文档库 最新最全的文档下载
当前位置:文档库 › 实验报告--典型环节及其阶跃响应

实验报告--典型环节及其阶跃响应

实验报告--典型环节及其阶跃响应
实验报告--典型环节及其阶跃响应

典型环节及其阶跃响应报告

一、实验目的

1. 掌握控制模拟实验的基本原理和一般方法。

2. 掌握控制系统时域性能指标的测量方法。

二、实验仪器

1.EL-AT-II型自动控制系统实验箱一台

2.计算机一台

三、实验原理

1.模拟实验的基本原理:

控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。若改变系统的参数,还可进一步分析研究参数对系统性能的影响。

2.时域性能指标的测量方法:

超调量ó %:

1)启动计算机,在桌面双击图标[自动控制实验系统] 运行软件。

2)测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查

找原因使通信正常后才可以继续进行实验。

3)连接被测量典型环节的模拟电路。电路的输入U1接A/D、D/A卡的DA1

输出,电路的输出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。

4)在实验课题下拉菜单中选择实验一[典型环节及其阶跃响应] 。

5)鼠标单击实验课题弹出实验课题参数窗口。在参数设置窗口中设置相应的实验参

数后鼠标单击确认等待屏幕的显示区显示实验结果。

6)用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:

Y MAX - Y∞

ó %=——————×100%

Y∞

T P与T S:

利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P与T S。

四、实验内容

构成下述典型一阶系统的模拟电路,并测量其阶跃响应:

1.比例环节的模拟电路及其传递函数如图1-1。

G(S)= R2/R1

2.惯性环节的模拟电路及其传递函数如图1-2。

G(S)= K/TS+1

K=R2/R1,T=R2C

3.积分环节的模拟电路及传递函数如图1-3。

G(S)=1/TS

T=RC

4.微分环节的模拟电路及传递函数如图1-4。

G(S)= RCS

5.例+微分环节的模拟电路及传递函数如图1-5(未标明的C=0.01uf)。

G(S)= K(TS+1)

K=R2/R1,T=R2C

6.比例+积分环节的模拟电路及传递函数如图1-6。

G(S)=K(1+1/TS)

K=R2/R1,T=R2C

五、实验步骤

1.启动计算机,在桌面双击图标[自动控制实验系统] 运行软件。

2.测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原因使通信正常后才可以继续进行实验。

比例环节

3.连接被测量典型环节的模拟电路(图1-1)。电路的输入U1接A/D、D/A卡的DA1

输出,电路的输出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。

4.在实验课题下拉菜单中选择实验一[典型环节及其阶跃响应] 。

5.鼠标单击实验课题弹出实验课题参数窗口。在参数设置窗口中设置相应的实验参数

后鼠标单击确认等待屏幕的显示区显示实验结果。

6.观测计算机屏幕显示出的响应曲线及数据。

7.记录波形及数据(由实验报告确定)。

惯性环节

8.连接被测量典型环节的模拟电路(图1-2)。电路的输入U1接A/D、D/A卡的DA1

输出,电路的输出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。

9.实验步骤同4~7

积分环节

10.连接被测量典型环节的模拟电路(图1-3)。电路的输入U1接A/D、D/A卡的DA1

输出,电路的输出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。

11.实验步骤同4~7

微分环节

12.连接被测量典型环节的模拟电路(图1-4)。电路的输入U1接A/D、D/A卡的DA1

输出,电路的输出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。

13.实验步骤同4~7

比例+积分环节

14.连接被测量典型环节的模拟电路(图1-6)。电路的输入U1接A/D、D/A卡的DA1

输出,电路的输出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。

15.实验步骤同4~7

16. 测量系统的阶跃响应曲线,并记入上表。

六、实验报告

1.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由电路计算的结果相

比较。

2.将实验中测得的曲线、数据及理论计算值,整理列表。

七、预习要求

1.阅读实验原理部分,掌握时域性能指标的测量方法。

2.分析典型一阶系统的模拟电路和基本原理。

参数阶跃响应曲线

理论值实测值

R1=R2= 100K C=1uf K=1 T=0.1S

比例环节

惯性环节

积分环节

微分环节

比例+微分环节

比例+积分环节

R1=100K R2=200K C=1uf

K=2 T=1S

比例环节

惯性环节

积分环节

微分环节

比例+微分环节

比例+积分环节

自动控制实验一典型环节及其阶跃响应分析

广东工业大学实验报告 分数:实验题目典型环节及其阶跃响应分析 一、实验目的 1、掌握控制模拟实验的基本原理和一般办法。 2、掌握控制系统时域性指标的测量方法。 二、实验原理 1.模拟实验的基本原理: 控制系统模拟实验采用复合网络法来来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。若改变系统的参数,还可以进一步分析参数对系统性能的影响。 三、实验仪器 1、EL-AT-II型自动控制系统实验箱一台 2、计算机一台 四、实验内容 1、比例环节 比例环节的模拟电路及其传递函数如下 当R2=200K时,其输出波形如下图:

由上图可得,实际K=2449/1029=2.37 理论值K=2 误差:y=|k`- k|/ k *100% =|2.37-2|/2*100% =18.5% 当R2=400K时,其输出波形如下图: 由上图可得,实际K=4389/1029=4.27 理论值K=4 误差:y=|k`- k|/ k *100% =|4.27-4|/4*100% =6.75% 数据分析:从图中可以看出,比例环节最大的特点就是时间响应快,一旦有输入信号,输出立即响应。且实际K存在一定误差,分析电路可知,误差是由R1、R2的实际值存在偏差而导致的,同时和放大器的结构参数也有关系。 2、惯性环节

