戊烯脱氢、化学合成、萃取蒸馏等几种主要的化学生产方法和生物合成方法及催化合成膜分离等新技术应用于异戊二烯的生产,并对主要方法进行了对比,分析了其优缺点,同时对异戊二烯生产技术的发展提出了建议。 关键词:异戊二烯; 生产方法; 研究进展,;市场分析 Abstract:Isoprene monomer is an important synthetic rubber, mainly used to generate isoprene rubber, butyl rubber and SIS thermoplastic elastomers etc., which are also widely used in medicine, pesticides, bonding agents and spices and other fields. This article describes the traditional iso-pentane and iso-pentene dehydrogenation, chemical synthesis, extraction, distillation of several major chemical production methods and biological synthesis and catalytic synthesis of new membrane separation technology in the production of isoprene, and main methods are compared, their advantages and disadvantages are analyzed, while isoprene production technology development is suggested. Key words: Isoprene; production methods; research progress; market analysis

共沸精馏技术研究及应用进展

共沸精馏技术研究及应用进展 共沸现象是指一定压力下某一溶液沸腾时,溶液温度、液相组成和汽相组成始终保持不变的现象。在混合时,混合物的共沸点高于或低于混合物中任一种组分沸点,分别称为最高共沸物或最低共沸物。当出现共沸现象时,采用普通精馏方法无法达到分离的目的,此时我们可采用共沸精馏、萃取精馏或变压精馏等特殊精馏方法。其中共沸精馏就是向待分离体系中加入新组分(共沸剂),共沸剂能与原有体系中的一个或多个组分形成新的共沸物,且这种新共沸物的挥发度显著地高于或低于原有各组分的挥发度,并且新共沸物中各组分的含量与原料液组成不同,可采用普通精馏方法予以分离。 1、共沸精馏的特点 (1)共沸精馏用的共沸剂必须与待分离组分的一个或多个形成共沸物,共沸剂的选择范围相对较小; (2)共沸精馏的共沸剂大多数都从塔顶蒸出,消耗热能较大,通常只有当与共沸剂形成共沸物的组分在原料中含量较少时,共沸精馏的操作才比较经济; (3)共沸精馏可用于连续操作也可用于间歇操作; (4)在相同压力下操作,共沸精馏的操作温度较低,比其它精馏方式更适于分离热敏性物料。 2、共沸精馏的分类 根据共沸剂与原组分形成的新共沸物是否能分离为不互溶的两个液相,可将共沸精馏分为非均相共沸精馏和均相共沸精馏。与均相共沸精馏相比,非均相间歇共沸精馏可以更加方便的控制回流比,具有设备简单,通用性强的特点。 3、共沸剂的选择 共沸剂的选择对共沸精馏分离过程的效果影响非常大。国外对共沸剂的选择有许多报道,都提出如何选择共沸剂。根据溶液形成氢键的强弱将溶液分成5类,以各类液体混合后对拉乌尔定律的偏差作为选择共沸剂的初步依据。

提出了完整的关于最低及最高共沸物和近沸点精馏中共沸剂的选择方法。因此,共沸剂的选择主要有以下几个原则: (1)至少与料液中一个或两个(关键)组分形成两元或三元最低共沸物,而且希望此共沸物比料液中各纯组分的沸点或原来的共沸点低10℃以上;一般来说,从塔顶馏出的二元或三元共沸物经过冷凝冷却后,如果能形成非均相液体,则分离效率高,溶剂回收简单; (2)共沸物中共沸剂的相对含量少,即每份共沸剂能带走较多的原组分,这样共沸剂用量少,操作也较为经济; (3)共沸剂应易于回收和分离,不仅希望能够形成非均相共沸物,减少分离共沸物的操作等;而且要便于回收重复利用; (4)如果从回收塔顶部回收共沸剂,则共沸剂应具有较小的汽化潜热,以节省能耗; (5)共沸剂不能与原料的任一组分发生反应,具有热稳定性好,廉价,毒性小,来源广,腐蚀性小等特点。 4、共沸精馏技术的应用研究 用间歇共沸精馏分离乙酸乙酯和正己烷的混合物,实验采用丙酮作为共沸剂,实验结果表明:出现乙酸乙酯和正己烷最高收率是在丙酮和正己烷质量比为1.15时,乙酸乙酯收率为73.89%,正己烷收率为75.15%。 用间歇共沸精馏法,采用乙酸异丙酯作为体系的共沸剂来分离乙二醇单甲醚一水混合物,实验研究表明:调节共沸剂与水的质量比在2~2.5这一区间内,就能够一次性回收90%以上乙二醇单甲醚的量。 使用Aspen Plus软件对三氟化氮一四氟化碳共沸体系进行模拟,选用氯化氢作为共沸剂,简单快捷的找到精馏操作的最优参数,为实际生产提供参考。 采用醋酸乙烯酯为共沸剂,使用Aspen Plus软件对共沸精馏分离丙炔醇一丁炔二醇一水进行了模拟