惯性环节的模拟电路及其传递函数如下 G(S)=-K/TS+1 K=R2/R1 T=R2C 当C=1uF 时,其输出波形如下图: 由上图可得,实际T=0.076s 理论值T=0.1s 误差:η1=|T`- T|/ T *100% =|0.076-0.1|/0.1*100% =24% 当C=2uF 时,其输出波形如下图:

实验二 控制系统的阶跃响应及稳定性分析

实验二 控制系统的阶跃响应及稳定性分析 一、实验目的及要求: 1.掌握控制系统数学模型的基本描述方法; 2.了解控制系统的稳定性分析方法; 3.掌握控制时域分析基本方法。 二、实验内容: 1.系统数学模型的几种表示方法 (1)传递函数模型 G(s)=tf() (2)零极点模型 G(s)=zpk(z,p,k) 其中,G(s)= 将零点、极点及K值输入即可建立零极点模型。 z=[-z1,-z …,-z m] p=[-p1,-p …,-p] k=k (3)多项式求根的函数:roots ( ) 调用格式: z=roots(a) 其中:z — 各个根所构成的向量 a — 多项式系数向量 (4)两种模型之间的转换函数: [z ,p ,k]=tf2zp(num , den) %传递函数模型向零极点传递函数的转换 [num , den ]=zp2tf(z ,p ,k) %零极点传递函数向传递函数模型的转换 (5)feedback()函数:系统反馈连接

调用格式:sys=feedback(s1,s2,sign) 其中,s1为前向通道传递函数,s2为反馈通道传递函数,sign=-1时,表示系统为单位负反馈;sign=1时,表示系统为单位正反馈。 2.控制系统的稳定性分析方法 (1)求闭环特征方程的根(用roots函数); 判断以为系统前向通道传递函数而构成的单位负反馈系统的稳定性,指出系统的闭环特征根的值: 可编程如下: numg=1; deng=[1 1 2 23]; numf=1; denf=1; [num,den]= feedback(numg,deng,numf,denf,-1); roots(den) (2)化为零极点模型,看极点是否在s右半平面(用pzmap); 3.控制系统根轨迹绘制 rlocus() 函数:功能为求系统根轨迹 rlocfind():计算给定根的根轨迹增益 sgrid()函数:绘制连续时间系统根轨迹和零极点图中的阻尼系数和自然频率栅格线 4.线性系统时间响应分析 step( )函数---求系统阶跃响应 impulse( )函数:求取系统的脉冲响应 lsim( )函数:求系统的任意输入下的仿真 三、实验报告要求:

实验一、典型环节及其阶跃响应

实验一、典型环节及其阶跃响应 一、实验目的 1. 掌握控制模拟实验的基本原理和一般方法。 2. 掌握控制系统时域性能指标的测量方法。 二、实验设备 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、实验原理 1.模拟实验的基本原理: 控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。若改变系统的参数,还可进一步分析研究参数对系统性能的影响。 2.时域性能指标的测量方法: 超调量ó %: 1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。 2)检查USB线是否连接好,在实验项目下拉框中选中任实验,点击按 钮,出 现参数设置对话框设置好参数按确定按钮,此时如无警告对话框出现表 示通信 正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续 进行实验。 3)连接被测量典型环节的模拟电路。电路的输入U1接A/D、D/A卡的DA1 输出,电路的输出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。 4)在实验项目的下拉列表中选择实验一[典型环节及其阶跃响应] 。 5)鼠标单击按钮,弹出实验课题参数设置对话框。在参数设置对话框 中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结 果。 6)用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调 量:

T P 与T S : 利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时 间值,便可得到T P 与T S 。 四、实验内容 构成下述典型一阶系统的模拟电路,并测量其阶跃响应: 1.比例环节的模拟电路及其传递函数如图1-1。 G(S)= -R2/R1 2.惯性环节的模拟电路及其传递函数如图1-2。 G(S)= - K/TS+1 K=R2/R1,T=R2C 3.积分环节的模拟电路及传递函数如图1-3。 G(S)=1/TS T=RC 4.微分环节的模拟电路及传递函数如图1-4。 G(S)= - RCS 5.例+微分环节的模拟电路及传递函数如图1-5(未标明的C=0.01uf)。 G(S)= -K(TS+1) K=R2/R1,T=R2C 6.比例+积分环节的模拟电路及传递函数如图1-6。 G(S)=K(1+1/TS) K=R2/R1,T=R2C 五、实验步骤 1.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。 2.测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原因使通信正常后才可以继续进行实验。 比例环节 3.连接被测量典型环节的模拟电路(图1-1)。电路的输入U1接A/D、D/A卡 的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。检查无误后接通 电源。 4.在实验项目的下拉列表中选择实验一[一、典型环节及其阶跃响应] 。 5.鼠标单击按钮,弹出实验课题参数设置对话框。在参数设置对话框中 设置 相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果

典型环节的时域响应的实验报告

实验报告 时域抽样与频域抽样 一、实验目的 加深理解连续时间信号离散过程中的数学概念和物理概念,掌握时域抽样定理的基本内容。掌握有抽样序列抽样原序列信号的基本原理与实现方法,理解其工程概念。加深理解频域离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。二、实验原理 离散系统在处理信号时,信号必须是离散序列。因此,再利用计算机等离散系统分析处理连续信号时必须对信号进行离散化处理。是与抽样定理给出了连续信号抽样过程中不失真的约束条件:对于基带信号,信号的抽样频率大于等于2倍的信号最高频率。信号的重建是信号抽样的逆过程。 非周期信号的离散信号的频谱是连续谱。 1、信号的时域抽样与重建, 2、信号的频域抽样 三、实验内容 1、为了观察连续信号时域抽样时抽样频率对抽样过程的影响,在【0,1】区间上以50hz的抽样频率对以下三个信号进行抽样,试画出抽样后的序列波形,并分析产生不同波形的原因,提出改进措施。

(1)x1(t)=cos(2pi*10t) (2)x2(t)=cos(2pi*50t) (3)x3(t)=cos(2pi*100t) (1)t0=0:0.001:0.1; x0=cos(2*pi*10*t0); plot(t0,x0,'r') hold on Fs=50 t=0:1/Fs:0.1; x=cos(2*pi*10*t); stem(t,x); hold off title 00.010.020.030.040.050.060.070.080.090.1 (2) t0=0:0.001:0.1; x0=cos(2*pi*50*t0); plot(t0,x0,'r') hold on Fs=50; t=0:1/Fs:0.1;

典型环节及其阶跃响

自动控制原理实验 典型环节及其阶跃相应 .1 实验目的 1. 学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。 2. 学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。 3. 学习用Multisim 、MATLAB 仿真软件对实验内容中的电路进行仿真。 .2 实验原理 典型环节的概念对系统建模、分析和研究很有用,但应强调典型环节的数学模型是对各种物理系统元、部件的机理和特性高度理想化以后的结果,重要的是,在一定条件下, 典型模型的确定能在一定程度上忠实地描述那些元、部件物理过程的本质特征。 1.模拟典型环节是将运算放大器视为满足以下条件的理想放大器: (1) 输入阻抗为∞。流入运算放大器的电流为零,同时输出阻抗为零; (2) 电压增益为∞: (3) 通频带为∞: (4) 输入与输出之间呈线性特性: 2.实际模拟典型环节: (1) 实际运算放大器输出幅值受其电源限制是非线性的,实际运算放大器是有惯性的。 (2) 对比例环节、惯性环节、积分环节、比例积分环节和振荡环节,只要控制了输入量的大小或是输入量施加的时间的长短(对于积分或比例积分环节),不使其输出工作在工作期间内达到饱和值,则非线性因素对上述环节特性的影响可以避免.但对模拟比例微分环节和微分环节的影响则无法避免,其模拟输出只能达到有限的最高饱和值。 (3) 实际运放有惯性,它对所有模拟惯性环节的暂态响应都有影响,但情况又有较大的不同。 3.各典型环节的模拟电路及传递函数 (1) 比例环节的模拟电路如图.1所示,及传递函数为: 1 2)(R R S G -=

.1 比例环节的模拟电路 2. 惯性环节的模拟电路如图.2所示,及传递函数为: 其中1 2R R K = T=R 2 C 图.2 惯性环节的模拟电路 3. 积分环节的模拟电路如图.3所示,其传递函数为: 1 11R /1/)(21212212+-=+-=+-=-=TS K CS R R R CS R CS R Z Z S G

典型环节的时域响应实验报告

典型环节的时域响应实验报告 一、实验要求 了解和掌握各典型环节的传递函数及模拟电路图,观察和分析各典型环节的响应曲线。 二、实验原理及内容: 1.比例环节(P) (1) 方框图: (2) 传递函数: (3) 阶跃响应: 其中 (4) 模拟电路图 图1 注意:图中运算放大器的正相输入端已经对地接了的电阻,实验中不需要再接。以后的实验中用到的运放也如此。 2.积分环节(I) (1) 方框图:

(2) 传递函数 (3) 阶跃响应: 其中 (4)模拟电路图: 图2 3.比例积分环节(PI) (1) 方框图: (2)传递函数: (3) 阶跃响应: 其中

(4)模拟电路图: 图3 4.惯性环节(T) (1) 方框图: (2) 传递函数: (3) 阶跃响应 其中 (4) 模拟电路图:

图4 5.比例微分环节(PD) (1) 方框图: (2) 传递函数: (3) 阶跃响应: 其中 为单位脉冲函数,这是一个面积为t的脉冲函数,脉冲宽度为零,幅值为无穷大,在实际中是得不到的。 (4) 模拟电路图: 图5 6.比例积分微分环节(PID) (1) 方框图:

(2) 传递函数: (3) 阶跃响应: 其中 为单位脉冲函数, (4) 模拟电路图: 图 6 三、实验步骤 1. 按比例环节的模拟电路图将线接好,检查无误后开启设备电源。 2. 将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。由于每个运放单元均设置了锁零场效应管,所以运放具有锁零功能。调节调幅和调频电位器,使得“OUT”端输出的方波幅值为1V,周期为10s左右。

3. 将2中的方波信号加至环节的输入端Ui,用示波器的“CH1”和“CH2”表笔分别监测模拟电路的输入Ui端和输出U0端,观测输出端的实际响应曲线U0(t),记录实验波形及结果。 4. 改变几组参数,重新观测结果。 5. 用同样的方法分别搭接积分环节、比例积分环节、比例微分环节、惯性环节和比例积分微分环节的模拟电路图。观测这些环节对阶跃信号的实际响应曲线,分别记录实验波形及结果。 四、实验曲线及结论 1.比例环节 (P) (1)当R0=200K,R1=100K时, 图形如下: (2)当R0=200K、R1=200K时,图形如下:

典型环节及其阶跃响应

自动控制原理实验 典型环节及其阶跃相应 .1 实验目的 1. 学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。 2. 学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。 3. 学习用Multisim、MATLAB仿真软件对实验容中的电路进行仿真。 .2 实验原理 典型环节的概念对系统建模、分析和研究很有用,但应强调典型环节的数学模型是对各种物理系统元、部件的机理和特性高度理想化以后的结果,重要的是,在一定条件下,典型模型的确定能在一定程度上忠实地描述那些元、部件物理过程的本质特征。 1.模拟典型环节是将运算放大器视为满足以下条件的理想放大器: (1) 输入阻抗为∞。流入运算放大器的电流为零,同时输出阻抗为零; (2) 电压增益为∞: (3) 通频带为∞: (4) 输入与输出之间呈线性特性: 2.实际模拟典型环节: (1) 实际运算放大器输出幅值受其电源限制是非线性的,实际运算放大器是有惯性的。 (2) 对比例环节、惯性环节、积分环节、比例积分环节和振荡环节,只要控制了输入量的大小或是输入量施加的时间的长短(对于积分或比例积分环节),不使其输出工作在工作期间达到饱和值,则非线性因素对上述环节特性的影响可以避免.但对模拟比例微分环节和微

分环节的影响则无法避免,其模拟输出只能达到有限的最高饱和值。 (3) 实际运放有惯性,它对所有模拟惯性环节的暂态响应都有影响,但情况又有较大的不同。 3.各典型环节的模拟电路及传递函数 (1) 比例环节的模拟电路如图.1所示,及传递函数为: 1 2)(R R S G -= .1 比例环节的模拟电路 2. 惯性环节的模拟电路如图.2所示,及传递函数为: 其中1 2R R K = T=R 2C 1 11R /1/)(21212212+-=+-=+-=-=TS K CS R R R CS R CS R Z Z S G

自动控制原理实验-典型环节及其阶跃响应

大学学生实验报告 开课学院及实验室:实验中心 2013 年 11 月4日 学 院 机电 年级、专业、班 学号 实验课程名称 成绩 实验项目名称 典型环节及其阶跃响应 指导 教师 一、实验目的 二、实验原理(实验相关基础知识、理论) 三、实验过程原始记录(程序界面、代码、设计调试过程描述等) 四、实验结果及总结 一、实验目的 1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。 2.学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。 二、实验原理及电路图 (一) 用实验箱构成下述典型环节的模拟电路,并测量其阶跃响应。 1.比例环节的模拟电路及其传递函数如图2-1。 图2-1 G(S)= -R 2 /R 1 2.惯性环节的模拟电路及其传递函数如图2-2。

图2-2 G(S)=-K/(TS+1) K=R 2 /R 1 , T=R 2 C 3.积分环节的模拟电路及其传递函数如图2-3。 图2-3 G(S)=-1/TS T=RC 4.微分环节的模拟电路及其传递函数如图2-4。

图2-4 G(S)=-RCS 5.比例+微分环节的模拟电路及其传递函数如图2-5。 图2-5 G(S)=-K(TS+1) K=R 2 /R 1 ,T=R 2 C 6.比例+积分环节的模拟电路及其传递函数如图2-6。 图2-6 G(S)=K(1+1/TS) K=R 2 /R 1 , T=R 2 C

实验截图 1.比例环节 2.惯性环节

3.积分环节 4.微分环节 5.比例+微分环节

MATLAB下二阶系统的单位阶跃响应

二阶系统在不同参数下对单位阶跃信号的响应 一、二阶系统 所谓二阶系统就是其输入信号、输出信号的关系可用二阶微分方程来表征的系统。比如常见的RLC电路(图a)、单自由度振动系统等。 图a 图b 二阶系统传递函数的标准形式为 2 22 () 2 n n n H s s s ω ξωω = ++ 二、二阶系统的Bode图(nω=1) MATLAB程序为 >> clear >> num=[1]; >> den=[1 0.2 1]; >> bode(num,den); grid on hold on den=[1 0.4 1]; bode(num,den); >> den=[1 0.6 1]; >> bode(num,den); >> den=[1 0.8 1]; >> bode(num,den); >> den=[1 1.4 1]; >> bode(num,den); >> den=[1 2 1]; >> bode(num,den); >> legend('0.1','0.2','0.3','0.4','0.7','1.0')

运行结果为 三、二阶系统对单位阶跃信号的响应( =1) n MATLAB程序为 >> clear >> num=[1]; >> den=[1 0 1]; >> t=0:0.01:25; >> step(num,den,t) >> grid on >> hold on >> den=[1 0.2 1]; >> step(num,den,t) >> den=[1 0.4 1]; >> step(num,den,t) >> den=[1 0.6 1]; >> step(num,den,t) >> den=[1 0.8 1]; >> step(num,den,t) >> den=[1 1.0 1]; >> step(num,den,t)

典型环节及其阶跃响应

典型环节及其阶跃响应 一、实验目的 1. 掌握控制系统模拟实验的基本原理和一般方法。 2. 掌握控制系统时域性能指标的测量方法。 3. 加深典型环节的概念在系统建模、分析、研究中作用的认识。 4. 加深对模拟电路——传递函数——响应曲线的联系和理解。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、实验原理 1.模拟实验的基本原理 根据数学模型的相似原理,我们应用电子元件模拟工程系统中的典型环节,然后加入典型测试信号,测试环节的输出响应。反之,从实测的输出响应也可以求得未知环节的传递函数及其各个参数。 模拟典型环节传递函数的方法有两种:第一种方法,利用模拟装置中的运算部件,采用逐项积分法,进行适当的组合,构成典型环节传递函数模拟结构图;第二种方法将运算放大器与不同的输入网络、反馈网络组合,构成传递函数模拟线路图,这种方法可以称为复合网络法。本节介绍第二种方法。 采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络构成相应的模拟系统。将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,得到系统的动态响应曲线及性能指标。若改变系统的参数,还可进一步分析研究参数对系统性能的影响。 图1-1 模拟实验基本测量原理 模拟系统以运算放大器为核心元件,由不同的R-C输入网络和反馈网络组成的各种 典型环节,如图1-2所示。图中Z1和Z2为复数阻抗,它们都是由R、C构成。 基于图中A点的电位为虚地,略去流入运放的电流,则由图1-2得:

1 21 0)(Z Z u u s G - =-= 由上式可求得由下列模拟电路组成典型环节的传递函数及其单位阶跃响应。 2.一阶系统时域性能指标s r d t t t ,,的测量方法: 利用软件上的游标测量响应曲线上的值,带入公式算出一阶系统时域性能指标。 d t :响应曲线第一次到达其终值∞ y 一半所需的时间。 r t :响应曲线从终值∞y %10上升到终值∞ y % 90所需的时间。 s t :响应曲线从0到达终值∞y 95%所需的时间。 3.实验线路与原理(注:输入加在反相端,输出信号与输入信号的相位相反) 1.比例环节 K R R Z Z s G -=- =- =1 21 2)( 比例环节的模拟电路及其响应曲线如图1-3。 K ——放大系数。K 是比例环节的特征量,它表示阶跃输入后,输出与输 入的比例关系,可以从响应曲线上求出。改变1R 或2R 的电阻值便可以改变比例 图1-2 运放的反馈连接 t K -1 图1-3 比例环节的模拟电路及其响应曲线

典型环节的时域响应实验报告

成绩:教师签名:批改时间: 一、实验目的 1.熟悉并掌握TD-ACC+(或TD-ACS)设备的使用方法及各典型环节模拟电路的构成方法。 2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。对比差异分析原因。 3.了解参数变化对典型环节动态特性的影响。 二、实验设备 PC机一台,TD-ACC(或TD-ACS)实验系统一套 三、实验原理及内容 以运算放大器为核心,由其不同的输入R-C网络和反馈R-C网络构成控制系统的各种典型环节,用数字存储示波器测量各环节的阶跃响应曲线。下面为各环节模拟电路图。 1.比例环节(P)传递函数:Uo(s)/Ui(s)=K 2.积分环节(I)传递函数:Uo(s)/Ui(s)=1/TS 3.比例积分环节(PI) 传递函数:Uo(s)/Ui(s)=K+1/TS

成绩:教师签名:批改时间: 4.惯性环节(T)传递函数: Uo(s)/Ui(s)=K/(TS+1) 5.比例微分环节(PD)传递函数:Uo(s)/Ui(s)=K[(1+TS)/(1+τS)] 6.比例积分微分环节(PID)传递函数:Uo(s)/Ui(s)=Kp+1/TiS+TdS 四、实验步骤 1.按所列举的比例环节的模拟电路图将线连接好,检查无误后开启设备电源。 2.将信号源单元的“ST”端插针与“S”端插针用短路块短接,。将开关设在方波档,分别调节调幅和调频电位器,使得“out”端输出的方波幅值为1V,周期为10S左右。 3.将2中的方波信号加至环节的输入端Ui,用示波器的“CH1”和“CH2”表笔分别检测模拟电路的输入Ui端和输出端Uo端,观测输出端的实际响应曲线Uo(t),记录实验波形及结果。 4.改变几组参数,重新观测结果。 5.用同样的方法分别搭接积分环节、比例积分环节、比例微分环节、惯性环节、比例积分微分环节的模拟电路图。观测这些环节对阶跃信号的实际响应曲线,分别记录实验波形及结果。

一阶系统的单位阶跃响应

图3-5所示系统。其输入-输出关系为 1 1 111)()(+= +=Ts s K s R s C (3-3) 式中K T 1 = ,因为方程(3-3)对应的微分方程的最高阶次是1,故称一阶系统。 实际上,这个系统是一个非周期环节,T 为系统的时间常数。 一、一阶系统的单位阶跃响应 因为单位阶跃函数的拉氏变换为s 1,将s s R 1)(=代入方程(3-3),得 s Ts s C 1 11)(+= 将)(s C 展开成部分分式,有 11()1C s s s T =- + (3-4) 对方程(3-4)进行拉氏反变换,并用)(t h 表示阶跃响应)(t C ,有 t T e t h 1 1)(--= 0t ≥ (3-5) 由方程(3-5)可以看出,输出量)(t h 的初始值等于零,而最终将趋于1。常数项“1”是由s 1反变换得到的,显然,该分量随时间变化的规律和外作用相似(本例为相同),由于它在稳态过程中仍起作用,故称为稳态分量 (稳态响应)。方程(3-5)中第二项由1 1/()s T +反变换得到, 它随时间变化的规律取决于传递函数1/(1)Ts +的极点,即系统特 征方程()10D s Ts =+=的根(1/)T -在复平 面中的位置,若根处在复平面的左半平面 如图3-6(a)所示,则随着时间 t 的增加, 它将逐渐衰减, 最后趋于零 (如图3-6(b) 所示),称为瞬态响应。可见,阶跃响应曲线具有非振荡特性,故也称为非周期响应。 显然,这是一条指数响应曲线,其初始斜率等于1/T ,即 T e T dt dh t t T t 1 |1|01 0===-= (3-6) 这就是说,假如系统始终保持初始响应速度不变,那么当T t =时, 输出量就能达到稳态值。