萃取精馏

萃取精馏及其应用 摘要:萃取精馏在近沸点物系和共沸物的分离方面是很有潜力的操作过程。萃取精馏是一种特殊的精馏方法。以改变塔内需要分离组分的相对挥发度。选择合适的溶剂可以增强分离组分之间的相对挥发度, 从而可以使难分离物系转化为容易分离的物系。本文对萃取精馏的优缺点进行阐述以及提出对缺点的改进并对萃取精馏的前景进行展望。 Extractive distillation in nearly boiling material and separating azeotrope is very potential operation process. Extractive distillation is a kind of special rectification method. In order to change the tower requires the separation of components of the relative volatility of separation. This paper expounds the advantages and disadvantages of extract :extractive distillation extraction agent advantages and disadvantages application prospect Extractive distillation in nearly boiling material and separating azeotrope is very potential operation process. Extractive distillation is a kind of special rectification method. In order to change the tower requires the separation of components of the relative volatility of separation. This paper expounds the advantages and disadvantages of extractive distillation and put forward to the disadvantages of improvement and Prospect of extractive distillation. Abstracr :Extractive distillation in nearly boiling material and separating azeotrope is very potential operation process. Extractive distillation is a kind of special rectification method. In order to change the tower requires the separation of components of the relative volatility of separation. This paper expounds the advantages and disadvantages of extractive distillation and put forward to the disadvantages of improvement and Prospect of extractive distillation. Key words : extractive distillation extraction agent advantages and disadvantages application prospect 一、萃取精馏的简介 萃取精馏:向精馏塔顶连续加入高沸点添加剂,改变料液中被分离组分间的相对挥发度,使普通精馏难以分离的液体混合物变得易于分离的一种特殊精馏方法。 萃取精馏的原理:若采用普通精馏的方法进行分离,将很困难,或者不可能。对于这类物系,可以采用特殊精馏方法,向被分离物系中加入第三种组分,改变被分离组分的活度系数,增加组分之间的相对挥发度,达到分离的目的。如果加入的溶剂与原系统中的一些轻组分形成最低共沸物,溶剂与轻组分将以共沸物形式从塔顶蒸出,塔底得到重组分,这种操作称为共沸精馏;如果加入的溶剂不与原系统中的任一组分形成共沸物,其沸点又较任一组分的沸点高,溶剂与重组分将随釜液离开精馏塔,塔顶得到轻组分,这种操作称为萃取精馏。 萃取精馏的流程:由于溶剂的沸点高于原溶液各组分的沸点,所以它总是从塔釜排出的。为了在塔的绝大部分塔板上均能维持较高的溶剂浓度,溶剂加入口一定要在原料进入口以上。但一般情况下,它又不能从塔顶引入,因为溶剂入口以上必须还有若干块塔板,组成溶剂回收段,以便使馏出物从塔顶引出以前能将其中的溶剂浓度降到可忽略的程度。溶剂与重组分一起自萃取精馏塔底部引出后,送入溶剂回收装置。一般用蒸馏塔将重组分自溶剂中蒸出,并送回萃取精馏塔循环使用。一般,整个流程中溶剂的损失是不大的,只需添加少量新鲜溶剂补偿即可。

萃取精馏的分析与探究论文

萃取精馏的分析与探究

萃取精馏的分析与探究 摘要:萃取精馏在近沸点物系和共沸物的分离方面是很有潜力的操作过程。萃取精馏是一种特殊的精馏方法。以改变塔内需要分离组分的相对挥发度。选择合适的溶剂可以增强分离组分之间的相对挥发度, 从而可以使难分离物系转化为容易分离的物系. 关键词:萃取分离溶剂