典型环节与及其阶跃响应

实验一: 典型环节与及其阶跃响应 一、实验目的 1、掌握控制模拟实验的基本原理和一般方法。 2、掌握控制系统时域性能指标的测量方法。 二、实验仪器 1、EL-AT-III 型自动控制系统实验箱一台 2、计算机一台 三、实验原理 控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输 入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起 来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测 量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。若改变系统的参数, 还可进一步分析研究参数对系统性能的影响。 四、实验内容 构成下述典型一阶系统的模拟电路,并测量其阶跃响应 1、比例环节的模拟电路及其传递函数 G(S)= ?R2/R1

2、惯性环节的模拟电路及其传递函数 G(S)= ?K/TS+1 K=R2/R1 T=R2C 3、积分环节的模拟电路及传递函数 G(S)=1/TS T=RC 4、微分环节的模拟电路及传递函数 G(S)= ?RCS 5、比例+微分环节的模拟电路及传递函数 G(S)= ?K(TS+1) K=R2/R1 T=R1C 五、实验结果及分析 (注:图中黄色为输入曲线、紫色为输出曲线)1、比例环节 (1)模拟电路图:

(2)响应曲线: 2、惯性环节 (1)模拟电路图:

(2)响应曲线: (3)传递函数计算: 实验值:X1=1029ms=1.029s=4T T=0.257s K=Y2/1000=2.017 G(S)=-2.017/(0.257S+1) 理论值:G(S)=-2/(0.2S+1) 结论:实验值与理论值相近。 3、积分环节 (1)模拟电路图:

自动控制原理实验 典型系统的时域响应和稳定性分析

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别: 实验名称:典型系统的时域响应和稳定性分析实验时间: 学生成绩:教师签名:批改时间: 一、目的要求 1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。 2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。 二、实验设备 PC机一台,TD—ACC教学实验系统一套 三、实验原理及内容 1.典型的二阶系统稳定性分析 (1) 结构框图:如图 1.2-1 所示。 图1.2-2 (2) 对应的模拟电路图:如图 1.2-2 所示。 图1.2-2

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别: 实验名称:实验时间: 学生成绩:教师签名:批改时间: (3) 理论分析 系统开环传递函数为: ;开环增益: (4) 实验内容 先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中, 观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。在此实验中(图 1.2-2), 系统闭环传递函数为: 其中自然振荡角频率: 2.典型的三阶系统稳定性分析 (1) 结构框图:如图 1.2-3 所示。

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别: 实验名称:实验时间: 学生成绩:教师签名:批改时间: 图 1.2-3 (2)模拟电路图:如图1.2-4 所示。 图 1.2-4 (3)理论分析: 系统的特征方程为: (4)实验内容: 实验前由Routh 判断得Routh 行列式为:

(整理)二阶系统的阶跃响应.

实验一 一、二阶系统的阶跃响应 实验报告 ___系__专业___班级 学号___姓名___成绩___指导教师__一、实验目的 1、学习实验系统的使用方法。 2、学习构成一阶系统(惯性环节)、二阶系统的模拟电路,分别推导其传递函数。了解电路参数对环节特性的影响。 3、研究一阶系统的时间常数T 对系统动态性能的影响。 4、研究二阶系统的特征参数,阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。 二、实验仪器 1、EL-AT-II 型自动控制系统实验箱一台 2、计算机一台 三、实验内容 (一) 构成下述一阶系统(惯性环节)的模拟电路,并测量其阶跃响应。 惯性环节的模拟电路及其传递函数如图1-1。 (二)构成下述二阶系统的模拟电路,并测量其阶跃响应。 典型二阶系统的闭环传递函数为 ()2222n n n s s s ωζωω?++= (1) 其中ζ和n ω对系统的动态品质有决定的影响。 图1-1 一阶系统模拟电路图 R1 R2

构成图1-2典型二阶系统的模拟电路,并测量其阶跃响应: 电路的结构图如图 1-3 系统闭环传递函数为 ()()()()2 2 2/1//11/2T S T K s T s U S U s ++==? 式中 T=RC ,K=R2/R1。 比较(1)、(2)二式,可得 n ω=1/T=1/RC ξ=K/2=R2/2R1 (3) 由(3)式可知,改变比值R2/R1,可以改变二阶系统的阻尼比。改变RC 值可以改变无阻尼自然频率n ω。 今取R1=200K ,R2=0K Ω,50K Ω,100K Ω和200K Ω,可得实验所需的阻尼比。图1-2 二阶系统模拟电路图 图1-3 二阶系统结构图 R2

典型环节的单位阶跃响应

实验二 典型环节的单位阶跃响应 一、实验目的 1、根据对象的单位阶跃响应特性,掌握和深刻理解几种典型环节的特性以及它们特性参数的含义。 2、研究对象传递函数的零极点对系统动态特性的影响。 3、学习Matlab 的基本用法 ――求取阶跃响应、脉冲响应(step, impulse) ――基本做图方法(hold, plot) 二、实验内容 1、比例环节 求取K s G )(在不同比例系数K 下的单位阶跃响应,说明比例系数对系统动态过程的影响。 0.10.20.30.40.50.60.70.80.91 G(s)=K,在不同比例系数K 下的单位阶跃响应 Time (sec) A m p l i t u d e 由上图可以看出: 因为G (s )=K ,所以被控对象是一个单纯的比例系统。随着K 的增加,系统的终值是输入信号的K 倍。 2、一阶惯性环节

(1) 求取1 )(+= Ts K s G 的单位阶跃响应,其中放大倍数K =2,时间常数T =2。 1)(+= Ts K s G 的单位阶跃响应如下图: 024681012 0.20.40.60.811.2 1.41.61.8 2G(s)=2/(2s+1)的单位阶跃响应 Time (sec) A m p l i t u d e

(2) 求取1 22 )(+= s s G 的单位脉冲响应,可否用step 命令求取它的脉冲响应? 122 )(+= s s G 的单位脉冲响应如下图: 024681012 0.10.20.30.40.50.6 0.70.80.9 1G(s)=2/(2s+1)的单位m 脉冲响应 Time (sec) A m p l i t u d e 把传递函数乘以s 再求其单位阶跃响应,就可获得乘s 前的传递函数的脉冲响应。如下图: 024681012 0.10.20.30.40.50.6 0.70.80.9 1G(s)=2*s/(2s+1)的单位m 阶跃响应 Tim e (sec) A m p l i t u d e

实验一 典型环节的瞬态响应和动态分析

实验一 典型环节的瞬态响应和动态分析 1、一阶环节的阶跃响应及时间参数的影响 一、实验目的: 通过实验加深理解如何将一个复杂的机电系统传递函数看做由一些典型环节组合而成,并且使用运算放大器来实现各典型环节,用模拟电路来替代机电系统,理解时间响应、阶跃响应函数的概念以及时间响应的组成,掌握时域分析基本方法 。 二、实验内容 ① 自行设计一阶环节。 ② 改变系统参数T 、K (至少二次),观察系统时间响应曲线的变化。 ③ 观察T 、K 对系统的影响。 三、实验原理: 使用教学模拟机上的运算放大器,分别搭接一阶环节,改变时间常数T ,记录下两次不同时间常数T 的阶跃响应曲线,进行比较(可参考下图:典型一阶系统的单位阶跃响应曲线)。 典型一阶环节的传递函数: G (S )=K (1+1/TS ) 其中:RC T = 12/R R K = 典型一阶环节模拟电路: 典型一阶环节的单位阶跃响应曲线:

四、实验方法与步骤 1)启动计算机,在桌面双击“Cybernation_A.exe ”图标运行软件,阅览使用指南。 2)检查USB 线是否连接好,电路的输入U1接A/D 、D/A 卡的DA1输出,电路的输出U2接A/D 、D/A 卡的AD1输入。检查无误后接通电源。 3)在实验项目下拉框中选中本次实验,点击 按钮,参数设置要与实验系统参 数一致,设置好参数按确定按钮,此时如无警告对话框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可继续进行实验。 4)保持Ω=K R 1001,F C μ1.0=不变,分别令ΩΩ=K K R 200,1002,改变系统参数T 、K ,观察并记录系统时间响应曲线的变化。 五、实验数据整理与分析: 1)实验数据与响应函数 Ω=K R 1002,Ω=K R 1001,F C μ1.0=, 理论值:12/R R K ==1, C R T 2==10ms 实验值:12/R R K ==0.91 C R T 2==9.87

实验报告1典型环节及其阶跃响应分析

实验一典型环节及其阶跃响应分析 一、实验目的 1、掌握控制模拟实验的基本原理和一般方法。 2、掌握控制系统时域性能指标的测量方法。 二、实验仪器 1、EL-AT-Ⅱ型自动控制系统试验箱一台 2、计算机一台 三、实验原理 1.模拟实验的基本原理: 控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。若改变系统的参数,还可进一步分析研究参数对系统性能的影响。 四、实验内容 1、用运算放大器构成比例环节、惯性环节、积分环节、比例积分环节、比例微分环节 和比例积分微分环节。 2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关 系。 3、在运算放大器上实现各环节的参数变化。 五、实验步骤 六、实验步骤 1. 启动计算机,在桌面“信号、自控文件夹”中双击图 标,运行软件。 2. 测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原因使 通信正常后才可以继续进行实验。 3. 连接典型环节的模拟电路,电路的输入U1接A/D、D/A卡的DA1输出,电路的输 出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。 4. 在实验项目的下拉列表中选择[一、典型环节及其阶跃响应] ,鼠标单击按 钮,弹出实验课题参数设置对话框。在参数设置对话框中设置相应的实验参数 后用鼠标单击确定,等待屏幕的显示区显示实验结果. 5. 观测计算机屏幕显示出的响应曲线及数据,记录波形及数 七、实验结果 1、比例环节 K=2

典型系统的阶跃响应分析

自动控制理论实验报告 姓名 焦皓阳 学号 201423010319 班级 电气F1402 同组人 周宗耀 赵博 刘景瑜 张凯 实验一 典型系统的阶跃响应分析 一、实验目的 1. 熟悉一阶系统、二阶系统的阶跃响应特性及模拟电路; 2. 测量一阶系统、二阶系统的阶跃响应曲线,并了解参数变化对其动态特性的影响; 3. 掌握二阶系统动态性能的测试方法。 二、实验内容 1. 设计并搭建一阶系统、二阶系统的模拟电路; 2. 测量一阶系统的阶跃响应,并研究参数变化对其输出响应的影响; 3. 观测二阶系统的阻尼比分别在0<ξ<1,ξ>1两种情况下的单位阶跃响应曲线;测量二阶系统的阻尼比为2 1=ξ时系统的超调量%σ、调节时间t s (Δ= ±0.05); 4. 观测系统在ξ为定值n ω不同时的响应曲线。 三、实验结果【】 1、一阶系统 电路:

传递函数 2o(s) 1()21 R U R Ui s R CS =+ T=1结果:

T=0.1结果: 当T=1时:可以看出此时的稳态值为ΔY=4.4293,到达稳态的时间为ΔX=5.2664,调节时间为图二的ΔX=ts=2.757 当T=0.1时:由于此时的波形的起点没有在零点,所以存在着误差,此时的误差Δ=0-Y2=0.085,此时到达稳态时间为ΔX*13/21=0.5556,调节时间为X2在ΔY*0.95-Δ时的X2-X1=ts=0.375

结论:(参数变化对系统动态特性的影响分析) 参数的变化对系统动态性能的影响:T(周期)决定系统达到稳态时间的长短。在其他变量保持不变的情况下,当T 越小,该系统到达稳定状态所需时间就越少,系统对信号的响应也就越快。 2、二阶系统 电路: 传递函数 2 22221 ()1 ()Uo s C R S Ui s S RxC C R =++ (1)10n ω=,2.0=ξ结果:

自动控制原理实验典型环节及其阶跃响应,二阶系统阶跃

实验一、典型环节及其阶跃响应 实验目的 1、学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。 2、学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。 实验内容 构成下述典型环节的模拟电路,并测量其阶跃响应。 比例环节的模拟电路及其传递函数示图2-1。 G(S)=-R2/R1 惯性环节的模拟电路及其传递函数示图2-2。 G(S)=-K/TS+1 K=R2/R1 ,T=R2*C 积分环节的模拟电路及其传递函数示图2-3。 G(S)=1/TS T=RC 微分环节的模拟电路及其传递函数示图2-4。 G(S)=-RCS 比例加微分环节的模拟电路及其传递函数示图2-5。 G(S)=-K(TS+1) K=R2/R1 T=R2C 比例加积分环节的模拟电路及其传递函数示图2-6。 G(S)=K(1+1/TS) K=R2/R1,T=R2C 软件使用 1、打开实验课题菜单,选中实验课题。

2、在课题参数窗口中,填写相应AD,DA或其它参数。 3、选确认键执行实验操作,选取消键重新设置参数。 实验步骤 1、连接被测量典型环节的模拟电路及D/A、A/D连接,检查无误后接通电源。 2、启动应用程序,设置T和N。参考值:T=0.05秒,N=200。 3、观测计算机屏幕示出的响应曲线及数据记录波形及数据(由实验报告确定)。 实验报告 1、画出惯性环节、积分环节、比例加微分环节的模拟电路图,用坐标纸画出所有记录的惯性环节 、积分环节、比例加微分环节的响应曲线。 2、由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由电路计算的结果相比较。 实验二二阶系统阶跃响应 一、实验目的 1、研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频ωn 对系统动态性能的影响,定量分析ζ和ωn与最大超调量Mp和调节时间 ts 之间的关系。 2、进一步学习实验仪器的使用方法。 3、学会根据系统阶跃响应曲线确定传递函数。 二、实验原理及电路 典型二阶系统的闭环传递函数为

基于matlab的二阶系统的阶跃响应曲线分析.doc

精 品 资 料 利用MATLAB 绘制二阶控制系统的单位阶跃响应曲线 作者:张宇涛 张怀超 陈佳伟 一:课设目的和意义 (1) 学习控制系统的单位阶跃响应。 (2) 记录单位阶跃响应曲线。 (3) 比较阻尼比zeta 为不同值时曲线的变化趋势。 (4) 掌握二阶系统时间响应分析的一般方法。 二:理论分析 (1)典型二阶系统的结构图如图1所示。 不难求得其闭环传递函数为 2 222)()()(n n n B s s R s Y s G ωζωω++== 其特征根方程为222n n s ωζω++=0 方程的特征根: 222n n s ωζω++=0))(()1)(1(212 1=--=++s s s s T s T s 式中, ζ称为阻尼比; n ω称为无阻尼自然振荡角频率(一般为固有的)。当ζ为不同值时,所对应的单位阶跃响应有不同的形式。 (2)二阶系统单位阶跃响应的三种不同情况 a.过阻尼二阶系统的单位阶跃响应(ζ>1) 在阻尼比ζ>1的条件下,系统的特征方程有两个不相等的实数极点。

222n n s ωζω++=0))(()1)(1(212 1=--=++s s s s T s T s 式中1T =;)1(1 2--ζζωn =2T ) 1(1 2-+ζζωn 。 此时,由于ζ>1,所以1T 和2T 均为实数,2 121T T n =ω。 当输入信号为单位阶跃输入时,系统的输出响应如下: ) /1)(1/(1)/1)(1/(11)()()(221112T s T T T s T T s s R s G s Y B +-++-+== 对上式进行拉普拉斯反变换,可得 t T t T e T T e T T t y 211 211121/11/11)(---+-+= b .临界阻尼时的单位阶跃响应(ζ=1) 此时闭环系统的极点为n n s s ωζω-=-==21 此时系统的单位阶跃响应为)1(1)(t e t y n t n ωω+-=- c .欠阻尼时的单位阶跃响应(0<ζ<1) 当0<ζ<1时,系统处于欠阻尼状态。其闭环极点为: S=n ζω-d j ω± 21ζωω-=n d 求得单位阶跃响应: Y(s)= )()(s R s G B =()()22221d n n d n n s s s s ωζωζωωζωζω++-+++- 设21sin ,cos ζβζβ-== 对上式进行拉普拉斯反变换,可得其时间响应为 )1arctan sin(112 2ζζωζω-+---t e d t n 特别地,当ζ=0时,有 t t t y n n ωωcos -1)90sin(1)(=?+-= 这是一条平均值为1的正.余弦形式的等幅振荡。

相关文档
相关文档 最新文档