一、萃取精馏的简介 萃取精馏:向精馏塔顶连续加入高沸点添加剂,改变料液中被分离组分间的相对挥发度,使普通精馏难以分离的液体混合物变得易于分离的一种特殊精馏方法。 二、萃取精馏的原理: 若采用普通精馏的方法进行分离,将很困难,或者不可能。对于这类物系,可以采用特殊精馏方法,向被分离物系中加入第三种组分,改变被分离组分的活度系数,增加组分之间的相对挥发度,达到分离的目的。如果加入的溶剂与原系统中的一些轻组分形成最低共沸物,溶剂与轻组分将以共沸物形式从塔顶蒸出,塔底得到重组分,这种操作称为共沸精馏;如果加入的溶剂不与原系统中的任一组分形成共沸物,其沸点又较任一组分的沸点高,溶剂与重组分将随釜液离开精馏塔,塔顶得到轻组分。三、萃取精馏的流程: 由于溶剂的沸点高于原溶液各组分的沸点,所以它总是从塔釜排出的。为了在塔的绝大部分塔板上均能维持较高的溶剂浓度,溶剂加入口一定要在原料进入口以上。但一般情况下,它又不能从塔顶引入,因为溶剂入口以上必须还有若干块塔板,组成溶剂回收段,以便使馏出物从塔顶引出以前能将其中的溶剂浓度降到可忽略的程度。溶剂与重组分一起自萃取精馏塔底部引出

后,送入溶剂回收装置。一般用蒸馏塔将重组分自溶剂中蒸出,并送回萃取精馏塔循环使用。一般,整个流程中溶剂的损失是不大的,只需添加少量新鲜溶剂补偿即可。 四、萃取精馏流程安排 萃取精馏过程一般采用双塔流程, 由萃取精馏塔和溶剂回收塔组成。萃取精馏的流程设计非常重要。一个好的萃取精馏工艺流程, 不仅能耗可以降低, 而且能够充分地发挥设备的潜力, 提高生产能力。在有些情况下, 萃取精馏过程的双塔流程模式并不是一成不变的。如溶剂沸点太高时, 可以对溶剂回收塔进行改进, 如加入一定量水以降低沸点, 在下一个塔中再回收溶剂, 这时就是双塔流程, 就需要再增加塔设备。 近年来在开发新的分离技术过程中, 各种分离方法之间的结合日益受到重视, 对萃取精馏亦如此。例如分离醇水溶液如果采用萃取精馏与恒沸精馏结合, 就可以较好地发挥出萃取精馏能耗低、产品纯度高的优点。首先利用萃取精馏得到纯度较高的醇溶液, 然后经过恒沸精馏制得高纯度的醇产品, 这种方法比单独的萃取精馏或恒沸精馏流程从能耗和操作控制难易综合方面都要好。 五、萃取精馏的分类 萃取精馏按照其操作方式可以分为两类,即连续萃取精馏和

特殊精馏技术综述

化工传质课程读书报告题目:特殊蒸馏技术综述 学生姓名 学院名称化工学院 专业化学工程与工艺学号 2013年 12月 20日

目录 一、精馏概述 1.1精馏原理 1.2精馏评价 二、特殊精馏概述 三、特殊精馏的分类及应用 3.1共沸精馏 3.1.1共沸精馏特点 3.1.2共沸精馏分类 3.1.3共沸精馏技术的应用及研究 3.1.4小结 3.2萃取精馏 3.2.1萃取精馏的原理 3.2.2萃取精馏的分类 3.2.3萃取精馏在实际中应用 3.2.4小结 3.3溶盐精馏 3.3.1精馏原理 3.3.2精馏现状 3.3.3小结

3.4热泵精馏 3.4.1热泵精馏技术的应用现状 3.4.2热泵精馏技术在煤焦化精馏的应用及前景 3.4.3小结 3.5超重力催化反映精馏 3.5.1超重力催化反应精馏概述 3.5.2精馏原理 3.5.3超重力催化精馏合成乙酸正丁酯 3.5.4小结 四、总结

一、精馏概述 1.1精馏原理 双组分混合液的分离是最简单的精馏操作。典型的精馏设备是连续精馏装置(图1),包括精馏塔、再沸器、冷凝器等。精馏塔供汽液两相接触进行相际传质,位于塔顶的冷凝器使蒸气得到部分冷凝,部分凝液作为回流液返回塔底,其余馏出液是塔顶产品。位于塔底的再沸器使液体部分汽化,蒸气沿塔上升,余下的液体作为塔底产品。进料加在塔的中部,进料中的液体和上塔段来的液体一起沿塔下降,进料中的蒸气和下塔段来的蒸气一起沿塔上升。在整个精馏塔中,汽液两相逆流接触,进行相际传质。液相中的易挥发组分进入汽相,汽相中的难挥发组分转入液相。对不形成恒沸物的物系,只要设计和操作得当,馏出液将是高纯度的易挥发组分,塔底产物将是高纯度的难挥发组分。进料口以上的塔段,把上升蒸气中易挥发组分进一步提浓,称为精馏段;进料口以下的塔段,从下降液体中提取易挥发组分,称为提馏段。两段操作的结合,使液体混合物中的两个组分较完全地分离,生产出所需纯度的两种产品。当使n组分混合液较完全地分离而取得n个高纯度单组分产品时,须有n-1个塔。 1.2操作评价 评价精馏操作的主要指标是:①产品的纯度。板式塔中的塔板数或填充塔中填料层高度,以及料液加入的位置和回流比等,对产品纯度均有一定影响。调节回流比是精馏塔操作中用来控制产品纯度的主要手段。②组分回收率。这是产品中组分含量与料液中组分含量之比。 ③操作总费用。主要包括再沸器的加热费用、冷凝器的冷却费用和精馏设备的折旧费,操作时变动回流比,直接影响前两项费用。此外,即使同样的加热量和冷却量,加热费用和冷却费用还随着沸腾温度和冷凝温度而变化,特别当不使用水蒸气作为加热剂或者不能用空气或冷却水作为冷却剂时,这两项费用将大大增加。选择适当的操作压力,有时可避免使用高温加热剂或低温冷却剂(或冷冻剂),但却增添加压或抽真空的操作费用。 二、特殊精馏概述 在实际化工精馏过程中,当待分离组分之间形成共沸物或相对挥发度接近1时,用普通精馏是无法实现分离或是在经济上是不合理的。因此,通过向体系中加入一种适当的新组分,并且通过其与原体系中各组分的不同作用,改变组分之间的相对挥发度,使系统变得易于分离;亦或是通过改变一些精馏塔内的物理条件,来改变组分之间的相对挥发度,从而使系统变得更易分离,这类既加入能量分离剂又加入质量分离剂,或者是通过极端物理条件达到分离目的的精馏称为特殊精馏或称增强精馏。

当前萃取分离技术的研究应用与进展

当前萃取分离技术的研究应用与进展 摘要:近年关于萃取技术研究进展很快,各种萃取方法层出不穷但各有其优缺点,现通过对几种比较流行的萃取方法进行总结归纳,并对未来萃取分离技术进展的特点做些分析。随着科技水平发展以及对于各种科研需要关于萃取技术这方面的研究不断更新,新的方法不断研究出来,本文简单归纳介绍了以下几种常用方法:1.固相萃取技术2.亚临界水萃取技术3.液相微萃取技术。另外补充说明近年来我国稀土工业发展中萃取技术的应用情况和未来的发展趋势。 关键词:萃取分离;稀土;发展趋势 引言: 传统的提取物质中有效成分的方法复杂,而且产品的纯度不高易含有有毒有害物质在其中。萃取分离法是一种新型的分离技术,是将样品中的目标化合物选择性的转移到另一相中或选择性的保留在原来的相中,从而使目标化合物与原来的复杂基体相互分离方法。通过萃取分离这个重要单元操作步骤,可以达到产品提纯率高,纯度好,能耗低等优点。这种方法不仅在化工医药领域得到广泛应用,而且在食品,烟草,香料,稀土行业得到极大认可。随着科技的更新和进步,萃取分离技术也在不断的改进优化,新型的萃取分离技术不断出现并完善,这项技术在未来具有广阔的发展前景。 1.固相萃取技术 固相萃取(Solid Phase Extraction,SPE)技术基于液相色谱原理,

可近似看作一个简单的色谱过程16t。原理是利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰化合物分离,然后再用洗脱液洗脱或加热解吸附,达到分离和富集目标化合物的目的171。固相萃取可分为在线萃取和离线萃取。前者萃取与色谱分析同步完成,而后者萃取与色谱分析分步完成。两者在原理上是一致的。 固相萃取技术在样品处理中的作用分两种:一是净化,二是富集,这两种作用可能同时存在。 固体萃取和液-液萃取相比,其长处在于方便和消耗试剂少,短处在于批次间的重复性难以保证。出现这种情况的原因在于:液体试剂的重复性好,只要其纯度可靠,不同年代的产品的物理化学性质都是可靠的。而固体萃取剂就算保证了纯度外,还存在着颗粒度的差异,外形的差异等液体试剂不存在的且难以衡量的因素,不同年代不同批号的萃取性质可能会有较大的区别。 从理论上和厂家宣传来看,固相萃取应该在色谱分析的前处理上得到很好的应用:有机溶剂用得很少,可批量处理样品,既可富集,又能除杂质,给人印象是前处理的革命性进步。然而现实情况,起码在国内,虽然推广了多年,实际应用还是相当有限。 固相萃取技术很容易掌握,目前利用它开展的工作尚有一定的局限性。主要使用在分析挥发性、半挥发性物质,因此文献报道较多与气象色谱的联用有关,与液相色谱和毛细管电泳联用的技术尚不很成熟,文献报道较少。虽然固相微萃取技术近几年刚刚起步,但由于具有方法简单,无需试剂,提取效果好,变异系数小安等诸多优点已在

相关文档